Linear Regression

The Foundation of Predictive Modeling

Introduction

» Linear Regression is a supervised learning algorithm used to predict continuous

outcomes by modeling the relationship between dependent and independent variables
» Common applications: Predicting house prices, stock trends, sales forecasting, etc.

» On Larger Note in LR we always looking for a best fit line.

Input ‘ ‘ Predicted
Features m Qutput

Types of Linear Regression:

> Simple Linear Regression

¢ Predicts output based on a single independent variable.

e Formula:y = wy + wie + €

> Multiple Linear Regression:

¢ Handles multiple independent variables.

e Formula:y = wp + wizr +weza 4+ ...+ €

| Linear Regression |
M mm e e -+
|
|
B e e -
| |
| |
F—mm e e e — — + o m m
| Simple Linear | | Multiple Linear
| Regression (SLR) | | Regression (MLR)
(RS | [
| One DV, One IV | | One DV, Multiple IWs |
e + T P
|
|
|
e +

| One DV, One or Multiple IWs |
| {relationship is polynomial) |

Assumptions of Linear Regression:

e Linearity ensures the model accurately represents the data trend.
¢ Normality of Residuals validates the p-values and model behavior.
e Homoscedasticity maintains consistent variance in residuals.

¢ No Autocorrelation ensures independent errors.

¢ No Multicollinearity keeps predictor relationships manageable.

* No Endogeneity prevents biased estimates.

¢ Adjusted R-Square and p-values guide model evaluation and predictor significance

Avoiding Overfitting/Underfitting balances model complexity for generalization.

1. Linearity in Data

* Assumption: The relationship between the dependent variable (y) and the independent

variables (X)) should be linear.

*» Why it matters: Linear regression assumes that the best-fit line (or hyperplane in higher
dimensions) can describe the relationship between the variables. If the relationship is non-linear,

the model won't capture the true patterns.

e How to check:

* Scatter plots: Visualize the relationship between each independent variable and the
dependent variable. If the relationship is not linear, consider using polynomial regression or

transformations.

* Residual plot: Check residuals (errors) against the predicted values. For linear regression,

the residuals should show no pattern (i.e., they should be randomly distributed).

2. No Heteroscedasticity

e Assumption: The variance of the residuals (errors) should be constant across all levels of the

independent variable(s).

e Why it matters: Heteroscedasticity (non-constant variance) violates the assumption and can

lead to inefficient estimates and invalid statistical tests.

e How to check:

* Residual plot: Plot residuals against fitted values. If the spread of residuals increases or

decreases systematically as the predicted value increases, this suggests heteroscedasticity.

3. No or Little Multicollinearity

e Assumption: Independent variables should not be highly correlated with each other.

* Why it matters: If independent variables are highly correlated (multicollinearity), it becomes
difficult to isolate the effect of each variable, leading to unstable coefficient estimates and

inflated standard errors.

* How to check:

» Correlation matrix: Look at the correlation coefficients between pairs of independent

variables. If they are very high (e.g., > 0.8 or < -0.8), there may be multicollinearity.

» Variance Inflation Factor (VIF): A high VIF (> 10) indicates problematic multicollinearity. You
can remove highly correlated predictors or use techniques like Principal Component

Analysis (PCA) to reduce multicollinearity.

4. No Autocorrelation

* Assumption: Residuals should not be correlated with each other. This is especially important for

time series data.

» Why it matters: If residuals are autocorrelated, it suggests that some information is missing
from the model, meaning the model has failed to capture a pattern that should be accounted

for.

* How to check:

e Durbin-Watson test: This test checks for autocorrelation in residuals. A value close to 2

suggests no autocorrelation.

5. No Endogeneity

* Assumption: The independent variables should not be correlated with the error term.

* Why it matters: Endogeneity occurs when there's a cause-and-effect relationship between the
independent variables and the error term, violating the assumption that the error term should

be random. This leads to biased and inconsistent estimates of the regression coefficients.

6. P-value Less Than 5% (for Significance)

Assumption: The individual coefficients in the regression model should have p-values below a
threshold (usually 0.05) to indicate that the variable is statistically significant in explaining the

variance in the dependent variable.

Why it matters: A p-value greater than 0.05 indicates that the corresponding variable's
coefficient is not significantly different from zero, meaning it does not contribute much to

predicting the outcome. This suggests you might want to remove the variable.

How to check:

» After fitting a linear regression model, check the p-values for each coefficient. If they are
higher than 0.05 (the typical threshold), you may consider removing the variable from the

model.

7. R-squared Greater Than 70% (for Model Fit)

e Assumption: This is more of a practical expectation than a strict assumption. R-squared

indicates how well the model explains the variance in the dependent variable.

* Why it matters: A high R-squared value (greater than 70%) suggests that the model fits the data
well and is able to explain a large proportion of the variance. However, R-squared alone is not

enough to conclude a good model; overfitting can artificially inflate R-squared.

¢ How to check:

e Look at the R-squared value in your model output. If it's below 70%, it might indicate a
weak fit, but you should also check the adjusted R-squared to account for the number of

predictors.

e Keep in mind that a high R-squared value doesn't imply causation or guarantee that the

model will perform well on unseen data.

8. Independence of Observations
e Assumption: Observations should be independent of each other.

* Why it matters: If the observations are not independent (for example, in time series data or

clustered data), the regression results can be biased and invalid.

* How to check: You should consider the structure of your data. In time series or clustered data,

you might need to use methods that account for this, such as time-series models or mixed-

effects models.

Additional Considerations:

¢ Adjusted R-Square:

s Unlike R? the adjusted R? accounts for the number of predictors in the model and adjusts

for the model's complexity.

¢ |tisused to compare models with different numbers of predictors and can provide a better

measure of fit for models with multiple predictors.

No Overfitting/Underfitting:

¢ Overfitting: Occurs when the model is too complex and captures the noise in the data,

leading to poor generalization to new data.

* Underfitting: Occurs when the model is too simple and fails to capture the underlying trend
in the data.

« Regularization techniques, cross-validation, and model selection criteria (like AIC or BIC) can

help in finding a balance to avoid overfitting or underfitting.

Journey of Regression from Stats to ML:

variance ------------- > Co-variance =-------=--=-=-=--- > Correlation ------------ > Regression
|Spread of datal] |Relationship between two variables| |Relationship and Strength| |Quantify relationships|
Regression:

e Utilizes the concepts of variance and correlation to build models that predict the value of a
dependent variable based on one or more independent variables.

e Provides a quantitative measure of how much the dependent variable changes with

changes in the independent variables.

» Linear Regression models the relationship between the response

variable (also known as the dependent, target, or result variable, denoted

as y) and the regression coefficients (denoted as i, wi).

» The relationship is assumed to be linear. This means the output y can be
expressed as a linear combination of the input features x and the

coefficients.

Linear Regression

Simple Linear Regression Multiple Linear Regression Polynomial Linear Regression

W W W

X2 X3 X4

X1 X2 X3 X1 X2 X3 X4

General Form:

e The general form of the linear regression model is given as:
y = Bo+ Bz + oz + -+ - + Bny

e Here, y is the predicted output, Gy is the intercept (constant term), and 5y, o, . ..

the coefficients for the input features &y, s, ..., I,.

»Regression Coefficients:
v'These coefficients (Bi, wi) are the weights assigned to each input feature x.

v'They determine how much each input feature contributes to the output y.

Geometric Intuition:

= Objective:
The primary objective in simple linear regression is to determine the linear relationship between

two variables—in this case, weight (1) and height (f2).

* Finding the Best Fit:
Imagine trying to draw a line that passes through or is closest to all the data points on the
scatter plot. The line should balance itself such that the distances (vertical distances in this

context) between the data points and the line are as small as possible.

« Error Minimization:
The concept af the "best fit" line is gquantified by minimizing the sum of sgquared residuals
(errors). Each residual is the vertical distance between the observed height and the height

predicted by the line for a given weight.

« Slope and Intercept:

= The slope (1) tells us how steep the line is and the direction of the relationship between
weight and height. If the slope is pasitive, height increases with weight; if negative, height

decreases with weight.

» The intercept (wg) gives the height when the weight is zero. While this might not have a
physical meaning (since weight can't be zero), it is mathematically crucial for defining the

line.

= Linear Relationship:
Linear regression assumes that the relationship between the variables can be described with a
straight line. This assumption simplifies the problem but might not always capture maore

complex relationships.

Mathematical Formulation:
Given data points (x;, yi-_} where x; represents weight and y; represents height, the line of best fit is

determined by solving:

Y — U + Uy

where wq and wy are determined by minimizing the cost function:

n

Cost = Z(Eﬁ — (wz; + wn]]z

i—1

This approach helps find the optimal values for wy and wy, that best describe the relationship

between weight and height for the given dataset.

Practical Example:

If we have a dataset of individuals® weights and heights, we can plot these points and find the line

that best predicts height from weight. Once we have the regression line, we can use it to estimate

the height of someone given their weight.

Graphical Representation:

>

Scatter Plot of Data Points: We'll plot the given data points, where each point
represents a pair of weight and height values.

Best Fit Line: We'll draw the line that best fits the data points according to the linear
regression model. This line minimizes the sum of the squared errors between the actual
data points and the line.

Residuals (Errors): We'll show the vertical distances (residuals) between the data point
and the regression line, highlighting the concept of minimizing these distances.

Simple Linear Regression: Weight vs. Height

®x Data Paints ?
1
|
1
I
I

S0k

Best Fit Line

Height (cm)

W
L

30r

25}

50 60 70 80 30 100
Weight (kg)

Model Parameters:

» Slope (w1): let it be 0.361 (approximately)

» This means that for every unit increase in weight, the height is expected
to increase by about 0.361 units.

» Intercept (w0): let it be 9.11 (approximately)

» This is the height when the weight is zero. While it might not be
meaningful in a practical context, it is essential for defining the
regression line.

Geometric Intuition:

» The best fit line attempts to capture the linear relationship between weight
and height. The slope indicates the direction and steepness of this
relationship.

» Minimizing the residuals ensures that the line is as close as possible to all the
data points, providing the best possible predictions.

Finding a line to best fit the data points using Ordinary
Least Squares (OLS) regression

But- :eﬂ-.o.l'%eo l‘—_ Ordinary Least Squares (OLS) Regression
4.5F x Data Points
—— Best-Fit Line
4.0t
How 4o Owenle M"‘"" 35t
m, %) L 30t
-Mw ~
C,Lo +* 2.5}
*
e
_G A = 2.0t
ti‘ —‘-“‘-f o'y %.l. _6 = td’l:_ a;
< *1.1‘-"'*: e T 15t
— ® . b)
. H = Ye Lm'\"- 1.0 :
T £ L“ 0.0

voarablun ¢ wm b ™y
21774
X NS deiskon s g+ dyvde —d,
L - du -ds
—_)

1. Data Points and Line:

« The graph shows three data points (21, 1), (29, 12), and (23, y3).

o Aline is fitted to these points, likely a regression ling, represented in blue.

2. Residuals:

» Residuals are the differences between the actual values (y) and the predicted values (1) on

the regression line.

o The residual for each point is depicted as a vertical line from the point to the regression

line.

+ Residual for y;: This is the vertical distance between y; (actual) and 7, (predicted on

the line).
» Residual for yy: Similarly, the distance between 15 (actual) and i (predicted).

» Residual for y3: The distance between y5 and g3 (in this case, zero because the point

lies on the line).
3. Error Notation:

» The error for each point is noted as y; — ¥;:
» Error 1(e): 47 — 91, which is positive (+ve) because y; is above the line,
s Error 2 (e9): y» — 1o, which is negative (-ve) because 1» is below the line.

o Error 3 (e3): y3 — 73, which is zero (0) because y lies exactly on the line.

4, Squared Errors:

» o measure the fit of the line, we square these residuals:

o (- 3}1]2: The squared residual for point 1.
o (- ﬂg]zl The squared residual for point 2.

o (y3 — ij3)*: The squared residual for point 3.

» Squaring is done to ensure that all errors are positive and to penalize larger deviations

more heavily.
5. Sum of Squared Errors (SSE):

» The sum of these squared errors gives the Sum of Squared Errors (SSE):

n

SSE = Y (3 -)"

i-1

» 55E I5 used to assess how well the regression line fits the data. A smaller SSE indicates a
better fit.

Key Points:
+ Residuals: The differences between actual and predicted values.
+ Squared Errors: Residuals squared to ensure positivity and penalize larger deviations.

» SSE: A measure of the total deviation of the actual data points from the fitted line.

Explanation of the Graph:

This graph visualizes the concepts of residuals and squared errors in a linear regression context:

Residuals and Squared Errors

1. Data Points: 20l x
| Residual 3
 The red crosses () represent the actual data points: (z1,y1) = (1, 2), (z2,92) = (2,1), . |
and (z3,y3) = (3,3).
{1.2)
s These are the observed values we are trying to predict using the regression model. 20 X i
[,20)
! I
1 1]
2. Regression Line: > 15¢ . |1 . ‘; Resiualp ® ﬁ"r:'s;:mm
) . ;.) . 21
s The blue line represents the regression model, providing predicted values (y) based on the 1.0t %
T values.
0.5
« For simplicity, we assumed a linear fit with predicted points: (1,1.5), (2, 2), and (3, 2.5).
3. Residuals: 00 i . | .
0.0 0.5 10 15 20

« (Green dashed vertical lines illustrate the residuals, which are the differences between the

actual data points and their corresponding predicted values on the regression line.

» Residual 1: The distance from (1, 2) to (1, 1.5).
» Residual 2: The distance from (2, 1) to (2, 2).

» Residual 3: The distance from (3. 3) to (3, 2.5).

oncept of residuals and squared errors in the
ntext of linear regression.

4, Annotations:

» FEach residual is labeled as "Residual 1," "Residual 2," and "Residual 3" to identify the vertical

distances.
* The actual data points are labeled with their coordinates in red.

* The predicted points on the regression line are labeled with their coordinates in blue.
5. Sum of Squared Errors (S5E):

o While not explicitly shaown on the graph, the 55E is calculated by summing the squares of
these residuals:

n

SSE =) (v —)’

i—=1

e This value is used to assess how well the regression line fits the data, with lower 55E

indicating a better fit.

Insights:

» Positive Residuals: When the actual data point is above the regression line, the residual is
positive (e.g., Residual 1).
* MNegative Residuals: When the actual data point is below the regression line, the residual is

negative (e.g., Residual 2).

s Zero Residuals: If a data point lies exactly on the regression line, the residual is zero (e.g.,
Residual 3).

Key Points:

» The best-fit line is determined by minimizing the sum of the squared vertical

distances between the actual data points and the predicted values on the line.

» The residuals show how far off the predictions are from the actual data points.

Reasons for Using Squared Errors:

> Why We use 1. Penalizing Larger Errors:
Sq u a re Of s Squaring the errors amplifies the impact of larger deviations. This means that points that

are far from the regression line have a disproportionately larger effect on the SSE.

e rro r hd s For example, an error of 2 becomes 4 when squared, while an error of 5 becomes 25. This

helps ensure that large errors are given more weight and significantly influence the model

» In linear regression, fiting process.
we often use the
square of the errors, - _ | B

. * Errors can be positive or negative. If we were to sum the errors directly, positive and
rat her than J USt the negative errors could cancel each other out, potentially misleading us about the overall fit
errors themselves, to of the model.
measure h oW Well th e * By squaring the errars, all values become positive, preventing cancellation and ensuring
model fits the data.

» This is called the Sum _ - B
* Sguaring the errors leads to & smooth, differentiable function. This is essential for the
Of Sq ua red EI’I‘OI‘S optimization process used to fit the model,

(SSE) o * For linear regression, the sum of squared errors has a unigue minimum that can be found

2. Ensuring Mon-Megativity:

that zll errors contribute positively to the total measure of error.

3. Mathematical Convenience:

analytically by taking derivatives. This makes the least squares method computationally

efficient and straightforward to apply.
4. Statistical Properties:

e Sguared errors are used in the context of normally distributed errors, which is a common
assumption in regression models. The sum of sguared errors closely relates to the concept

of variance in statistics.

s The least squares approach (minimizing SSE) corresponds to the maximum likelihood

estimation when the errors are normally distributed.

Example:

Consider a simple example with two data points and a regression line:

e Data Points: (xy, 1) and (x4, =)
» Predicted Values: §j; and 1y

» Ermorsie; =y — Ypand es = 1y — U

If the errors are:

. g = 2

. g, = —3

Without squaring:

e Sumoferrors = 2 + (—3) = —1 (misleadingly small and possibly zero for some datasets)

With squaring:

s Squared errors = 4 and Y

» Sum of squared errors = 4 + 9 = 13 (clearly shows the magnitude of deviations)

Why Not Use Absolute Errors?

Using the absclute value of the errors is an alternative approach known as the least absolute

deviations (LAD) method. While this approach can be more robust to outliers, it has some
drawbacks:

* MNon-Differentiability: The absolute value function iz not smooth and differentiable at zero,

making it harder to use in optimization algorithms that rely on derivatives.

* Less Sensitivity to Large Errors: Unlike squaring, absolute values don't penalize larger deviations

as heavily, which might not be desirable in some cases.

Conclusion:

Using the square of errars in linear regression helps in minimizing the overall errar in a manner that
is mathematically convenient, statistically groundea, and intuitively appealing. This approach ensures
that larger deviations are penalized more, non-negative errors are summed, and the optimization

process is simplified and efficient.

hy Not Use Absolute Errors?

Why Differentiability Matters in Optimization:

In optimization, especially for methods like gradient descent, we need to know the direction in which
to move to reduce the error. This direction is given by the derivative {or gradient in higher
dimensions). A smooth, differentiable function provides clear guidance on how to adjust the model

parameters to reduce the error.

» Smooth Functions (e.g.. °): &llow for straightforward calculation of gradients, leading to

efficient and effective optimization.

* Non-Smooth Functions (e.g., ||): Pose challenges in optimization due to undefined or abrupt

changes in gradients at certain points, making it harder to find the optimal solution.

Squared Error Function f(z) = 2

o Shape: The U-shape of the z* function means it smoothly curves upwards. This smoothness

implies that for any small change in 2, the change in y is continuous and predictable.

¢ Differentiability: Because the curve is smooth and has no sharp points, it's differentiable
everywhere. This is crucial for optimization techniques like gradient descent, which rely on

calculating derivatives to find the minimum error efficiently.

Absolute Error Function f(z) = |z/:

o Shape: The V-shape indicates a sharp turn at the origin. This point is where the function changes =1

direction abruptly.

+ Non-Differentiability: At z = 0, the slope changes instantaneously from -1 to 1. This means
there’s no unique tangent line at 2 = (), making the function non-differentiable at this point.

Optimization algorithms that depend on derivatives can't handle this abrupt change well.

100 1

Squared Error Function

L — flx) = x?

-100 -7.5

-25 00 2.5

5.0

10

Absolute Error Function

-]

-100 -7.5

-5.0

-2.5 0.0 2.5

5.0

R squared: Coefficient of Determination

SSE (Sum of Squared Errors or Residual Sum of Squares):

* Represents the sum of the squared differences between the observed actual values and the

values predicted by the model.

» Formula:

SSE =30 (ui — §)’

where ¥; is the actual value, ; is the predicted value, and n is the number of observations.
SST (Total Sum of Squares):

* Represents the total variance in the dependent variable. It is the sum of the squared

differences between the observed actual values and the mean of those values.

* Formula:

SST = 2?:1(9:‘ - §)2

where ¥ is the mean of the observed values.

. . 2 SSE .
Given the equation R = 1 — &%

1. SST (Total Variability):

* Measures the total variability in the dependent variable.
» Compares each data point to the mean of the dependent variable.

* Indicates how much the actual data points deviate from the mean.
2. SSE (Model Error):

* Measures the error in the model's predictions.
» Compares each data point to the predicted value from the model.

* Indicates how much the actual data points deviate from the predicted values.
3. R-squared Calculation:

» R? represents the proportion of the total variability that is explained by the model.

A higher R? means a better fit of the model to the data, indicating that more variance is

explained by the independent variables.

L et
A
Lives W Ovdivary. O

y
+Pe. Ouor.
B..t- eﬂ-m\w KM

» Ordinary Least Squares(OLS): Work on Best fit line
» Gradient Descent: Work on the concept of Reduce the error

Gradient Descent:
Ordinary Least Squares (OLS):

, _ o |Initialize parameters 6 (usually starting with zeros or small random values).
o Directly solve the normal equation f = (X* X)~' X"y

o Update @ iteratively to minimize the cost function J(#), typically the mean squared error
o This method provides a closed-form solution and is generally used when the dataset is not

too large and the design matrix X is not close to being singular. ¢ This method is useful for large datasets or when dealing with high-dimensional spaces

where OLS is computationally infeasible.

Example: Multiple Linear Regression

For multiple linear regression with more features, the model extends to:
y = 60y + by + Gazo + ... + Opxy
In this model:

e ({ is the intercept (bias term).

o (1,04,...,8, are the slopes (coefficients for each feature).

Matrix Notation

In matrix form, this can be expressed as:
y — X6
Where:

e Xisanm x (n + 1) matrix (including a column of 1s for the intercept).
e (s a vector with n + 1 components (intercept and slopes).

e 1y is the vector of observed outcomes.

Normal Equation

The normal equation is used to find the optimal @ that minimizes the sum of squared errors:

B = (XTX)'xty

dE %: L~ W= Bz e Gy W N/
" - '«’z_ Cyi- ™G - Y e FOnb) = §=§)
N %_*_ (- w0 _iwi)c—u;**)“' 2 _x . _mai—b) =0
- o (Y o *» o .
R pory TR CENT

5 5 [Lypod- =G)=

s M(_i-‘vlﬂ"-‘- z(_a:;-a\ (- %) 5 - w¥ —'=o
2(- --—) i'ﬁ] ba‘ﬁ;’%ﬁg’*
™ = L % - y ol
L i <
Rk

Math's to Find Slope and Intercept

> ldentification of significant variables:
> It can be done during Exploratory Data Analysis (EDA)
> As well as during model building.

1. Correlation During EDA

During EDA, correlation analysis helps identify relationships between variables.

* Pearson Correlation: Measures the linear relationship between two continuous variables. Values
range from -1 to 1, where values closer to 1 or -1 indicate a strong relationship, and values near
0 indicate a weak or no linear relationship.
pxy =

* Spearman's Rank Correlation: A non-parametric measure that assesses how well the
relationship between two variables can be described using a monotonic function. Suitable for

ordinal data or non-linear relationships.

6% d*
pr= L= oroy

Use in EDA:

¢ |dentify pairs of variables that have a high correlation, indicating possible redundancy or

multicollinearity.
o Detect potential predictor variables that have strong relationships with the target variable.

e Highlight interesting relationships and patterns in the data that may warrant further

investigation.

2. Variance Inflation Factor (VIF) After Modeling

Once you start building regression models, especially multiple linear regression, checking for
multiccllinearity among predictors is essential. VIF quantifies how much the variance of a regression

coefficient is inflated due to multicollinearity.

¢ VIF Formula:

VIF, = —

|

where RE is the coefficient of determination of the regression of predictor i on all the other

predictors.
Use in Modeling:

¢ VIF = 10: Indicates significant multicollinearity that could affect the stability and interpretability
of the regression coefficients. This threshold is commonly used, but in some cases, a VIF = 5 can

also be considered concerning.

* VIF < 10: Generally considered acceptable, indicating low multicollinearity.

Gradient Descent is a powerful optimization algorithm used to minimize the cost function in
machine learning and deep learning. For Multiple Linear Regression, it iteratively updates the

model's parameters (weights and biases) to find the best fit line for the given data.

Multiple Linear Regression Model

For a dataset with m samples and n features (independent variables), the model can be expressed

GRADIENT DESCENT =
APPROACH: g =0y + 0,2\ + 0,2 + .+ 6,2

Where:

o 4\ is the predicted value for the i-th sample.
. mf) is the 7-th feature for the 2-th sample.
» (is the intercept (bias term).

e 0,,0,,...,0, are the coefficients (weights).

Cost Function (Mean Squared Error)

The cost function J(#) is defined as the Mean Squared Error (MSE) between the predicted values g

and the actual values v

J(0) = 3 X0 (39 —) .

» Gradient Descent is a very generic optimization algorithm capable of finding optimal solu
problems. The general idea of Gradient Descent is to tweak parameters iteratively in orde
function.

Suppose you are lost in the mountains in a dense fog; you can only feel the slope of the groun
A good strategy to get to the bottom of the valley quickly is to go downhill in the direction of t

This is exactly what Gradient Descent does:

>
>
>
>

it measures the local gradient of the error function with regards to the parameter vector 0, and i
direction of descending gradient.

Once the gradient is zero, you have reached a minimum!

until the algorithm converges to a minimum

Cost

Learning step

What is Gradient
Descent

Minimum

>
Random 6

initial value "

» An important parameter in Gradient Cost
Descent is the size of the steps, A
determined by the learning rate
hyperparameter.

> If the learning rate is too small, then the
algorithm will have to go through many
iterations to converge, which will take a

long time
» On the other hand, if the learning rate is Figure 4-4. Learning rate too small
too high, you might jump across the valley
and end up on the other side, possibly even Cost
higher up than you were before. A

» This might make the algorithm diverge,
with larger and larger values, failing to find
a good solution

| » 0
Start

Figure 4-5. Learning rate too large

» The two main challenges with Gradient
Descent: if the random initialization starts
the algorithm on the left, then it will
converge to a local minimum, which is not
as good as the global minimum.

> If it starts on the right, then it will take a
very long time to cross the plateau, and if
you stop too early you will never reach
the global minimum.

> Fortunately, the MSE cost function for a
Linear Regression model happens to be a
convex function, which means that if you
pick any two points on the curve, the line
segment joining them never crosses the
curve.

» This implies that there are no local
minima, just one global minimum. It is
also a continuous function with a slope
that never changes abruptly.4

Cost

Plateau

Local minimum

L
Global
minimum

Figure 4-6. Gradient Descent pitfalls

Gradient Descent Algorithm

The gradient descent algorithm minimizes the cost function by updating the model's parameters in

the direction of the steepest descent of the cost function. The update rule for each parameter 6, is:

o a.J(6) m /s 0 i Rers T

9_;, = 93 — aa;ﬂ_; ‘.1.‘#!' \V s

-- 0N
Where: yo - (,a DS
l ——
i °
* (is the learning rate.
aJ(0) .

=5 is the partial derivative of the cost function with respect to 0.
J

Partial Derivatives

For Multiple Linear Regression, the partial derivatives of the cost function with respect to the

parameters are:

a(0) _ 1).,()
20 = LY (59— yD)al

» Where derivative of loss or cost with weight is called slope.
> Its direction decide in which direction we need to move to reach a point where loss is mini
» The derivative of loss wrt ndim of vector is called gradient.

» Where ndim vector is called a tensor.

> In calculus derivative of tensor is referred as tensor.

In machine learning, data with n number of features is represented as a tensor.

Derivative

Definition: The derivative of a function f(:E) at a point @ is defined as the limit of the average

rate of change of the function over an interval as the interval approaches zero. Mathematically,

this is expressed as:

o) — 1o FE) — f(2)
f'() = lim)

h—0

where f'(x) denotes the derivative of f(x) with respect to .
Notation: The derivative can be denoted in several ways, including:

- [f(=)

daf
dax

« Df(x)
. f(:l:} (in the context of time derivatives in physics)

Interpretation: The derivative f’(:r) represents the slope of the tangent line to the graph of the

function f(:r) at the point . It tells us how f{a‘:) changes as @ changes.

L. &
L2 G
> () e
$-1 %
£ | i
ﬁl ! ﬂ 1eb s Ta
e m::dmm
..b)“ 4

= bad - 2L)
§lobe .
..& (L&.. \'ﬁ.l-'o)

Hyperparameters:

* ‘“learning_rate’: Determines the step size for each iteration.

* ‘“n_iterations: The number of iterations to run the gradient descent.
Initialization:

* “theta': Initialized to zeros. It's the vector of parameters to be learned.
Gradient Descent Loop:

* Predictions: Calculate the predicted values using the current parameters.
* Errors: Compute the difference between predicted and actual values.
* Gradient: Compute the gradient of the cost function with respect to each parameter.

* Update: Adjust the parameters in the opposite direction of the gradient.

Key Points:

* Learning Rate (ax): A too-large learning rate can cause the algorithm to overshoot the minimum,

while a too-small learning rate can make the convergence slow.

* Number of Iterations: More iterations can lead to a better fit but also increase computation
time. A good stopping criterion is when the change in the cost function is very small between

iterations.

¢ Feature Scaling: Gradient descent converges faster if the features have similar scales.
Preprocessing techniques like normalization or standardization are often applied to the feature

data before training.

Gradient Descent: Types

Gradient Descent

/ \
/ \

Batch GD SGD

(Update per epoch) (Update per row)
/ \
/ \
Mini-Batch GD (Faster, less precise)
(Update per mini-batch) \
(Balanced approach) \

(Suitable for large datasets)

1. Stochastic Gradient Descent (SGD)

* Process:

* Updates model parameters (e.g., weights) for each training example.

* Performs updates row-wise (one data point at a time).
* Characteristics:

» Faster but can have less precise results due to the noise in updates.
* Example:

» For 100 iterations with 100 rows of data:

+ 1stiteration: Updates b, m using the 1st row.
* 2nd iteration: Updates b, m using the 2nd row.
* Continues until 100th row.

» Repeats this process for 100 iterations, resulting in 100 x 100 = 10, 000
updates.

Stochastic Gradient Descent (SGD)

2. Batch Gradient Descent

¢ Process:
* Updates model parameters using the entire dataset in each iteration.
¢ Characteristics:

* More precise but slower due to computing gradients for the entire dataset.

e Suitable for smaller datasets.
* Example:
¢ For 100 iterations with 100 rows of data:

» st iteration: Computes the gradient using all 100 rows and updates b, m.

* 2nd iteration: Computes the gradient again using all 100 rows and updates b, m.

» Repeats this process for 100 iterations, resulting in 100 updates.

atch Gradient Descent

* Process:

» Combines aspects of both SGD and Batch Gradient Descent.

» Updates model parameters using a subset (mini-batch) of the dataset in each iteration.
* Example:

s Uses mini-batches of, for instance, 30 rows.

» Suitable for handling large datasets and deep learning tasks.

Mini-Batch Gradient Descent

Linear Regression
and
optimization

» Linear Regression Objective:

(b0, wT) = arg min > (i — i)
=1

This represents the objective function for linear regression, where:

e g and w? are the estimated parameters.
» y; is the actual value.
e ; is the predicted value.

e The goal is to find Wy and wT that minimize the sum of squared differences (errors) between

the actual and predicted values.

Yi = wlz; + wy
This is the linear model used for prediction:

e 2; is the feature vector for the i-th observation.

T is the transpose of the weight vector.

o w
* 1wq is the bias term.

e The predicted value ; is obtained by the dot product of the weight vector and the feature

vector, plus the bias term.

Linear Regression And Optimization

Optimization Problem:

The optimization problem can be restated as minimizing the sum of squared errors:

e This formulation explicitly shows the squared error for each prediction.

* The objective is to find the parameters wg and w? that minimize this sum.

» Linear regression aims to minimize the squared loss, which measures the
discrepancy between the actual and predicted values.

» The squared loss function is fundamental in regression analysis for evaluating
the performance of a model.

1. Overfitting:

Ove rfi tti n g + High Variance: Overfitting occurs when a model learns the training data too well, including
)

noise and outliers. This results in high accuracy on the training set but poor generalization

U n d e r fi tti ng’ to new, unseen data (test set).

d + Example from Diagram: A model with 90-100% accuracy on training data but only 70%
a n accuracy on test data is overfitting. The model captures the nuances of the training data but

BeSt Fit fails to generalize.

2. Underfitting:

> Th reShOld Accu raCy_ + High Bias: Underfitting happens when a model is too simple to capture the underlying

» It's indicated that an accuracy
threshold of 70-95% (or 0.7-0.95) Is
desired.

» This is the target range for acceptable 3. BestFit Model
model performance.

patterns in the data. It performs poorly on both training and test data.

* Example from Diagram: A model with about 50% accuracy on both training and test data is

underfitting. It's too simplistic and fails to capture the complexity of the data.

» Balanced Fit: The ideal model balances bias and variance, performing well on both training

and test data.

» Example from Diagram: A model with approximately 88-92% accuracy on both training and
test sets represents a good fit. It captures the data patterns well without overfitting or

underfitting.

Key Concepts in Regularization:
1. Qverfitting and Underfitting:

e Overfitting occurs when a model learns the noise in the training data, fitting it too closely
and performing poorly on new, unseen data. It typically results from a model being too

complex with too many parameters.

e Underfitting happens when a model is too simple to capture the underlying pattern of the

data, leading to poor performance both on the training and test data.
2. Regularization:

e Regularization technigues are used to prevent overfitting by adding a penalty to the loss
function, discouraging the model from fitting the training data too closely. It helps to

maintain a balance between model complexity and performance.

Regularization

1. Lasso (L1 Regularization):

¢ Concept: Lassc adds a penalty equivalent to the absclute value of the magnitude of

coefficients.

¢ Effect: This can shrink some coefficients to exactly zero, effectively performing feature

selection by eliminating less important features.

¢ Relation to Overfitting: By reducing some coefficients to zero, Lasso simplifies the model,

which can help mitigate overfitting.

¢« Formula:

i P
Minimize Z (ya; - ('wT:B:' + ’wﬂ})z + A Z jwj|
i=1 =1

Where A is the regularization parameter controlling the strength of the penalty, w; are the

model coefficients.

ypes of Regularization:

2. Ridge (L2 Regularization):

Concept: Ridge adds a penalty equivalent to the square of the magnitude of coefficients.

e Effect: Unlike Lasso, Ridge does not shrink coefficients to zero but rather reduces them

closer to zero.

e Relation to Overfitting: Ridge prevents overfitting by discouraging large coefficients,

thereby reducing the model's complexity.

* Formula:

n P
Minimize Z (yi — [wT:t:i + wu})z + A Z w_?
i=1 J=1

Where A is the regularization parameter.

ypes of Regularization

3. Elastic Net (Combination of L1 and L2 Regularization):

Concept: Elastic Net combines both L1 and L2 penalties. It adds a mix of L1 and L2 penalties

to the loss function.

Effect: It can perform feature selection (like Lasso) and reduce coefficients (like Ridge),
making it versatile in handling datasets with correlated features or when performing feature

selection and model complexity reduction simultaneously.

Relation to Overfitting: By balancing both L1 and L2 penalties, Elastic Net provides a robust
way to control overfitting and adapt to different types of data.

Formula:

1)

r P
Minimize Z (yi — (w'z; + ‘wu])E + A1 Z wj| + A Z wj
i-1 j=1 j=1

Where A; and As control the L1 and L2 regularization strengths, respectively.

ypes of Regularization

Application and Interpretation:

e When choosing a regularization method, consider the nature of your data and the problem at
hand. Lasso is beneficial when you expect many irrelevant features, Ridge is useful when all
features are expected to be relevant, and Elastic Net is suitable for scenarios involving both

correlated features and a need for feature selection.

1. Lasso is depicted as the first type of regularization, emphasizing how it drives coefficients to be

exactly zero, which helps in feature selection and reducing overfitting by simplifying the model.

2. Ridge is shown as the second type, highlighting its approach to pull the coefficients closer to

zero but not necessarily to zero, thus controlling the model complexity and avoiding overfitting.

3. Elastic Net is introduced as a combination of both L1 and L2 regularization, offering a balance
that can manage both sparsity (feature selection) and coefficient shrinkage, providing a middle

ground in controlling overfitting.

pplication and Interpretation:

» When evaluating a linear regression model, several error metrics
help determine the model's performance.

» Each serves a slightly different purpose.

> The order of accuracy typically depends on the sensitivity of the
metric to outliers and the emphasis on specific error magnitudes.

> Here is a brief overview of the key error metrics, their order, and

when to use them:

Evaluation of a Regression Model:

1. Mean Absolute Error (MAE):

* Definition: Average of the absolute differences between actual and predicted values.
_1\on -
MAE = o Z;::l i — Uil
* |Interpretation:
* Measures error magnitude without considering direction (sign).
* Linear penalty for errors.

e Accuracy: Moderate; robust to outliers because it doesn't square the error.

* When to use: Use when you want an error measure that is simple and not sensitive to

large deviations.

2. Mean Squared Error (MSE):

* Definition: Average of the squared differences between actual and predicted values.
— 1N -~ \2
MSE =251 (%i — 4)
* Interpretation:

* Penalizes larger errors more than smaller ones because errors are squared.

* Units of MSE are squared, which can be harder to interpret.

* Accuracy: Higher than MAE in cases with minimal outliers, as it magnifies large deviations.

* When to use: Use when you want to heavily penalize large errors and emphasize

minimizing them.

3. Root Mean Squared Error (RMSE):

* Definition: Square root of the MSE.
RMSE = /27, (3 — §:)?

* |nterpretation:

* Gives the error magnitude in the same units as the target variable.
e |tis sensitive to outliers, similar to MSE.
e Accuracy: RMSE provides a balanced measure of error when penalizing larger deviations.

¢ When to use: Use when you want a measure in the same units as the dependent variable

and care about significant errors.

4. Mean Absolute Percentage Error (MAPE):

e Definition: Average of the absolute percentage errors.

MAPE = L Y77 | | £ % 100

e Interpretation:

* Expresses errors as percentages, making it scale-independent.
¢ Sensitive to small actual values (division by small numbers inflates the error).

* Accuracy: Accuracy depends on the scale of target values; not ideal if actual values are

near Zero.

* When to use: Use for comparing models across datasets or scenarios with different scales.

Comparison Order of Accuracy:
1. RMSE (most accurate but sensitive to outliers).

2. MSE (similar to RMSE but in squared units).

3. MAE (more robust to outliers than MSE and RMSE).

4. MAPE (useful for scale-independent error assessment but can be tricky for very small

values).

When to Use Which Metric?

* MAE: When you want robustness and interpretability without emphasizing large errors.
* MSE or RMSE: When you care more about penalizing large errors significantly.

* MAPE: When comparing errors as percentages, especially across datasets.

In practice:
» |f outliers are a concern: Use MAE.
* |f you want more emphasis on large errors: Use RMSE or MSE.

* |f interpretability and units matter: Prefer RMSE.

Model Evaluation Techniques
1. Train-Test Split:

¢ Dividing the dataset into a training set to train the model and a test set to evaluate it.

e Ensures that the model is evaluated on unseen data, providing a more realistic measure of

its performance.
2. Cross-Validation:

¢ Technique to assess how the model generalizes to an independent dataset.

e Commonly used method is k-fold cross-validation where the dataset is divided into k
subsets, and the model is trained k times, each time using a different subset as the test set

and the remaining data as the training set.

¢ Helps in reducing overfitting and provides a better estimate of model performance.
3. Residual Analysis:

e Examines the residuals (differences between actual and predicted values) to diagnose

model fit.

¢ Plotting residuals can help identify patterns that suggest non-linearity, heteroscedasticity,

or outliers.

Visualizing Model Performance
1. Residual Plots:

e Scatter plots of residuals versus predicted values or independent variables.

e Ideally, residuals should be randomly scattered without patterns, indicating good fit.
2. Actual vs. Predicted Plot:

¢ Plot the actual outcomes versus predicted outcomes.

e |deally, points should lie on or near the 45-degree line, indicating accurate predictions.
3. Histogram or Density Plot of Residuals:

e Helps assess the normality of the residuals. In linear regression, we often assume residuals

are normally distributed.
4. Q-Q Plot:

e (Compares the quantiles of the residuals to the quantiles of a normal distribution.

e Helps to visually check if the residuals follow a normal distribution.

ST
Mm.
NN
e " T e<_ |
% \ E ' -‘J H.T 1:':‘.1, f.d.lﬁ- =
age T R al(’a 8'7:%{“““2, (s50)
(o] >
%gaq
e e Y Lcf=o s
- Scale/undt auw mw) M'uq,:-hbk- Cagelr B 0 el D v}ty
owtbiie . 1-0 - 1-02
< Robur ?::: § e
—
o e, Sep =80 M-
e “3" Qg‘; uomk-.p.lﬂ- .LM w‘a&\ﬁ%x&
_gsb -\ =
> r\lsseamm-:wdmr - | ‘s_za__zt V=0
“ Y
Msg =S L‘d“ﬁl)l'
n ::-i
L SSR>SSM ssh 2\
#J'Wuz a C.H-_; R
=2 Seprire o outlin. - .M
o= -\
P RMse gbn.h.% MSE. v Anw..b}"
< fntepruiable = LF°

Prablews i R* S
A Ao oot Roseore?

I8 Shphe Mo /msudlm

L
L =0-8¢ 2

Ot
gk

E= 010 ovp.qc

P=-# 7o o ind.
o lumnd

na# wa
= R (wre

I i » “ﬁl
=2 %m{'ﬂ! i Sm- Ad £=l - ‘})4(“-')
= (n-.i --‘? t]f
Ef- (n- (- P desveste > (!-—ﬂ"_)dtcnm:
Adj R*
F (1) decwase > Cnojopddrease
AdyR*
oo Bt o Oot 0 caloms, Koy AR
L
Py B Cnare ‘
prﬂ.m W

o Mul“uwnum'a--s Duvsos voaleble
L

ove. columw T
(.o\wm-

Y= P AP B Ry

.P\,ZQJG. covrelofed Wil onaln

H""-" F,, +Prau P\X;'fgﬂg F’—;F‘JM

Thee £ e b stelliable
Reckfy: Danp auy owe o Ho Rigbly '

OJumas.

De&"‘-t Crododion Matdy = O-H or 0K

—_—

VIFE o | s [2,4]
] - &
VIFsS
EDA— ¢ pordobion
LR — Exoom & F LR4E oy
L_Lﬂohl
’/\1 \F
U amhwct- ?l*%“\:““

Facko¥

Variance Inflation
Factor (VIF):

Usage:

1. Identify Multicollinearity:

* Calculate the VIF for each predictor.

e [f VIF values are high, consider removing or combining highly correlated variables.

Purpose:
VIF is used to detect multicollinearity among independent variables in a regression model.
Multicollinearity cccurs when independent variables are highly correlated with each other, which can

distort the estimated coefficients and weaken the statistical power of the regression analysis.

Definition:
The VIF for each predictor variable measures how much the variance of the estimated regression

coefficient is inflated due to multicollinearity.

Calculation:

VIF is calculated using the formula:

1
J

where R; is the coefficient of determination of the regression of the j-th predictor on all the other

predictors.

Interpretation:

VIF = 1: No correlation between the j-th predictor and the other predictors.
e 1< VIF = 5: Moderate correlation but not severe encugh to cause concern.
e VIF = 5: High correlation, suggesting significant multicollinearity.

VIF > 10: Very high correlation, indicating severe multicollinearity and a potential problem in the

regression model.

Purpose:
The Durbin-Watson (DW) test checks for the presence of autocorrelation (serial correlation) in the
residuals of a regression model. Autocorrelation can indicate that the residuals are not independent,

violating one of the key assumptions of linear regression.

Definition:

D u rbi n -Watso n Te St : The Durbin-Watson statistic is calculated using the formula:

DW — le(eé - E’Et—lJE
D16

where g; are the residuals from the regression model at time {.

Usage: Interpretation:

1. Detecting Autocorrelation: DW = 2: No autocarrelation.

o Calculate the DW statistic for the residuals of your regression model. " . . " . _—
VO * 0 < DW < 2: Positive autocorrelation. Residuals are positively correlated, which can indicate that

s Compare the DW value to the critical values from the DW table to determine if there is successive errors are similar.

significant autocorrelation.
* 2 < DW < 4 Negative autocorrelation. Residuals are negatively correlated, suggesting that

errors tend to alternate signs.

* DW < 10r DW > 3: Strong evidence of autocorrelation.

Summary:

e VIF helps identify multicollinearity among predictors, ensuring that the model's estimates are

reliable and interpretable.

e Durbin-Watson Test detects autocorrelation in the residuals, which is crucial for ensuring the

independence of observations in the regression model.

1. Training and Testing Data Splits:
J 9 P Dataset Structure

o Commonly used splits for dividing the dataset into training and testing sets are 60%-40%,
65%-35%, or 70%-30%. 5. Dataset Organization:

* Inihis example; the dataset is spit inco 80%: for training (01 chsenvations) and 20% for o The dataset is organized into columns representing the Independent Variables (Idv) and the

testing (200 observations). Dependent Varizble (0V)

2. Building the Model: s Each row represents an observation in the dataset.

o The training set (800 observations) is used to build the regression model.
6. Past Data:

* The model learns the relationships between the independent variables (predictors) and the

dependent variable (response). » Historical data (past data) for both independent and dependent variables is typically used

to train the model.
3. Evaluating the Model:

o Forexample, if we have 1000 data points, they will be split into training and testing sets.
o The testing set (200 observations) is used to evaluate the model's performance.

® This helps to check how well the model generalizes to unseen data.

. Holdout Method:

The testing set is sometimes referred to as a "holdout” set because it is held back and not

used during model training.

After the model is built on the training data, it is validated on this holdout set to assess its

predictive accuracy and robustness.

Train-Test Split

Cross-validation, particularly k-fold cross-validation, provides a more robust way to evaluate model
performance and ensures that every cbservation in the dataset has a chance to be in both the

training and testing set. Here's how it works:
1. k-Fold Cross-Validation:

e The dataset is divided into & equal-sized folds (e.g., 5 or 10 folds).

e The model is trained k times, each time using k — 1 folds for training and 1 fold for

validaticn (testing).
e Each fold serves as the validation set exactly once.

e The performance metric is averaged across all & folds to get an overall performance

estimate.
2. Train-Validation Split within k-Folds:

e Fach iteration uses a different subset (fold) of the data as the validation set.
e The remaining & — 1 folds are combined to form the training set.

e This approach mitigates the risk of the model performing well on just one specific train-test

split by ensuring that every part of the dataset contributes to both training and validation.

ross-Validation

1. Initial Holdout Set:

e First, split the dataset into two main parts: a training set and a final holdout (test) set.

e The final holdout set is only used once at the end to evaluate the final model's

performance.
2. Cross-Validation on Training Set:

¢ Apply cross-validation on the training set to fine-tune the model and estimate its

performance.

e For example, if using 5-fold cross-validation, the training set is further divided into 5 folds

for the cross-validation process.
3. Final Model Training:

e After cross-validation, train the model on the entire training set using the best-found

hyperparameters or model configurations.

4, Final Evaluation on Holdout Set:

¢ Finally, evaluate the model on the holdout set to assess its predictive performance on

unseen data.

ombining Cross-Validation
oldout Set

e This provides a realistic estimate of how the model will perform in real-world applications.

Total Dataset (1086 observations)

| Training Set (8e%) | Holdout Set (20%) |
| (800 observations) | (2@@ observations) |

|------- > Evaluate final model on ----
| holdout set

|----- > Apply Cross-Validation on Training Set
(e.g., 5-fold Cross-validation)

Cross-Validation on Training Set (80@ observations)

| Fold 1 | Fold 2 | Fold 2 | Fold 4 | Fold 5 |
| (160) | (160) | (160) | (160) | (160) |

Each fold serves as a validation set once,
and the remaining folds are used for training.

Average the performance metrics from each fold
to get a robust estimate of model performance.

with a

Initial Dataset Split 4. Model Building:

1. Total Dataset:
¢ The model is trained and validated multiple times during cross-validation.

* Assume you have 1000 observations. * Hyperparameters are tuned, and the best model configuration is identified based on cros

validation performance.
2. Train-Test Split:

5. Final Model Training:
* 80% (800 observations) used for training.

e 20% (200 observations) used as a final holdout set for testing. s After cross-validation, the final model is trained on all 800 training observations.

Cross-Validation within Training Data 6. Evaluation on Holdout Set:

3. Cross-Validation on Training Set: ¢ The final trained model is evaluated on the 200 holdout observations to estimate its

generalization performance.
*» The 800 training observations are split into k folds.

* For example, with 5-fold cross-validation:

* FEach fold has 160 observations.

* In each iteration, 640 observations are used for training, and 160 are used for

validation.

* This process repeats 5 times, with each fold serving as the validation set once.

AMPLE

Solving for R-squared in Simple Linear Regression (SLR)

Given the data for experience (independent variable, X) and salary (dependent variable, '), we can
calculate the R? value which measures how well the regression line approximates the real data

points.

Data Provided:
* Experience (X): 2, 3, 4
» Salary (Y): 10000, 13000, 14500

 Average Salary (Y): 12500

EXAMPLE:

SLR

Given Data

Experience Salary
2 10000
3 13000
4 14500

Steps to Calculate R-squared (R?):
1. Fit the Regression Line:
* Find the slope (m) and intercept (b) for the regression line Y = mX + b.
2. Calculate the Predicted Salaries {fr]:
* Use the regression equation to compute the predicted salaries for each experience value.
3. Compute SST (Total Sum of Squares):

+ SST = Y(Y, -)

* This represents the total variance in the actual salaries.

4. Compute SSE (Sum of Squared Errors):

+ SSE = Y(¥ - Vi)
* This represents the variance in the actual salaries that the model does not explain.
5. Compute R-squared (R?):

C 1o

Let's go through each step with the given data.

1. Fit the Regression Line

We use the least squares method to find the slope (m) and intercept (b) for the best-fit line Y’
mX +b.

Formulas for m and b: Let's calculate m and b

_ nXY) (3 X)(2Y)
a2 X2 (LX)

3(95500)—(9)(37500)

b= ZVIO X)) X)X XY) 3

n(2 X5 X)7 (375nn]£ % % } 955{]1]}
Given: 3(29)—(
e n=23

YN X=2+3+4=9

> Y = 10000 + 13000 + 14500 = 37500

ST XY = (2 x 10000) + (3 x 13000) + (4 x 14500) = 95500
NXP =243 44 =29

2. Calculate Predicted Salaries (}7)

Using the regression equation ¥ = m.X + b, we compute the predicted salaries for each

experience value.

3. Compute SST
SST = (Y, - Y)?

Given Y = 12500:

SST = (10000 — 12500)% + (13000 — 12500)* + (14500 — 12500)?

4. Compute SSE
SSE = Y(Y; - Y;)*

Where f; are the predicted salaries obtained from the regression equation.

5. Compute R-squared

2 _ 1 _ SSE
R = SST

Calculation of R-squared for the Given Data Steps and Results:

Based on the provided data, here are the detailed steps and results: 1. Fit the Regression Line:

Data: Using the least squares method, we found the slope (m) and intercept (b) of the regression line
» Experience (X): 2, 3, 4 Y =mX +0.
» Salary (Y): 10000, 13000, 14500
o Slope (m): 2250.0

* Average Salary (Y): 12500
o Intercept (b): 5750.0

The regression equation is;

Y = 2250X + 5750

2. Calculate the Predicted Salaries (f/]:
Using the regression equation, the predicted salaries for each experience value are:
¥y = 2250(2) + 5750 = 10250
Yy = 2250(3) + 5750 = 12500
Yy = 2250(4) + 5750 = 14750

rs

Thus, the predicted salaries (Y) are:
Y = [10250, 12500, 14750

3. Compute SST (Total Sum of Squares):
The total variance in the actual salaries from the mean salary:
SST = S2(V; — ¥)?
SST = (10000 — 12500)2 + (13000 — 12500)? + (14500 — 12500)2
SST = 6250000 + 250000 + 4000000 = 10500000

4. Compute SSE (Sum of Squared Errors):
The variance in the actual salaries that the model does not explain:
SSE = Y (Vi — Vi)
SSE = (10000 — 10250)% + (13000 — 12500)* + (14500 — 14750)>
SSE = 62500 4+ 250000 + 62500 = 375000

5. Compute R-squared (R?):
The proportion of the variance in the dependent variable that is predictable from the

independent variable(s):

2 1 __ SSE
R* =1— 2%

R*=1- 13233%1} = 0.9643

import numpy as np
import pandas as pd
from sklearn.linear_model impert LinearRegression

from sklearn.metrics import r2 score

Given Data

> R-squared (R2): =0.964 X = np.array([2, 3, 4]).reshape(-1, 1)

Y np.array([10000, 13806, 14500])

> This R2 value indicates

Simple Linear Regression Model

3 model = LinearRegression()
that approximately e e
96.43% of the variance predictions = model.predict(X)

Calculate R-sguared

n Salary can be r2 = r2_score(Y, predictions)
. . rint{f"R-squared for the provided data: {r2}"
explained by the linear prant(fR-sa : e

Calculate 55T and SSE

relationship with Y mean = np.mean(Y)
. . . SST = np.sum((Y - Y_mean) #*#* 2)
experlence n thls SSE = np.sum((Y - predictions) #*#* 2)
mOdel. print(f"SST (Total Sum of Squares): {SST}")

print{f"SSE (Sum of Squared Errors): {SSE}")
print{(f"R-squared (Calculated): {1 - SSE / SST}")

R-squared for the provided data: 8.9642857142857143
SST (Total Sum of Squares): 18598000.0

SSE (Sum of Squared Errors): 375800.0

R-squared (Calculated): ©.9642857142857143

» Introduction

The real estate market is influenced by various factors, including income levels, house a
number of bedrooms, and population density. Understanding how these factors affect house
valuable insights for buyers, sellers, and real estate professionals. In this project, we aim to
model to estimate house prices based on various features in the USAHousing dataset.

» Dataset Description

The USAHousing dataset contains information on various attributes related to houses in differe
features included in the dataset are:

- Avg. Area Income: The average income of residents in the area.

- Avg. Area House Age: The average age of houses in the area.

- Avg. Area Number of Rooms: The average number of rooms in houses in the area.

- Avg. Area Number of Bedrooms: The average number of bedrooms in houses in the area.
- Area Population: The population of the area.

= Price: The price of the house.

Address: The address of the house (considered as a non-significant variable and will be exclu
model).

ase Study: USAHOUSING PRICE PREDICTION

» The primary objective of this project is to build a
robust predictive model that can accurately estimate
the price of a house based on the following
independent variables:

1.Avg. Area Income

2.Avg. Area House Age

3.Avg. Area Number of Rooms

4.Avg. Area Number of Bedrooms

5.Area Population

Objective

1. Data Preprocessing:

¢ Remove non-significant variables such as ‘Address".
e Handle any missing or inconsistent data.

* Normalize or scale features if necessary.
2. Exploratory Data Analysis (EDA):

e Visualize the distribution of each feature.

e Analyze the relationship between independent variables and the target variable (Price).

Methodology

3. Model Development:

e Split the dataset into training and testing sets.

¢ Train multiple regression models including:

* Linear Regression

e Ordinary Least Squares (OLS)

* |asso Regression

= Ridge Regression

e Stochastic Gradient Descent (SGD) Regression

e FEvaluate the performance of each model using appropriate metrics (e.g., R-squared, Mean

Squared Error). 1.

METHODOLOGY

4. Model Evaluation and Selection:

« Compare the performance of different models.

e Select the best-performing model based on evaluation metrics.

5. Model Deployment:

¢ Save the trained model for future predictions.

* Create a user interface or an APl for making predictions on new data.

Expected Outcome

By the end of this project, we expect to have a predictive model that can accurately estimate house

prices based on the provided features. This model can be used by real estate professionals and

potential buyers to make informed decisions.

Challenges and Considerations
¢ Ensuring the dataset is clean and free of errors.
¢ Selecting the right features and avoiding multicollinearity.
¢ (Choosing the best model that generalizes well to new data.

e Interpreting the results and understanding the limitations of the model.

Conclusion

» Predicting house prices is a complex task that involves
understanding various factors that influence the real estate
market.

» By leveraging machine learning techniques, we aim to build a
reliable model that can provide accurate price estimates and
valuable insights into the housing market.

[1]:

--> Import library

import os # where the path is

import numpy as np # mathematical calculation

import pandas as pd # data manipulation

import matplotlib.pyplot as plt # daota visuliasation

import seaborn as sns # dato visuligsation
sns.set

Amatplotlib inline
import warnings
warnings.filterwarnings{"ignore")

[2]:

[4]:
[4]:

--> Import data set

by default comtrolling height and width of plot
by default controlling height and width of plot

USAHOUSING = pd.read_csv('USA_Housing.csv')

--> TO VIEW THE DATA SET

USAHOUSTNG. head()

Avg. Area Avg. Area House Avg. Area Number of

Avg. Area Number of

Area

Pri Add

Income Age Rooms Bedrooms Population rice ress

0 79545.45857 5682861 7.009188 400 2308630050 1.050034es0g 208 Michael Ferry Apt. 674\n La”rab“gb';'E
1 70248.64245 6.002900 6.730821 300 4017307217 1.505891e+06 TEec g foani 200 DTl
Kathleen, CA...

2 61287.06718 5.865890 8.512727 5.13 36882.15040 1.058938e+05 °12/ Elizabeth Stravenue\nDanieltown, Wi
3 63345.24005 7.188236 5586729 3.26 34310.24283 1.260617e+06 USS Barnett\nEPO AP 44820
4 59982,19723 5040555 7.839388 423 2635410047 6.309435¢+05 USNS Raymond\nFPO AE 09386

--->To get the name of all columns

[5]: USAHOUSING.columns

[5]: Index(["Avg. Area Income', "Awg. Ares House Age', "Avg. Area Number of Rooms'®,
"Avg. Area MNumber of Bedrooms', 'Area Population', 'Price’, 'Address'],
dtype="object")

--->There is an ambiguty in representation of name i.e. "' this may cause problem. So we replace it with "

--->Similary you can do for other issues in names.

[6]: USAHOUSING.columns=USAHOUSING.columns.str.replace(’ ",'_")

[7]: USAHOUSING.columns

[7]: Index(['Avg. Area Income', 'Avg. Area_House Age', 'Avg. Area Number _of Rooms®,
"Avg. Ares_MNumber_of Bedrooms', 'Ares_Population', 'Price’, 'Address’],
dtype="object")

[8]: USAHOUSING.columns=USAHOUSING.columns.str.replace(’.", "")
[9]: USAHOUSING.columns
[2]: Index(["Avg_Area_Income', "Awvg_Area_House_ Age', 'Avg Area_Number_of_Rooms',

"Avg_Area_Number_of Bedrooms', ‘Area_Population®, 'Price’, 'Address'],
dtype="object")

[12]:

[11]:

--->To find information about data like number of column , number of rows, number of null, type od data.

USAHOUSING. info()

<class 'pandas.core.frame.DataFrams':
RangeIndex: 58068 entries, & to 4995
Data columns (total 7 columns):

#

WA o b = ®

L

Column Non-Null Count
Avg_Area_Income 4998 non-null
Avg _Area_House_Age 5888 non-null
Avg Area_MNumber_of Rooms 4395 non-null
Avg Area Number of Bedrooms 4994 non-null
Area_Population 5808 non-null
Price 5088 non-null
Address 5888 non-null

dtypes: floated({s), object(l)
memory usage: 273.6+ KB

---> To find unique values of each variable use this for loop on USAHOUSING.columns

for i in USAHOUSING.columns:

print(B e e e i “1‘-*****1—1—*****1—1‘-*****1—1—************1—*****:I‘-:I‘-tt***1—1—*****1—1—****“)
¥ -3

print()
print(set{USAHOUSING[i].tolist(}))

floated
floated
floated
floated
floatéed
floated
object

----> ENCODING CONCEPT:

---> LABEL ENCODING :

- Label encoding is a technique used to convert categorical data into numerical data, which is often necessary for
machine learning models that can only handle numerical inputs.

- Convert Address type from object to category than into integer

- Categorical Data Type: This is a special data type in pandas which is useful for columns that have a limited number
of unique values

-1t helps to save memory and can make certain operations more efficient.
-The cat.codes attribute of a categorical column returns the numeric codes corresponding to each category.

-Each unique category in the 'Address’' column is assigned a unique integer code.

----> ONE HOT ENCODING:

- One-hot encoding is another technique used to convert categorical data into a format that can be provided to ML
algorithms.

- It improves predictions.

- One-hot encoding creates a new binary (0,1) column for each category.

- However it increases number of columns

- It is in practie that after one hot encoding we must drop one column from data set.
- Here | applied both method for "ADDRESS 'column for your information.

- But commented one hot encoding, you can check its behaviour.

[12]: | # LABEL ENCODING
USAHOUSIMNG| 'Address’]
USAHOUSING| "Address’ |

USAHOUSING["Address’] .astype(' category”)
USAHOUSING["Address'].cat.codes

[13]: | # ONE HOT ENcoding
#USAHOUSING = pd.get _dummies (USAHOUSING, columns = ["Address’], prefix="4address")

[14]: USAHOUSING['Address'] # here you can see all values change to integer.

962
863
4889
4794
4736

o 2@

4995 4758
4996 4636
4997 1897
4998 4833
4999 1783
Mame: Address, Length: 5888, dtype: intls

[15]: USAHOUSING.info() # Also data type change to int earlier it waos object.

<class 'pandas.core.frame.DataFrame’ >
RangeIndex: 50008 entries, @ to 4999
Data columns (total 7 columns):

Column Mon-Null Count Dtype

@ Avg Area_Income 4923 non-null floated
1 Awvg Area_House_Age 5208 non-null floated
2 Awvg_Area_Number_of Rooms 4995 non-null floatesd
3 Awvg_Area_Number_of Bedrooms 4994 non-null floatesd
4 Area_Population 5208 non-null floated
5 Price 5888 non-null floated
& Address 508 non-null intle

dtypes: floats4(6), intle(1)
memory usage: 244.3 KB

. ---> ANOVA TESTING TO CHECK SIGNIFICANT VARIABLE as it gives 'P'value whose value gives us idea about th
relvance of that variable.

---> Since Address have p value > 5% ,So we can drop it as it is less significant.

[15]: import statsmodels.api as sm ®m T
from statsmodels.formula.api import ols
model = ols('Price ~ Address', data = USAHOUSING).fit()
anova_result = sm.stats.anova_lm{model, typ=2)
print{anova_result)

sum_sq df F PR(>F)
Address 4,729183e+10 1.8 8.379215 @.538851
Residual 6.232883=+14 4998.0 HaM HaM

(17]: import statsmodels.api as sm
from statsmodels.formula.api import ols
model = ols('Price ~ Avg_Area_Income', data = USAHOUSING).fit()
anova_result = sm.stats.anova_lm{model, typ=2)
print{anova_result)

sum_sq df F PR(>F)
Avg Area_Income 2.546881e+14 1.8 3455,928442 8.8
Residual 3.675561=+14 4988.8 Nah Mah

(157: import statsmodels.apl as sm
from statsmodels.formula.api import ols
model = ols('Price ~ Area_Population', data = USAHOUSING).fit()
anova_result = sm.stats.anova_lm{model, typ=2)
print{anova_result)}

sum_sq df F PR{=F)
Area_Population 1.84845%9=+14 1.6 1801.488749 1.736392e-200
Residual 5.192897e+14 495E8.0 Mal MNaN

7197: import statsmodels.api as sm
from statsmodels.formula.api import ols
model = ols('Price ~ Avg_Area_House_Age', data = USAHOUSING).fit()}
anova_result = sm.stats.anova_lm{model, typ=2)
print{anova_result)

Sum_sg df F PR(>F)
Avg_Area_House_Age 1.27655%9=+14 l.@ 1287.189756 4.,944758e-251
Residual 4.956797e+14 4993.09 MaM Mah

----> To get statistical information like number of counts, mean value, standard deviation, minimum,

maxmimum,median(50%) etc use describe

USAHOUSING.describe()

Avg_Area_Income Awvg_Area_House Age Avg_Area_Number_of Rooms Awvg_Area_Number_of Bedrooms Area_Population Price Address
count 4990000000 5000.000000 4945,000000 4994,000000 5000.000000 5.000000e+03 5000.000000
mean 68584.719991 5.977222 6.987693 3.9581874 36163.516039 1.232073e+06 2499500000

std 10651.192423 0.991456 1.005938 1.234497 9025.650114 3.531176e+05 1443.520003
min 17796.631190 2.644304 3.236194 2.000000 172.610686 1.593866e+04 0.000000
25% 61481.465105 5.322283 6.299156 3.140000 29403.928700 9.975771e+05 1249.750000
50% 68797.671885 5.970429 7.002940 4.050000 36199406020 1.23260%9=+00 2499.500000
75% 75779.145465 6.650808 7.665622 4.490000 42861.290770 1471210e+06 3749250000
max 107701748400 9.519088 10.759588 6.300000 09621.713380 2.469060e+06 4999.000000

[22]:

[22]:

To find information about missing Value

USAHOUSING . isnull({).sum()

Avg_Area_Income 1a
Avg_Area_House_Age
Avg_Area_MNumber_of_Rooms
Avg_Area_MNumber_of_Bedrooms
Area_Population

Price

Address

dtype: inte4

@ E®m ;@

USAHOUSING.isnull().sum()/1len{USAHOUSING) =188

Aveg_Area_Income 2. 239
Avg_Area_House_Age .89
Aveg_Area_MNumber_of_Rooms 2.1a
Avg_Area_MNumber_of_Bedrooms 2.12
Area_Population a.98
Price @.8a
Address @.89

dtype: floated
----> To remove or replace abnormal input like(/,?,.,etc.) if any , than we can do:
df = df.replace('?’, np.nan)

df = df.apply(lambda x : x.fillna(x.median()),axis = 0)

----> CHECK OUTLIER and decide what to use either mean or median to impute missing value [22]: sns.boxplot(y = 'Avg_Area_Number_of_Rooms® , data = USAHOUSING)

plt.show()
-If there are outliers use median else go with mean

a 11 -
23] sns.boxplot(y = 'Avg_Area_Income' , data = USAHOUSING) L 3
plt.show()
10 A
+
100000 A l E g
g
1 8
-
[=]
o 80000 l
£ =
g = T 1
E' =
& 60000 A =
< [B
o v
z <,
on
40000 - ' a 5 4
4 -
20000 4
M .
T 3 =
T257: s=sns.boxplot(y = 'Avg_ Area_Number_of_Bedrooms" , data = USAHOUSING)
plt. show()}
E -
v
E
[=]
£
o 5
|'-I':’l
k=]
L
(¥
£
S 4
Zl
1]
v
d:l
27
2 -

----> filling of missing value.

[267: USAHOUSING['Aveg_Area_Income'] = USAHOUSING['Ave_Area_Income'].fillna{ USAHOUSING["Ave_Area_Income’].median())

[277: USAHOUSING["Avg_Area_KMumber_of_Rooms'] = USAHOUSING['Avg_Area_MNumber_of_Rooms'].fillna(USAHOUSING['Awvg_Area_Number_of_Rooms'].median())

[Z87: USAHOUSING['Aveg_Area_Number_of Bedrooms'] = USAHOUSING['Aveg_Area_Number_of_Bedrooms'].fillna{ USAHOUSING['Aveg_dArea_Number_of_Bedrooms'].median()}

[297: USAHOUSING.isnull(}.sum()

[297: Awg Area_Income
Avg Area_House_ Age
Avg Area_Number_of_Rooms
Avg Area_Number_of_Bedrooms
Area_Population
Frice
Address
dtype: intéd

= =T = = T o

L
=]
—

L
=]
—

USAHOUSING . head()

Avg_Area_Income Avg_Area_House Age Awvg_Area_Number_of Rooms Awg_Area_Number_of Bedrooms Area_Population

Price

0 7054545857 5682861 7.009188 4,09 23086.80050
1 T0248.64245 6.002900 6.730821 3.09 40173.07217
2 61287.06718 5.865890 8512727 513 36882.15940
3 63345.24005 71185236 5586729 3.26 34310.24283
4 5098219723 5.040555 7.830388 423 2635410047

----> Address is non significant variable in this data so drop it.

----=If column is not at last position than we can use following code. T

1.059034=+06

1.505891e+06

1.058088e+06

1.260617e+06

6.3004352+05

USAHOUSING = USAHOUSING.drop{columns=["Address'] or USAHOUSING = USAHOUSING.locl;, USAHOUSING.columns != "Address’)

USAHOUSING = USAHOUSING.iloc[:,8:-1] # -1 means Last column will no be consider.

USAHOUSING. head()

Avg_Area_Income Awg_Area_House_Age Avg_Area_Mumber_of Rooms Awg_Area_Number_of Bedrooms Area_Population Price
0 7954545857 5.682861 7.0009188 4,08 23086.80050 1.058034=+00
1 T79248.64245 6.002900 6.730821 3.09 40173.07217 1.505891e+06
2 61287.06718 5.865890 as512r27 512 36882.15940 1.058088e+06
3 63345.24005 71188236 5.586720 3.26 3431024283 1.260617e+06
4 58082.19723 5.040555 7830388 423 26354.10847 £.309435e+05

982

363

4060

4794

4736

----> Distribution plots to check whether data is normally distributed or not.

----> no of bed room have non normal data.

[33]: def distplots(col):
sns.distplot {(USAHOUSING[col]l)
plt.show()

[34]: Ffor 1 in 1list(USAHOUSING.columns)[@:]:
distplots(i)

Zﬂdﬂﬂ 40000 60000 80000 100000
Avg_Area_Income

----> To view the outliers we use box plot

"357: def boxplots{col):
sns . boxplot{USAHOUSING[col])
plt.xlabel{col)
plt.show()

"35]: for 1 im 1ist(USAHOUSING.select_dtypes{exclude =['ocbject']).columns)[@:]:

boxplots{i}
100000 -
80000 -
60000 -
40000 -

----- > Don't touch the dependent variable for outliers

[T
(&3]

----> find Q1, ,Q3 ,IQR, Upper Limit,Lower limit to handle outliers

Q1 = USAHOUSING.quantile(®.25)
Q3 = USAHOUSING.quantile(@®.75)
IQR = Q3-Q1

Upper_Limit = Q3+1.5*IQR

Lower Limit = Q1-1.5*IQR
print({'Q1")

print(Q1)

print('**ss%+ +5)

print('Q3")

print(Q3)

print[S '#Ij:l
print{'IQR")

print (IQR)
print('***++*+5)
print('Upper Limit")
print(Upper Limit)
print[e e 'tlj:l
print('Lower_Limit')

print({Lower Limit)

Q1

Avg Area_Income 61435.158152
Avg Area_House Age 5.322283
Avg Area_Number_of_Rooms 6.299692
Avg Ares_Number_of_Bedrooms 3.142008
Area_Population 29403.928708
Price 997577 .135875

Mame: ©.25, dtype: floatesd

FEREERFRERER kR ER Rk Rk R Rk Rk R

Q3

Avg Area_Income 7.576652e+84
Avg Area_House_Age 6.650885e+08
Avg_ Ares_Number_of_Rooms 7.665281e4+00
Avg Arez_MNumber_of_Bedrooms 4.,450008:+00
Area_Population 4,285129=+84
Price 1.471218e+86

Mame: B.75, dtype: floatesd

FEEFFFFFEEEE R EE SRR R R kRS

IQR

Aveg Area_Income 14281. 368918
Avg Area_House_Age 1.328525
Avg Area Number of Rooms 1.365589
Avg Area_MNumber_of_Bedrooms 1.352008
Area_Population 13457.362078
Price 473633.869425

dtype: floated

e e

Upper Limit

Avg Area_Income 9.718857e+04
Avg Area_House_Age 8.643597e+28
Avg Area_Number_of_Rooms 9.71366424+008
Avg Ares_Number_of_Bedrooms 6.515888:+08
Area_Population 6.30473324+04
Price 2.151668e+86

dtype: floated

EEEEFRFFEEEEFRFEEE R ERREER R R RS

Lower_Limit

Avg Area_Income 40863 .896827
Avg Area_House_Age 3.329455
Avg_ Area_MNumber_of_Rooms 4,251308
Avg Area MNumber of Bedrooms 1.1156684
Area_Population 9217.885595
Price 287127.538937

dtype: floated

----- > Create copy of your dataset
739]: MNew_USAHOUSING = USAHOUSING.copy()

[48]: MNew USAHOUSING.columns

[487: Index(['Avg_Area_Income', 'Avg Area_House Age', "Avg Area_Number_of Rooms',
‘Avg Area_Number_of Bedrooms', 'Area_Population', 'Price’],
dtype="object")

[41]:

[44]:

----- > USE CAPPING MEHTOD TO HANDLE OUTLIER IN
Avg. Area Income’,

'Avg. Area House Age',

'‘Avg. Area Number of Rooms’,

'‘Avg. Area Number of Bedrooms',

‘Area Population’

Income Q1 = New USAHOUSING['Avg Area Income'].quantile(@.25)
Income Q3 = New USAHOUSING['Avg Area Income’].quantile(@.75)
Income_IQR = Income Q3 - Income Q1

Income_Upper =Income_Q3 + Income_ IQR¥1.5
Income Lower = Income Q1 - Income IQR¥1.5

New USAHOUSING["Avg Area_Income'] = np.where(New_USAHOUSING['Avg_Area_Income']>*Income_Upper,Income_Upper,
np.where(Mew USAHOUSING| 'Avg_Area_ Income' |<Income_lower,Income_Lower,
Mew USAHOUSING["Avg Area_Income']))

Age Q1 = New USAHOUSING| 'Avg Area House Age'].quantile(®.25)
Age Q3 = New USAHOUSING|['Avg Area_House Age’].quantile(@.75)
Age T0OR = Age Q3 - Age Q1

Age Upper =Age Q3 + Age IQR*1.5

Age Lower = Age Q1 - Age IQR®1.5

New USAHOUSING['Avg Area House Age'] = np.where(Mew USAHOUSING| 'Avg Area House Age' |»Age Upper,Age Upper,
np.where(Mew USAHOUSING| 'Avg Area House Age']<Age lLower,Age Lower,
Mew USAHOUSING["Avg Area_House_Age']))

[45]:

[47]:

[48]:

Number of Rooms Q1 = Mew USAHOUSING['Avg_Area MNumber of Rooms'].quantile(@.25)
Number_of Rooms_Q3 = New USAHOUSING['Avg Area_Number_of Rooms'].quantile(@.75)
Number_of Rooms_IQR = Mumber_of Rooms Q3 - Mumber_of Rooms_Q1
Number of Rooms_Upper =Number of Rooms Q3 + Number_of Rooms IQR¥1.5
Number of Rooms Lower = Number_of Rooms Q1 - Mumber of Rooms IQR¥1.5

New USAHOUSING['Avg Area Number _of Rooms'] = np.where(New USAHOUSING| "Avg Area MNumber of Rooms']:Mumber_of Rooms Upper,Number_of Rooms Upper,

np.where(New USAHOUSING| "Avg Ares_MNumber_of Rooms']<Mumber_of Rooms_Lower ,Number_of Rooms_Lower ,
New USAHOUSING["Avg Area Number_of Rooms']))

Population_Q1 = New USAHOUSING["Area Population'].quantile(®.25)
Population_Q3 = New USAHOUSING["Area Population'].quantile(®.75)
Population I0QR = Population_Q3 - Population Q1

Population Upper =Population Q3 + Population IQR*1.5
Population_Lower = Population Q1 - Population_IQR*1.5

New USAHOUSING['Area_Population®] = np.where{New USAHOUSING[‘Area Population']*Population Upper,Population_Upper,
np.where(New USAHOUSING| 'Area_Population' |<Population_Lower ,Population_Lower ,
New USAHOUSING["Area_Population®]))

..... > Again check the outliers

[49]: def boxplots{col):
sns. boxplot({New USAHOUSING[col])
plt.xlabel{col)
plt.show()

for i in list(New USAHOUSING.select dtypes(exclude =['object']).columns)[@:]:
boxplots(1i)

100000

90000

80000 -

70000 -

60000 -

---->>> FEATURE SCALING: Very important while using graident descent approach how ever give poor result with OLS approach.

----> Distance-based algorithms (e.g., KNN, SVM) perform better with scaled features because they compute distances based on feature
values.

----> If the features are on different scales, the algorithm might bias towards features with larger scales.

-Feature scaling is a crucial preprocessing step in machine learning that transforms the features of your data so that they are on a similar
scale.

---->This can improve the performance and convergence speed of many algorithms.
----- >ONLY WITH INDEPENDENT VARIABLE
----- >FIRST SPLIT DATA INTO DEPENDENT AND INDEPENDENT VARIABLE

s@]: % = New_USAHOUSING.iloc[:,®:-1]
y = New USAHOUSING['Price’]

----- >>>> Another approach to split
----- > X = New_USAHOUSING.drop('Price’,axis = 1)

...... >y = New_USAHOUSINGI['Price']]

[51]: | x.head()

[51]: Avg_Area_lncome Avg_Area_House Age Avg_Area_Mumber_of Rooms Awvg_Area_Number_of Bedrooms Area_Population

1] 7954545857 5.682861 7.0091328 4.09 23086.80050
1 79248.64245 6.002900 6.730821 3.09 40173.07217
2 61287.06718 5.865890 8.512727 313 36882.15940
3 63345.24005 7.188236 5.586729 3.26 34310.24283

4 5008219723 5.040555 7.839333 4.23 2635410047

(52]: y-head()
5210 @ 1.859934e+06
1 1.585891e+86
2 1.858988e+86
3 1.268617e+06
4 6.309435e+a5
Mame: Price, dtype: float64

------> Understanding fit(), transform(), and fit_transform()

.
s fit(X):
This method computes the parameters (such as mean and standard deviation in the case of standard scaling) required for the transformation. For example, if you are using
StandardScaler from scikit-learn, fit() calculates the mean and standard deviation of the dataset X.
-----> transform(X):
This method applies the transformation using the parameters computed by fit{). For StandardScaler, transform() uses the mean and standard deviation computed during fit()
to standardize the dataset X,
-----> fit_transform(X):
This method combines the two steps. It first computes the parameters using fit(), and then applies the transformation using transform(). It is a convenient way to perform
both operations in one step.
52]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc_x = sc.fit_transform(x)
pd.DataFrame(sc_x)
53] 1] 1 2 3 4
0 1.036382 -0.298541 0021620 0.087582 -1.325622
1 1008309 0.025747 -0.256331 -0.723031 0.407049
2 -0.690457 -0.113082 1523179 0.930619 0.073326
3 -0.495800 1.226822 -1.398967 -0.585227 -0.187484
4 -0.813869 -0.949376 0850726 0.201068 -0.994293

4995 -0.758470 1877474 -0.849064 -0.423104 -1.350917

4996 (0.936679 1.035210 -0.410236 0.030839 -1.069131

----- > Find Correlation to check multicolinearity.
----- > if value is greater than 0.75 or 0.8, drop than column. As it is highly corelated
----- > If any of two independent variables have same value than drop any one with discussion by SME. As it leads to multicolineari

----- > In classification problem no need to check multicolinearity.

[54]: dimport matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(28, 15)) # %Set the figure size

corr = New USAHOUSING.corr() # Calculate the correlation matrix

sns.heatmap(corr, annot=True, cmap="coolwarm') # Cregte g heatmap with annotations and a ‘coelwarm' color map
plt.xticks(rotation=65) # Rotate x-axis labels by 65 degrees

plt.show() # Display the plot

Brg_Area_lncome 0.0026 0.019

----- > Variance_Inflation_Factor(VIF) is another approach to check multicolinearity other than heat map
----- > VIF- Variance Inflation Factor to check multicolinearity
------ > VIF should be <=5

...... > VIF = 1/(1-R*2)

55]: wariable = sc_x
variable.shape
55]: (S@ee, 5)
56]: from statsmodels.stats.outliers_influence import variance_inflation_factor
variable = sc_x
vif = pd.DataFrame()
vif["Variance_Inflation_Factor']=[variance_inflation_factor(variable,i) for i im range(variable.shape[1])}]
vif['Features'] = x.columns
[57]: | vif
[57]: Variance_Inflation_Factor Features
0 1.001067 Avg_Area_lncome
1 1.000593 Avg_Area_House_Age
2 1.2748564 fvg_Area_Mumber_of_Rooms
3 1.275727 Avg_Area_MNumber_of_Bedrooms
4 1.001144 Area_Population

----- >>>> Since for any variable VIF is less than 5 so there is no multicolinearity. So one Assumption satisified.

-----> SPLIT THE DATA INTO TRAINING AND TEST for model building and prediction

[Ny
[wls
et

from sklearn.model selection import train test split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 8.25,random_state = 181)
print(x_train.shape,x_test.shape,y_train.shape,y test.shape)

(375e, 5) (1258, 5) (375@,) (125@,)

...... > BUILD THE MODEL

-----> APPROACH 1: Linear Regression

%3}
[re)
[

from sklearn.linear_model import LinearRegression
Im = LinearRegression()}
Im.fit(x_train,y_train)

» LinearRegression

%3}
s}
[

LinearRegression()

[68]: print{lm.intercept)

print['tittttttttttttttt')

print({lm.coef)

-2657921. 446406082

EEEEEEEEREEEERERE

[2.17329557e+81 1.656981362+85 1.21587070=+05 1.72620828=+83
1.538208327e+01]

----- > We can also use following approach to find coefficient

[e1]: for idx, column in enumerate(x_train.columns):
print("The coefficient for {} is {}".format(column, lm.coef [idx]))

The coefficient for Avg_Area_Income is 21.732955742408346

The coefficient for Avg_Area_House_Age is 165690.1364862487

The coefficient for Avg_Area_Mumber_of Rooms is 121587.86965741176
The coefficient for Avg_Area_Mumber_of Bedrooms is 1726.20882822261352
The coefficient for Area Population is 15.382832682183732

-
o

o

[62]:
[62]:

w.columns

Index(["Avg_Area_Income', 'Avg Area House_Age', '"Avg Area_Number_of Rooms',
"Avg Area_MNumber_of Bedrooms®, 'Area_Population'],
dtype="object")

----- >The basic linear regression equation with intercept and coeffcient will be as:(just for information)

price = interept+ slopelAvg_Area_Income +slope2Avg_Area_House_Age+ slope3Avg_Area_Number_of Rooms+
slope4Avg_Area_Number_of Bedrooms+ slope5*Area_Population

price = 1232873.8607364374 + 229789.16018028Avg_Area_Income + 63518.96517017Avg_Area_House_Age +
121747.365563Avg_Area_Number_of Rooms + 2129.51094083Avg_Area_Number_of Bedrooms + 150896.93828654*Area_Population

rice = 1232873.8607364374 + 229789.1601802879545.4585 + 63518.965170175.682861+ 121747.3655637.009188 + 2129.510940834.09 + ##
50896.93828654*23086.80050

L

T

LA

T

T
o

fuy
o

y_pred price = Im.predict(x test)

>>>>> Prediction of price for tets and train

y_pred price

array([1258771.546308259,
1117250.31198148,

y_pred price train =

y_test

1718
2511
345
2521
54

15381
2800
1216
1548
3063

Name :

R

] e

. 25168%=+86
. 738483e+85
. 6908 75e+06
.B63964=+86
A87883e+85

F27211e+86
. 787270e+806
. 167458=+806
.241217=+85
1.
Price, Length: 1258, dtype: floated

361234e+00

821589.534148058, 1743523.44944712,
718622.6849@114, 1518227.87294594])

Im.predict(x_train)

67]:

&7]:

68]:

68]:

------ >>>> VALIDATION for train and test using R2 score

from sklearn.metrics import r2_score
r2_score(y_test,y_pred_price)

8.9136245999737245

from sklearn.metrics import r2_score
r2 score(y_train,y_pred price train)

@.9165824280297815

----->>> Since R2 score for training and testing are very close so there no overfitting issue also no underfititng issue.

-APPROACH 2: OLS Method

from statsmodels.regression.linear_model import OLS
import statsmodels.regression.linear_model as smf

from statsmodels.regression.linear_model import OLS
import statsmodels.regression.linear_model as smf

reg model = smf.0OLS(endog = w_ _train,exog = x_ _train).fit(
reg_model.summary ()

LS Regression Results

Dep. Variable: Price R-squared (uncentered):
Model: oLs Adj. R-squared (uncentered):
Method: Least Squares F-statistic:
Date: Sat 13 Jul 2024 Prob (F-statistic):
Time: 17:02:43 Log-Likelihood:
Mo. Observations: 2750 AlC:
Df Residuals: 3745 BIC:
Df Model: 5
Cowvariance Type: nonrobust
coef std err t
Avg_Area_lncome 10.2091 0,314 32.580

Avg_Area_House_Age 4.976e+04 3478628 14.131
Avg_Area_MNumber_of_ Rooms -1.0%e+04 3I2801.722 -2.868

Avg_Area_MNumber_of Bedrooms 31095344 35631.219 1.407

Area_Population B8.5764 0.382 22.429
Omnibus: 0.212 Durbin-Watson: 1.2997
Prob{Omnibus): 0.829 Jarque-Bera (JB): 0.258
Skew: -0.000 Prob(JB): 0.879

Kurtosis: 2.959 Cond. No. 9.32=+04

)]

0.954
0.954
2.011=+04
0.00
-51812.
1.036e+05

1.037e+05

| [0.025

0.000 9.594

0.000 4.23

e+04

0.004 -1.842+04

0.159 -2009.825

0.000

F.827

0.975]
10.824
Suoe+04
-2448.582
1.22e+04

9.326

------ > Interesting Finding

Scaling or originality of data does not influence R2 score for linear regression
But severely affect the R2 in OLS approach.

Scaling reduce the R2 score abruptly.

In ols method we can check Adj R2 sccore

we can check P value

we can check Durbin Watson Test value to check Autocolinearity: change in variable with time
DWT < 2 = +ve autocolrelation

DWT > 2 = -ve auto corelation

DWT = 2 = no auto corelation

If DWT lies between 1.5 to 2.5 model is acceptable else go for timeseries appraoach.

[71]:

[71]:

----- >> There is another assumption data should be linear. Let us check linearity using scatter plot

plt.scatter(y test,y pred price)

<matplotlib.collections.PathCollection at @x1f3b4foeboe:

1le6
@
1:I
&
2.0
1.5 A
1.0 A
0.5 A
@
T T T T T
0.0 0.5 1.0 1.5 2.0

1e6

---->>>There is another assumption normality of residual . Let us check normality of residual

72]: sns.distplot((y_test-y pred_price),bins = 58)
plt.show()

le—6

4.0

3.5 ~

3.0

2.5 7

2.0+

Density

1.5 4

1.0 A

0.5

0.0 - — = :
—400000 —200000 0 200000 400000 600000

Price

---->> Conclude the model

---> Adj R2 score = 0.96
--->All variable have p value less than 5% except the variable number of bedrooms.So drop it and do it again
--->linearity satisfied

--->Normality of Residual satisifed

---->Homosedasticity satisified

---->No autocorelation satisfied

---->No or little multicolinearity satisfied

---->No endoginity satified T

---->sklearn linear regrssion model is a machine learning approach

---->0LS is a statistical appraoch

APPROACH 3

----> Regularization: It is a shrinkage method the algortihm while trying to find best combination of coeffcient
vlaue

----> which minimize SSE on training data by penality on higher coefficent value to reduce the error.
----> Ridge also callled L2 ; Close to zero

----> Lasso also called L1: Either zero or close to zero(Sparsity)

----> Most popular is ridge

----- > ElastiNet L1+L2 (Rarely used)

------ > lasso based on absolute value which can not be differentiated.

[72]: From sklearn.linear model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
from sklearn.metrics import r2_score

[74]: # PART 1 Lasso
penality preferred = 8.1
lasso = Lasso(alpha = 8.1)
lasso.fit{x_train,y_train)
print(“Lasso Model :“,(lasso.coef })

Lasso Model : [2.17329556e+21 1.65690031e+85 1.21586986e405 1.726174%2e483
1.53820326e+81]

[75]: lasso.intercept_

[75]: -2657928.8945172827

[76]: # Part2 Ridge
penality preferred = 8.3
ridge = Ridge(alpha = B8.3)
ridge.fit({x_train,y_traim)

print(“ridge model",ridge.coef)

ridge model [2.17329254e2+481 1.65675916e+@25 1.21574274e4085 1.73113927=483
1.53828563e+21]

[77]: ridge.intercept_

(771 -2657765.454140858

[78]: y_pred_train_ridge = ridge.predict(x_train)
y_pred test ridge = ridge.predict(x test)

[72]: print("Training Accuracy:”, r2_score(y_train, y pred_train_ridge))
print(“Test Accuracy:", r2_score(y_test, y_pred_test_ridge))

Training Accuracy: B.9165894255228702
Test Accuracy: ©.9136246738265379

[28]: y_pred_train_lasso = lasso.predict(x_train)
y_pred_test_lasso = lasso.predict(x_test)

[81]: print("Training Accuracy:", r2_score(y_train, y_pred_train_lasso))
print(“Test Accuracy:", r2 score(y test, y pred test lasso))

Training Accuracy: B.9%165804280206836
Test Accuracy: ©.91362459987893@23

Performance matrix

52]: # Mean Absolute Error
from sklearn import metrics
print("MAE", metrics.mean_absclute error(y_test,y pred price))
MAE &3116.382448593585

52]: # Mean Absolute percent Error (MAPE)

print("MAPE:" ,metrics.mean_absolute error(y_test,y pred price)/12e)

MAPE: 831.1630244893585
[84]: #&# Mean Squared Error

print("MSE:" ,metrics.mean_squared_error(y_test,y pred price))

MSE: 1@87943p2843.877223

£a
Ln
[

Root Mean Squared Error

print("RMSE:" ,np.sqrt(metrics.mean_squared error(y_test,y pred price)))

RM5E: 183895.91%28813785

Approach 4

----- > Gradient Descent : Iterate the model with concept of forward and backward propagation. for finding value

slope and intercept and if not good, go backward to adjust them and remodel.

----> |N GD we need to use scaled data.

from sklearn.model selection import train_test_split

o]
e
i

¥_trainl,x_testl,y train,y_test = train_test split(sc_x,y,test _size = 8.25,random_state = 181)
print(x_trainl.shape,x testl.shape,y_train.shape,y_test.shape)

(3758, 5) (1258, 5) (375@,) (125@,)

(=)
)
e

from sklearn.linear_model import SGDRegressor

gd_model = SGDRegressor()

o]
551
i

gd model.fit(x_trainl,y_train)

5]
154
i

* 5GDRegressor

SGDRegressor()

e
SGDRegressor(alpha=0.0001,,max_iter=1000,tol=0.001,learning_rate="adaptive’,eta0=0.01,,n_iter_no_change=5)

---> Key Parameters for Tuning SGDRegressor

1. alpha: Constant that multiplies the regularization term. Also known as the regularization strength; must be a positive float. Typical values: [0.0001, 0.001, 0.01, 0.1, 1, 10]

2. learning_rate: The learning rate schedule. Options include: ‘constant™ eta = etal "optimal’ eta = 1.0 / {t + t0) 'invscaling’: eta = etal / pow(t, power_t) 'adaptive’: eta =

etal, as long as the training keeps decreasing. Each time n_iter_no_change consecutive epochs fail to decrease the training loss, the current learning rate is divided by 5.
3. etal: The initial learning rate for the "constant’, ‘invscaling’, or "adaptive’ schedules. Typical values: [0.0001, 0.001, 0.01, 0.1, 1]
4. max_iter: The maximum number of passes over the training data (epochs). Typical values: [1000, 5000, 10000]
S.tol: The stopping criterion. If it is not None, the iterations will stop when (loss > best_loss - tol) for n_iter_no_change consecutive epochs. Typical values: [1e-3, 1e-4, 1e-5]
6. penalty: The penalty (regularization term) to be used. Options include: 'none’ '12" '1'

T.n_iter_no_change: Number of iterations with no improvement to wait before early stopping. Typical values: [5, 10]
9@]: #learning rate="odaptive’, eta@=8.81, max_iter=18888, tol=1e-3

91]: y_pred_gd train = gd_model.predict(x_trainl)
y_pred gd test = gd model.predict(x_testl)

52]: print({"GD TRAINING ACCURACY:",r2_ score(y_train,y_pred_gd train))

G0 TRAIMNING ACCURACY: @.9164546881581356

53]: print{"GD TEST ACCURACY:",r2_score(y_test,y pred_gd test}))

G0 TEST ACCURACY: @.9136619336745166

Model saving

'947: import joblib

[]: # 5ave Linear Regression model
joblib.dump(1lm, 'linear regression_model.pkl’)
print({'lm saved as linear_regression_model.pkl')

Save Ridge Regression model
joblib.dump(ridge, 'ridge model.pkl®)
print(" 'ridge saved as ridge model.pkl’)

Save Lasso Regression model
joblib.dump(lasso, 'lasso _model.pkl®)
print({'lasso saved as lasso model.pkl')

Save 56D Regressor model
joblib.dump(gd model, "sgd model.pkl®)
print('gd model saved as sgd model.pkl')

Load each model
Example new data for prediction:

Avg_Area_lncome, Avg_Area_House_Age, Avg_Area_Number_of_Rooms,
Avg_Area_Number_of_Bedrooms, Area_Population

63345.24005, 7.188236, 5.586729, 3.26, 34310.24283

+[4]: dimport joblib

Load each model

linear_regression_model = joblib.leoad('C:/Users/PANKA] SHARMA/linear _regression_model.pkl®)
joblib.load('C:/Users/PANKAT SHARMA/ridge model.pkl®)

lasso_model = joblib.load('C:/Users/PANKAJ SHARMA/lasso_model.pkl®)

sgd model = joblib.load{'C:/Users/PANKA] SHARMA/sgd model.pkl')

ridge model

new_data = [[63345.24885, 7.138236, 5.586729, 3.26,34318.24283|] # Update with your features

Make predictions with each model

linear_regression_prediction = linear_regression_model.predict{new_data)
ridge prediction = ridge model.predict(new_data)

lasso_prediction = lasso_model.predict(new_data)

sgd _prediction = sgd_model.predict(new_data)

Print the predictions

print (f'Linear Regression prediction: {linear_regression_prediction}')
print (f'Ridge prediction: {ridge prediction}')

print(f'Lasso prediction: {lasso_prediction}®)

print(f'sGD prediction: {sgd_prediction}’)

Linear Regression prediction: [1254212.77465137]
Ridge prediction: [1254288.70173857]

Lasso prediction: [1254212.62851748]

sGD prediction: [1.96186481e+1@)

	Slide 1: Linear Regression
	Slide 2: Introduction
	Slide 3: Types of Linear Regression:
	Slide 4
	Slide 5: Assumptions of Linear Regression:
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Additional Considerations:
	Slide 14: Journey of Regression from Stats to ML:
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Finding a line to best fit the data points using Ordinary Least Squares (OLS) regression
	Slide 24
	Slide 25
	Slide 26: Concept of residuals and squared errors in the context of linear regression.
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Math's to Find Slope and Intercept
	Slide 39
	Slide 40
	Slide 41: GRADIENT DESCENT APPROACH:
	Slide 42: What is Gradient Descent
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Derivative
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Gradient Descent: Types
	Slide 51: Stochastic Gradient Descent (SGD)
	Slide 52: Batch Gradient Descent
	Slide 53: Mini-Batch Gradient Descent
	Slide 54: Linear Regression and optimization
	Slide 55
	Slide 56: Overfitting, Under fitting, and Best Fit
	Slide 57: Regularization
	Slide 58: Types of Regularization:
	Slide 59: Types of Regularization
	Slide 60: Types of Regularization
	Slide 61: Application and Interpretation:
	Slide 62: Evaluation of a Regression Model:
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Variance Inflation Factor (VIF):
	Slide 74: Durbin-Watson Test:
	Slide 75
	Slide 76: Train-Test Split
	Slide 77: Cross-Validation
	Slide 78: Combining Cross-Validation with a Holdout Set
	Slide 79: EXAMPLE
	Slide 80: EXAMPLE:
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87: Case Study: USAHOUSING PRICE PREDICTION
	Slide 88: Objective
	Slide 89: Methodology
	Slide 90: METHODOLOGY
	Slide 91: Conclusion
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

