
Linear Regression
The Foundation of Predictive Modeling



Introduction

 Linear Regression is a supervised learning algorithm used to predict continuous 

outcomes by modeling the relationship between dependent and independent variables.

➢ Common applications: Predicting house prices, stock trends, sales forecasting, etc.

➢ On Larger Note in LR we always looking for a best fit line.



Types of Linear Regression:

➢ Simple Linear Regression

➢ Multiple Linear Regression:





Assumptions of Linear Regression:

















Additional Considerations:



Journey of Regression from Stats to ML:



➢ Linear Regression models the relationship between the response 

variable (also known as the dependent, target, or result variable, denoted 

as y) and the regression coefficients (denoted as βi, wi ). 

➢ The relationship is assumed to be linear. This means the output y can be 

expressed as a linear combination of the input features x and the 

coefficients. 





➢Regression Coefficients:

✓These coefficients (βi, wi) are the weights assigned to each input feature x. 

✓They determine how much each input feature contributes to the output y.







Graphical Representation:

 Scatter Plot of Data Points: We'll plot the given data points, where each point 

represents a pair of weight and height values.

 Best Fit Line: We'll draw the line that best fits the data points according to the linear 

regression model. This line minimizes the sum of the squared errors between the actual 

data points and the line.

 Residuals (Errors): We'll show the vertical distances (residuals) between the data points 
and the regression line, highlighting the concept of minimizing these distances.



Model Parameters:

 Slope (w1): let it be 0.361 (approximately)

 This means that for every unit increase in weight, the height is expected 

to increase by about 0.361 units.

 Intercept (w0): let it be 9.11 (approximately)

 This is the height when the weight is zero. While it might not be 

meaningful in a practical context, it is essential for defining the 

regression line.

Geometric Intuition:

 The best fit line attempts to capture the linear relationship between weight 

and height. The slope indicates the direction and steepness of this 

relationship.

 Minimizing the residuals ensures that the line is as close as possible to all the 

data points, providing the best possible predictions.



Finding a line to best fit the data points using Ordinary 

Least Squares (OLS) regression







Concept of residuals and squared errors in the 

context of linear regression. 





Key Points:

➢ The best-fit line is determined by minimizing the sum of the squared vertical 

distances between the actual data points and the predicted values on the line.

➢ The residuals show how far off the predictions are from the actual data points.



➢ Why we use 

square of 

error?

➢ In linear regression, 

we often use the 

square of the errors, 

rather than just the 

errors themselves, to 

measure how well the 

model fits the data. 

➢ This is called the Sum 

of Squared Errors 

(SSE).





Why Not Use Absolute Errors?







R squared: Coefficient of Determination





 Ordinary Least Squares(OLS): Work on Best fit line

 Gradient Descent: Work on the concept of Reduce the error





Math's to Find Slope and Intercept



➢ Identification of significant variables:

➢ It can be done during Exploratory Data Analysis (EDA) 

➢ As well as during  model building. 





GRADIENT DESCENT 

APPROACH:



What is Gradient 

Descent

 Gradient Descent is a very generic optimization algorithm capable of finding optimal solutions to a wide range of 
problems. The general idea of Gradient Descent is to tweak parameters iteratively in order to minimize a cost 
function.

 Suppose you are lost in the mountains in a dense fog; you can only feel the slope of the ground below your feet.

  A good strategy to get to the bottom of the valley quickly is to go downhill in the direction of the steepest slope. 

 This is exactly what Gradient Descent does:

  it measures the local gradient of the error function with regards to the parameter vector θ, and it goes in the 
direction of descending gradient. 

 Once the gradient is zero, you have reached a minimum!

 So, you start by filling θ with random values (this is called random initialization), and then you improve it 
gradually, taking one baby step at a time, each step attempting to decrease the cost function (e.g., the MSE), 

 until the algorithm converges to a minimum



➢ An important parameter in Gradient 

Descent is the size of the steps, 

determined by the learning rate 

hyperparameter.

➢ If the learning rate is too small, then the 

algorithm will have to go through many 

iterations to converge, which will take a 

long time

➢ On the other hand, if the learning rate is 

too high, you might jump across the valley 

and end up on the other side, possibly even 

higher up than you were before. 

➢ This might make the algorithm diverge, 

with larger and larger values, failing to find 

a good solution



➢ The two main challenges with Gradient 

Descent: if the random initialization starts 

the algorithm on the left, then it will 

converge to a local minimum, which is not 
as good as the global minimum.

➢  If it starts on the right, then it will take a 

very long time to cross the plateau, and if 

you stop too early you will never reach 
the global minimum.

➢ Fortunately, the MSE cost function for a 

Linear Regression model happens to be a 

convex function, which means that if you 
pick any two points on the curve, the line 

segment joining them never crosses the 

curve. 

➢ This implies that there are no local 
minima, just one global minimum. It is 

also a continuous function with a slope 

that never changes abruptly.4 



➢ Where derivative of loss or cost  with weight is called slope.

➢ Its direction decide in which direction we need to move to reach a point where loss is minimum.

➢ The derivative of loss wrt ndim of vector is called gradient.

➢ Where ndim vector is called a tensor.
➢ In calculus derivative of tensor is referred as tensor.

➢ In machine learning, data with n number of features is represented as a tensor.



Derivative









Gradient Descent: Types



Stochastic Gradient Descent (SGD)



Batch Gradient Descent



Mini-Batch Gradient Descent



Linear Regression 

and 

optimization



Linear Regression And Optimization

➢ Linear regression aims to minimize the squared loss, which measures the 

discrepancy between the actual and predicted values.

➢ The squared loss function is fundamental in regression analysis for evaluating 

the performance of a model.



Overfitting, 

Under fitting, 

and 

Best Fit

➢ Threshold Accuracy:

➢ It’s indicated that an accuracy 

threshold of 70-95% (or 0.7-0.95) is 

desired. 

➢ This is the target range for acceptable 

model performance.



Regularization



Types of Regularization:



Types of Regularization



Types of Regularization



Application and Interpretation:



Evaluation of a Regression Model:

➢ When evaluating a linear regression model, several error metrics 

help determine the model's performance. 

➢ Each serves a slightly different purpose.

➢  The order of accuracy typically depends on the sensitivity of the 

metric to outliers and the emphasis on specific error magnitudes. 

➢ Here is a brief overview of the key error metrics, their order, and 

when to use them:























Variance Inflation

 Factor (VIF):



Durbin-Watson Test:





Train-Test Split



Cross-Validation



Combining Cross-Validation with a 

Holdout Set



EXAMPLE



EXAMPLE:













➢ R-squared (R2): ≈0.964

➢ This R2 value indicates 

that approximately 

96.43% of the variance 

in salary can be 

explained by the linear 

relationship with 

experience in this 

model.



Case Study: USAHOUSING PRICE PREDICTION

➢ Introduction

    The real estate market is influenced by various factors, including income levels, house age, number of rooms, 

number of bedrooms, and population density. Understanding how these factors affect house prices can provide 

valuable insights for buyers, sellers, and real estate professionals. In this project, we aim to develop a predictive 

model to estimate house prices based on various features in the USAHousing dataset.

➢ Dataset Description

   The USAHousing dataset contains information on various attributes related to houses in different areas. The 

features included in the dataset are:

▪ Avg. Area Income: The average income of residents in the area.

▪ Avg. Area House Age: The average age of houses in the area.

▪ Avg. Area Number of Rooms: The average number of rooms in houses in the area.

▪ Avg. Area Number of Bedrooms: The average number of bedrooms in houses in the area.

▪ Area Population: The population of the area.

▪ Price: The price of the house.

▪ Address: The address of the house (considered as a non-significant variable and will be excluded from the 

model).



Objective

➢ The primary objective of this project is to build a 

robust predictive model that can accurately estimate 

the price of a house based on the following 

independent variables:

1.Avg. Area Income

2.Avg. Area House Age

3.Avg. Area Number of Rooms

4.Avg. Area Number of Bedrooms

5.Area Population



Methodology



METHODOLOGY



Conclusion

▪ Predicting house prices is a complex task that involves 

understanding various factors that influence the real estate 

market. 

▪ By leveraging machine learning techniques, we aim to build a 

reliable model that can provide accurate price estimates and 

valuable insights into the housing market.
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