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Decongestion in heart failure:
medical and device therapies
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Abstract

Sections

Heart failure is aleading cause of hospitalization worldwide, and
congestionis the predominant cause of heart failure symptoms

and hospitalization. The primary therapy used to treat and prevent
congestion has historically been loop diuretics. However, many
patients are discharged from hospital with residual congestion,
whichis associated with persistent heart failure symptoms, adverse
outcomes and hospital readmission. Multiple medical strategies
and devices have been and are being investigated with the aim of
improving decongestion and subsequent heart failure outcomes.
Numerous questions exist about the design of clinical trials to test
emerging medical and device therapies, including the magnitude of
benefit on congestive, kidney and post-discharge outcomes relative
to conventional decongestion practices, and how best to implement
novel therapies. In this Review, we discuss emerging medical and device
strategies targeting congestion in patients with heart failure.
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Key points

o Various medical and device strategies are under investigation
to overcome barriers that limit decongestion in patients with acute
decompensated heart failure.

o Medical strategies that optimize the use of existing diuretic therapies
could have immediate, systemic effects on heart failure treatment, with
limited risk or cost.

e Most devices under investigation are designed to improve the diuretic
response indirectly by targeting a hypothesized haemodynamic
mechanism; however, mechanistic data and clinical trials of drugs
indicate that improving haemodynamics might have limited benefit.

o Barriers to the implementation of invasive devices include increased
rates of adverse events from invasive procedures, cost, resource
utilization and the requirement for provider expertise, limiting the pool
of candidate patients.

e Randomized, controlled trials are needed to determine whether
invasive devices can sufficiently improve decongestion and
post-discharge outcomes compared with optimized medical therapy
to offset their inherent risks and numerous barriers to widespread
implementation.

Introduction

The prevalence of heart failure is rising worldwide, and approxi-
mately 25% of individuals will develop heart failure in their lifetime’.
Likewise, hospitalizations for acute decompensated heart failure
(ADHF) arerising and increasing in complexity. Symptoms of con-
gestion are the predominant reason for ADHF hospitalizations®*.
Congestionis defined as signs and symptoms of fluid accumulation
in the intravascular and interstitial space owing to excessive salt
and water retention by the kidney>®. For decades, loop diuretics
have been the predominant therapy to treat congestion in patients
with ADHF and are the background standard-of-care therapy for
ADHF in clinical trials*>’. However, approximately 25-30% of patients
discharged after hospitalization for ADHF are recognized to have
residual signs of congestion (and presumably more have unrecog-
nized congestion), and inadequate decongestionis associated with
aworse prognosis*®’,

The reasons for inadequate decongestion are multifactorial and
often not easily resolved. First, and perhaps foremost, consensus has
not been reached on a clinically actionable decongestion end point.
Thissituation iscompounded by the high variation in the clinical assess-
mentand treatment of congestion®'. In addition, inaccurate measures
of diuretic response (such as weight change, urine output and net
input-output) can misinform clinicians*2. Some degree of diuretic
resistance is nearly ubiquitous in heart failure™. Although diuretic
resistance can generally be overcome by escalating diuretic therapies,
adequatetitrationis rarely standard in clinical practice'>".Inadequate
titration might stem from inaccurate measures of diuretic response,
the cumbersome nature of continuous diuretic monitoring and titra-
tion, and alack of knowledge and experience of such titration by many
clinicians. In addition, worsening renal functionis common in patients
with ADHF, often causing clinicians to discontinue guideline-directed

medical therapy (GDMT) and prematurely stop decongestion therapies
evenwhen persistent congestionis recognized'® ™, For these reasons,
decongestion strategies that achieve equivalent decongestion with-
out worsening renal function are desired. Lastly, patient-related and
system-related issues, such asadesire for short hospital stays and bed
availability, might incentivize clinicians to discharge patients from
the hospital prematurely when patient-reported symptoms of acute
dyspnoeaareresolved. Dyspnoearapidly improvesin the firsthours of
ADHF treatment despite persistent congestion, leading to the common
teaching that only ~10% of the excess volume needs to be removed to
improve ~90% of the dyspnoea®®?.,

Novel medical strategies and devices are being investigated to
address these barriers and improve decongestion. Broadly, medical
strategies include diuretic response-guided diuretic titration and
combination diuretic therapies. Device therapies can be conceptual-
ized as being either indirect or direct devices. Indirect devices are
designed toimprove natriuresis and diuretic response by correction of
ahypothesized mechanism of cardiorenal interaction and/or diuretic
resistance but do not directly remove salt or water from the body.
Currently targeted mechanisms include reducing renal venous pres-
sure, increasing renal arterial pressure, improving lymphatic flow and
applying negative kidney pelvic pressure. By contrast, direct devices
have a primary mechanism of action of directly removing salt and/or
water from the body — for example, ultrafiltration, lymph removal,
increased perspiration and automated administration of natriuretic
pharmacotherapies.

Inthis Review, we discuss the challenges of designing ADHF clini-
cal trials with decongestion end points, novel strategies to improve
decongestion using current medical therapies and the increasing
range of decongestion devices, including the underpinning patho-
logical mechanisms that are targeted by these devices and practical
considerations for theirimplementation.

End points in ADHF trials

Clinical trials with decongestion end points that are designed to test
novel medical and device therapies for patients with ADHF present
several challenges that are important in both trial design and result
interpretation. Specifically, challenges include defining deconges-
tion, the duration of intervention, inter-rater variation in congestion
assessment, heterogeneity in the degree of volume overload between
patients, participant selection criteria, inaccurate measures of diuretic
response, and interpretation of changes in kidney function. Some of
these challenges are discussed further below.

Defining decongestion

Defining and assessing congestion as an end point is much more
complex than cardiovascular end points such as mortality or hospi-
talization. Volume assessment integrates multiple congestion meas-
urements (such as signs, symptoms, laboratory measures, imaging
and haemodynamic measurements), which often have limited internal
agreement, into a fairly qualitative opinion on congestion status*'%**%,
This process canlead tosubstantial variation both between clinicians
and compared with ‘gold-standard’ assessments* . Importantly, no
gold-standard assessment exists for volume status because it is multidi-
mensional, volume goals canrequireindividualization, and congestion
canexistinone domainbut notinanother (such as pulmonary oedema
orelevatedfilling pressuresin the absence of oedemain the interstitial
compartment). Possibly as a result of these complexities, targeting a
single decongestion measurement, such as invasive haemodynamic
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parameters or plasma levels of natriuretic peptides, has not demon-
strated superiority over standard clinical evaluation®®*. Therefore, no
one measure of congestion outperforms an aggregate clinical assess-
ment. Despite these difficulties, objectively defining congestion at
baseline and serially over time s crucial for clinical trials of deconges-
tion strategies. Consequently, several expert consensus groups have
designed assessments of congestion?>***', Each proposed congestion
grading system includes multiple measures such as physical exami-
nation, laboratory values, imaging, symptoms and haemodynamic
variables. However, the cited recommendations contain as many dif-
ferences as similarities between assessments, and none has undergone
prospective validation. No clear consensus exists on the preferred
assessment of congestion. Given that congestion is multidimensional
and many drugs and devices target different aspects of congestion,
aunified definition of congestion might not be appropriate across
all drugs and devices.

The differences in the congestion measures included and the
numerical weighting assigned to signs and symptoms in congestion
assessments used in different studies might have important implica-
tions for interpretation and prognosis. The definitions of congestion
used in the DOSE* and CARRESS-HF* trials included orthopnoea
and jugular venous pressure. The decongestion end point used in the
ADVOR trial** focused entirely on extravascular measures of conges-
tion (oedema, pleural effusion and ascites) and did notinclude jugular
venous pressure or signs and symptoms of pulmonary congestion.
After 72 h, 42% of patients in the ADVOR trial achieved decongestion
compared with only 18% of patientsin the high-dose group of the DOSE
trial, despite substantially more urine output by patients in the DOSE
trial’>**. These differences are unlikely to be a reflection of the inter-
vention but are more likely to be attributable to factors such as the
amount of congestion present at baseline in the participants, the dif-
ferent patient populations and differences in congestion assessment.
Insummary, the congestion end pointsin clinical trials of patients with
ADHF require careful interpretation and direct comparison between
trials with different definitions and different inclusion and exclusion
criteriamight not be possible.

Duration of intervention

Historically, clinical trials of decongestion therapies have been con-
ducted for afairly short duration (such as 3 days) despite heterogeneity
inthe amount of hypervolaemia between patients, with a sizable pro-
portion of patients requiring intravenous diuretic therapy for residual
congestion after the end of the intervention period*** . This situation
provides the opportunity for the control group to ‘catch up’ with the
interventiongroup in the subsequent days before discharge from hos-
pitaland might partly explain the lack of significant differences in many
trials of decongestionin terms of length of hospital stay, decongestion
status at discharge from hospital or post-discharge outcomes®>****,
Therefore, researchers conducting trials with decongestion end points
should strongly consider continuing the therapy until clinical decon-
gestionis complete, rather than for afixed time, tounderstand thetrue
therapeutic value of the investigational approach.

Measures of diuretic response

Diuretic response is commonly used to measure the efficacy of a
decongestion therapy, particularly with indirect devices designed to
augment the diuretic response®®**2, Changes in urine output relative
toan earlier control period can be confounded by changes in diuretic
dose, neurohormonal changes, and adaptations to the earlier diuretic

period causing substantial variationin diuretic response over time, or
simply by bed rest. Inatrial of diuretic response in which patients were
randomly assigned to simulated activities of daily living (intermittent
sitting and slow walking) or supine recumbency (bed rest) for 90 min,
bed rest significantly increased urine volume by 162% and natriuresis by
178%". Therefore, increases in diuretic response or reductionsin filling
pressures in single-group, uncontrolled studies must be interpreted
with caution. The Cancion system (Orqis Medical) provides a caution-
ary example. Early non-randomized studies of the Cancion system
reported improved pulmonary capillary wedge pressure and kidney
function compared with measurements taken before implantation,
similar to the data available for many emerging devices**. However,
asubsequent large, randomized controlled trial was stopped early
because of aninability to demonstrate a benefit of the Cancion system
on pulmonary capillary wedge pressure, decongestion end points or
serum creatinine levelsin the setting of excess adverse bleeding events
in the device group***.

Changesinkidney function

Theinterpretation of changesinkidney functionin patients with ADHF
is complex*¢. Approximately 20% of patients with ADHF have substan-
tial improvement in kidney function during decongestion, which is
paradoxically associated withincreased risks of rehospitalizationand
death**, Given that, by definition, animprovementin organ function
cannot be the cause of the worsened outcomes, this finding illustrates
thefallacy of concluding from association studies that worsening renal
functionis causal for worsened outcomes. The finding also emphasizes
the problem of reducing the assessment of kidney function during
decongestion therapy to one measure (change in serum creatinine
level) that is confounded by numerous variables. Importantly, in the
setting of positive therapeuticinterventions that achieve decongestion
or optimize GDMT, worsening renal functionis associated with neutral
orimproved survival'®*°~, As aresult, smallimprovements or worsen-
ing of serum creatinine levels cannot be assumed either to result from
theinterventionortobeanindicator of therapeutic success or failure.
Therefore, changeinkidney functionis notan appropriate measure of
efficacy in trials of decongestion therapies.

Considering these complexities, clinical trialists of deconges-
tion devices and strategies in patients with ADHF should, when feasi-
ble, consider continuing the intervention until intravenous diuretic
therapy for decongestion is completed rather than for a fixed dura-
tion of the investigational therapy; ensure that diuretic response and
congestion are measured objectively and that control therapies have
similar exposures that modify diuretic response such as bed rest; use
substantial deterioration in kidney function (that is, a doubling of
serum creatinine level or the need for renal replacement therapy) as
a safety criterion and not as an efficacy measure; and, ideally, power
for and incorporate hard clinical outcomes as primary end points to
determine whether decongestion with the intervention improves
outcomes after discharge from hospital. The final point is crucial for
higher-risk devices because multiple trials of decongestion thera-
pies have improved diuresis or congestion, with no improvement in
post-discharge outcomes®-****¥, Although patients with ADHF require
decongestion regardless of the effect on post-discharge outcomes, how
decongestion therapies are prioritized will depend on their capacity
to improve hard clinical outcomes. The substantially increased cost,
resource use and rate of complications associated withinvasive devices
need to be justified by improved longer-term clinical outcomes and
not simply by decongestion-based outcomes (Box 1).
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Box 1| Optimizing decongestion in acute
decompensated heart failure

Emerging medical and device strategies can be implemented to
improve decongestion in acute decompensated heart failure.

e Use a standardized assessment of congestion that is translatable
across clinical trials and hospitals.
Set a specific, objective decongestion target (for example, a net
negative target for urine or sodium output) for the next 12-24h to
guide the initial diuretic strategy and further diuretic titrations.
Rapid titration of diuretics and addition of combination diuretic
therapies as needed to meet decongestion targets.
Strategies that improve the monitoring and titration of existing
diuretic therapies have the lowest barriers to implementation
and should be integrated into the electronic health record.
Patients who are refractory to these less invasive and less
resource-intensive strategies could be candidates for invasive
devices to improve decongestion if future randomized
controlled trials demonstrate efficacy and safety.

Optimization of existing medical therapy

The existing diuretic armamentarium consists of numerous, inexpen-
sive therapies with generally additive natriuretic efficacy (Fig. 1). Natriu-
resisis animportant metric for decongestion therapies because sodium
isthe pathophysiological mediator of congestion, and natriuresisis an
independent prognostic risk factor for in-hospital and post-discharge
outcomes in patients with ADHF**°, The major clinical trials of medical
therapies for ADHF with decongestion primary outcomes that have
informed the use of diuretics are summarized in Table 1.

Loop diuretics

Intravenous loop diuretics are recommended by international guide-
lines as thefirst-line therapy to treat congestion in patients with ADHF
viadiuresis and natriuresis*>’. Despite decades of experience, clinical
questions about the optimal use of loop diuretics remain®. Of these
questions, the issue of loop diuretic escalation to overcome diuretic
resistance is perhaps the most important. The dose-response curve
for loop diuretics has a sigmoidal shape for sodium excretion along
alogarithmic scale of diuretic concentration, whichis shifted right-
wards and downwards in patients with ADHF". Diuretic resistance is
the manifestation of this rightwards shift in most patients with ADHF,
especially with chronic use of loop diuretics and clinically significant
kidney disease™*”*®, Toillustrate, intravenous administration of 40 mg
of furosemide to a healthy volunteer saturates the sodium-potassium-
chloride cotransporter (NKCC2), increasing sodium exit from the loop
of Henle by 20-25% and producing a natriuresis of ~20% of filtered
load, measured as the fractional excretion of sodium***°. However, in
patients with heart failure, a median intravenous dose of furosemide
of 160 mg (interquartile range 40-270 mg), a dose that is commonly
thought to achieve the maximal effect of the drug, increased sodium
exit fromtheloop of Henle by only 12.6 +10.8%°". This cause of diuretic
resistance can be partially mitigated by administering higher doses of
theloop diureticto achieve atherapeutic concentration on the shifted
dose-response curve. Sequential titration of the diuretic up to very high
doses (such as 500 mg of intravenous furosemide equivalents) linearly
and significantly increased the peak fractional excretion of sodiumin
patients with ADHF’. In addition to increasing the peak natriuresis,

larger doses of diuretic increase the time during which the levels of
diuretic exceed the therapeutic threshold, thereby also increasing
the total natriuresis and diuresis. When a therapeutic intravenous
dose of aloop diureticis identified, the dose should be administered
with a frequency to achieve the target amount of decongestion for
the day. Patients with ADHF who do not have diuretic resistance can
have a substantial spontaneous natriuresis during the ‘off-diuretic’
periods, contributing meaningfully to the total daily natriuresis®’. By
contrast, post-diuretic sodium excretion during the off-diuretic period
is often minimal in patients with diuretic resistance’*®”. Therefore, these
patients require more frequent bolus dosing of the loop diuretic (for
example, every 6-8 h) or high-dose continuous intravenous infusion
of the loop diuretic to achieve a net negative daily sodium balance
because natriuresis primarily occurs when therapeutic levels of the
drugare presentin these patients.

SGLT2inhibitors

Sodium-glucose cotransporter 2 (SGLT2) inhibitors should be initi-
ated early during hospitalization for ADHF or continued during hos-
pitalizationifalready prescribed®. SGLT2 inhibitors are GDMT across
the ejection fraction spectrum and are safe in both hospitalized and
ambulatory patients®”**. In patients with ADHF, SGLT2 inhibitors aug-
ment the response to intravenous diuretic®*. SGLT2 inhibitors induce
modest natriuresis by inhibiting SGLT2 and by reducing transport
through the sodium-hydrogen exchanger 3 (NHE3), whichis the trans-
port pathway responsible for a large proportion of tubular sodium
reabsorption® . Therefore, SGLT2 inhibitors have the dual benefits
of acutely augmenting decongestion when givenin combination with
intravenous loop diuretics and optimizing long-term GDMT, reduc-
ing morbidity and mortality as early as 30 days after discharge from
hospital>*>¢*¢% (Table 1). In addition, SGLT2 inhibitors can minimize
the adverse effects of loop diuretics by lowering plasma uric acid lev-
els and preventing kidney magnesium and potassium wasting during
loop diuretic therapy®”**’°, In patients with euvolaemia, the immediate
natriuretic effect of SGLT2 inhibitors rapidly diminishes owing to com-
pensatory sodium reabsorption in the distal tubules, which prevents
lethal hypovolaemia from natriuresis and reconciles the short-termdiu-
retic benefit of the drugs with their excellent safety profile in patients
with chronic heart failure®.

Acetazolamide

In the ADVOR trial**, empirically combining acetazolamide (a car-
bonic anhydrase inhibitor) with low-to-moderate dose intravenous
loop diuretics improved the primary end point of the deconges-
tion score and resulted in an additional ~-500 ml of urine output
and ~100 mmol natriuresis over 2 days compared with loop diuretic
monotherapy. However, no significant improvement occurred in
the outcomes of rehospitalization or death (Table 1). Importantly,
use of an SGLT2 inhibitor was an exclusion criterion in the ADVOR
trial, leaving the unanswered question of whether acetazolamide use
improves diuretic efficacy when added to SGLT2 inhibitor therapy
giventhat the therapies have ashared mechanism of action of inhib-
iting NHE3 transport in the proximal tubule®**”. Early data suggest
that the combination of acetazolamide and SGLT2 inhibitor therapy
might not produce a synergistic diuretic response’. Therefore, in
patients already receiving SGLT2 inhibitor therapy, the diuretic effi-
cacy of acetazolamide might be attenuated. However, acetazolamide
is likely to be more effective than SGLT2 inhibitors in preventing
and correcting metabolic alkalosis by inhibiting carbonic anhydrase
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throughout the nephron, minimizing chloride loss and suppressing
renal ammoniagenesis’>”*.

Thiazide and thiazide-like diuretics

Onapopulationlevel, natriuresis inresponse to high-dose loop diuret-
ics seems to be primarily determined by compensatory reabsorption
in the distal nephron®-, The specific tubular sodium-transport path-
ways underpinning this compensatory reabsorption have not been
definitively established. The sodium-chloride cotransporter (NCC)
has beenimplicated as the primary contributor, and studiesin rodents
confirmthat chronic exposure to loop diureticsincreases the quantity
and activity of NCC’*7%, However, most thiazides interact with multi-
ple sodium-transport pathways, with evidence of effects on carbonic
anhydrase, pendrin and the sodium-dependent chloride-bicarbonate
exchanger, prohibiting conclusions about the relative importance of
any one resorption pathway’*’”’,

Regardless of the pathways inhibited, thiazides (and thiazide-like
diuretics) have been recommended as the first agent to add during
resistance to intravenous loop diuretic therapy>”*. Incombination with
loop diuretics, thiazides, on average, increase the diuretic response
toagreater degree than either acetazolamide or SGLT2 inhibitors’>%°.
Inthe CLOROTIC trial®, the up-front addition of low-dose hydrochloro-
thiazide tointravenousloop diureticsincreased the diureticresponse
compared with loop diuretic monotherapy. However, hydrochloro-
thiazide also increased the risk of hypokalaemia and worsening renal
function and had a non-significant trend towards increased rates of
rehospitalization and death® (Table1). Of note, in observational stud-
ies, the early addition of a thiazide diuretic to loop diuretic therapy
was associated with worsened outcomes, including anincreased rate
of death®. Therefore, out of all the diuretic adjuvants that can be used
in combination with loop diuretics, thiazides are likely to achieve the

Renal vein

Acetazolamide

« Inhibits carbonic anhydrase,
reducing sodium reabsorption
via NHE3

— Proximal convoluted

- tubule
SGLT2 inhibitors

e Inhibit SGLT2-mediated
sodium and glucose
reabsorption

* Reduce sodium reabsorption
via NHE3

Loop diuretics T Loop of Henle

greatest augmentation in diuresis but frequent monitoringis required
because of the greater risk of adverse events.

Mineralocorticoid receptor antagonists

The epithelial sodium channel (ENaC) is a major channel for sodium
reabsorption in the principal cells of the connecting tubules and col-
lecting ducts®?. Aldosterone activates ENaC and increases sodium
reabsorption®. Transport through ENaC can be reduced by miner-
alocorticoid receptor antagonists or direct ENaC antagonists (such
as amiloride or triamterene). Low-dose treatment with a mineralo-
corticoid receptor antagonist (spironolactone or eplerenone at target
doses of 25-50 mg daily) is GDMT to reduce the risk of morbidity and
deathin patients with heart failure and probably has anegligible acute
diuretic effect™”*. Even moderate doses (such as 100 mg of spirono-
lactone daily) do not increase the diuretic response in patients with
ADHF, but this lack of aresponse might be due toinadequate dosing®**
(Table 1). If spironolactone therapy is intended to augment the diu-
reticresponse, aloading dose of 300-400 mg per day and a high daily
dose of ~200 mg per day might initially be needed to rapidly achieve
therapeutic concentrations of the active metabolites®.

Vasopressin receptor antagonists

Vasopressinreceptor antagonists have not consistently improved out-
comes across the multitude of ADHF trials to date and are therefore
not recommended for routine use*’?*. Despite a lack of observable
benefit in relatively unselected populations of patients with ADHF,
vasopressin receptor antagonists are theoretically useful in specific
populations. Vasopressin is the prototype regulator of NKCC2 and
stimulatesincreased sodium reabsorptionintheloop of Henle. In addi-
tion to increasing water clearance, vasopressin receptor antagonists
could theoretically improve diuretic and natriuretic response when

Renal artery

Thiazides

e Inhibit NCC-mediated sodium
reabsorption

o (Inhibit carbonic anhydrase
and possibly other transporters
such as NDCBE)

Distal convoluted
tubule

Glomerulus

Bowman
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Collecting duct
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recta
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Fig.1|Natriuretic therapies and the nephron. The figure shows the primary
sites of action of natriuretic therapies in the nephron®’**""°_ Potential
secondary mechanisms of action at doses used in the treatment of acute
decompensated heart failure are listed in brackets. ENaC, epithelial sodium

channel; NCC, sodium-chloride cotransporter; NDCBE, sodium-dependent
chloride-bicarbonate exchanger; NHE3, sodium-hydrogen exchanger 3;
NKCC2, sodium-potassium-chloride cotransporter; SGLT2, sodium-glucose
cotransporter 2.
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added tointravenousloop diureticsin patients resistant to diuretics®.
Furthermore, some of the failures of tolvaptan (a selective vasopressin
V, receptor antagonist) toimprove outcomes have been hypothesized
toberelated tounopposed vasopressin V, receptor stimulation. There-
fore, dual antagonists of the vasopressin V, and V, receptors could be
superior to selective V, receptor antagonists such as tolvaptan. Further
research into vasopressin receptor antagonism is needed.

Salt supplementation

The simplistic paradigmin patients with ADHF is to increase natriuresis
(increase sodium output) while restricting salt intake (decrease sodium
input), which arithmetically should produce a net negative sodium
balance. Inthis paradigm, sodiuminput and output are assumed to be
independent (reducing sodiumintake is assumed not to reduce natriu-
resis). However, several clinical trials have disproven this simplistic
paradigm. A randomized trial of intensive sodium restriction (800 mg
perday) versusliberal dietary salt intake (-3-5 g per day) during ADHF
reported nosignificant differencesindecongestion outcomes, duration
of intravenous diuresis or post-discharge outcomes, despite nearly
identical diuretic dosing in the two groups®’. Deliberate sodium chlo-
ride augmentation duringintravenous diuresis has beeninvestigated
in various randomized trials®***", Oral sodium chloride loading in the
OSPREY trial” did not significantly change any decongestion efficacy or
safety outcomes. Serial dosing of hypertonic saline during intravenous
diuresis hasbeen observed toimprove diuresis, urinary sodium excre-
tion, weight loss, serum creatinine concentration and serum sodium
concentration®?2, Collectively, the available evidence indicates that salt
administration during ADHF has incompletely understood benefits”.
Abenefitisimplicit evenin aneutral study because some positive effect
of saltadministrationis implied to offset the arithmetic negative effect
of increased sodium intake. In healthy control individuals, a positive
relationship exists between sodium intake and sodium excretion by the
kidneys that is relatively retained in patients with heart failure®>**%,
The kidneys continue to sense salt and increase natriuresis and diuretic
response accordingly. Importantly, the kidneys sense salt primarily
through chloride, with chloride driving parameters such asreninsecre-
tion, tubuloglomerular feedback and the regulation of multiple ion
transporters via WNK serine-threonine kinases’*'°°. Hypochloraemia
isindependently associated with worse diuretic response and less
decongestionintrials of patients with ADHF, even after correction for
serum sodium concentration'®'°*, The observed benefits of sodium
chloride administration might plausibly be mediated through the ben-
eficial effects of chloride insuppressing sodiumavidity and decreasing
neurohormonal activity. Additional research isneeded to understand
the population of patients with ADHF who might benefit from salt
administration during ADHF and the mechanisms that might underlie
the potential benefit”.

Escalation of diuretic therapy

Integrating all the trials on diuretic medical therapy to produce an
evidence-based algorithm for escalation of diuretic therapy with
applicability to all patients with ADHF is unfortunately not possible.
However, we propose a general approach based on the available trial,
observational and physiological data (Fig. 2). This proposed approach
tothe escalation of diuretic therapy can be used to treat most patients
with ADHF and could provide atemplate for structured standard care
inthe control groups of clinical trials of novel device or medical strat-
egies in patients with ADHF. The first step to diuretic monitoring is
performing astandardized congestion assessment and setting a daily

a Haemodynamically stable patient with hypervolaemic
acute decompensated heart failure and inadequate diuretic
response to the initial intravenous dose of loop diuretic
relative to the set decongestion target (see panel b)

¥
Initiate or continue SGLT2 inhibitor?

ammd Double previous intravenous dose of loop diureticP
Inadequate diuretic response

\
Titrated to maximum intravenous dose of loop diuretic?®

(Maximum intravenous bolus dose: furosemide 500 mg or
bumetanide 12.5 mg)
NoJ lYes

Add thiazide or thiazide-like diuretic
¥
Inadequate diuretic response
¥

Add additional nephron segment blockade

o Maximize thiazide regimen

o Add high-dose acetazolamide up to 1 g twice daily

o Add spironolactone 100-200 mg twice daily or amiloride
10 mg twice daily

\
Inadequate diuretic response

¥

Consider the following, if clinically appropriate:
* Haemodynamically guided medical therapy

» Hypertonic saline

o Ultrafiltration

o Palliative care

b Target NRPE-calculated
natriuresis for
Target net negative 2 g (87 mmol) per day
Volume assessment input-output balance sodium diet?

Mild hypervolaemia Negative 1.0-2.0 L per day 150 mmol sodium per day

Moderate hypervolaemia Negative 2.0-3.5 L per day 250 mmol sodium per day

Severe hypervolaemia Negative 3.5-5.0 L per day 350 mmol sodium per day

Fig.2|Diuretic therapy escalation algorithm. a, The flowchart shows an
algorithm for escalation of diuretic therapy. The maximum daily dose of

loop diuretic might be the equivalent to an intravenous furosemide dose of
1,500-2,000 mg per day, based on expert opinion, although some centres have
experience with higher daily doses. Intravenous bolus doses >240 mg of loop
diuretics should be infused slowly (over aminimum of 1 h) to minimize the risk
of ototoxicity. In most patients, an inadequate diuretic response measured

2 h after the diuretic dose could be defined as a urine output <500 ml, a urine
sodium concentration <70 mmol/l or cumulative natriuresis <40% of the daily
target calculated using the natriuretic response prediction equation (NRPE).

b, Individualized daily decongestion targets. *Up-front administration of
acetazolamide before administration of a sodium-glucose cotransporter 2
(SGLT2) inhibitor could be considered if SGLT2 inhibitors are contraindicated
orifhypercarbic alkalosis is present. °If clinically significant hypokalaemiais
presentor the patientis at risk of clinically significant hypokalaemia, consider
the addition of high-dose mineralocorticoid receptor antagonist therapy to
reduce urinary potassium loss. “The intravenous bolus dose of loop diuretic that
should be achieved before adding a thiazide is unknown but anintravenous dose
0f240-500 mg of furosemide is reasonable. “Target natriuresis must be adjusted
for dietary sodiumintake; for each gram of added sodiumintake, increase the
natriuresis target by 43 mmol.
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decongestion target**. Daily decongestion targets require individuali-
zationbut, in Fig. 2, we summarize decongestion targets adapted from
clinical trials of patients with ADHF**'°*, The initial intravenous dose
of loop diuretic should be guided by the home oral diuretic regimen
(2.5 times the oral dose or 80 mg furosemide equivalents in
diuretic-naive patients)*. Monitoring of the diuretic response relative
tothe decongestion target quickly identifies diuretic resistance.Ona
populationlevel, diuretic resistance is predominantly anintrinsic prob-
lem of poor response of the nephrons to diuretics™*'. As aresult, most
patients canachieve an adequate diuretic response with escalation of
diuretictherapy. Non-responders should first have the intravenous loop
diuretic therapy maximized, titrating by doubling the previous dose.
Simultaneously, all patients without absolute contraindications should
startreceiving an SGLT2inhibitor as early as possible, eveniflong-term
therapy is not logistically feasible. When using acetazolamide to aug-
menttheloop diuretic effect, it should ideally be used early as tested in
the ADVOR trial”>and because early initiation of acetazolamide might
prevent the development of diuretic resistance. Although astrategy of
early combination therapy withboth loop and thiazide diuretics might
increase treatment efficacy, the safety profile of combination therapy
seems to be unfavourable, with trial and observational data suggest-
ing a signal for worse post-discharge outcomes compared with the
use of high-dose monotherapy with aloop diuretic***”*". The reduced
survival associated with combination therapy with loop and thiazide
diuretics during ADHF was not observed in patients receiving higher
intravenous doses of aloop diuretic®. The peak intravenous dose of a
loop diuretic that should be given before adding a thiazide diuretic is
unknown, but observational evidence indicates that adose equivalent
to an intravenous bolus dose of 240-500 mg of furosemide can be
safely targeted™*’. Intravenous doses of loop diuretic should be admin-
istered two to three times or more daily. After reaching amaximal dose
of theloop diuretic plus SGLT2 inhibitor therapy, a thiazide diuretic
shouldbe added. Most thiazide diuretics seem to have equal efficacy at
equipotent doses, without evidence for the superiority for one agent,
even in patients with a low estimated glomerular filtration rate”*. If
anadequate diuretic responseis still not achieved, expert opinion and
limited data indicate that multi-segment nephron blockade by add-
ing agents such as acetazolamide, a high dose of a mineralocorticoid
receptor antagonist and amiloride canincrease the diuretic response'®.

Decongestion therapy monitoring strategies

Even the most effective diuretic strategy is dependent on accurate
and timely monitoring data for successful titration. The approach to
monitoring of the diuretic response has not changed for decades. Both
standard-of-care clinical practice and protocols in clinical trials on
ADHF rely primarily on body weight, urine output and net input-output
calculations to quantify diuretic response'>***>*%3, Agreement between
changeinbody weight and netinput-outputis poor, evenin the setting
of rigorous clinical trials. Generally, the coefficient of determination
(r?) is <25%, indicating that there is >75% disagreement between these
metrics, which should agree perfectly™'°. Additionally, body weight
and net input-output measurements are commonly performed or
documented only every 8-24 h, producing substantial delaysin therapy
titration. Evenif precisely and frequently measured, these metrics are
focused on water balance. However, sodium accumulation is the pri-
mary inciting pathophysiology of extracellular volume expansion'”’.
Sodium balance is crucial because individuals with ADHF show wide
interpatient variation in the sodium content of the urine****=¢, Low spot
urine sodium concentrations after the first intravenous dose of loop

diuretic are associated with worse prognoses, including worsening
kidney function, worsening heart failure and higher mortality®>>57112,
Furthermore, a positive sodium balance is still associated with more
than a twofold increased risk of death, even in patients with a net
negative fluid balance**.

Urinary sodium concentration

Natriuresis-based, quantitative diuretic response metrics overcome
many of the practical and physiological limitations of measures based
onurine volume and body weight. Measuring cumulative natriuresisis
subject tothe same practical limitations, butaspot urine sample timed
1-2 hafteranintravenous dose of aloop diuretic to measure natriuresis
isrecommended in patients with ADHF****, A urine sodium concentra-
tion <50 mmol/lis clearly aninadequate diuretic response, but consen-
sus is lacking on a urine sodium concentration that indicates a good
diuretic response?*®*, The multicentre, open-label, non-randomized
ENACT-HF trial™ targeted a urine sodium concentration >50 mmol/I
and a urine output >100 mi/h at 2 h after an intravenous dose of loop
diuretic in the intervention group compared with usual care. The
primary outcome (24-h natriuresis) was significantly greater in the
intervention group, which received significantly higher intravenous
doses of diuretic. Interpretation of the urine sodium target is difficult
because more patients were titrated owing to alow urine output than
duetoalow urinesodium concentration. The single-centre, open-label,
randomized PUSH-AHF trial* targeted a urine sodium concentration
>70 mmol/l after each intravenous dose of diuretic for the first 48 h
of hospitalization for ADHF. Patients in the natriuresis-guided group
had significantly greater mean total natriuresis at 24 hand 48 h and
received significantly higher intravenous doses of diuretic. The smaller,
ongoing DECONGEST trial™*is targeting a urine sodium concentration
>80 mmol/l. Importantly, although low urine sodium concentration
thresholds, such as 50 mmol/l, are highly specific for a poor diuretic
response, aurine sodium concentration >50 mmol/liscommon among
diuretic non-responders. Of note, -55% of patients with ADHF have a
urine sodium concentration >50 mmol/l before administration of a
diuretic'™. Concentrated urine can have a high sodium concentration
despite alow sodium output due to the low volume of the urine. As
the threshold of urine sodium concentration value is increased, the
number of correctly identified non-respondersincreases but sensitivity
and specificity decrease. Collectively, clinical trials demonstrate that
patientswitha poor diuretic response canincrease natriuresis to target
levels with escalation of the intravenous dose of diuretic. However, the
urine sodium concentration that should be targeted to achieve a net
negative sodium balance in most patients remains unresolved.

Natriuretic response prediction equation

The natriuretic response prediction equation (NRPE) was derived
to overcome the limitations of measuring the urine sodium
concentration®"'%, Using urine sodium and urine creatinine concen-
trations, the NRPE estimates the cumulative urine sodium output from
eachdiureticdose, allowing diuretic titration to achieve anet negative
sodium balance based on the prescribed dietary sodium intake. This
calculationis achieved by incorporating the urine creatinine concen-
tration, which addresses the bias that can occur with a low volume of
concentrated urine and hasimproved the performance of urine sodium
measurements to predict natriuresis, eitherinthe NRPE or as aratio®™".
The NRPE has been validated against measured 6-h cumulative sodium
excretion, demonstrating excellent discrimination across the range of
natriuretic responses (area under the curve >0.90)*"'°. The NRPE has
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beenintegratedinto anurse-driventitration protocol (the Yale diuretic
pathway) and, in a pre-post design study, resulted in rapid escalation
of diuretictherapy, improved fluid and weight loss, and had an overall
excellentsafety profile”. However, whether escalation of diuretic ther-
apy toincrease natriuresis in patients with diuretic resistance achieves
the clinical benefits associated with a net negative sodium balance in
observational cohorts of patients with ADHF is unknown. The ongoing,
multicentre, randomized, double-blind ESCALATE trial'® is testing
the hypothesis that NRPE-based diuretic titration until euvolaemia to
achieve a net negative sodium balance willimprove clinical outcomes
compared with structured usual care.

Decongestion device therapies

Various device therapies are being developed to address the problem
of incomplete decongestion during ADHF™® (Table 2). Decongestion
devices canbebroadly categorized asbeing indirect or direct devices.
Indirect devices have no direct mechanism to remove salt and water.
Instead, indirect devices are intended to correct ahypothesized patho-
physiology thatis driving cardiorenal syndrome and/or diuretic resist-
ance, anticipating thatimproved cardiorenal parameters willimprove
theresponse tobackground standard-of-care diuretic therapy (Fig. 3a).
By contrast, direct devices target salt and water removal directly,
although many of these devices also indirectly affect the underlying
cardiorenal pathophysiology. Mechanisms such as veno-venous ultra-
filtration, peritoneal ultrafiltration, lymph removal, excess perspiration
and automated diuretic dosing are targeted by direct devices (Fig. 3b).

Indirect devices

Indirect devices seek to improve the diuretic response and, conse-
quently, decongestion by mechanisms such as reducing renal venous
pressure, selectively increasing renal arterial pressure, improving
lymphatic recirculation or providing negative pressure to the renal
collecting system (Table 2). Whether any of these mechanisms are
relevant in human heart failure is much debated, and the myriad of
different mechanisms targeted reinforces the lack of consensus. Ona
population level, diuretic resistance is probably not mediated by any
one haemodynamic derangement, which explains why studies evalu-
ating haemodynamic parameters and diuretic response have found
minimal associations"®'?*, On a population level, the final common
pathway of diuretic resistance in mechanistic studies is an adaptive
state of increased sodium avidity in the kidney tubules and is not a
problem of cardiac haemodynamics'>*586275124,

In addition to mechanistic observations, randomized clinical
trials of medical therapies that improve the same haemodynamic
parameters as those targeted by the many indirect devices have uni-
versally shown no significant improvement in decongestion. Vasodi-
lators such as nesiritide, serelaxin and ularitide substantially reduce
venous pressure but do not meaningfully improve decongestion or
diuretic response'#120121125126 1 3 rigorous mechanistic study, the
vasodilator cimlanod substantially improved cardiac output but diu-
retic response and kidney function worsened significantly'”. Positive
inotropes improve cardiac output but are not associated with mean-
ingfully improved decongestion or diuretic response"®"’. However,
medical therapies targeting haemodynamic parameters have other
‘off-target’ systemic effects (for example, nesiritide lowers venous
pressure butalso arterial pressure) that might theoretically attenuate
the beneficial effects.

‘Selective’ indirect devices are hypothesized to avoid these
off-target effects, but this assumption might be overly simplistic

because manipulating one aspect of the cardiovascular system with-
out altering it systemically is very difficult. Devices that lower renal
venous pressure also reduce cardiac preload and therefore might lower
cardiac output and blood pressure. Devices that raise renal arterial
pressure also reduce proximal aortic pressures, thereby unloading
arterial baroreceptors, which might worsen kidney sympathetic nerve
activity. Devices thatimprove lymphatic circulation could reduce kid-
ney interstitial pressure, augment preload and consequently cardiac
output, but at the expense of worsened central and therefore renal
venous pressure. Assuch, the net effects of these devices might extend
beyond the specific candidate mechanism targeted and might not be
moreselective than their systemically administered pharmacological
equivalents.

Indirect arterial devices. Indirect arterial devices locally increase
pressure around the renal arteries with the aim of increasing glomeru-
lar filtration rate and diuretic response (Table 2). Decreases in mean
arterial pressure have been consistently associated with increases in
serum creatinine concentration during therapy for ADHF** ™!, After
multivariate adjustment, the relative decrease in blood pressure was
still significantly associated with worsening renal function, unlike
right atrial pressure and cardiac index™°. Contrary to the association
between change in blood pressure and glomerular filtration rate, no
association exists between a reduction in blood pressure and diu-
retic response™’. Diuretic response paradoxically improved with a
GDMT-induced reductioninblood pressureinan observational series,
which might be due to greater neurohormonal antagonism effects
offsetting decreases in blood pressure'. Although the increase in
renal arterial pressure from indirect arterial devices will stimulate
kidney baroreceptors, it will also unload the heart and great vessels
by decreasing both afterload and filling pressures. Therefore, the net
effect on kidney neurohormonal activation could be either improve-
mentorworsening. Indirect arterial devices require careful haemody-
namic and neurohormonal mechanistic studies to understand these
interconnected complexities between organ systems.

Improving kidney perfusion should be beneficial in patients
with ADHF. However, whether these devices can lead to a sustained
improvementinkidney perfusion in patients with ADHF has notbeen
proven and basic physiological principles suggest that they might not.
First, the kidneys do not behave as a passive vascular circuit, whereby
increased pressure passively increases kidney blood flow. As an exam-
ple of the adaptations toincreased kidney perfusion, the mean systolic
blood pressure in a patient with ADHF on admission to the hospital is
~140 mmHg but, despite this hypertension, these individuals present
with volume overload and often with diuretic resistance and a low
estimated glomerular filtration rate’. Although a hypertensive ADHF
profileisunlikely to be the target population for decongestion devices,
this ADHF phenotype provides insightinto the compensatory adapta-
tions of the human body. After an initial increase in kidney perfusion
with increased blood pressure, the multitude of autoregulatory sys-
temsinthekidneys (myogenic autoregulation, glomerulotubular bal-
ance and tubuloglomerular feedback) stabilize glomerular filtration,
intra-renal solute gradients and sodium excretion, rapidly regulating
kidney perfusion back to baseline. Although we know that complete
adaptation to these devices is likely to occur in the long term (hyper-
tensionis notadisease of volume depletion), the exact kinetics of this
adaptation could be debated. No mechanistic studies have investigated
renalhaemodynamics (true glomerular filtration rate and renal blood
flow) in the setting of ADHF. We hypothesize that renal adaptation
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to the increased blood pressure will occur within minutes to hours,
leading to minimal efficacy. However, if the kinetics of adaptation are
substantially slower than physiology would predict, a substantial issue
will occur witharebound effect of worsening glomerular filtration rate
and natriuresis after device withdrawal. Careful study of the effects of
these devicesis necessary.

Indirect venous devices. Indirect venous devices aim to mitigate
the negative effect of elevated renal venous pressure, hypothesizing
that improved glomerular filtration and diuretic response will follow
(Table 2). In experimental models, isolated congestion of the kid-
ney can worsen glomerular filtration rate and sodium handling™*"**,
Increased venous pressure is often assumed to worsen kidney func-
tion directly through a simple hydraulic effect of decreasing kidney
perfusion pressure. However, congestion has complex effects on
kidney autoregulation, with a paradoxicalincrease in kidney vascular
resistance’. Furthermore, inadequately understood physiology in
animal models, including factors such as hydration and neurohormo-
nal status, can result in very different kidney responses with a similar
degree of congestion™’.

Despite this robust literature in animal models, haemodynamic
measures of venous congestion have not been shown to have arela-
tionship with diuretic resistance and have only a weak and inconsist-
ent relationship with glomerular filtration rate in contemporary
cohorts of patients with ADHF'?*'2#13913¢ The disconnect between
animal experiments and observations in humans might stem from
differences between selective kidney congestion in experimental
models compared with systemic congestion in patients with ADHF.
Importantly, congestion of the heart and great vessels results in
favourable effects on kidney function and natriuresis, such as the
release of natriuretic peptides and the suppression of kidney sym-
pathetic nerve activity. This situation probably explains why, on a

a Indirect decongestion devices

Lymphatic devices

Increase lymphatic drainage
« Negative venous pressure at the
lymphatic junction

Venous devices

Decrease renal venous pressure

« Intermittent occlusion of the
superior vena cava

« Regulation of blood flow in the
renal veins

e Pump-mediated decompression
of the renal veins

Arterial devices

Increase renal artery perfusion

« Decrease cardiac afterload

o Increase perfusion pressure in
the renal arteries

Renal devices

Increase nephron filtration and

reabsorption

« Negative pressure exerted by a
ureteral catheter placed in the \
renal pelvis /4l

Fig.3|Indirect and direct decongestion devices. a, Indirect decongestion
devices use various mechanisms of action to correct a hypothesized
pathophysiology driving cardiorenal syndrome or diuretic resistance, relying on

population level, only a weak positive relationship exists between
higher central venous pressure and better diuretic response’**. Most
indirect venous devices in development use passive partial obstruc-
tion of venous flow to the central circulation (occlusion of the inferior
or superior vena cava), thereby reducing venous return and, subse-
quently, cardiac filling pressures. Therefore, the positive effect of
kidney venous decongestion might be offset by reducing the positive
effects of congestion of the heart and great vessels, depending on
the status of cardiac loading. Given these complexities, randomized,
sham-controlled trials of indirect devices targeting kidney venous
pressure are needed.

Other indirect devices. Another approach of indirect devices is to
improve lymphatic flow by selectively reducing venous pressure near
the thoracic duct outlet with the aim of increasing decongestion™”’
(Table 2). Lymphatic drainage is the primary route of interstitial fluid
(oedema) removal, and patients with heart failure have increased
lymphatic flow"*. Devices targeting the lymphatic system have two
candidate mechanisms of action: increasing salt and/or water deliv-
ery to the intravascular space (which paradoxically is the opposite of
the proposed mechanism of action of indirect venous devices) and
decreasing kidney interstitial pressure by facilitating kidney lymphatic
drainage. Acceleratinglymphatic drainage could increase renal venous
pressure, which could theoretically increase renal interstitial pressure
and negate the improved kidney lymphatic drainage.

The JuxtaFlow Renal Assist Device (Roivios) is a urinary catheter
that applies negative pressure to the kidney pelvis, which is theo-
retically transferred upstream via the nephrons to decrease kidney
interstitial pressures and ultimately improve kidney function and
natriuresis. Similar to the hypothesis that kidney congestionimpedes
the diureticresponse, negative kidney pressure aims to lower pressure
inthe encapsulated kidney toimprove the diuretic response.

b Direct decongestion devices

Ultrafiltration
Remove isotonic intravascular fluid

Increased perspiration
Remove fluid via perspiration
induced by a wearable suit

7Lymph removal
Drain and discard lymphatic fluid

Direct sodium removal

Remove sodium in an excess of
water via diffusion and ultrafiltration
into peritoneal infusate

Automated decongestion
management system
Continuous monitoring of urine
output to automatically titrate
intravenous diuretics and
intravenous fluid to achieve net
negative sodium or fluid balance

\
diuretic therapy for sodium and water removal. b, Direct decongestion devices
directly remove sodium and water by various methods.
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Intravenous loop diuretics and
guideline-directed medical therapy

Combination diuretic therapies
(addition of thiazides or
acetazolamide)

Risk of
adverse events

1 Amount of evidence

supporting use

1 Size of candidate Cost

patient population

Decongestion
devices

Invasive procedure

Resource utilization

Provider expertise required

1 Barriers to
implementation

Fig. 4 | Practical considerations for decongestion devices
inacute decompensated heart failure. Medical therapies

are used for most patients with acute decompensated heart
failure owing to the extensive experience, low cost and ease

of implementation. Invasive decongestion devices are likely
tobereserved for asmaller pool of candidate patients who
arerefractory to medical therapies because these devices are
associated with higher risks of adverse events, high costs and
high complexity of use. Devices and strategies that optimize the
use of existing medical therapies can have animmediate benefit
on decongestion, with limited incremental risk.

Direct devices

Direct devices are designed to remove fluid and/or sodium directly
fromthe body rather thantarget cardiorenal pathophysiology (Table 2
and Fig. 3b). Veno-venous ultrafiltration involves removing isotonic
plasmafluid directly from the vascular compartment. Most haemodi-
alysis machines can performisolated ultrafiltration, and a proprietary
machine exists that can provide ultrafiltration rates up to 500 ml/h, with
minimal extracorporeal volume'. As a direct decongestion device,
ultrafiltration has proven efficacy in removing large quantities of
sodium and water from patients. Three large trials have investigated
the comparative efficacy and safety of ultrafiltration compared with
diuretic therapy. In the UNLOAD trial"*°, ultrafiltrationimproved 48-h
body weight loss and reduced 90-day rehospitalization rates. How-
ever, these results were not replicated in the CARRESS-HF trial®, in
which aggressive medical decongestion therapy was implemented
in the control group, and body weight loss was similar but serum cre-
atinine concentration slightly increased with ultrafiltration. Of note,
important methodological issues (such as the limited duration of
therapy with alow rate of complete decongestion in both treatment
groups, a fixed rate of ultrafiltration and high crossover rates) in the
ultrafiltration treatment group probably influenced the results'. The
AVOID-HF trial** had a similar protocolized control group to that of
the CARRESS-HF trial. The AVOID-HF trial was terminated early, pro-
hibiting definitive conclusions, but a trend towards reduced rates of
rehospitalization with ultrafiltration was observed'** All three trials
reported anon-negligible but non-prohibitive rate of catheter-related
and circuit-related adverse events with ultrafiltration. Ultrafiltration
isrecommended by international guidelines when optimized diuretic
therapies do not achieve adequate decongestion**’. Insummary, ultra-
filtration is largely used only as salvage therapy despite a clear and
powerful efficacy to directly remove salt and water as well as data from
two pivotal clinical trials suggesting a reduction in rehospitalization.
Given that ultrafiltrationis less invasive than most of the newer decon-
gestion devices that are under investigation, this experienceillustrates
the high threshold for the adoption of decongestion devices into the
routine management of patients with ADHF. Investigators should be
mindful of this lesson when future trials are designed.

The Reprieve System (Reprieve Cardiovascular) isabedside fluid
management system that monitors diuretic response in real time
and automatically titrates a continuous intravenous infusion of loop
diuretic and saline to achieve target levels of decongestion'. The
Reprieve System uses a dose-finding phase that consists of alog-linear

ramped increase in diuretic dosing until the desired urine output is
achieved, which then triggers the transition to a continuous infu-
sionto maintain the therapeutic concentration of diuretic identified.
In the first hour, intravenous doses of diuretics are either titrated to
an effective dose or patients are identified as being poor responders
to high doses of loop diuretics. In theory, the Reprieve System allows
rapid diuretic titration to an aggressive diuretic response target,
while reducing the risk of over-diuresis, worsening renal function
and diuretic resistance by administering saline as needed'®. Clini-
cal trials"**'* are ongoing to test whether the Reprieve System can
improve cardiorenal and decongestion outcomes, and a pivotal trial
isbeing planned.

Direct sodiumremoval, analogous tostandard peritoneal dialysis,
isaheartfailure-specific therapy that uses the peritoneal cavity for salt
and water removal. Direct sodium removal therapy removes large quan-
tities of sodium (in an excess of water) using sodium-free peritoneal
solutions administered via a peritoneal catheter into the peritoneal
cavity"**'*. Unlike in-hospital decongestion devices that are used for
ashort period in hospitalized patients, direct sodium removal can be
performed in either a hospital or an outpatient setting, with patients
with ADHF continuing direct sodium removal therapy after discharge
from hospital. Direct sodium removal allows the complete withdrawal
of chronic diuretic therapy for extended periods. In early, unblinded,
non-controlled studies, direct sodium removal induced nearly com-
plete resolution of diuretic resistance and improved multiple car-
diorenal parameters, observations that persisted for several months
after cessation of direct sodium removal therapy'"’. These prelimi-
nary findings are encouraging but require replicationin randomized,
controlled trials.

Finally, lymphatic drainage and induced perspiration have been
investigated as direct fluid-removal and salt-removal strategies. Direct
lymph removal follows the same hypotheses as improved lymphatic
drainage butinstead discards the lymphatic fluid rather thanreturning
ittothe central circulation', A potential limitation to lymph removal
is the loss of proteins, antibodies and lymphocytes contained in the
lymph. Lymph removal has been used as animmunosuppressive ther-
apy in kidney transplantation, suggesting that the loss of antibodies
and lymphocytes might be clinically relevant'*’, The AquaPass System
(AquaPass) is a non-invasive method for direct removal of fluid and
sodium. A wearable suit connected to a warm-air unit maintains a
skin temperature of 36-38 °C, activating the eccrine sweat glands™°.
In feasibility studies, a sweat rate of >150 ml/h was achieved in most
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patients during treatments up to 8 h, withamedian hourly weight loss
of215 g/h (ref.150). Sweat sodium concentrations were not measured.

Considerations for decongestion devices

Medical therapies are inexpensive, widely available with numerous
combinations to tailor therapeutic strategies to individual patients,
have decades of experience, require no unique procedural expertise,
and canbe safely prescribedin the environmentsin which ADHF is most
commonly treated. Decongestion devices will need to demonstrate sub-
stantial incremental clinical value that outweighs the increased com-
plexities, risks of adverse events from invasive procedures, costs and
resource utilization compared with optimized medical decongestion
therapies®*'* (Fig. 4).

Indirect devices require testing in randomized clinical trials to
determine their placein therapy for augmenting the diuretic response
in patients with ADHF. To date, data are mostly limited to animal mod-
els, first-in-human experiences and early feasibility single-group
trials®$*>17151"15 Randomized clinical trials will need to be designed
with protocols to optimize the medical decongestion therapies in
the control groups, including standardized decongestion targets,
rapid assessment of diuretic response and evidence-based titration
algorithmsinvolving the fullarmamentarium of medical decongestion
therapies.

Similarly, direct devices also require testing in randomized clini-
cal trials to determine their place in the treatment of ADHF. Direct
devices should quantify the volume, sodium content and other solute
concentrations of the fluid directly removed. Additionally, randomized
trials of direct devices should consider formally and serially measuring
the native diuretic response to assess the effect of non-renal sodium
removal on sodium handling by the kidneys'*".

Several implementation barriers must be considered inthe devel-
opmentand investigation of decongestion devices (Table 2). Limiting
decongestion devices to patients with refractory congestion to offset
theinvasiverisks would substantially reduce the number of candidates.
Projections from patients with residual decongestion at discharge from
hospital in registries or after only 72 hiin clinical trials of ADHF will
overestimate the candidate pool”*'*. Most devices in development
require environments with higher levels of care (such as monitoring
inanintensive care unit), where bed availability and costs also limit the
number of patients who canreceive therapy. The placement and opera-
tion of decongestion devices require training and expertise, limiting
the ease ofimplementation. Concomitant systemic anticoagulationis
required for mostintravascular decongestion devices, whichincreases
therisk of bleeding events, particularly when transitioning fromor to
oralanticoagulants®*, Lastly, the cost and reimbursement for device
therapies need tobe considered. Devices increase costs compared with
inexpensive medical therapies unless substantial reductionsinlength
of hospital stay or readmissions are achieved. The payer perspective
and the types of reimbursement programmes are important to con-
sider, given the discordant costs to hospitals versus payers between
different models of reimbursement™®,

Conclusions

The major driver of inadequate decongestion at the ADHF population
level is increased kidney sodium avidity, which can be addressed by
fully optimizing available medical decongestion therapies (diuretics)
inmost patients. Optimizing medical therapies and/or strategies that
facilitate the use of existing medical therapies can have animmediate
effect on decongestion, with limited risk or cost. Most devices, either

clinically available or in development, are invasive and do not have
data to support their superiority over medical therapies. Therefore,
clinical trials of decongestion devices must show substantial clinical
benefit over optimized medical therapies to offset their associated
risks and costs of use.

Published online: 28 April 2025
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