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Chapter 5

How to Clean Text Manually and with
NLTK

You cannot go straight from raw text to fitting a machine learning or deep learning model. You
must clean your text first, which means splitting it into words and handling punctuation and
case. In fact, there is a whole suite of text preparation methods that you may need to use, and
the choice of methods really depends on your natural language processing task. In this tutorial,
you will discover how you can clean and prepare your text ready for modeling with machine
learning. After completing this tutorial, you will know:

� How to get started by developing your own very simple text cleaning tools.

� How to take a step up and use the more sophisticated methods in the NLTK library.

� Considerations when preparing text for natural language processing models.

Let’s get started.

5.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Metamorphosis by Franz Kafka

2. Text Cleaning is Task Specific

3. Manual Tokenization

4. Tokenization and Cleaning with NLTK

5. Additional Text Cleaning Considerations
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5.2 Metamorphosis by Franz Kafka

Let’s start off by selecting a dataset. In this tutorial, we will use the text from the book
Metamorphosis by Franz Kafka. No specific reason, other than it’s short, I like it, and you may
like it too. I expect it’s one of those classics that most students have to read in school. The full
text for Metamorphosis is available for free from Project Gutenberg. You can download the
ASCII text version of the text here:

� Metamorphosis by Franz Kafka Plain Text UTF-8 (may need to load the page twice).
http://www.gutenberg.org/cache/epub/5200/pg5200.txt

Download the file and place it in your current working directory with the file name
metamorphosis.txt. The file contains header and footer information that we are not in-
terested in, specifically copyright and license information. Open the file and delete the header
and footer information and save the file as metamorphosis clean.txt. The start of the clean
file should look like:

One morning, when Gregor Samsa woke from troubled dreams, he found himself
transformed in his bed into a horrible vermin.

The file should end with:

And, as if in confirmation of their new dreams and good intentions, as soon as they
reached their destination Grete was the first to get up and stretch out her young
body.

Poor Gregor...

5.3 Text Cleaning Is Task Specific

After actually getting a hold of your text data, the first step in cleaning up text data is to have
a strong idea about what you’re trying to achieve, and in that context review your text to see
what exactly might help. Take a moment to look at the text. What do you notice? Here’s what
I see:

� It’s plain text so there is no markup to parse (yay!).

� The translation of the original German uses UK English (e.g. travelling).

� The lines are artificially wrapped with new lines at about 70 characters (meh).

� There are no obvious typos or spelling mistakes.

� There’s punctuation like commas, apostrophes, quotes, question marks, and more.

� There’s hyphenated descriptions like armour-like.

� There’s a lot of use of the em dash (-) to continue sentences (maybe replace with commas?).

� There are names (e.g. Mr. Samsa)
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� There does not appear to be numbers that require handling (e.g. 1999)

� There are section markers (e.g. II and III ).

I’m sure there is a lot more going on to the trained eye. We are going to look at general
text cleaning steps in this tutorial. Nevertheless, consider some possible objectives we may have
when working with this text document. For example:

� If we were interested in developing a Kafkaesque language model, we may want to keep all
of the case, quotes, and other punctuation in place.

� If we were interested in classifying documents as Kafka and Not Kafka, maybe we would
want to strip case, punctuation, and even trim words back to their stem.

Use your task as the lens by which to choose how to ready your text data.

5.4 Manual Tokenization

Text cleaning is hard, but the text we have chosen to work with is pretty clean already. We
could just write some Python code to clean it up manually, and this is a good exercise for those
simple problems that you encounter. Tools like regular expressions and splitting strings can get
you a long way.

5.4.1 Load Data

Let’s load the text data so that we can work with it. The text is small and will load quickly
and easily fit into memory. This will not always be the case and you may need to write code
to memory map the file. Tools like NLTK (covered in the next section) will make working
with large files much easier. We can load the entire metamorphosis clean.txt into memory as
follows:

# load text

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

Listing 5.1: Manually load the file.

5.4.2 Split by Whitespace

Clean text often means a list of words or tokens that we can work with in our machine learning
models. This means converting the raw text into a list of words and saving it again. A very
simple way to do this would be to split the document by white space, including “ ” (space), new
lines, tabs and more. We can do this in Python with the split() function on the loaded string.

# load text

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()
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file.close()

# split into words by white space

words = text.split()

print(words[:100])

Listing 5.2: Manually split words by white space.

Running the example splits the document into a long list of words and prints the first 100 for
us to review. We can see that punctuation is preserved (e.g. wasn’t and armour-like), which is
nice. We can also see that end of sentence punctuation is kept with the last word (e.g. thought.),
which is not great.

['One', 'morning,', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams,', 'he',

'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible',

'vermin.', 'He', 'lay', 'on', 'his', 'armour-like', 'back,', 'and', 'if', 'he',

'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly,',

'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections.',

'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed',

'ready', 'to', 'slide', 'off', 'any', 'moment.', 'His', 'many', 'legs,', 'pitifully',

'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him,', 'waved',

'about', 'helplessly', 'as', 'he', 'looked.', '"What\'s', 'happened', 'to', 'me?"',

'he', 'thought.', 'It', "wasn't", 'a', 'dream.', 'His', 'room,', 'a', 'proper', 'human']

Listing 5.3: Example output of splitting words by white space.

5.4.3 Select Words

Another approach might be to use the regex model (re) and split the document into words by
selecting for strings of alphanumeric characters (a-z, A-Z, 0-9 and ‘ ’). For example:

import re

# load text

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split based on words only

words = re.split(r'\W+', text)

print(words[:100])

Listing 5.4: Manually select words with regex.

Again, running the example we can see that we get our list of words. This time, we can see
that armour-like is now two words armour and like (fine) but contractions like What’s is also
two words What and s (not great).

['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he',

'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible',

'vermin', 'He', 'lay', 'on', 'his', 'armour', 'like', 'back', 'and', 'if', 'he',

'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly',

'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections',

'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed',

'ready', 'to', 'slide', 'off', 'any', 'moment', 'His', 'many', 'legs', 'pitifully',

'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', 'waved',

'about', 'helplessly', 'as', 'he', 'looked', 'What', 's', 'happened', 'to', 'me', 'he',

'thought', 'It', 'wasn', 't', 'a', 'dream', 'His', 'room']
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Listing 5.5: Example output of selecting words with regex.

5.4.4 Split by Whitespace and Remove Punctuation

We may want the words, but without the punctuation like commas and quotes. We also want to
keep contractions together. One way would be to split the document into words by white space
(as in the section Split by Whitespace), then use string translation to replace all punctuation with
nothing (e.g. remove it). Python provides a constant called string.punctuation that provides a
great list of punctuation characters. For example:

print(string.punctuation)

Listing 5.6: Print the known punctuation characters.

Results in:

!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

Listing 5.7: Example output of printing the known punctuation characters.

We can use regular expressions to select for the punctuation characters and use the sub()

function to replace them with nothing. For example:

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

stripped = [re_punc.sub('', w) for w in words]

Listing 5.8: Example of constructing a translation table that will remove punctuation.

We can put all of this together, load the text file, split it into words by white space, then
translate each word to remove the punctuation.

import string

import re

# load text

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words by white space

words = text.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

stripped = [re_punc.sub('', w) for w in words]

print(stripped[:100])

Listing 5.9: Manually remove punctuation.

We can see that this has had the desired effect, mostly. Contractions like What’s have
become Whats but armour-like has become armourlike.
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['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he',

'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible',

'vermin', 'He', 'lay', 'on', 'his', 'armourlike', 'back', 'and', 'if', 'he', 'lifted',

'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly',

'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections',

'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed',

'ready', 'to', 'slide', 'off', 'any', 'moment', 'His', 'many', 'legs', 'pitifully',

'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', 'waved',

'about', 'helplessly', 'as', 'he', 'looked', 'Whats', 'happened', 'to', 'me', 'he',

'thought', 'It', 'wasnt', 'a', 'dream', 'His', 'room', 'a', 'proper', 'human']

Listing 5.10: Example output of removing punctuation with translation tables.

Sometimes text data may contain non-printable characters. We can use a similar approach to
filter out all non-printable characters by selecting the inverse of the string.printable constant.
For example:

...

re_print = re.compile('[^%s]' % re.escape(string.printable))

result = [re_print.sub('', w) for w in words]

Listing 5.11: Example of removing non-printable characters.

5.4.5 Normalizing Case

It is common to convert all words to one case. This means that the vocabulary will shrink in
size, but some distinctions are lost (e.g. Apple the company vs apple the fruit is a commonly
used example). We can convert all words to lowercase by calling the lower() function on each
word. For example:

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words by white space

words = text.split()

# convert to lower case

words = [word.lower() for word in words]

print(words[:100])

Listing 5.12: Manually normalize case.

Running the example, we can see that all words are now lowercase.

['one', 'morning,', 'when', 'gregor', 'samsa', 'woke', 'from', 'troubled', 'dreams,', 'he',

'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible',

'vermin.', 'he', 'lay', 'on', 'his', 'armour-like', 'back,', 'and', 'if', 'he',

'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly,',

'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections.',

'the', 'bedding', 'was', 'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed',

'ready', 'to', 'slide', 'off', 'any', 'moment.', 'his', 'many', 'legs,', 'pitifully',

'thin', 'compared', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him,', 'waved',

'about', 'helplessly', 'as', 'he', 'looked.', '"what\'s', 'happened', 'to', 'me?"',

'he', 'thought.', 'it', "wasn't", 'a', 'dream.', 'his', 'room,', 'a', 'proper', 'human']

Listing 5.13: Example output of removing punctuation.
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5.4.6 Note on Cleaning Text

Cleaning text is really hard, problem specific, and full of tradeoffs. Remember, simple is better.
Simpler text data, simpler models, smaller vocabularies. You can always make things more
complex later to see if it results in better model skill. Next, we’ll look at some of the tools in
the NLTK library that offer more than simple string splitting.

5.5 Tokenization and Cleaning with NLTK

The Natural Language Toolkit, or NLTK for short, is a Python library written for working and
modeling text. It provides good tools for loading and cleaning text that we can use to get our
data ready for working with machine learning and deep learning algorithms.

5.5.1 Install NLTK

You can install NLTK using your favorite package manager, such as pip. On a POSIX-compaitable
machine, this would be:

sudo pip install -U nltk

Listing 5.14: Command to install the NLTK library.

After installation, you will need to install the data used with the library, including a great
set of documents that you can use later for testing other tools in NLTK. There are few ways to
do this, such as from within a script:

import nltk

nltk.download()

Listing 5.15: NLTK script to download required text data.

Or from the command line:

python -m nltk.downloader all

Listing 5.16: Command to download NLTK required text data.

5.5.2 Split into Sentences

A good useful first step is to split the text into sentences. Some modeling tasks prefer input
to be in the form of paragraphs or sentences, such as Word2Vec. You could first split your
text into sentences, split each sentence into words, then save each sentence to file, one per line.
NLTK provides the sent tokenize() function to split text into sentences. The example below
loads the metamorphosis clean.txt file into memory, splits it into sentences, and prints the
first sentence.

from nltk import sent_tokenize

# load data

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()
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# split into sentences

sentences = sent_tokenize(text)

print(sentences[0])

Listing 5.17: NLTK script to split text into sentences.

Running the example, we can see that although the document is split into sentences, that
each sentence still preserves the new line from the artificial wrap of the lines in the original
document.

One morning, when Gregor Samsa woke from troubled dreams, he found

himself transformed in his bed into a horrible vermin.

Listing 5.18: Example output of splitting text into sentences.

5.5.3 Split into Words

NLTK provides a function called word tokenize() for splitting strings into tokens (nominally
words). It splits tokens based on white space and punctuation. For example, commas and
periods are taken as separate tokens. Contractions are split apart (e.g. What’s becomes What
and ’s). Quotes are kept, and so on. For example:

from nltk.tokenize import word_tokenize

# load data

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words

tokens = word_tokenize(text)

print(tokens[:100])

Listing 5.19: NLTK script to split text into words.

Running the code, we can see that punctuation are now tokens that we could then decide to
specifically filter out.

['One', 'morning', ',', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams',

',', 'he', 'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a',

'horrible', 'vermin', '.', 'He', 'lay', 'on', 'his', 'armour-like', 'back', ',', 'and',

'if', 'he', 'lifted', 'his', 'head', 'a', 'little', 'he', 'could', 'see', 'his',

'brown', 'belly', ',', 'slightly', 'domed', 'and', 'divided', 'by', 'arches', 'into',

'stiff', 'sections', '.', 'The', 'bedding', 'was', 'hardly', 'able', 'to', 'cover',

'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off', 'any', 'moment', '.', 'His',

'many', 'legs', ',', 'pitifully', 'thin', 'compared', 'with', 'the', 'size', 'of',

'the', 'rest', 'of', 'him', ',', 'waved', 'about', 'helplessly', 'as', 'he', 'looked',

'.', '``', 'What', "'s", 'happened', 'to']

Listing 5.20: Example output of splitting text into words.

5.5.4 Filter Out Punctuation

We can filter out all tokens that we are not interested in, such as all standalone punctuation. This
can be done by iterating over all tokens and only keeping those tokens that are all alphabetic.
Python has the function isalpha() that can be used. For example:
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from nltk.tokenize import word_tokenize

# load data

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words

tokens = word_tokenize(text)

# remove all tokens that are not alphabetic

words = [word for word in tokens if word.isalpha()]

print(words[:100])

Listing 5.21: NLTK script to remove punctuation.

Running the example, you can see that not only punctuation tokens, but examples like
armour-like and ’s were also filtered out.

['One', 'morning', 'when', 'Gregor', 'Samsa', 'woke', 'from', 'troubled', 'dreams', 'he',

'found', 'himself', 'transformed', 'in', 'his', 'bed', 'into', 'a', 'horrible',

'vermin', 'He', 'lay', 'on', 'his', 'back', 'and', 'if', 'he', 'lifted', 'his', 'head',

'a', 'little', 'he', 'could', 'see', 'his', 'brown', 'belly', 'slightly', 'domed',

'and', 'divided', 'by', 'arches', 'into', 'stiff', 'sections', 'The', 'bedding', 'was',

'hardly', 'able', 'to', 'cover', 'it', 'and', 'seemed', 'ready', 'to', 'slide', 'off',

'any', 'moment', 'His', 'many', 'legs', 'pitifully', 'thin', 'compared', 'with', 'the',

'size', 'of', 'the', 'rest', 'of', 'him', 'waved', 'about', 'helplessly', 'as', 'he',

'looked', 'What', 'happened', 'to', 'me', 'he', 'thought', 'It', 'was', 'a', 'dream',

'His', 'room', 'a', 'proper', 'human', 'room']

Listing 5.22: Example output of removing punctuation.

5.5.5 Filter out Stop Words (and Pipeline)

Stop words are those words that do not contribute to the deeper meaning of the phrase. They
are the most common words such as: the, a, and is. For some applications like documentation
classification, it may make sense to remove stop words. NLTK provides a list of commonly
agreed upon stop words for a variety of languages, such as English. They can be loaded as
follows:

from nltk.corpus import stopwords

stop_words = stopwords.words('english')

print(stop_words)

Listing 5.23: NLTK script print stop words.

You can see the full list as follows:

['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', 'your', 'yours',

'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', 'her', 'hers',

'herself', 'it', 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves',

'what', 'which', 'who', 'whom', 'this', 'that', 'these', 'those', 'am', 'is', 'are',

'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',

'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until',

'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into',

'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down',

'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here',
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'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',

'most', 'other', 'some', 'such', 'no', 'nor', 'not', 'only', 'own', 'same', 'so',

'than', 'too', 'very', 's', 't', 'can', 'will', 'just', 'don', 'should', 'now', 'd',

'll', 'm', 'o', 're', 've', 'y', 'ain', 'aren', 'couldn', 'didn', 'doesn', 'hadn',

'hasn', 'haven', 'isn', 'ma', 'mightn', 'mustn', 'needn', 'shan', 'shouldn', 'wasn',

'weren', 'won', 'wouldn']

Listing 5.24: Example output of printing stop words.

You can see that they are all lower case and have punctuation removed. You could compare
your tokens to the stop words and filter them out, but you must ensure that your text is prepared
the same way. Let’s demonstrate this with a small pipeline of text preparation including:

� Load the raw text.

� Split into tokens.

� Convert to lowercase.

� Remove punctuation from each token.

� Filter out remaining tokens that are not alphabetic.

� Filter out tokens that are stop words.

import string

import re

from nltk.tokenize import word_tokenize

from nltk.corpus import stopwords

# load data

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words

tokens = word_tokenize(text)

# convert to lower case

tokens = [w.lower() for w in tokens]

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

stripped = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

words = [word for word in stripped if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

words = [w for w in words if not w in stop_words]

print(words[:100])

Listing 5.25: NLTK script filter out stop words.

Running this example, we can see that in addition to all of the other transforms, stop words
like a and to have been removed. I note that we are still left with tokens like nt. The rabbit
hole is deep; there’s always more we can do.
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['one', 'morning', 'gregor', 'samsa', 'woke', 'troubled', 'dreams', 'found', 'transformed',

'bed', 'horrible', 'vermin', 'lay', 'armourlike', 'back', 'lifted', 'head', 'little',

'could', 'see', 'brown', 'belly', 'slightly', 'domed', 'divided', 'arches', 'stiff',

'sections', 'bedding', 'hardly', 'able', 'cover', 'seemed', 'ready', 'slide', 'moment',

'many', 'legs', 'pitifully', 'thin', 'compared', 'size', 'rest', 'waved', 'helplessly',

'looked', 'happened', 'thought', 'nt', 'dream', 'room', 'proper', 'human', 'room',

'although', 'little', 'small', 'lay', 'peacefully', 'four', 'familiar', 'walls',

'collection', 'textile', 'samples', 'lay', 'spread', 'table', 'samsa', 'travelling',

'salesman', 'hung', 'picture', 'recently', 'cut', 'illustrated', 'magazine', 'housed',

'nice', 'gilded', 'frame', 'showed', 'lady', 'fitted', 'fur', 'hat', 'fur', 'boa',

'sat', 'upright', 'raising', 'heavy', 'fur', 'muff', 'covered', 'whole', 'lower',

'arm', 'towards', 'viewer']

Listing 5.26: Example output of filtering out stop words.

5.5.6 Stem Words

Stemming refers to the process of reducing each word to its root or base. For example fishing,
fished, fisher all reduce to the stem fish. Some applications, like document classification, may
benefit from stemming in order to both reduce the vocabulary and to focus on the sense or
sentiment of a document rather than deeper meaning. There are many stemming algorithms,
although a popular and long-standing method is the Porter Stemming algorithm. This method
is available in NLTK via the PorterStemmer class. For example:

from nltk.tokenize import word_tokenize

from nltk.stem.porter import PorterStemmer

# load data

filename = 'metamorphosis_clean.txt'

file = open(filename, 'rt')

text = file.read()

file.close()

# split into words

tokens = word_tokenize(text)

# stemming of words

porter = PorterStemmer()

stemmed = [porter.stem(word) for word in tokens]

print(stemmed[:100])

Listing 5.27: NLTK script stem words.

Running the example, you can see that words have been reduced to their stems, such as
trouble has become troubl. You can also see that the stemming implementation has also reduced
the tokens to lowercase, likely for internal look-ups in word tables.

['one', 'morn', ',', 'when', 'gregor', 'samsa', 'woke', 'from', 'troubl', 'dream', ',',

'he', 'found', 'himself', 'transform', 'in', 'hi', 'bed', 'into', 'a', 'horribl',

'vermin', '.', 'He', 'lay', 'on', 'hi', 'armour-lik', 'back', ',', 'and', 'if', 'he',

'lift', 'hi', 'head', 'a', 'littl', 'he', 'could', 'see', 'hi', 'brown', 'belli', ',',

'slightli', 'dome', 'and', 'divid', 'by', 'arch', 'into', 'stiff', 'section', '.',

'the', 'bed', 'wa', 'hardli', 'abl', 'to', 'cover', 'it', 'and', 'seem', 'readi', 'to',

'slide', 'off', 'ani', 'moment', '.', 'hi', 'mani', 'leg', ',', 'piti', 'thin',

'compar', 'with', 'the', 'size', 'of', 'the', 'rest', 'of', 'him', ',', 'wave',

'about', 'helplessli', 'as', 'he', 'look', '.', '``', 'what', "'s", 'happen', 'to'
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Listing 5.28: Example output of stemming words.

There is a nice suite of stemming and lemmatization algorithms to choose from in NLTK, if
reducing words to their root is something you need for your project.

5.6 Additional Text Cleaning Considerations

We are only getting started. Because the source text for this tutorial was reasonably clean to
begin with, we skipped many concerns of text cleaning that you may need to deal with in your
own project. Here is a shortlist of additional considerations when cleaning text:

� Handling large documents and large collections of text documents that do not fit into
memory.

� Extracting text from markup like HTML, PDF, or other structured document formats.

� Transliteration of characters from other languages into English.

� Decoding Unicode characters into a normalized form, such as UTF8.

� Handling of domain specific words, phrases, and acronyms.

� Handling or removing numbers, such as dates and amounts.

� Locating and correcting common typos and misspellings.

� And much more...

The list could go on. Hopefully, you can see that getting truly clean text is impossible, that
we are really doing the best we can based on the time, resources, and knowledge we have. The
idea of clean is really defined by the specific task or concern of your project.

A pro tip is to continually review your tokens after every transform. I have tried to show
that in this tutorial and I hope you take that to heart. Ideally, you would save a new file after
each transform so that you can spend time with all of the data in the new form. Things always
jump out at you when to take the time to review your data.

5.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Metamorphosis by Franz Kafka on Project Gutenberg.
http://www.gutenberg.org/ebooks/5200

� Installing NLTK.
http://www.nltk.org/install.html

� Installing NLTK Data.
http://www.nltk.org/data.html
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� Python isalpha() function.
https://docs.python.org/3/library/stdtypes.html#str.isalpha

� Stop Words on Wikipedia.
https://en.wikipedia.org/wiki/Stop_words

� Stemming on Wikipedia.
https://en.wikipedia.org/wiki/Stemming

� nltk.tokenize package API.
http://www.nltk.org/api/nltk.tokenize.html

� Porer Stemming algorithm.
https://tartarus.org/martin/PorterStemmer/

� nltk.stem package API.
http://www.nltk.org/api/nltk.stem.html

� Processing Raw Text, Natural Language Processing with Python.
http://www.nltk.org/book/ch03.html

5.8 Summary

In this tutorial, you discovered how to clean text or machine learning in Python.
Specifically, you learned:

� How to get started by developing your own very simple text cleaning tools.

� How to take a step up and use the more sophisticated methods in the NLTK library.

� Considerations when preparing text for natural language processing models.

5.8.1 Next

In the next chapter, you will discover how you can encode text data using the scikit-learn
Python library.



Chapter 6

How to Prepare Text Data with
scikit-learn

Text data requires special preparation before you can start using it for predictive modeling. The
text must be parsed to remove words, called tokenization. Then the words need to be encoded
as integers or floating point values for use as input to a machine learning algorithm, called
feature extraction (or vectorization). The scikit-learn library offers easy-to-use tools to perform
both tokenization and feature extraction of your text data. In this tutorial, you will discover
exactly how you can prepare your text data for predictive modeling in Python with scikit-learn.
After completing this tutorial, you will know:

� How to convert text to word count vectors with CountVectorizer.

� How to convert text to word frequency vectors with TfidfVectorizer.

� How to convert text to unique integers with HashingVectorizer.

Let’s get started.

6.1 The Bag-of-Words Model

We cannot work with text directly when using machine learning algorithms. Instead, we need
to convert the text to numbers. We may want to perform classification of documents, so each
document is an input and a class label is the output for our predictive algorithm. Algorithms
take vectors of numbers as input, therefore we need to convert documents to fixed-length vectors
of numbers.

A simple and effective model for thinking about text documents in machine learning is called
the Bag-of-Words Model, or BoW. Note, that we cover the BoW model in great detail in the
next part, starting with Chapter 8. The model is simple in that it throws away all of the order
information in the words and focuses on the occurrence of words in a document. This can be
done by assigning each word a unique number. Then any document we see can be encoded
as a fixed-length vector with the length of the vocabulary of known words. The value in each
position in the vector could be filled with a count or frequency of each word in the encoded
document.

48
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This is the bag-of-words model, where we are only concerned with encoding schemes that
represent what words are present or the degree to which they are present in encoded documents
without any information about order. There are many ways to extend this simple method, both
by better clarifying what a word is and in defining what to encode about each word in the
vector. The scikit-learn library provides 3 different schemes that we can use, and we will briefly
look at each.

6.2 Word Counts with CountVectorizer

The CountVectorizer provides a simple way to both tokenize a collection of text documents
and build a vocabulary of known words, but also to encode new documents using that vocabulary.
You can use it as follows:

� Create an instance of the CountVectorizer class.

� Call the fit() function in order to learn a vocabulary from one or more documents.

� Call the transform() function on one or more documents as needed to encode each as a
vector.

An encoded vector is returned with a length of the entire vocabulary and an integer count
for the number of times each word appeared in the document. Because these vectors will
contain a lot of zeros, we call them sparse. Python provides an efficient way of handling sparse
vectors in the scipy.sparse package. The vectors returned from a call to transform() will
be sparse vectors, and you can transform them back to NumPy arrays to look and better
understand what is going on by calling the toarray() function. Below is an example of using
the CountVectorizer to tokenize, build a vocabulary, and then encode a document.

from sklearn.feature_extraction.text import CountVectorizer

# list of text documents

text = ["The quick brown fox jumped over the lazy dog."]

# create the transform

vectorizer = CountVectorizer()

# tokenize and build vocab

vectorizer.fit(text)

# summarize

print(vectorizer.vocabulary_)

# encode document

vector = vectorizer.transform(text)

# summarize encoded vector

print(vector.shape)

print(type(vector))

print(vector.toarray())

Listing 6.1: Example of training a CountVectorizer.

Above, you can see that we access the vocabulary to see what exactly was tokenized by
calling:

print(vectorizer.vocabulary_)

Listing 6.2: Print the learned vocabulary.
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We can see that all words were made lowercase by default and that the punctuation was
ignored. These and other aspects of tokenizing can be configured and I encourage you to review
all of the options in the API documentation. Running the example first prints the vocabulary,
then the shape of the encoded document. We can see that there are 8 words in the vocab, and
therefore encoded vectors have a length of 8. We can then see that the encoded vector is a
sparse matrix. Finally, we can see an array version of the encoded vector showing a count of 1
occurrence for each word except the (index and id 7) that has an occurrence of 2.

{'dog': 1, 'fox': 2, 'over': 5, 'brown': 0, 'quick': 6, 'the': 7, 'lazy': 4, 'jumped': 3}

(1, 8)

<class 'scipy.sparse.csr.csr_matrix'>

[[1 1 1 1 1 1 1 2]]

Listing 6.3: Example output of training a CountVectorizer.

Importantly, the same vectorizer can be used on documents that contain words not included
in the vocabulary. These words are ignored and no count is given in the resulting vector. For
example, below is an example of using the vectorizer above to encode a document with one
word in the vocab and one word that is not.

# encode another document

text2 = ["the puppy"]

vector = vectorizer.transform(text2)

print(vector.toarray())

Listing 6.4: Example of encoding another document with the fit CountVectorizer.

Running this example prints the array version of the encoded sparse vector showing one
occurrence of the one word in the vocab and the other word not in the vocab completely ignored.

[[0 0 0 0 0 0 0 1]]

Listing 6.5: Example output of encoding another document.

The encoded vectors can then be used directly with a machine learning algorithm.

6.3 Word Frequencies with TfidfVectorizer

Word counts are a good starting point, but are very basic. One issue with simple counts is that
some words like the will appear many times and their large counts will not be very meaningful
in the encoded vectors. An alternative is to calculate word frequencies, and by far the most
popular method is called TF-IDF. This is an acronym that stands for Term Frequency - Inverse
Document Frequency which are the components of the resulting scores assigned to each word.

� Term Frequency: This summarizes how often a given word appears within a document.

� Inverse Document Frequency: This downscales words that appear a lot across docu-
ments.

Without going into the math, TF-IDF are word frequency scores that try to highlight
words that are more interesting, e.g. frequent in a document but not across documents.
The TfidfVectorizer will tokenize documents, learn the vocabulary and inverse document
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frequency weightings, and allow you to encode new documents. Alternately, if you already have a
learned CountVectorizer, you can use it with a TfidfTransformer to just calculate the inverse
document frequencies and start encoding documents. The same create, fit, and transform process
is used as with the CountVectorizer. Below is an example of using the TfidfVectorizer to
learn vocabulary and inverse document frequencies across 3 small documents and then encode
one of those documents.

from sklearn.feature_extraction.text import TfidfVectorizer

# list of text documents

text = ["The quick brown fox jumped over the lazy dog.",

"The dog.",

"The fox"]

# create the transform

vectorizer = TfidfVectorizer()

# tokenize and build vocab

vectorizer.fit(text)

# summarize

print(vectorizer.vocabulary_)

print(vectorizer.idf_)

# encode document

vector = vectorizer.transform([text[0]])

# summarize encoded vector

print(vector.shape)

print(vector.toarray())

Listing 6.6: Example of training a TfidfVectorizer.

A vocabulary of 8 words is learned from the documents and each word is assigned a unique
integer index in the output vector. The inverse document frequencies are calculated for each
word in the vocabulary, assigning the lowest score of 1.0 to the most frequently observed word:
the at index 7. Finally, the first document is encoded as an 8-element sparse array and we can
review the final scorings of each word with different values for the, fox, and dog from the other
words in the vocabulary.

{'fox': 2, 'lazy': 4, 'dog': 1, 'quick': 6, 'the': 7, 'over': 5, 'brown': 0, 'jumped': 3}

[ 1.69314718 1.28768207 1.28768207 1.69314718 1.69314718 1.69314718

1.69314718 1. ]

(1, 8)

[[ 0.36388646 0.27674503 0.27674503 0.36388646 0.36388646 0.36388646

0.36388646 0.42983441]]

Listing 6.7: Example output of training a TfidfVectorizer.

The scores are normalized to values between 0 and 1 and the encoded document vectors can
then be used directly with most machine learning algorithms.

6.4 Hashing with HashingVectorizer

Counts and frequencies can be very useful, but one limitation of these methods is that the
vocabulary can become very large. This, in turn, will require large vectors for encoding
documents and impose large requirements on memory and slow down algorithms. A clever work
around is to use a one way hash of words to convert them to integers. The clever part is that
no vocabulary is required and you can choose an arbitrary-long fixed length vector. A downside
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is that the hash is a one-way function so there is no way to convert the encoding back to a word
(which may not matter for many supervised learning tasks).

The HashingVectorizer class implements this approach that can be used to consistently
hash words, then tokenize and encode documents as needed. The example below demonstrates
the HashingVectorizer for encoding a single document. An arbitrary fixed-length vector size
of 20 was chosen. This corresponds to the range of the hash function, where small values (like
20) may result in hash collisions. Remembering back to Computer Science classes, I believe
there are heuristics that you can use to pick the hash length and probability of collision based
on estimated vocabulary size (e.g. a load factor of 75%). See any good textbook on the topic.
Note that this vectorizer does not require a call to fit on the training data documents. Instead,
after instantiation, it can be used directly to start encoding documents.

from sklearn.feature_extraction.text import HashingVectorizer

# list of text documents

text = ["The quick brown fox jumped over the lazy dog."]

# create the transform

vectorizer = HashingVectorizer(n_features=20)

# encode document

vector = vectorizer.transform(text)

# summarize encoded vector

print(vector.shape)

print(vector.toarray())

Listing 6.8: Example of training a HashingVectorizer.

Running the example encodes the sample document as a 20-element sparse array. The values
of the encoded document correspond to normalized word counts by default in the range of -1 to
1, but could be made simple integer counts by changing the default configuration.

(1, 20)

[[ 0. 0. 0. 0. 0. 0.33333333

0. -0.33333333 0.33333333 0. 0. 0.33333333

0. 0. 0. -0.33333333 0. 0.

-0.66666667 0. ]]

Listing 6.9: Example output of training a HashingVectorizer.

6.5 Further Reading

This section provides more resources on the topic if you are looking go deeper.

6.5.1 Natural Language Processing

� Bag-of-words model on Wikipedia.
https://en.wikipedia.org/wiki/Bag-of-words_model

� Tokenization on Wikipedia.
https://en.wikipedia.org/wiki/Lexical_analysis#Tokenization

� TF-IDF on Wikipedia.
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
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6.5.2 sciki-learn

� Section 4.2. Feature extraction, scikit-learn User Guide.
http://scikit-learn.org/stable/modules/feature_extraction.html

� sckit-learn Feature Extraction API.
http://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_

extraction

� Working With Text Data, scikit-learn Tutorial.
http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.

html

6.5.3 Class APIs

� CountVectorizer scikit-learn API.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.CountVectorizer.html

� TfidfVectorizer scikit-learn API.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfVectorizer.html

� TfidfTransformer scikit-learn API.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.TfidfTransformer.html

� HashingVectorizer scikit-learn API.
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.HashingVectorizer.html

6.6 Summary

In this tutorial, you discovered how to prepare text documents for machine learning with
scikit-learn for bag-of-words models. Specifically, you learned:

� How to convert text to word count vectors with CountVectorizer.

� How to convert text to word frequency vectors with TfidfVectorizer.

� How to convert text to unique integers with HashingVectorizer.

We have only scratched the surface in these examples and I want to highlight that there are
many configuration details for these classes to influence the tokenizing of documents that are
worth exploring.

6.6.1 Next

In the next chapter, you will discover how you can prepare text data using the Keras deep
learning library.



Chapter 7

How to Prepare Text Data With Keras

You cannot feed raw text directly into deep learning models. Text data must be encoded as
numbers to be used as input or output for machine learning and deep learning models, such
as word embeddings. The Keras deep learning library provides some basic tools to help you
prepare your text data. In this tutorial, you will discover how you can use Keras to prepare
your text data. After completing this tutorial, you will know:

� About the convenience methods that you can use to quickly prepare text data.

� The Tokenizer API that can be fit on training data and used to encode training, validation,
and test documents.

� The range of 4 different document encoding schemes offered by the Tokenizer API.

Let’s get started.

7.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Split words with text to word sequence.

2. Encoding with one hot.

3. Hash Encoding with hashing trick.

4. Tokenizer API

7.2 Split Words with text to word sequence

A good first step when working with text is to split it into words. Words are called to-
kens and the process of splitting text into tokens is called tokenization. Keras provides the
text to word sequence() function that you can use to split text into a list of words. By
default, this function automatically does 3 things:

� Splits words by space.

54
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� Filters out punctuation.

� Converts text to lowercase (lower=True).

You can change any of these defaults by passing arguments to the function. Below is an
example of using the text to word sequence() function to split a document (in this case a
simple string) into a list of words.

from keras.preprocessing.text import text_to_word_sequence

# define the document

text = 'The quick brown fox jumped over the lazy dog.'

# tokenize the document

result = text_to_word_sequence(text)

print(result)

Listing 7.1: Example splitting words with the Tokenizer.

Running the example creates an array containing all of the words in the document. The list
of words is printed for review.

['the', 'quick', 'brown', 'fox', 'jumped', 'over', 'the', 'lazy', 'dog']

Listing 7.2: Example output for splitting words with the Tokenizer.

This is a good first step, but further pre-processing is required before you can work with the
text.

7.3 Encoding with one hot

It is popular to represent a document as a sequence of integer values, where each word in the
document is represented as a unique integer. Keras provides the one hot() function that you
can use to tokenize and integer encode a text document in one step. The name suggests that it
will create a one hot encoding of the document, which is not the case. Instead, the function
is a wrapper for the hashing trick() function described in the next section. The function
returns an integer encoded version of the document. The use of a hash function means that
there may be collisions and not all words will be assigned unique integer values. As with the
text to word sequence() function in the previous section, the one hot() function will make
the text lower case, filter out punctuation, and split words based on white space.

In addition to the text, the vocabulary size (total words) must be specified. This could be the
total number of words in the document or more if you intend to encode additional documents
that contains additional words. The size of the vocabulary defines the hashing space from which
words are hashed. By default, the hash function is used, although as we will see in the next
section, alternate hash functions can be specified when calling the hashing trick() function
directly.

We can use the text to word sequence() function from the previous section to split the
document into words and then use a set to represent only the unique words in the document.
The size of this set can be used to estimate the size of the vocabulary for one document. For
example:

from keras.preprocessing.text import text_to_word_sequence

# define the document

text = 'The quick brown fox jumped over the lazy dog.'
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# estimate the size of the vocabulary

words = set(text_to_word_sequence(text))

vocab_size = len(words)

print(vocab_size)

Listing 7.3: Example of preparing a vocabulary.

We can put this together with the one hot() function and encode the words in the document.
The complete example is listed below. The vocabulary size is increased by one-third to minimize
collisions when hashing words.

from keras.preprocessing.text import one_hot

from keras.preprocessing.text import text_to_word_sequence

# define the document

text = 'The quick brown fox jumped over the lazy dog.'

# estimate the size of the vocabulary

words = set(text_to_word_sequence(text))

vocab_size = len(words)

print(vocab_size)

# integer encode the document

result = one_hot(text, round(vocab_size*1.3))

print(result)

Listing 7.4: Example of one hot encoding.

Running the example first prints the size of the vocabulary as 8. The encoded document is
then printed as an array of integer encoded words.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

8

[5, 9, 8, 7, 9, 1, 5, 3, 8]

Listing 7.5: Example output for one hot encoding with the Tokenizer.

7.4 Hash Encoding with hashing trick

A limitation of integer and count base encodings is that they must maintain a vocabulary of
words and their mapping to integers. An alternative to this approach is to use a one-way hash
function to convert words to integers. This avoids the need to keep track of a vocabulary, which
is faster and requires less memory.

Keras provides the hashing trick() function that tokenizes and then integer encodes the
document, just like the one hot() function. It provides more flexibility, allowing you to specify
the hash function as either hash (the default) or other hash functions such as the built in md5

function or your own function. Below is an example of integer encoding a document using the
md5 hash function.

from keras.preprocessing.text import hashing_trick

from keras.preprocessing.text import text_to_word_sequence

# define the document

text = 'The quick brown fox jumped over the lazy dog.'



7.5. Tokenizer API 57

# estimate the size of the vocabulary

words = set(text_to_word_sequence(text))

vocab_size = len(words)

print(vocab_size)

# integer encode the document

result = hashing_trick(text, round(vocab_size*1.3), hash_function='md5')

print(result)

Listing 7.6: Example of hash encoding.

Running the example prints the size of the vocabulary and the integer encoded document.
We can see that the use of a different hash function results in consistent, but different integers
for words as the one hot() function in the previous section.

8

[6, 4, 1, 2, 7, 5, 6, 2, 6]

Listing 7.7: Example output for hash encoding with the Tokenizer.

7.5 Tokenizer API

So far we have looked at one-off convenience methods for preparing text with Keras. Keras
provides a more sophisticated API for preparing text that can be fit and reused to prepare
multiple text documents. This may be the preferred approach for large projects. Keras provides
the Tokenizer class for preparing text documents for deep learning. The Tokenizer must be
constructed and then fit on either raw text documents or integer encoded text documents. For
example:

from keras.preprocessing.text import Tokenizer

# define 5 documents

docs = ['Well done!',

'Good work',

'Great effort',

'nice work',

'Excellent!']

# create the tokenizer

t = Tokenizer()

# fit the tokenizer on the documents

t.fit_on_texts(docs)

Listing 7.8: Example of fitting a Tokenizer.

Once fit, the Tokenizer provides 4 attributes that you can use to query what has been
learned about your documents:

� word counts: A dictionary of words and their counts.

� word docs: An integer count of the total number of documents that were used to fit the
Tokenizer.

� word index: A dictionary of words and their uniquely assigned integers.

� document count: A dictionary of words and how many documents each appeared in.
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For example:

# summarize what was learned

print(t.word_counts)

print(t.document_count)

print(t.word_index)

print(t.word_docs)

Listing 7.9: Summarize the output of the fit Tokenizer.

Once the Tokenizer has been fit on training data, it can be used to encode documents in
the train or test datasets. The texts to matrix() function on the Tokenizer can be used to
create one vector per document provided per input. The length of the vectors is the total size
of the vocabulary. This function provides a suite of standard bag-of-words model text encoding
schemes that can be provided via a mode argument to the function. The modes available
include:

� binary: Whether or not each word is present in the document. This is the default.

� count: The count of each word in the document.

� tfidf: The Text Frequency-Inverse DocumentFrequency (TF-IDF) scoring for each word
in the document.

� freq: The frequency of each word as a ratio of words within each document.

We can put all of this together with a worked example.

from keras.preprocessing.text import Tokenizer

# define 5 documents

docs = ['Well done!',

'Good work',

'Great effort',

'nice work',

'Excellent!']

# create the tokenizer

t = Tokenizer()

# fit the tokenizer on the documents

t.fit_on_texts(docs)

# summarize what was learned

print(t.word_counts)

print(t.document_count)

print(t.word_index)

print(t.word_docs)

# integer encode documents

encoded_docs = t.texts_to_matrix(docs, mode='count')

print(encoded_docs)

Listing 7.10: Example of fitting and encoding with the Tokenizer.

Running the example fits the Tokenizer with 5 small documents. The details of the fit
Tokenizer are printed. Then the 5 documents are encoded using a word count. Each document
is encoded as a 9-element vector with one position for each word and the chosen encoding
scheme value for each word position. In this case, a simple word count mode is used.
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OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort',

1), ('nice', 1), ('excellent', 1)])

5

{'work': 1, 'effort': 6, 'done': 3, 'great': 5, 'good': 4, 'excellent': 8, 'well': 2,

'nice': 7}

{'work': 2, 'effort': 1, 'done': 1, 'well': 1, 'good': 1, 'great': 1, 'excellent': 1,

'nice': 1}

[[ 0. 0. 1. 1. 0. 0. 0. 0. 0.]

[ 0. 1. 0. 0. 1. 0. 0. 0. 0.]

[ 0. 0. 0. 0. 0. 1. 1. 0. 0.]

[ 0. 1. 0. 0. 0. 0. 0. 1. 0.]

[ 0. 0. 0. 0. 0. 0. 0. 0. 1.]]

Listing 7.11: Example output from fitting and encoding with the Tokenizer.

The Tokenizer will be the key way we will prepare text for word embeddings throughout
this book.

7.6 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Text Preprocessing Keras API.
https://keras.io/preprocessing/text/

� text to word sequence Keras API.
https://keras.io/preprocessing/text/#text_to_word_sequence

� one hot Keras API.
https://keras.io/preprocessing/text/#one_hot

� hashing trick Keras API.
https://keras.io/preprocessing/text/#hashing_trick

� Tokenizer Keras API.
https://keras.io/preprocessing/text/#tokenizer

7.7 Summary

In this tutorial, you discovered how you can use the Keras API to prepare your text data for
deep learning. Specifically, you learned:

� About the convenience methods that you can use to quickly prepare text data.

� The Tokenizer API that can be fit on training data and used to encode training, validation,
and test documents.

� The range of 4 different document encoding schemes offered by the Tokenizer API.
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7.7.1 Next

This is the last chapter in the data preparation part. In the next part, you will discover how to
develop bag-of-words models.



Part IV

Bag-of-Words
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Chapter 8

The Bag-of-Words Model

The bag-of-words model is a way of representing text data when modeling text with machine
learning algorithms. The bag-of-words model is simple to understand and implement and has
seen great success in problems such as language modeling and document classification. In this
tutorial, you will discover the bag-of-words model for feature extraction in natural language
processing. After completing this tutorial, you will know:

� What the bag-of-words model is and why it is needed to represent text.

� How to develop a bag-of-words model for a collection of documents.

� How to use different techniques to prepare a vocabulary and score words.

Let’s get started.

8.1 Tutorial Overview

This tutorial is divided into the following parts:

1. The Problem with Text

2. What is a Bag-of-Words?

3. Example of the Bag-of-Words Model

4. Managing Vocabulary

5. Scoring Words

6. Limitations of Bag-of-Words

8.2 The Problem with Text

A problem with modeling text is that it is messy, and techniques like machine learning algorithms
prefer well defined fixed-length inputs and outputs. Machine learning algorithms cannot work
with raw text directly; the text must be converted into numbers. Specifically, vectors of numbers.
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In language processing, the vectors x are derived from textual data, in order to
reflect various linguistic properties of the text.

— Page 65, Neural Network Methods in Natural Language Processing, 2017.

This is called feature extraction or feature encoding. A popular and simple method of feature
extraction with text data is called the bag-of-words model of text.

8.3 What is a Bag-of-Words?

A bag-of-words model, or BoW for short, is a way of extracting features from text for use in
modeling, such as with machine learning algorithms. The approach is very simple and flexible,
and can be used in a myriad of ways for extracting features from documents. A bag-of-words is
a representation of text that describes the occurrence of words within a document. It involves
two things:

� A vocabulary of known words.

� A measure of the presence of known words.

It is called a bag-of-words , because any information about the order or structure of words
in the document is discarded. The model is only concerned with whether known words occur in
the document, not where in the document.

A very common feature extraction procedures for sentences and documents is the
bag-of-words approach (BOW). In this approach, we look at the histogram of the
words within the text, i.e. considering each word count as a feature.

— Page 69, Neural Network Methods in Natural Language Processing, 2017.

The intuition is that documents are similar if they have similar content. Further, that from
the content alone we can learn something about the meaning of the document. The bag-of-words
can be as simple or complex as you like. The complexity comes both in deciding how to design
the vocabulary of known words (or tokens) and how to score the presence of known words. We
will take a closer look at both of these concerns.

8.4 Example of the Bag-of-Words Model

Let’s make the bag-of-words model concrete with a worked example.

8.4.1 Step 1: Collect Data

Below is a snippet of the first few lines of text from the book A Tale of Two Cities by Charles
Dickens, taken from Project Gutenberg.
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It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

Listing 8.1: Sample of text from A Tale of Two Cities by Charles Dickens.

For this small example, let’s treat each line as a separate document and the 4 lines as our
entire corpus of documents.

8.4.2 Step 2: Design the Vocabulary

Now we can make a list of all of the words in our model vocabulary. The unique words here
(ignoring case and punctuation) are:

it

was

the

best

of

times

worst

age

wisdom

foolishness

Listing 8.2: List of unique words.

That is a vocabulary of 10 words from a corpus containing 24 words.

8.4.3 Step 3: Create Document Vectors

The next step is to score the words in each document. The objective is to turn each document of
free text into a vector that we can use as input or output for a machine learning model. Because
we know the vocabulary has 10 words, we can use a fixed-length document representation of 10,
with one position in the vector to score each word. The simplest scoring method is to mark the
presence of words as a boolean value, 0 for absent, 1 for present. Using the arbitrary ordering of
words listed above in our vocabulary, we can step through the first document (It was the best of
times) and convert it into a binary vector. The scoring of the document would look as follows:

it = 1

was = 1

the = 1

best = 1

of = 1

times = 1

worst = 0

age = 0

wisdom = 0

foolishness = 0

Listing 8.3: List of unique words and their occurrence in a document.

As a binary vector, this would look as follows:
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[1, 1, 1, 1, 1, 1, 0, 0, 0, 0]

Listing 8.4: First line of text as a binary vector.

The other three documents would look as follows:

"it was the worst of times" = [1, 1, 1, 0, 1, 1, 1, 0, 0, 0]

"it was the age of wisdom" = [1, 1, 1, 0, 1, 0, 0, 1, 1, 0]

"it was the age of foolishness" = [1, 1, 1, 0, 1, 0, 0, 1, 0, 1]

Listing 8.5: Remaining three lines of text as binary vectors.

All ordering of the words is nominally discarded and we have a consistent way of extracting
features from any document in our corpus, ready for use in modeling. New documents that
overlap with the vocabulary of known words, but may contain words outside of the vocabulary,
can still be encoded, where only the occurrence of known words are scored and unknown
words are ignored. You can see how this might naturally scale to large vocabularies and larger
documents.

8.5 Managing Vocabulary

As the vocabulary size increases, so does the vector representation of documents. In the previous
example, the length of the document vector is equal to the number of known words. You can
imagine that for a very large corpus, such as thousands of books, that the length of the vector
might be thousands or millions of positions. Further, each document may contain very few of
the known words in the vocabulary.

This results in a vector with lots of zero scores, called a sparse vector or sparse representation.
Sparse vectors require more memory and computational resources when modeling and the
vast number of positions or dimensions can make the modeling process very challenging for
traditional algorithms. As such, there is pressure to decrease the size of the vocabulary when
using a bag-of-words model.

There are simple text cleaning techniques that can be used as a first step, such as:

� Ignoring case.

� Ignoring punctuation.

� Ignoring frequent words that don’t contain much information, called stop words, like a, of,
etc.

� Fixing misspelled words.

� Reducing words to their stem (e.g. play from playing) using stemming algorithms.

A more sophisticated approach is to create a vocabulary of grouped words. This both
changes the scope of the vocabulary and allows the bag-of-words to capture a little bit more
meaning from the document. In this approach, each word or token is called a gram. Creating a
vocabulary of two-word pairs is, in turn, called a bigram model. Again, only the bigrams that
appear in the corpus are modeled, not all possible bigrams.
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An n-gram is an n-token sequence of words: a 2-gram (more commonly called a
bigram) is a two-word sequence of words like “please turn”, “turn your”, or “your
homework”, and a 3-gram (more commonly called a trigram) is a three-word sequence
of words like “please turn your”, or “turn your homework”.

— Page 85, Speech and Language Processing, 2009.

For example, the bigrams in the first line of text in the previous section: It was the best of
times are as follows:

it was

was the

the best

best of

of times

Listing 8.6: List of bi-grams for a document.

A vocabulary that tracks triplets of words is called a trigram model and the general approach
is called the n-gram model, where n refers to the number of grouped words. Often a simple
bigram approach is better than a 1-gram bag-of-words model for tasks like documentation
classification.

a bag-of-bigrams representation is much more powerful than bag-of-words, and in
many cases proves very hard to beat.

— Page 75, Neural Network Methods in Natural Language Processing, 2017.

8.6 Scoring Words

Once a vocabulary has been chosen, the occurrence of words in example documents needs to be
scored. In the worked example, we have already seen one very simple approach to scoring: a
binary scoring of the presence or absence of words. Some additional simple scoring methods
include:

� Counts. Count the number of times each word appears in a document.

� Frequencies. Calculate the frequency that each word appears in a document out of all
the words in the document.

8.6.1 Word Hashing

You may remember from computer science that a hash function is a bit of math that maps data
to a fixed size set of numbers. For example, we use them in hash tables when programming where
perhaps names are converted to numbers for fast lookup. We can use a hash representation of
known words in our vocabulary. This addresses the problem of having a very large vocabulary
for a large text corpus because we can choose the size of the hash space, which is in turn the
size of the vector representation of the document.

Words are hashed deterministically to the same integer index in the target hash space. A
binary score or count can then be used to score the word. This is called the hash trick or feature
hashing. The challenge is to choose a hash space to accommodate the chosen vocabulary size to
minimize the probability of collisions and trade-off sparsity.
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8.6.2 TF-IDF

A problem with scoring word frequency is that highly frequent words start to dominate in the
document (e.g. larger score), but may not contain as much informational content to the model
as rarer but perhaps domain specific words. One approach is to rescale the frequency of words
by how often they appear in all documents, so that the scores for frequent words like the that
are also frequent across all documents are penalized. This approach to scoring is called Term
Frequency - Inverse Document Frequency, or TF-IDF for short, where:

� Term Frequency: is a scoring of the frequency of the word in the current document.

� Inverse Document Frequency: is a scoring of how rare the word is across documents.

The scores are a weighting where not all words are equally as important or interesting. The
scores have the effect of highlighting words that are distinct (contain useful information) in a
given document.

Thus the idf of a rare term is high, whereas the idf of a frequent term is likely to be
low.

— Page 118, An Introduction to Information Retrieval, 2008.

8.7 Limitations of Bag-of-Words

The bag-of-words model is very simple to understand and implement and offers a lot of flexibility
for customization on your specific text data. It has been used with great success on prediction
problems like language modeling and documentation classification. Nevertheless, it suffers from
some shortcomings, such as:

� Vocabulary: The vocabulary requires careful design, most specifically in order to manage
the size, which impacts the sparsity of the document representations.

� Sparsity: Sparse representations are harder to model both for computational reasons
(space and time complexity) and also for information reasons, where the challenge is for
the models to harness so little information in such a large representational space.

� Meaning: Discarding word order ignores the context, and in turn meaning of words in
the document (semantics). Context and meaning can offer a lot to the model, that if
modeled could tell the difference between the same words differently arranged (this is
interesting vs is this interesting), synonyms (old bike vs used bike), and much more.

8.8 Further Reading

This section provides more resources on the topic if you are looking go deeper.
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8.8.1 Books

� Neural Network Methods in Natural Language Processing, 2017.
http://amzn.to/2wycQKA

� Speech and Language Processing, 2009.
http://amzn.to/2vaEb7T

� An Introduction to Information Retrieval, 2008.
http://amzn.to/2vvnPHP

� Foundations of Statistical Natural Language Processing, 1999.
http://amzn.to/2vvnPHP

8.8.2 Wikipedia

� Bag-of-words model.
https://en.wikipedia.org/wiki/N-gram

� n-gram.
https://en.wikipedia.org/wiki/N-gram

� Feature hashing.
https://en.wikipedia.org/wiki/Feature_hashing

� tf-idf.
https://en.wikipedia.org/wiki/Tf-idf

8.9 Summary

In this tutorial, you discovered the bag-of-words model for feature extraction with text data.
Specifically, you learned:

� What the bag-of-words model is and why we need it.

� How to work through the application of a bag-of-words model to a collection of documents.

� What techniques can be used for preparing a vocabulary and scoring words.

8.9.1 Next

In the next chapter, you will can prepare movie review data for the bag-of-words model.



Chapter 9

How to Prepare Movie Review Data
for Sentiment Analysis

Text data preparation is different for each problem. Preparation starts with simple steps, like
loading data, but quickly gets difficult with cleaning tasks that are very specific to the data you
are working with. You need help as to where to begin and what order to work through the steps
from raw data to data ready for modeling. In this tutorial, you will discover how to prepare
movie review text data for sentiment analysis, step-by-step. After completing this tutorial, you
will know:

� How to load text data and clean it to remove punctuation and other non-words.

� How to develop a vocabulary, tailor it, and save it to file.

� How to prepare movie reviews using cleaning and a pre-defined vocabulary and save them
to new files ready for modeling.

Let’s get started.

9.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Movie Review Dataset

2. Load Text Data

3. Clean Text Data

4. Develop Vocabulary

5. Save Prepared Data
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9.2 Movie Review Dataset

The Movie Review Data is a collection of movie reviews retrieved from the imdb.com website in
the early 2000s by Bo Pang and Lillian Lee. The reviews were collected and made available
as part of their research on natural language processing. The reviews were originally released
in 2002, but an updated and cleaned up version was released in 2004, referred to as v2.0. The
dataset is comprised of 1,000 positive and 1,000 negative movie reviews drawn from an archive
of the rec.arts.movies.reviews newsgroup hosted at IMDB. The authors refer to this dataset as
the polarity dataset.

Our data contains 1000 positive and 1000 negative reviews all written before 2002,
with a cap of 20 reviews per author (312 authors total) per category. We refer to
this corpus as the polarity dataset.

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on
Minimum Cuts, 2004.

The data has been cleaned up somewhat, for example:

� The dataset is comprised of only English reviews.

� All text has been converted to lowercase.

� There is white space around punctuation like periods, commas, and brackets.

� Text has been split into one sentence per line.

The data has been used for a few related natural language processing tasks. For classification,
the performance of classical models (such as Support Vector Machines) on the data is in the
range of high 70% to low 80% (e.g. 78%-to-82%). More sophisticated data preparation may see
results as high as 86% with 10-fold cross-validation. This gives us a ballpark of low-to-mid 80s
if we were looking to use this dataset in experiments on modern methods.

... depending on choice of downstream polarity classifier, we can achieve highly
statistically significant improvement (from 82.8% to 86.4%)

— A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on
Minimum Cuts, 2004.

You can download the dataset from here:

� Movie Review Polarity Dataset (review polarity.tar.gz, 3MB).
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

After unzipping the file, you will have a directory called txt sentoken with two sub-
directories containing the text neg and pos for negative and positive reviews. Reviews are stored
one per file with a naming convention from cv000 to cv999 for each of neg and pos. Next, let’s
look at loading the text data.
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9.3 Load Text Data

In this section, we will look at loading individual text files, then processing the directories of
files. We will assume that the review data is downloaded and available in the current working
directory in the folder txt sentoken. We can load an individual text file by opening it, reading
in the ASCII text, and closing the file. This is standard file handling stuff. For example, we can
load the first negative review file cv000 29416.txt as follows:

# load one file

filename = 'txt_sentoken/neg/cv000_29416.txt'

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

Listing 9.1: Example of loading a single movie review.

This loads the document as ASCII and preserves any white space, like new lines. We can
turn this into a function called load doc() that takes a filename of the document to load and
returns the text.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

Listing 9.2: Function to load a document into memory.

We have two directories each with 1,000 documents each. We can process each directory in
turn by first getting a list of files in the directory using the listdir() function, then loading
each file in turn. For example, we can load each document in the negative directory using the
load doc() function to do the actual loading.

from os import listdir

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# specify directory to load

directory = 'txt_sentoken/neg'

# walk through all files in the folder

for filename in listdir(directory):



9.3. Load Text Data 72

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# load document

doc = load_doc(path)

print('Loaded %s' % filename)

Listing 9.3: Example of loading a all movie reviews.

Running this example prints the filename of each review after it is loaded.

...

Loaded cv995_23113.txt

Loaded cv996_12447.txt

Loaded cv997_5152.txt

Loaded cv998_15691.txt

Loaded cv999_14636.txt

Listing 9.4: Example output of loading all movie reviews.

We can turn the processing of the documents into a function as well and use it as a template
later for developing a function to clean all documents in a folder. For example, below we define
a process docs() function to do the same thing.

from os import listdir

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load all docs in a directory

def process_docs(directory):

# walk through all files in the folder

for filename in listdir(directory):

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# load document

doc = load_doc(path)

print('Loaded %s' % filename)

# specify directory to load

directory = 'txt_sentoken/neg'

process_docs(directory)

Listing 9.5: Example of loading a all movie reviews with functions.

Now that we know how to load the movie review text data, let’s look at cleaning it.
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9.4 Clean Text Data

In this section, we will look at what data cleaning we might want to do to the movie review
data. We will assume that we will be using a bag-of-words model or perhaps a word embedding
that does not require too much preparation.

9.4.1 Split into Tokens

First, let’s load one document and look at the raw tokens split by white space. We will use the
load doc() function developed in the previous section. We can use the split() function to
split the loaded document into tokens separated by white space.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load the document

filename = 'txt_sentoken/neg/cv000_29416.txt'

text = load_doc(filename)

# split into tokens by white space

tokens = text.split()

print(tokens)

Listing 9.6: Load a movie review and split by white space.

Running the example gives a nice long list of raw tokens from the document.

...

'years', 'ago', 'and', 'has', 'been', 'sitting', 'on', 'the', 'shelves', 'ever', 'since',

'.', 'whatever', '.', '.', '.', 'skip', 'it', '!', "where's", 'joblo', 'coming',

'from', '?', 'a', 'nightmare', 'of', 'elm', 'street', '3', '(', '7/10', ')', '-',

'blair', 'witch', '2', '(', '7/10', ')', '-', 'the', 'crow', '(', '9/10', ')', '-',

'the', 'crow', ':', 'salvation', '(', '4/10', ')', '-', 'lost', 'highway', '(',

'10/10', ')', '-', 'memento', '(', '10/10', ')', '-', 'the', 'others', '(', '9/10',

')', '-', 'stir', 'of', 'echoes', '(', '8/10', ')']

Listing 9.7: Example output of spitting a review by white space.

Just looking at the raw tokens can give us a lot of ideas of things to try, such as:

� Remove punctuation from words (e.g. ‘what’s’).

� Removing tokens that are just punctuation (e.g. ‘-’).

� Removing tokens that contain numbers (e.g. ‘10/10’).

� Remove tokens that have one character (e.g. ‘a’).

� Remove tokens that don’t have much meaning (e.g. ‘and’).



9.4. Clean Text Data 74

Some ideas:

� We can filter out punctuation from tokens using regular expressions.

� We can remove tokens that are just punctuation or contain numbers by using an isalpha()

check on each token.

� We can remove English stop words using the list loaded using NLTK.

� We can filter out short tokens by checking their length.

Below is an updated version of cleaning this review.

from nltk.corpus import stopwords

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load the document

filename = 'txt_sentoken/neg/cv000_29416.txt'

text = load_doc(filename)

# split into tokens by white space

tokens = text.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

print(tokens)

Listing 9.8: Load and clean one movie review.

Running the example gives a much cleaner looking list of tokens.

...

'explanation', 'craziness', 'came', 'oh', 'way', 'horror', 'teen', 'slasher', 'flick',

'packaged', 'look', 'way', 'someone', 'apparently', 'assuming', 'genre', 'still',

'hot', 'kids', 'also', 'wrapped', 'production', 'two', 'years', 'ago', 'sitting',

'shelves', 'ever', 'since', 'whatever', 'skip', 'wheres', 'joblo', 'coming',

'nightmare', 'elm', 'street', 'blair', 'witch', 'crow', 'crow', 'salvation', 'lost',

'highway', 'memento', 'others', 'stir', 'echoes']

Listing 9.9: Example output of cleaning one movie review.
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We can put this into a function called clean doc() and test it on another review, this time
a positive review.

from nltk.corpus import stopwords

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load the document

filename = 'txt_sentoken/pos/cv000_29590.txt'

text = load_doc(filename)

tokens = clean_doc(text)

print(tokens)

Listing 9.10: Function to clean movie reviews.

Again, the cleaning procedure seems to produce a good set of tokens, at least as a first cut.

...

'comic', 'oscar', 'winner', 'martin', 'childs', 'shakespeare', 'love', 'production',

'design', 'turns', 'original', 'prague', 'surroundings', 'one', 'creepy', 'place',

'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning', 'typically', 'strong',

'performance', 'deftly', 'handling', 'british', 'accent', 'ians', 'holm', 'joe',

'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great', 'supporting', 'roles',

'big', 'surprise', 'graham', 'cringed', 'first', 'time', 'opened', 'mouth',

'imagining', 'attempt', 'irish', 'accent', 'actually', 'wasnt', 'half', 'bad', 'film',

'however', 'good', 'strong', 'violencegore', 'sexuality', 'language', 'drug', 'content']

Listing 9.11: Example output of a function to clean movie reviews.

There are many more cleaning steps we could take and I leave them to your imagination.
Next, let’s look at how we can manage a preferred vocabulary of tokens.
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9.5 Develop Vocabulary

When working with predictive models of text, like a bag-of-words model, there is a pressure to
reduce the size of the vocabulary. The larger the vocabulary, the more sparse the representation
of each word or document. A part of preparing text for sentiment analysis involves defining and
tailoring the vocabulary of words supported by the model. We can do this by loading all of the
documents in the dataset and building a set of words. We may decide to support all of these
words, or perhaps discard some. The final chosen vocabulary can then be saved to file for later
use, such as filtering words in new documents in the future.

We can keep track of the vocabulary in a Counter, which is a dictionary of words and their
count with some additional convenience functions. We need to develop a new function to process
a document and add it to the vocabulary. The function needs to load a document by calling the
previously developed load doc() function. It needs to clean the loaded document using the
previously developed clean doc() function, then it needs to add all the tokens to the Counter,
and update counts. We can do this last step by calling the update() function on the counter
object. Below is a function called add doc to vocab() that takes as arguments a document
filename and a Counter vocabulary.

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

Listing 9.12: Function add a movie review to a vocabulary.

Finally, we can use our template above for processing all documents in a directory called
process docs() and update it to call add doc to vocab().

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

Listing 9.13: Updated process documents function.

We can put all of this together and develop a full vocabulary from all documents in the
dataset.

import string

import re

from os import listdir

from collections import Counter

from nltk.corpus import stopwords
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# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/neg', vocab)

process_docs('txt_sentoken/pos', vocab)

# print the size of the vocab

print(len(vocab))
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# print the top words in the vocab

print(vocab.most_common(50))

Listing 9.14: Example of cleaning all reviews and building a vocabulary.

Running the example creates a vocabulary with all documents in the dataset, including
positive and negative reviews. We can see that there are a little over 46,000 unique words across
all reviews and the top 3 words are film, one, and movie.

46557

[('film', 8860), ('one', 5521), ('movie', 5440), ('like', 3553), ('even', 2555), ('good',

2320), ('time', 2283), ('story', 2118), ('films', 2102), ('would', 2042), ('much',

2024), ('also', 1965), ('characters', 1947), ('get', 1921), ('character', 1906),

('two', 1825), ('first', 1768), ('see', 1730), ('well', 1694), ('way', 1668), ('make',

1590), ('really', 1563), ('little', 1491), ('life', 1472), ('plot', 1451), ('people',

1420), ('movies', 1416), ('could', 1395), ('bad', 1374), ('scene', 1373), ('never',

1364), ('best', 1301), ('new', 1277), ('many', 1268), ('doesnt', 1267), ('man', 1266),

('scenes', 1265), ('dont', 1210), ('know', 1207), ('hes', 1150), ('great', 1141),

('another', 1111), ('love', 1089), ('action', 1078), ('go', 1075), ('us', 1065),

('director', 1056), ('something', 1048), ('end', 1047), ('still', 1038)]

Listing 9.15: Example output of building a vocabulary.

Perhaps the least common words, those that only appear once across all reviews, are not
predictive. Perhaps some of the most common words are not useful too. These are good
questions and really should be tested with a specific predictive model. Generally, words that
only appear once or a few times across 2,000 reviews are probably not predictive and can be
removed from the vocabulary, greatly cutting down on the tokens we need to model. We can do
this by stepping through words and their counts and only keeping those with a count above a
chosen threshold. Here we will use 5 occurrences.

# keep tokens with > 5 occurrence

min_occurane = 5

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

Listing 9.16: Example of filtering the vocabulary by an occurrence count.

This reduces the vocabulary from 46,557 to 14,803 words, a huge drop. Perhaps a minimum
of 5 occurrences is too aggressive; you can experiment with different values. We can then save
the chosen vocabulary of words to a new file. I like to save the vocabulary as ASCII with one
word per line. Below defines a function called save list() to save a list of items, in this case,
tokens to file, one per line.

def save_list(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)

file.close()

Listing 9.17: Function to save the vocabulary to file.

The complete example for defining and saving the vocabulary is listed below.

import string

import re

from os import listdir
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from collections import Counter

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# save list to file

def save_list(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)
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file.close()

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/neg', vocab)

process_docs('txt_sentoken/pos', vocab)

# print the size of the vocab

print(len(vocab))

# print the top words in the vocab

print(vocab.most_common(50))

# keep tokens with > 5 occurrence

min_occurane = 5

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

# save tokens to a vocabulary file

save_list(tokens, 'vocab.txt')

Listing 9.18: Example building and saving a final vocabulary.

Running this final snippet after creating the vocabulary will save the chosen words to file. It
is a good idea to take a look at, and even study, your chosen vocabulary in order to get ideas
for better preparing this data, or text data in the future.

hasnt

updating

figuratively

symphony

civilians

might

fisherman

hokum

witch

buffoons

...

Listing 9.19: Sample of the saved vocabulary file.

Next, we can look at using the vocabulary to create a prepared version of the movie review
dataset.

9.6 Save Prepared Data

We can use the data cleaning and chosen vocabulary to prepare each movie review and save the
prepared versions of the reviews ready for modeling. This is a good practice as it decouples
the data preparation from modeling, allowing you to focus on modeling and circle back to data
prep if you have new ideas. We can start off by loading the vocabulary from vocab.txt.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file
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file.close()

return text

# load vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = vocab.split()

vocab = set(vocab)

Listing 9.20: Load the saved vocabulary.

Next, we can clean the reviews, use the loaded vocab to filter out unwanted tokens, and
save the clean reviews in a new file. One approach could be to save all the positive reviews
in one file and all the negative reviews in another file, with the filtered tokens separated by
white space for each review on separate lines. First, we can define a function to process a
document, clean it, filter it, and return it as a single line that could be saved in a file. Below
defines the doc to line() function to do just that, taking a filename and vocabulary (as a set)
as arguments. It calls the previously defined load doc() function to load the document and
clean doc() to tokenize the document.

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

Listing 9.21: Function to filter a review by the vocabulary

Next, we can define a new version of process docs() to step through all reviews in a folder
and convert them to lines by calling doc to line() for each document. A list of lines is then
returned.

# load all docs in a directory

def process_docs(directory, vocab):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

Listing 9.22: Updated process docs function to filter all documents by the vocabulary.

We can then call process docs() for both the directories of positive and negative reviews,
then call save list() from the previous section to save each list of processed reviews to a file.
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The complete code listing is provided below.

import string

import re

from os import listdir

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# save list to file

def save_list(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)

file.close()

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):
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# skip files that do not have the right extension

if not filename.endswith(".txt"):

next

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = vocab.split()

vocab = set(vocab)

# prepare negative reviews

negative_lines = process_docs('txt_sentoken/neg', vocab)

save_list(negative_lines, 'negative.txt')

# prepare positive reviews

positive_lines = process_docs('txt_sentoken/pos', vocab)

save_list(positive_lines, 'positive.txt')

Listing 9.23: Example of cleaning and filtering all reviews by the vocab and saving the results
to file.

Running the example saves two new files, negative.txt and positive.txt, that contain the
prepared negative and positive reviews respectively. The data is ready for use in a bag-of-words
or even word embedding model.

9.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

9.7.1 Dataset

� Movie Review Data.
http://www.cs.cornell.edu/people/pabo/movie-review-data/

� A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based
on Minimum Cuts, 2004.
http://xxx.lanl.gov/abs/cs/0409058

� Movie Review Polarity Dataset.
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

� Dataset Readme v2.0 and v1.1.
http://www.cs.cornell.edu/people/pabo/movie-review-data/poldata.README.2.0.

txt

http://www.cs.cornell.edu/people/pabo/movie-review-data/README.1.1
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9.7.2 APIs

� nltk.tokenize package API.
http://www.nltk.org/api/nltk.tokenize.html

� Chapter 2, Accessing Text Corpora and Lexical Resources.
http://www.nltk.org/book/ch02.html

� os API Miscellaneous operating system interfaces.
https://docs.python.org/3/library/os.html

� collections API - Container datatypes.
https://docs.python.org/3/library/collections.html

9.8 Summary

In this tutorial, you discovered how to prepare movie review text data for sentiment analysis,
step-by-step. Specifically, you learned:

� How to load text data and clean it to remove punctuation and other non-words.

� How to develop a vocabulary, tailor it, and save it to file.

� How to prepare movie reviews using cleaning and a predefined vocabulary and save them
to new files ready for modeling.

9.8.1 Next

In the next chapter, you will discover how you can develop a neural bag-of-words model for
movie review sentiment analysis.



Chapter 10

Project: Develop a Neural
Bag-of-Words Model for Sentiment
Analysis

Movie reviews can be classified as either favorable or not. The evaluation of movie review text
is a classification problem often called sentiment analysis. A popular technique for developing
sentiment analysis models is to use a bag-of-words model that transforms documents into vectors
where each word in the document is assigned a score. In this tutorial, you will discover how you
can develop a deep learning predictive model using the bag-of-words representation for movie
review sentiment classification. After completing this tutorial, you will know:

� How to prepare the review text data for modeling with a restricted vocabulary.

� How to use the bag-of-words model to prepare train and test data.

� How to develop a Multilayer Perceptron bag-of-words model and use it to make predictions
on new review text data.

Let’s get started.

10.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Movie Review Dataset

2. Data Preparation

3. Bag-of-Words Representation

4. Sentiment Analysis Models

5. Comparing Word Scoring Methods

6. Predicting Sentiment for New Reviews

85
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10.2 Movie Review Dataset

In this tutorial, we will use the Movie Review Dataset. This dataset designed for sentiment
analysis was described previously in Chapter 9. You can download the dataset from here:

� Movie Review Polarity Dataset (review polarity.tar.gz, 3MB).
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

After unzipping the file, you will have a directory called txt sentoken with two sub-
directories containing the text neg and pos for negative and positive reviews. Reviews are stored
one per file with a naming convention cv000 to cv999 for each of neg and pos. Next, let’s look
at loading the text data.

10.3 Data Preparation

Note: The preparation of the movie review dataset was first described in Chapter 9. In this
section, we will look at 3 things:

1. Separation of data into training and test sets.

2. Loading and cleaning the data to remove punctuation and numbers.

3. Defining a vocabulary of preferred words.

10.3.1 Split into Train and Test Sets

We are pretending that we are developing a system that can predict the sentiment of a textual
movie review as either positive or negative. This means that after the model is developed, we
will need to make predictions on new textual reviews. This will require all of the same data
preparation to be performed on those new reviews as is performed on the training data for the
model.

We will ensure that this constraint is built into the evaluation of our models by splitting the
training and test datasets prior to any data preparation. This means that any knowledge in the
test set that could help us better prepare the data (e.g. the words used) is unavailable during
the preparation of data and the training of the model. That being said, we will use the last 100
positive reviews and the last 100 negative reviews as a test set (100 reviews) and the remaining
1,800 reviews as the training dataset. This is a 90% train, 10% split of the data. The split can
be imposed easily by using the filenames of the reviews where reviews named 000 to 899 are for
training data and reviews named 900 onwards are for testing the model.

10.3.2 Loading and Cleaning Reviews

The text data is already pretty clean, so not much preparation is required. Without getting too
much into the details, we will prepare the data using the following method:

� Split tokens on white space.
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� Remove all punctuation from words.

� Remove all words that are not purely comprised of alphabetical characters.

� Remove all words that are known stop words.

� Remove all words that have a length ≤ 1 character.

We can put all of these steps into a function called clean doc() that takes as an argument
the raw text loaded from a file and returns a list of cleaned tokens. We can also define a function
load doc() that loads a document from file ready for use with the clean doc() function. An
example of cleaning the first positive review is listed below.

from nltk.corpus import stopwords

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load the document

filename = 'txt_sentoken/pos/cv000_29590.txt'

text = load_doc(filename)

tokens = clean_doc(text)

print(tokens)

Listing 10.1: Example of cleaning a movie review.

Running the example prints a long list of clean tokens. There are many more cleaning steps
we may want to explore, and I leave them as further exercises. I’d love to see what you can
come up with.
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...

'creepy', 'place', 'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning',

'typically', 'strong', 'performance', 'deftly', 'handling', 'british', 'accent',

'ians', 'holm', 'joe', 'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great',

'supporting', 'roles', 'big', 'surprise', 'graham', 'cringed', 'first', 'time',

'opened', 'mouth', 'imagining', 'attempt', 'irish', 'accent', 'actually', 'wasnt',

'half', 'bad', 'film', 'however', 'good', 'strong', 'violencegore', 'sexuality',

'language', 'drug', 'content']

Listing 10.2: Example output of cleaning a movie review.

10.3.3 Define a Vocabulary

It is important to define a vocabulary of known words when using a bag-of-words model. The
more words, the larger the representation of documents, therefore it is important to constrain
the words to only those believed to be predictive. This is difficult to know beforehand and often
it is important to test different hypotheses about how to construct a useful vocabulary. We
have already seen how we can remove punctuation and numbers from the vocabulary in the
previous section. We can repeat this for all documents and build a set of all known words.

We can develop a vocabulary as a Counter, which is a dictionary mapping of words and
their count that allows us to easily update and query. Each document can be added to the
counter (a new function called add doc to vocab()) and we can step over all of the reviews in
the negative directory and then the positive directory (a new function called process docs()).
The complete example is listed below.

import string

import re

from os import listdir

from collections import Counter

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words
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stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/pos', vocab)

process_docs('txt_sentoken/neg', vocab)

# print the size of the vocab

print(len(vocab))

# print the top words in the vocab

print(vocab.most_common(50))

Listing 10.3: Example of selecting a vocabulary for the dataset.

Running the example shows that we have a vocabulary of 44,276 words. We also can see
a sample of the top 50 most used words in the movie reviews. Note that this vocabulary was
constructed based on only those reviews in the training dataset.

44276

[('film', 7983), ('one', 4946), ('movie', 4826), ('like', 3201), ('even', 2262), ('good',

2080), ('time', 2041), ('story', 1907), ('films', 1873), ('would', 1844), ('much',

1824), ('also', 1757), ('characters', 1735), ('get', 1724), ('character', 1703),

('two', 1643), ('first', 1588), ('see', 1557), ('way', 1515), ('well', 1511), ('make',

1418), ('really', 1407), ('little', 1351), ('life', 1334), ('plot', 1288), ('people',

1269), ('could', 1248), ('bad', 1248), ('scene', 1241), ('movies', 1238), ('never',

1201), ('best', 1179), ('new', 1140), ('scenes', 1135), ('man', 1131), ('many', 1130),

('doesnt', 1118), ('know', 1092), ('dont', 1086), ('hes', 1024), ('great', 1014),

('another', 992), ('action', 985), ('love', 977), ('us', 967), ('go', 952),

('director', 948), ('end', 946), ('something', 945), ('still', 936)]

Listing 10.4: Example output of selecting a vocabulary for the dataset.



10.3. Data Preparation 90

We can step through the vocabulary and remove all words that have a low occurrence, such
as only being used once or twice in all reviews. For example, the following snippet will retrieve
only the tokens that appear 2 or more times in all reviews.

# keep tokens with a min occurrence

min_occurane = 2

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

Listing 10.5: Example of filtering the vocabulary by occurrence.

Finally, the vocabulary can be saved to a new file called vocab.txt that we can later load
and use to filter movie reviews prior to encoding them for modeling. We define a new function
called save list() that saves the vocabulary to file, with one word per file. For example:

# save list to file

def save_list(lines, filename):

# convert lines to a single blob of text

data = '\n'.join(lines)

# open file

file = open(filename, 'w')

# write text

file.write(data)

# close file

file.close()

# save tokens to a vocabulary file

save_list(tokens, 'vocab.txt')

Listing 10.6: Example of saving the filtered vocabulary.

Pulling all of this together, the complete example is listed below.

import string

import re

from os import listdir

from collections import Counter

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]
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# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# save list to file

def save_list(lines, filename):

# convert lines to a single blob of text

data = '\n'.join(lines)

# open file

file = open(filename, 'w')

# write text

file.write(data)

# close file

file.close()

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/pos', vocab)

process_docs('txt_sentoken/neg', vocab)

# print the size of the vocab

print(len(vocab))

# keep tokens with a min occurrence

min_occurane = 2

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

# save tokens to a vocabulary file

save_list(tokens, 'vocab.txt')

Listing 10.7: Example of filtering the vocabulary for the dataset.
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Running the above example with this addition shows that the vocabulary size drops by a
little more than half its size, from about 44,000 to about 25,000 words.

25767

Listing 10.8: Example output of filtering the vocabulary by min occurrence.

Running the min occurrence filter on the vocabulary and saving it to file, you should now
have a new file called vocab.txt with only the words we are interested in.

The order of words in your file will differ, but should look something like the following:

aberdeen

dupe

burt

libido

hamlet

arlene

available

corners

web

columbia

...

Listing 10.9: Sample of the vocabulary file vocab.txt.

We are now ready to look at extracting features from the reviews ready for modeling.

10.4 Bag-of-Words Representation

In this section, we will look at how we can convert each review into a representation that we
can provide to a Multilayer Perceptron model. A bag-of-words model is a way of extracting
features from text so the text input can be used with machine learning algorithms like neural
networks. Each document, in this case a review, is converted into a vector representation.
The number of items in the vector representing a document corresponds to the number of
words in the vocabulary. The larger the vocabulary, the longer the vector representation, hence
the preference for smaller vocabularies in the previous section. The bag-of-words model was
introduced previously in Chapter 8.

Words in a document are scored and the scores are placed in the corresponding location in
the representation. We will look at different word scoring methods in the next section. In this
section, we are concerned with converting reviews into vectors ready for training a first neural
network model. This section is divided into 2 steps:

1. Converting reviews to lines of tokens.

2. Encoding reviews with a bag-of-words model representation.

10.4.1 Reviews to Lines of Tokens

Before we can convert reviews to vectors for modeling, we must first clean them up. This
involves loading them, performing the cleaning operation developed above, filtering out words
not in the chosen vocabulary, and converting the remaining tokens into a single string or line
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ready for encoding. First, we need a function to prepare one document. Below lists the function
doc to line() that will load a document, clean it, filter out tokens not in the vocabulary, then
return the document as a string of white space separated tokens.

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

Listing 10.10: Function to filter a review by pre-defined vocabulary.

Next, we need a function to work through all documents in a directory (such as pos and
neg) to convert the documents into lines. Below lists the process docs() function that does
just this, expecting a directory name and a vocabulary set as input arguments and returning a
list of processed documents.

# load all docs in a directory

def process_docs(directory, vocab):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

Listing 10.11: Function to filter all movie reviews by vocabulary.

We can call the process docs() consistently for positive and negative reviews to construct
a dataset of review text and their associated output labels, 0 for negative and 1 for positive.
The load clean dataset() function below implements this behavior.

# load and clean a dataset

def load_clean_dataset(vocab):

# load documents

neg = process_docs('txt_sentoken/neg', vocab)

pos = process_docs('txt_sentoken/pos', vocab)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

Listing 10.12: Function to load movie reviews and prepare output labels.

Finally, we need to load the vocabulary and turn it into a set for use in cleaning reviews.
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# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

Listing 10.13: Load the pre-defined vocabulary of words.

We can put all of this together, reusing the loading and cleaning functions developed in
previous sections. The complete example is listed below, demonstrating how to prepare the
positive and negative reviews from the training dataset.

import string

import re

from os import listdir

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

lines = list()
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# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load and clean a dataset

def load_clean_dataset(vocab):

# load documents

neg = process_docs('txt_sentoken/neg', vocab)

pos = process_docs('txt_sentoken/pos', vocab)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = vocab.split()

vocab = set(vocab)

# load all training reviews

docs, labels = load_clean_dataset(vocab)

# summarize what we have

print(len(docs), len(labels))

Listing 10.14: Filter all movie reviews by the pre-defined vocabulary.

Running this example loads and cleans the review text and returns the labels.

1800 1800

Listing 10.15: Example output from loading, cleaning and filtering movie review data by a
constrained vocabulary.

10.4.2 Movie Reviews to Bag-of-Words Vectors

We will use the Keras API to convert reviews to encoded document vectors. Keras provides
the Tokenizer class that can do some of the cleaning and vocab definition tasks that we took
care of in the previous section. It is better to do this ourselves to know exactly what was done
and why. Nevertheless, the Tokenizer class is convenient and will easily transform documents
into encoded vectors. First, the Tokenizer must be created, then fit on the text documents
in the training dataset. In this case, these are the aggregation of the positive lines and
negative lines arrays developed in the previous section.

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()
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tokenizer.fit_on_texts(lines)

return tokenizer

Listing 10.16: Function to fit a Tokenizer on the clean and filtered movie reviews.

This process determines a consistent way to convert the vocabulary to a fixed-length vector
with 25,768 elements, which is the total number of words in the vocabulary file vocab.txt.
Next, documents can then be encoded using the Tokenizer by calling texts to matrix(). The
function takes both a list of documents to encode and an encoding mode, which is the method
used to score words in the document. Here we specify freq to score words based on their
frequency in the document. This can be used to encode the loaded training and test data, for
example:

# encode data

Xtrain = tokenizer.texts_to_matrix(train_docs, mode='freq')

Xtest = tokenizer.texts_to_matrix(test_docs, mode='freq')

Listing 10.17: Encode training data.

This encodes all of the positive and negative reviews in the training dataset.
Next, the process docs() function from the previous section needs to be modified to

selectively process reviews in the test or train dataset. We support the loading of both the
training and test datasets by adding an is train argument and using that to decide what
review file names to skip.

# load all docs in a directory

def process_docs(directory, vocab, is_train):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

Listing 10.18: Updated process documents function to load all reviews.

Similarly, the load clean dataset() dataset must be updated to load either train or test
data.

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]
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return docs, labels

Listing 10.19: Function to load text data and labels.

We can put all of this together in a single example.

import string

import re

from os import listdir

from nltk.corpus import stopwords

from keras.preprocessing.text import Tokenizer

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab, is_train):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue
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if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab, True)

test_docs, ytest = load_clean_dataset(vocab, False)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# encode data

Xtrain = tokenizer.texts_to_matrix(train_docs, mode='freq')

Xtest = tokenizer.texts_to_matrix(test_docs, mode='freq')

print(Xtrain.shape, Xtest.shape)

Listing 10.20: Complete example of preparing train and test data.

Running the example prints both the shape of the encoded training dataset and test dataset
with 1,800 and 200 documents respectively, each with the same sized encoding vocabulary
(vector length).

(1800, 25768) (200, 25768)

Listing 10.21: Example output of loading and preparing the datasets.

10.5 Sentiment Analysis Models

In this section, we will develop Multilayer Perceptron (MLP) models to classify encoded
documents as either positive or negative. The models will be simple feedforward network models
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with fully connected layers called Dense in the Keras deep learning library. This section is
divided into 3 sections:

1. First sentiment analysis model

2. Comparing word scoring modes

3. Making a prediction for new reviews

10.5.1 First Sentiment Analysis Model

We can develop a simple MLP model to predict the sentiment of encoded reviews. The model
will have an input layer that equals the number of words in the vocabulary, and in turn the
length of the input documents. We can store this in a new variable called n words, as follows:

n_words = Xtest.shape[1]

Listing 10.22: Example of calculating the number of words.

We can now define the network. All model configuration was found with very little trial and
error and should not be considered tuned for this problem. We will use a single hidden layer
with 50 neurons and a rectified linear activation function. The output layer is a single neuron
with a sigmoid activation function for predicting 0 for negative and 1 for positive reviews. The
network will be trained using the efficient Adam implementation of gradient descent and the
binary cross entropy loss function, suited to binary classification problems. We will keep track
of accuracy when training and evaluating the model.

# define the model

def define_model(n_words):

# define network

model = Sequential()

model.add(Dense(50, input_shape=(n_words,), activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 10.23: Example of defining an MLP for the bag-of-words model.

Next, we can fit the model on the training data; in this case, the model is small and is easily
fit in 10 epochs.

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

Listing 10.24: Example of fitting the defined model.

Finally, once the model is trained, we can evaluate its performance by making predictions in
the test dataset and printing the accuracy.
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# evaluate

loss, acc = model.evaluate(Xtest, ytest, verbose=0)

print('Test Accuracy: %f' % (acc*100))

Listing 10.25: Example of evaluating the fit model.

The complete example is listed below.

import string

import re

from os import listdir

from nltk.corpus import stopwords

from keras.preprocessing.text import Tokenizer

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab, is_train):
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lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# define the model

def define_model(n_words):

# define network

model = Sequential()

model.add(Dense(50, input_shape=(n_words,), activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab, True)

test_docs, ytest = load_clean_dataset(vocab, False)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# encode data

Xtrain = tokenizer.texts_to_matrix(train_docs, mode='freq')
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Xtest = tokenizer.texts_to_matrix(test_docs, mode='freq')

# define the model

n_words = Xtest.shape[1]

model = define_model(n_words)

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

# evaluate

loss, acc = model.evaluate(Xtest, ytest, verbose=0)

print('Test Accuracy: %f' % (acc*100))

Listing 10.26: Complete example of training and evaluating an MLP bag-of-words model.

Running the example first prints a summary of the defined model.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

dense_1 (Dense) (None, 50) 1288450

_________________________________________________________________

dense_2 (Dense) (None, 1) 51

=================================================================

Total params: 1,288,501

Trainable params: 1,288,501

Non-trainable params: 0

_________________________________________________________________

Listing 10.27: Summary of the defined model.

A plot the defined model is then saved to file with the name model.png.

Figure 10.1: Plot of the defined bag-of-words model.

We can see that the model easily fits the training data within the 10 epochs, achieving close
to 100% accuracy. Evaluating the model on the test dataset, we can see that model does well,
achieving an accuracy of above 87%, well within the ballpark of low-to-mid 80s seen in the
original paper. Although, it is important to note that this is not an apples-to-apples comparison,
as the original paper used 10-fold cross-validation to estimate model skill instead of a single
train/test split.
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Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

...

Epoch 6/10

0s - loss: 0.5319 - acc: 0.9428

Epoch 7/10

0s - loss: 0.4839 - acc: 0.9506

Epoch 8/10

0s - loss: 0.4368 - acc: 0.9567

Epoch 9/10

0s - loss: 0.3927 - acc: 0.9611

Epoch 10/10

0s - loss: 0.3516 - acc: 0.9689

Test Accuracy: 87.000000

Listing 10.28: Example output of training and evaluating the MLP model.

Next, let’s look at testing different word scoring methods for the bag-of-words model.

10.6 Comparing Word Scoring Methods

The texts to matrix() function for the Tokenizer in the Keras API provides 4 different
methods for scoring words; they are:

� binary Where words are marked as present (1) or absent (0).

� count Where the occurrence count for each word is marked as an integer.

� tfidf Where each word is scored based on their frequency, where words that are common
across all documents are penalized.

� freq Where words are scored based on their frequency of occurrence within the document.

We can evaluate the skill of the model developed in the previous section fit using each of the
4 supported word scoring modes. This first involves the development of a function to create an
encoding of the loaded documents based on a chosen scoring model. The function creates the
tokenizer, fits it on the training documents, then creates the train and test encodings using the
chosen model. The function prepare data() implements this behavior given lists of train and
test documents.

# prepare bag-of-words encoding of docs

def prepare_data(train_docs, test_docs, mode):

# create the tokenizer

tokenizer = Tokenizer()

# fit the tokenizer on the documents

tokenizer.fit_on_texts(train_docs)

# encode training data set

Xtrain = tokenizer.texts_to_matrix(train_docs, mode=mode)

# encode training data set

Xtest = tokenizer.texts_to_matrix(test_docs, mode=mode)
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return Xtrain, Xtest

Listing 10.29: Updated data preparation to take encoding mode as a parameter.

We also need a function to evaluate the MLP given a specific encoding of the data. Because
neural networks are stochastic, they can produce different results when the same model is fit on
the same data. This is mainly because of the random initial weights and the shuffling of patterns
during mini-batch gradient descent. This means that any one scoring of a model is unreliable
and we should estimate model skill based on an average of multiple runs. The function below,
named evaluate mode(), takes encoded documents and evaluates the MLP by training it on
the train set and estimating skill on the test set 10 times and returns a list of the accuracy
scores across all of these runs.

# evaluate a neural network model

def evaluate_mode(Xtrain, ytrain, Xtest, ytest):

scores = list()

n_repeats = 30

n_words = Xtest.shape[1]

for i in range(n_repeats):

# define network

model = Sequential()

model.add(Dense(50, input_shape=(n_words,), activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

# evaluate

loss, acc = model.evaluate(Xtest, ytest, verbose=0)

scores.append(acc)

print('%d accuracy: %s' % ((i+1), acc))

return scores

Listing 10.30: Function to create, fit and evaluate a model multiple times.

We are now ready to evaluate the performance of the 4 different word scoring methods.
Pulling all of this together, the complete example is listed below.

import string

import re

from os import listdir

from nltk.corpus import stopwords

from keras.preprocessing.text import Tokenizer

from keras.models import Sequential

from keras.layers import Dense

from pandas import DataFrame

from matplotlib import pyplot

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()



10.6. Comparing Word Scoring Methods 105

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab, is_train):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels
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# define the model

def define_model(n_words):

# define network

model = Sequential()

model.add(Dense(50, input_shape=(n_words,), activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

return model

# evaluate a neural network model

def evaluate_mode(Xtrain, ytrain, Xtest, ytest):

scores = list()

n_repeats = 10

n_words = Xtest.shape[1]

for i in range(n_repeats):

# define network

model = define_model(n_words)

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=0)

# evaluate

_, acc = model.evaluate(Xtest, ytest, verbose=0)

scores.append(acc)

print('%d accuracy: %s' % ((i+1), acc))

return scores

# prepare bag of words encoding of docs

def prepare_data(train_docs, test_docs, mode):

# create the tokenizer

tokenizer = Tokenizer()

# fit the tokenizer on the documents

tokenizer.fit_on_texts(train_docs)

# encode training data set

Xtrain = tokenizer.texts_to_matrix(train_docs, mode=mode)

# encode training data set

Xtest = tokenizer.texts_to_matrix(test_docs, mode=mode)

return Xtrain, Xtest

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab, True)

test_docs, ytest = load_clean_dataset(vocab, False)

# run experiment

modes = ['binary', 'count', 'tfidf', 'freq']

results = DataFrame()

for mode in modes:

# prepare data for mode

Xtrain, Xtest = prepare_data(train_docs, test_docs, mode)

# evaluate model on data for mode

results[mode] = evaluate_mode(Xtrain, ytrain, Xtest, ytest)

# summarize results

print(results.describe())
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# plot results

results.boxplot()

pyplot.show()

Listing 10.31: Complete example of comparing document encoding schemes.

At the end of the run, summary statistics for each word scoring method are provided,
summarizing the distribution of model skill scores across each of the 10 runs per mode. We can
see that the mean score of both the count and binary methods appear to be better than freq

and tfidf.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

binary count tfidf freq

count 10.000000 10.000000 10.000000 10.000000

mean 0.927000 0.903500 0.876500 0.871000

std 0.011595 0.009144 0.017958 0.005164

min 0.910000 0.885000 0.855000 0.865000

25% 0.921250 0.900000 0.861250 0.866250

50% 0.927500 0.905000 0.875000 0.870000

75% 0.933750 0.908750 0.888750 0.875000

max 0.945000 0.915000 0.910000 0.880000

Listing 10.32: Example output of comparing document encoding schemes.

A box and whisker plot of the results is also presented, summarizing the accuracy distributions
per configuration. We can see that binary achieved the best results with a modest spread and
might be the preferred approach for this dataset.
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Figure 10.2: Box and Whisker Plot for Model Accuracy with Different Word Scoring Methods.

10.7 Predicting Sentiment for New Reviews

Finally, we can develop and use a final model to make predictions for new textual reviews. This
is why we wanted the model in the first place. First we will train a final model on all of the
available data. We will use the binary mode for scoring the bag-of-words model that was shown
to give the best results in the previous section.

Predicting the sentiment of new reviews involves following the same steps used to prepare
the test data. Specifically, loading the text, cleaning the document, filtering tokens by the
chosen vocabulary, converting the remaining tokens to a line, encoding it using the Tokenizer,
and making a prediction. We can make a prediction of a class value directly with the fit model
by calling predict() that will return an integer of 0 for a negative review and 1 for a positive
review. All of these steps can be put into a new function called predict sentiment() that
requires the review text, the vocabulary, the tokenizer, and the fit model and returns the
predicted sentiment and an associated percentage or confidence-like output.

# classify a review as negative or positive

def predict_sentiment(review, vocab, tokenizer, model):

# clean

tokens = clean_doc(review)

# filter by vocab
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tokens = [w for w in tokens if w in vocab]

# convert to line

line = ' '.join(tokens)

# encode

encoded = tokenizer.texts_to_matrix([line], mode='binary')

# predict sentiment

yhat = model.predict(encoded, verbose=0)

# retrieve predicted percentage and label

percent_pos = yhat[0,0]

if round(percent_pos) == 0:

return (1-percent_pos), 'NEGATIVE'

return percent_pos, 'POSITIVE'

Listing 10.33: Function for making predictions for new reviews.

We can now make predictions for new review texts. Below is an example with both a clearly
positive and a clearly negative review using the simple MLP developed above with the frequency
word scoring mode.

# test positive text

text = 'Best movie ever! It was great, I recommend it.'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

# test negative text

text = 'This is a bad movie.'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

Listing 10.34: Exampling of making predictions for new reviews.

Pulling this all together, the complete example for making predictions for new reviews is
listed below.

import string

import re

from os import listdir

from nltk.corpus import stopwords

from keras.preprocessing.text import Tokenizer

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering
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re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc, clean and return line of tokens

def doc_to_line(filename, vocab):

# load the doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

return ' '.join(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

lines = list()

# walk through all files in the folder

for filename in listdir(directory):

# create the full path of the file to open

path = directory + '/' + filename

# load and clean the doc

line = doc_to_line(path, vocab)

# add to list

lines.append(line)

return lines

# load and clean a dataset

def load_clean_dataset(vocab):

# load documents

neg = process_docs('txt_sentoken/neg', vocab)

pos = process_docs('txt_sentoken/pos', vocab)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# define the model

def define_model(n_words):

# define network

model = Sequential()

model.add(Dense(50, input_shape=(n_words,), activation='relu'))
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model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# classify a review as negative or positive

def predict_sentiment(review, vocab, tokenizer, model):

# clean

tokens = clean_doc(review)

# filter by vocab

tokens = [w for w in tokens if w in vocab]

# convert to line

line = ' '.join(tokens)

# encode

encoded = tokenizer.texts_to_matrix([line], mode='binary')

# predict sentiment

yhat = model.predict(encoded, verbose=0)

# retrieve predicted percentage and label

percent_pos = yhat[0,0]

if round(percent_pos) == 0:

return (1-percent_pos), 'NEGATIVE'

return percent_pos, 'POSITIVE'

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab)

test_docs, ytest = load_clean_dataset(vocab)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# encode data

Xtrain = tokenizer.texts_to_matrix(train_docs, mode='binary')

Xtest = tokenizer.texts_to_matrix(test_docs, mode='binary')

# define network

n_words = Xtrain.shape[1]

model = define_model(n_words)

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

# test positive text

text = 'Best movie ever! It was great, I recommend it.'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

# test negative text

text = 'This is a bad movie.'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

Listing 10.35: Complete example of making predictions for new review data.

Running the example correctly classifies these reviews.

Review: [Best movie ever! It was great, I recommend it.]
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Sentiment: POSITIVE (57.124%)

Review: [This is a bad movie.]

Sentiment: NEGATIVE (64.404%)

Listing 10.36: Example output of making predictions for new reviews.

Ideally, we would fit the model on all available data (train and test) to create a final model
and save the model and tokenizer to file so that they can be loaded and used in new software.

10.8 Extensions

This section lists some extensions if you are looking to get more out of this tutorial.

� Manage Vocabulary. Explore using a larger or smaller vocabulary. Perhaps you can
get better performance with a smaller set of words.

� Tune the Network Topology. Explore alternate network topologies such as deeper or
wider networks. Perhaps you can get better performance with a more suited network.

� Use Regularization. Explore the use of regularization techniques, such as dropout.
Perhaps you can delay the convergence of the model and achieve better test set performance.

� More Data Cleaning. Explore more or less cleaning of the review text and see how it
impacts the model skill.

� Training Diagnostics. Use the test dataset as a validation dataset during training and
create plots of train and test loss. Use these diagnostics to tune the batch size and number
of training epochs.

� Trigger Words. Explore whether there are specific words in reviews that are highly
predictive of the sentiment.

� Use Bigrams. Prepare the model to score bigrams of words and evaluate the performance
under different scoring schemes.

� Truncated Reviews. Explore how using a truncated version of the movie reviews results
impacts model skill, try truncating the start, end and middle of reviews.

� Ensemble Models. Create models with different word scoring schemes and see if using
ensembles of the models results in improves to model skill.

� Real Reviews. Train a final model on all data and evaluate the model on real movie
reviews taken from the internet.

If you explore any of these extensions, I’d love to know.

10.9 Further Reading

This section provides more resources on the topic if you are looking go deeper.
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10.9.1 Dataset

� Movie Review Data.
http://www.cs.cornell.edu/people/pabo/movie-review-data/

� A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based
on Minimum Cuts, 2004.
http://xxx.lanl.gov/abs/cs/0409058

� Movie Review Polarity Dataset.
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

10.9.2 APIs

� nltk.tokenize package API.
http://www.nltk.org/api/nltk.tokenize.html

� Chapter 2, Accessing Text Corpora and Lexical Resources.
http://www.nltk.org/book/ch02.html

� os API Miscellaneous operating system interfaces.
https://docs.python.org/3/library/os.html

� collections API - Container datatypes.
https://docs.python.org/3/library/collections.html

� Tokenizer Keras API.
https://keras.io/preprocessing/text/#tokenizer

10.10 Summary

In this tutorial, you discovered how to develop a bag-of-words model for predicting the sentiment
of movie reviews. Specifically, you learned:

� How to prepare the review text data for modeling with a restricted vocabulary.

� How to use the bag-of-words model to prepare train and test data.

� How to develop a Multilayer Perceptron bag-of-words model and use it to make predictions
on new review text data.

10.10.1 Next

This is the final chapter in the bag-of-words part. In the next part, you will discover how to
develop word embedding models.



Part V

Word Embeddings
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Chapter 11

The Word Embedding Model

Word embeddings are a type of word representation that allows words with similar meaning to
have a similar representation. They are a distributed representation for text that is perhaps one
of the key breakthroughs for the impressive performance of deep learning methods on challenging
natural language processing problems. In this chapter, you will discover the word embedding
approach for representing text data. After completing this chapter, you will know:

� What the word embedding approach for representing text is and how it differs from other
feature extraction methods.

� That there are 3 main algorithms for learning a word embedding from text data.

� That you can either train a new embedding or use a pre-trained embedding on your natural
language processing task.

Let’s get started.

11.1 Overview

This tutorial is divided into the following parts:

1. What Are Word Embeddings?

2. Word Embedding Algorithms

3. Using Word Embeddings

11.2 What Are Word Embeddings?

A word embedding is a learned representation for text where words that have the same meaning
have a similar representation. It is this approach to representing words and documents that may
be considered one of the key breakthroughs of deep learning on challenging natural language
processing problems.
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One of the benefits of using dense and low-dimensional vectors is computational:
the majority of neural network toolkits do not play well with very high-dimensional,
sparse vectors. ... The main benefit of the dense representations is generalization
power: if we believe some features may provide similar clues, it is worthwhile to
provide a representation that is able to capture these similarities.

— Page 92, Neural Network Methods in Natural Language Processing, 2017.

Word embeddings are in fact a class of techniques where individual words are represented as
real-valued vectors in a predefined vector space. Each word is mapped to one vector and the
vector values are learned in a way that resembles a neural network, and hence the technique is
often lumped into the field of deep learning.

Key to the approach is the idea of using a dense distributed representation for each word.
Each word is represented by a real-valued vector, often tens or hundreds of dimensions. This is
contrasted to the thousands or millions of dimensions required for sparse word representations,
such as a one hot encoding.

associate with each word in the vocabulary a distributed word feature vector ... The
feature vector represents different aspects of the word: each word is associated with
a point in a vector space. The number of features ... is much smaller than the size
of the vocabulary

— A Neural Probabilistic Language Model, 2003.

The distributed representation is learned based on the usage of words. This allows words
that are used in similar ways to result in having similar representations, naturally capturing
their meaning. This can be contrasted with the crisp but fragile representation in a bag-of-words
model where, unless explicitly managed, different words have different representations, regardless
of how they are used.

There is deeper linguistic theory behind the approach, namely the distributional hypothesis
by Zellig Harris that could be summarized as: words that have similar context will have similar
meanings. For more depth see Harris’ 1956 paper Distributional structure. This notion of letting
the usage of the word define its meaning can be summarized by an oft repeated quip by John
Firth:

You shall know a word by the company it keeps!

— Page 11, A synopsis of linguistic theory 1930-1955, in Studies in Linguistic Analysis
1930-1955, 1962.

11.3 Word Embedding Algorithms

Word embedding methods learn a real-valued vector representation for a predefined fixed sized
vocabulary from a corpus of text. The learning process is either joint with the neural network
model on some task, such as document classification, or is an unsupervised process, using
document statistics. This section reviews three techniques that can be used to learn a word
embedding from text data.
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11.3.1 Embedding Layer

An embedding layer, for lack of a better name, is a word embedding that is learned jointly
with a neural network model on a specific natural language processing task, such as language
modeling or document classification. It requires that document text be cleaned and prepared
such that each word is one hot encoded. The size of the vector space is specified as part of
the model, such as 50, 100, or 300 dimensions. The vectors are initialized with small random
numbers. The embedding layer is used on the front end of a neural network and is fit in a
supervised way using the Backpropagation algorithm.

... when the input to a neural network contains symbolic categorical features
(e.g. features that take one of k distinct symbols, such as words from a closed
vocabulary), it is common to associate each possible feature value (i.e., each word
in the vocabulary) with a d-dimensional vector for some d. These vectors are
then considered parameters of the model, and are trained jointly with the other
parameters.

— Page 49, Neural Network Methods in Natural Language Processing, 2017.

The one hot encoded words are mapped to the word vectors. If a Multilayer Perceptron
model is used, then the word vectors are concatenated before being fed as input to the model.
If a recurrent neural network is used, then each word may be taken as one input in a sequence.
This approach of learning an embedding layer requires a lot of training data and can be slow,
but will learn an embedding both targeted to the specific text data and the NLP task.

11.3.2 Word2Vec

Word2Vec is a statistical method for efficiently learning a standalone word embedding from a
text corpus. It was developed by Tomas Mikolov, et al. at Google in 2013 as a response to make
the neural-network-based training of the embedding more efficient and since then has become
the de facto standard for developing pre-trained word embedding.

Additionally, the work involved analysis of the learned vectors and the exploration of vector
math on the representations of words. For example, that subtracting the man-ness from King
and adding women-ness results in the word Queen, capturing the analogy king is to queen as
man is to woman.

We find that these representations are surprisingly good at capturing syntactic and
semantic regularities in language, and that each relationship is characterized by a
relation-specific vector offset. This allows vector-oriented reasoning based on the
offsets between words. For example, the male/female relationship is automatically
learned, and with the induced vector representations, King - Man + Woman results
in a vector very close to Queen.

— Linguistic Regularities in Continuous Space Word Representations, 2013.

Two different learning models were introduced that can be used as part of the Word2Vec
approach to learn the word embedding; they are:
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� Continuous Bag-of-Words, or CBOW model.

� Continuous Skip-Gram Model.

The CBOW model learns the embedding by predicting the current word based on its context.
The continuous skip-gram model learns by predicting the surrounding words given a current
word.

Figure 11.1: Word2Vec Training Models. Taken from Efficient Estimation of Word Representa-
tions in Vector Space, 2013

Both models are focused on learning about words given their local usage context, where the
context is defined by a window of neighboring words. This window is a configurable parameter
of the model.

The size of the sliding window has a strong effect on the resulting vector similarities.
Large windows tend to produce more topical similarities [...], while smaller windows
tend to produce more functional and syntactic similarities.

— Page 128, Neural Network Methods in Natural Language Processing, 2017.

The key benefit of the approach is that high-quality word embeddings can be learned
efficiently (low space and time complexity), allowing larger embeddings to be learned (more
dimensions) from much larger corpora of text (billions of words).

11.3.3 GloVe

The Global Vectors for Word Representation, or GloVe, algorithm is an extension to the
Word2Vec method for efficiently learning word vectors, developed by Pennington, et al. at
Stanford. Classical vector space model representations of words were developed using matrix
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factorization techniques such as Latent Semantic Analysis (LSA) that do a good job of using
global text statistics but are not as good as the learned methods like Word2Vec at capturing
meaning and demonstrating it on tasks like calculating analogies (e.g. the King and Queen
example above).

GloVe is an approach to marry both the global statistics of matrix factorization techniques
like LSA with the local context-based learning in Word2Vec. Rather than using a window to
define local context, GloVe constructs an explicit word-context or word co-occurrence matrix
using statistics across the whole text corpus. The result is a learning model that may result in
generally better word embeddings.

GloVe, is a new global log-bilinear regression model for the unsupervised learning of
word representations that outperforms other models on word analogy, word similarity,
and named entity recognition tasks.

— GloVe: Global Vectors for Word Representation, 2014.

11.4 Using Word Embeddings

You have some options when it comes time to using word embeddings on your natural language
processing project. This section outlines those options.

11.4.1 Learn an Embedding

You may choose to learn a word embedding for your problem. This will require a large amount
of text data to ensure that useful embeddings are learned, such as millions or billions of words.
You have two main options when training your word embedding:

� Learn it Standalone, where a model is trained to learn the embedding, which is saved
and used as a part of another model for your task later. This is a good approach if you
would like to use the same embedding in multiple models.

� Learn Jointly, where the embedding is learned as part of a large task-specific model.
This is a good approach if you only intend to use the embedding on one task.

11.4.2 Reuse an Embedding

It is common for researchers to make pre-trained word embeddings available for free, often under
a permissive license so that you can use them on your own academic or commercial projects. For
example, both Word2Vec and GloVe word embeddings are available for free download. These
can be used on your project instead of training your own embeddings from scratch. You have
two main options when it comes to using pre-trained embeddings:

� Static, where the embedding is kept static and is used as a component of your model.
This is a suitable approach if the embedding is a good fit for your problem and gives good
results.

� Updated, where the pre-trained embedding is used to seed the model, but the embedding
is updated jointly during the training of the model. This may be a good option if you are
looking to get the most out of the model and embedding on your task.
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11.4.3 Which Option Should You Use?

Explore the different options, and if possible, test to see which gives the best results on your
problem. Perhaps start with fast methods, like using a pre-trained embedding, and only use a
new embedding if it results in better performance on your problem.

11.5 Further Reading

This section provides more resources on the topic if you are looking go deeper.

11.5.1 Books

� Neural Network Methods in Natural Language Processing, 2017.
http://amzn.to/2wycQKA

11.5.2 Articles

� Word embedding on Wikipedia.
https://en.wikipedia.org/wiki/Word_embedding

� Word2Vec on Wikipedia.
https://en.wikipedia.org/wiki/Word2vec

� GloVe on Wikipedia
https://en.wikipedia.org/wiki/GloVe_(machine_learning)

� An overview of word embeddings and their connection to distributional semantic models,
2016.
http://blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/

� Deep Learning, NLP, and Representations, 2014.
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

11.5.3 Papers

� Distributional structure, 1956.
http://www.tandfonline.com/doi/pdf/10.1080/00437956.1954.11659520

� A Neural Probabilistic Language Model, 2003.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

� A Unified Architecture for Natural Language Processing: Deep Neural Networks with
Multitask Learning, 2008.
https://ronan.collobert.com/pub/matos/2008_nlp_icml.pdf

� Continuous space language models, 2007.
https://pdfs.semanticscholar.org/0fcc/184b3b90405ec3ceafd6a4007c749df7c363.

pdf
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� Efficient Estimation of Word Representations in Vector Space, 2013.
https://arxiv.org/pdf/1301.3781.pdf

� Distributed Representations of Words and Phrases and their Compositionality, 2013.
https://arxiv.org/pdf/1310.4546.pdf

� GloVe: Global Vectors for Word Representation, 2014.
https://nlp.stanford.edu/pubs/glove.pdf

11.5.4 Projects

� Word2Vec on Google Code.
https://code.google.com/archive/p/word2vec/

� GloVe: Global Vectors for Word Representation.
https://nlp.stanford.edu/projects/glove/

11.6 Summary

In this chapter, you discovered Word Embeddings as a representation method for text in deep
learning applications. Specifically, you learned:

� What the word embedding approach for representation text is and how it differs from
other feature extraction methods.

� That there are 3 main algorithms for learning a word embedding from text data.

� That you can either train a new embedding or use a pre-trained embedding on your natural
language processing task.

11.6.1 Next

In the next chapter, you will discover how you can train and manipulate word embeddings using
the Gensim Python library.



Chapter 12

How to Develop Word Embeddings
with Gensim

Word embeddings are a modern approach for representing text in natural language processing.
Embedding algorithms like Word2Vec and GloVe are key to the state-of-the-art results achieved
by neural network models on natural language processing problems like machine translation.
In this tutorial, you will discover how to train and load word embedding models for natural
language processing applications in Python using Gensim. After completing this tutorial, you
will know:

� How to train your own Word2Vec word embedding model on text data.

� How to visualize a trained word embedding model using Principal Component Analysis.

� How to load pre-trained Word2Vec and GloVe word embedding models from Google and
Stanford.

Let’s get started.

12.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Word Embeddings

2. Gensim Library

3. Develop Word2Vec Embedding

4. Visualize Word Embedding

5. Load Google’s Word2Vec Embedding

6. Load Stanford’s GloVe Embedding
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12.2 Word Embeddings

A word embedding is an approach to provide a dense vector representation of words that capture
something about their meaning. Word embeddings are an improvement over simpler bag-of-word
model word encoding schemes like word counts and frequencies that result in large and sparse
vectors (mostly 0 values) that describe documents but not the meaning of the words.

Word embeddings work by using an algorithm to train a set of fixed-length dense and
continuous-valued vectors based on a large corpus of text. Each word is represented by a
point in the embedding space and these points are learned and moved around based on the
words that surround the target word. It is defining a word by the company that it keeps that
allows the word embedding to learn something about the meaning of words. The vector space
representation of the words provides a projection where words with similar meanings are locally
clustered within the space.

The use of word embeddings over other text representations is one of the key methods that
has led to breakthrough performance with deep neural networks on problems like machine
translation. In this tutorial, we are going to look at how to use two different word embedding
methods called Word2Vec by researchers at Google and GloVe by researchers at Stanford.

12.3 Gensim Python Library

Gensim is an open source Python library for natural language processing, with a focus on topic
modeling. It is billed as “topic modeling for humans”. Gensim was developed and is maintained
by the Czech natural language processing researcher Radim Rehurek and his company RaRe
Technologies. It is not an everything-including-the-kitchen-sink NLP research library (like
NLTK); instead, Gensim is a mature, focused, and efficient suite of NLP tools for topic modeling.
Most notably for this tutorial, it supports an implementation of the Word2Vec word embedding
for learning new word vectors from text.

It also provides tools for loading pre-trained word embeddings in a few formats and for
making use and querying a loaded embedding. We will use the Gensim library in this tutorial.
Gensim can be installed easily using pip or easy install. For example, you can install Gensim
with pip by typing the following on your command line:

sudo pip install -U gensim

Listing 12.1: Install the Gensim library with pip.

If you need help installing Gensim on your system, you can see the Gensim Installation
Instructions (linked at the end of the chapter).

12.4 Develop Word2Vec Embedding

Word2Vec is one algorithm for learning a word embedding from a text corpus. There are two
main training algorithms that can be used to learn the embedding from text; they are Continuous
Bag-of-Words (CBOW) and skip grams. We will not get into the algorithms other than to say
that they generally look at a window of words for each target word to provide context and in
turn meaning for words. The approach was developed by Tomas Mikolov, formerly at Google
and currently at Facebook.
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Word2Vec models require a lot of text, e.g. the entire Wikipedia corpus. Nevertheless, we
will demonstrate the principles using a small in-memory example of text. Gensim provides the
Word2Vec class for working with a Word2Vec model. Learning a word embedding from text
involves loading and organizing the text into sentences and providing them to the constructor
of a new Word2Vec() instance. For example:

sentences = ...

model = Word2Vec(sentences)

Listing 12.2: Example of creating a Word2Vec model.

Specifically, each sentence must be tokenized, meaning divided into words and prepared (e.g.
perhaps pre-filtered and perhaps converted to a preferred case). The sentences could be text
loaded into memory, or an iterator that progressively loads text, required for very large text
corpora. There are many parameters on this constructor; a few noteworthy arguments you may
wish to configure are:

� size: (default 100) The number of dimensions of the embedding, e.g. the length of the
dense vector to represent each token (word).

� window: (default 5) The maximum distance between a target word and words around the
target word.

� min count: (default 5) The minimum count of words to consider when training the model;
words with an occurrence less than this count will be ignored.

� workers: (default 3) The number of threads to use while training.

� sg: (default 0 or CBOW) The training algorithm, either CBOW (0) or skip gram (1).

The defaults are often good enough when just getting started. If you have a lot of cores, as
most modern computers do, I strongly encourage you to increase workers to match the number
of cores (e.g. 8). After the model is trained, it is accessible via the wv attribute. This is the
actual word vector model in which queries can be made. For example, you can print the learned
vocabulary of tokens (words) as follows:

words = list(model.wv.vocab)

print(words)

Listing 12.3: Example of summarizing the words in the model vocabulary.

You can review the embedded vector for a specific token as follows:

print(model['word'])

Listing 12.4: Example of printing the embedding for a specific word.

Finally, a trained model can then be saved to file by calling the save word2vec format()

function on the word vector model. By default, the model is saved in a binary format to save
space. For example:

model.wv.save_word2vec_format('model.bin')

Listing 12.5: Example of saving a word embedding.
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When getting started, you can save the learned model in ASCII format and review the
contents. You can do this by setting binary=False when calling the save word2vec format()

function, for example:

model.wv.save_word2vec_format('model.txt', binary=False)

Listing 12.6: Example of saving a word embedding in ASCII format.

The saved model can then be loaded again by calling the Word2Vec.load() function. For
example:

model = Word2Vec.load('model.bin')

Listing 12.7: Example of loading a saved word embedding.

We can tie all of this together with a worked example. Rather than loading a large text
document or corpus from file, we will work with a small, in-memory list of pre-tokenized
sentences. The model is trained and the minimum count for words is set to 1 so that no words
are ignored. After the model is learned, we summarize, print the vocabulary, then print a single
vector for the word “sentence”. Finally, the model is saved to a file in binary format, loaded,
and then summarized.

from gensim.models import Word2Vec

# define training data

sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'],

['this', 'is', 'the', 'second', 'sentence'],

['yet', 'another', 'sentence'],

['one', 'more', 'sentence'],

['and', 'the', 'final', 'sentence']]

# train model

model = Word2Vec(sentences, min_count=1)

# summarize the loaded model

print(model)

# summarize vocabulary

words = list(model.wv.vocab)

print(words)

# access vector for one word

print(model['sentence'])

# save model

model.save('model.bin')

# load model

new_model = Word2Vec.load('model.bin')

print(new_model)

Listing 12.8: Example demonstrating the Word2Vec model in Gensim.

Running the example prints the following output.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Word2Vec(vocab=14, size=100, alpha=0.025)

['second', 'sentence', 'and', 'this', 'final', 'word2vec', 'for', 'another', 'one',

'first', 'more', 'the', 'yet', 'is']

[ -4.61881841e-03 -4.88735968e-03 -3.19508743e-03 4.08568839e-03

-3.38211656e-03 1.93076557e-03 3.90265253e-03 -1.04349572e-03
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4.14286414e-03 1.55219622e-03 3.85653134e-03 2.22428422e-03

-3.52565176e-03 2.82056746e-03 -2.11121864e-03 -1.38054823e-03

-1.12888147e-03 -2.87318649e-03 -7.99703528e-04 3.67874932e-03

2.68940022e-03 6.31021452e-04 -4.36326629e-03 2.38655557e-04

-1.94210222e-03 4.87691024e-03 -4.04118607e-03 -3.17813386e-03

4.94802603e-03 3.43150692e-03 -1.44031656e-03 4.25637932e-03

-1.15106850e-04 -3.73274647e-03 2.50349124e-03 4.28692997e-03

-3.57313151e-03 -7.24728088e-05 -3.46099050e-03 -3.39612062e-03

3.54845310e-03 1.56780297e-03 4.58260969e-04 2.52689526e-04

3.06256465e-03 2.37558200e-03 4.06933809e-03 2.94650183e-03

-2.96231941e-03 -4.47433954e-03 2.89590308e-03 -2.16034567e-03

-2.58548348e-03 -2.06163677e-04 1.72605237e-03 -2.27384618e-04

-3.70194600e-03 2.11557443e-03 2.03793868e-03 3.09839356e-03

-4.71800892e-03 2.32995977e-03 -6.70911541e-05 1.39375112e-03

-3.84263694e-03 -1.03898917e-03 4.13251948e-03 1.06330717e-03

1.38514000e-03 -1.18144893e-03 -2.60811858e-03 1.54952740e-03

2.49916781e-03 -1.95435272e-03 8.86975031e-05 1.89820060e-03

-3.41996481e-03 -4.08187555e-03 5.88635216e-04 4.13103355e-03

-3.25899688e-03 1.02130906e-03 -3.61028523e-03 4.17646067e-03

4.65870230e-03 3.64110398e-04 4.95479070e-03 -1.29743712e-03

-5.03367570e-04 -2.52546836e-03 3.31060472e-03 -3.12870182e-03

-1.14580349e-03 -4.34387522e-03 -4.62882593e-03 3.19007039e-03

2.88707414e-03 1.62976081e-04 -6.05802808e-04 -1.06368808e-03]

Word2Vec(vocab=14, size=100, alpha=0.025)

Listing 12.9: Example output of the Word2Vec model in Gensim.

You can see that with a little work to prepare your text document, you can create your own
word embedding very easily with Gensim.

12.5 Visualize Word Embedding

After you learn word embedding for your text data, it can be nice to explore it with visualization.
You can use classical projection methods to reduce the high-dimensional word vectors to two-
dimensional plots and plot them on a graph. The visualizations can provide a qualitative
diagnostic for your learned model. We can retrieve all of the vectors from a trained model as
follows:

X = model[model.wv.vocab]

Listing 12.10: Access the model vocabulary.

We can then train a projection method on the vectors, such as those methods offered in
scikit-learn, then use Matplotlib to plot the projection as a scatter plot. Let’s look at an example
with Principal Component Analysis or PCA.

12.5.1 Plot Word Vectors Using PCA

We can create a 2-dimensional PCA model of the word vectors using the scikit-learn PCA class
as follows.

pca = PCA(n_components=2)

result = pca.fit_transform(X)
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Listing 12.11: Example of fitting a 2D PCA model to the word vectors.

The resulting projection can be plotted using Matplotlib as follows, pulling out the two
dimensions as x and y coordinates.

pyplot.scatter(result[:, 0], result[:, 1])

Listing 12.12: Example of plotting a scatter plot of the PCA vectors.

We can go one step further and annotate the points on the graph with the words themselves.
A crude version without any nice offsets looks as follows.

words = list(model.wv.vocab)

for i, word in enumerate(words):

pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))

Listing 12.13: Example of plotting words on the scatter plot.

Putting this all together with the model from the previous section, the complete example is
listed below.

from gensim.models import Word2Vec

from sklearn.decomposition import PCA

from matplotlib import pyplot

# define training data

sentences = [['this', 'is', 'the', 'first', 'sentence', 'for', 'word2vec'],

['this', 'is', 'the', 'second', 'sentence'],

['yet', 'another', 'sentence'],

['one', 'more', 'sentence'],

['and', 'the', 'final', 'sentence']]

# train model

model = Word2Vec(sentences, min_count=1)

# fit a 2d PCA model to the vectors

X = model[model.wv.vocab]

pca = PCA(n_components=2)

result = pca.fit_transform(X)

# create a scatter plot of the projection

pyplot.scatter(result[:, 0], result[:, 1])

words = list(model.wv.vocab)

for i, word in enumerate(words):

pyplot.annotate(word, xy=(result[i, 0], result[i, 1]))

pyplot.show()

Listing 12.14: Example demonstrating how to plot word vectors.

Running the example creates a scatter plot with the dots annotated with the words. It is
hard to pull much meaning out of the graph given such a tiny corpus was used to fit the model.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.
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Figure 12.1: Scatter Plot of PCA Projection of Word2Vec Model

12.6 Load Google’s Word2Vec Embedding

Training your own word vectors may be the best approach for a given NLP problem. But it
can take a long time, a fast computer with a lot of RAM and disk space, and perhaps some
expertise in finessing the input data and training algorithm. An alternative is to simply use an
existing pre-trained word embedding. Along with the paper and code for Word2Vec, Google
also published a pre-trained Word2Vec model on the Word2Vec Google Code Project.

A pre-trained model is nothing more than a file containing tokens and their associated word
vectors. The pre-trained Google Word2Vec model was trained on Google news data (about 100
billion words); it contains 3 million words and phrases and was fit using 300-dimensional word
vectors. It is a 1.53 Gigabyte file. You can download it from here:

� GoogleNews-vectors-negative300.bin.gz.
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing

Unzipped, the binary file (GoogleNews-vectors-negative300.bin) is 3.4 Gigabytes. The
Gensim library provides tools to load this file. Specifically, you can call the
KeyedVectors.load word2vec format() function to load this model into memory, for example:

from gensim.models import KeyedVectors
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filename = 'GoogleNews-vectors-negative300.bin'

model = KeyedVectors.load_word2vec_format(filename, binary=True)

Listing 12.15: Example of loading the Google word vectors in Gensim.

Note, this example may require a workstation with 8 or more Gigabytes of RAM to execute.
On my modern workstation, it takes about 43 seconds to load. Another interesting thing that
you can do is do a little linear algebra arithmetic with words. For example, a popular example
described in lectures and introduction papers is:

queen = (king - man) + woman

Listing 12.16: Example of arithmetic of word vectors.

That is the word queen is the closest word given the subtraction of the notion of man from
king and adding the word woman. The man-ness in king is replaced with woman-ness to give
us queen. A very cool concept. Gensim provides an interface for performing these types of
operations in the most similar() function on the trained or loaded model. For example:

result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)

print(result)

Listing 12.17: Example of arithmetic of word vectors in Gensim.

We can put all of this together as follows.

from gensim.models import KeyedVectors

# load the google word2vec model

filename = 'GoogleNews-vectors-negative300.bin'

model = KeyedVectors.load_word2vec_format(filename, binary=True)

# calculate: (king - man) + woman = ?

result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)

print(result)

Listing 12.18: Example demonstrating arithmetic with Google word vectors.

Running the example loads the Google pre-trained Word2Vec model and then calculates the
(king - man) + woman = ? operation on the word vectors for those words. The answer, as we
would expect, is queen.

[('queen', 0.7118192315101624)]

Listing 12.19: Output of arithmetic with Google word vectors.

See some of the articles in the further reading section for more interesting arithmetic examples
that you can explore.

12.7 Load Stanford’s GloVe Embedding

Stanford researchers also have their own word embedding algorithm like Word2Vec called Global
Vectors for Word Representation, or GloVe for short. I won’t get into the details of the differences
between Word2Vec and GloVe here, but generally, NLP practitioners seem to prefer GloVe at
the moment based on results.

Like Word2Vec, the GloVe researchers also provide pre-trained word vectors, in this case, a
great selection to choose from. You can download the GloVe pre-trained word vectors and load
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them easily with Gensim. The first step is to convert the GloVe file format to the Word2Vec file
format. The only difference is the addition of a small header line. This can be done by calling
the glove2word2vec() function. For example (note, this example is just a demonstration with
a mock input filename):

from gensim.scripts.glove2word2vec import glove2word2vec

glove_input_file = 'glove.txt'

word2vec_output_file = 'word2vec.txt'

glove2word2vec(glove_input_file, word2vec_output_file)

Listing 12.20: Example of converting a file from GloVe to Word2Vec format.

Once converted, the file can be loaded just like Word2Vec file above. Let’s make this concrete
with an example. You can download the smallest GloVe pre-trained model from the GloVe
website. It an 822 Megabyte zip file with 4 different models (50, 100, 200 and 300-dimensional
vectors) trained on Wikipedia data with 6 billion tokens and a 400,000 word vocabulary. The
direct download link is here:

� glove.6B.zip.
http://nlp.stanford.edu/data/glove.6B.zip

Working with the 100-dimensional version of the model, we can convert the file to Word2Vec
format as follows:

from gensim.scripts.glove2word2vec import glove2word2vec

glove_input_file = 'glove.6B.100d.txt'

word2vec_output_file = 'glove.6B.100d.txt.word2vec'

glove2word2vec(glove_input_file, word2vec_output_file)

Listing 12.21: Example of converting a specific GloVe file to Word2Vec format.

You now have a copy of the GloVe model in Word2Vec format with the filename
glove.6B.100d.txt.word2vec. Now we can load it and perform the same (king - man) +

woman = ? test as in the previous section. The complete code listing is provided below. Note
that the converted file is ASCII format, not binary, so we set binary=False when loading.

from gensim.models import KeyedVectors

# load the Stanford GloVe model

filename = 'glove.6B.100d.txt.word2vec'

model = KeyedVectors.load_word2vec_format(filename, binary=False)

# calculate: (king - man) + woman = ?

result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)

print(result)

Listing 12.22: Example of arithmetic with converted GloVe word vectors.

Pulling all of this together, the complete example is listed below.

from gensim.models import KeyedVectors

from gensim.scripts.glove2word2vec import glove2word2vec

# convert glove to word2vec format

glove_input_file = 'glove.6B.100d.txt'

word2vec_output_file = 'glove.6B.100d.txt.word2vec'

glove2word2vec(glove_input_file, word2vec_output_file)
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# load the converted model

filename = 'glove.6B.100d.txt.word2vec'

model = KeyedVectors.load_word2vec_format(filename, binary=False)

# calculate: (king - man) + woman = ?

result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)

print(result)

Listing 12.23: Example demonstrating how to load and use GloVe word embeddings.

Running the example prints the same result of queen.

[('queen', 0.7698540687561035)]

Listing 12.24: Example output of arithmetic with converted GloVe word vectors.

12.8 Further Reading

This section provides more resources on the topic if you are looking go deeper.

12.8.1 Word Embeddings

� Word Embedding on Wikipedia.
https://en.wikipedia.org/wiki/Word2vec

� Word2Vec on Wikipedia.
https://en.wikipedia.org/wiki/Word2vec

� Google Word2Vec project.
https://code.google.com/archive/p/word2vec/

� Stanford GloVe project.
https://nlp.stanford.edu/projects/glove/

12.8.2 Gensim

� Gensim Python Library.
https://radimrehurek.com/gensim/index.html

� Gensim Installation Instructions.
https://radimrehurek.com/gensim/install.html

� models.word2vec Gensim API.
https://radimrehurek.com/gensim/models/keyedvectors.html

� models.keyedvectors Gensim API.
https://radimrehurek.com/gensim/models/keyedvectors.html

� scripts.glove2word2vec Gensim API.
https://radimrehurek.com/gensim/scripts/glove2word2vec.html
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12.8.3 Articles

� Messing Around With Word2Vec, 2016.
https://quomodocumque.wordpress.com/2016/01/15/messing-around-with-word2vec/

� Vector Space Models for the Digital Humanities, 2015.
http://bookworm.benschmidt.org/posts/2015-10-25-Word-Embeddings.html

� Gensim Word2Vec Tutorial, 2014.
https://rare-technologies.com/word2vec-tutorial/

12.9 Summary

In this tutorial, you discovered how to develop and load word embedding layers in Python using
Gensim. Specifically, you learned:

� How to train your own Word2Vec word embedding model on text data.

� How to visualize a trained word embedding model using Principal Component Analysis.

� How to load pre-trained Word2Vec and GloVe word embedding models from Google and
Stanford.

12.9.1 Next

In the next chapter, you will discover how you can develop a neural network model with a
learned word embedding.



Chapter 13

How to Learn and Load Word
Embeddings in Keras

Word embeddings provide a dense representation of words and their relative meanings. They are
an improvement over sparse representations used in simpler bag of word model representations.
Word embeddings can be learned from text data and reused among projects. They can also be
learned as part of fitting a neural network on text data. In this tutorial, you will discover how
to use word embeddings for deep learning in Python with Keras. After completing this tutorial,
you will know:

� About word embeddings and that Keras supports word embeddings via the Embedding

layer.

� How to learn a word embedding while fitting a neural network.

� How to use a pre-trained word embedding in a neural network.

Let’s get started.

13.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Word Embedding

2. Keras Embedding Layer

3. Example of Learning an Embedding

4. Example of Using Pre-Trained GloVe Embedding

5. Tips for Cleaning Text for Word Embedding

133
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13.2 Word Embedding

A word embedding is a class of approaches for representing words and documents using a
dense vector representation. It is an improvement over more the traditional bag-of-word model
encoding schemes where large sparse vectors were used to represent each word or to score each
word within a vector to represent an entire vocabulary. These representations were sparse
because the vocabularies were vast and a given word or document would be represented by a
large vector comprised mostly of zero values.

Instead, in an embedding, words are represented by dense vectors where a vector represents
the projection of the word into a continuous vector space. The position of a word within the
vector space is learned from text and is based on the words that surround the word when it is
used. The position of a word in the learned vector space is referred to as its embedding. Two
popular examples of methods of learning word embeddings from text include:

� Word2Vec.

� GloVe.

In addition to these carefully designed methods, a word embedding can be learned as part
of a deep learning model. This can be a slower approach, but tailors the model to a specific
training dataset.

13.3 Keras Embedding Layer

Keras offers an Embedding layer that can be used for neural networks on text data. It requires
that the input data be integer encoded, so that each word is represented by a unique integer.
This data preparation step can be performed using the Tokenizer API also provided with
Keras.

The Embedding layer is initialized with random weights and will learn an embedding for all
of the words in the training dataset. It is a flexible layer that can be used in a variety of ways,
such as:

� It can be used alone to learn a word embedding that can be saved and used in another
model later.

� It can be used as part of a deep learning model where the embedding is learned along
with the model itself.

� It can be used to load a pre-trained word embedding model, a type of transfer learning.

The Embedding layer is defined as the first hidden layer of a network. It must specify 3
arguments:

� input dim: This is the size of the vocabulary in the text data. For example, if your data
is integer encoded to values between 0-10, then the size of the vocabulary would be 11
words.
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� output dim: This is the size of the vector space in which words will be embedded. It
defines the size of the output vectors from this layer for each word. For example, it could
be 32 or 100 or even larger. Test different values for your problem.

� input length: This is the length of input sequences, as you would define for any input
layer of a Keras model. For example, if all of your input documents are comprised of 1000
words, this would be 1000.

For example, below we define an Embedding layer with a vocabulary of 200 (e.g. integer
encoded words from 0 to 199, inclusive), a vector space of 32 dimensions in which words will be
embedded, and input documents that have 50 words each.

e = Embedding(200, 32, input_length=50)

Listing 13.1: Example of creating a word embedding layer.

The Embedding layer has weights that are learned. If you save your model to file, this will
include weights for the Embedding layer. The output of the Embedding layer is a 2D vector with
one embedding for each word in the input sequence of words (input document). If you wish
to connect a Dense layer directly to an Embedding layer, you must first flatten the 2D output
matrix to a 1D vector using the Flatten layer. Now, let’s see how we can use an Embedding

layer in practice.

13.4 Example of Learning an Embedding

In this section, we will look at how we can learn a word embedding while fitting a neural
network on a text classification problem. We will define a small problem where we have 10
text documents, each with a comment about a piece of work a student submitted. Each text
document is classified as positive 1 or negative 0. This is a simple sentiment analysis problem.
First, we will define the documents and their class labels.

# define documents

docs = ['Well done!',

'Good work',

'Great effort',

'nice work',

'Excellent!',

'Weak',

'Poor effort!',

'not good',

'poor work',

'Could have done better.']

# define class labels

labels = [1,1,1,1,1,0,0,0,0,0]

Listing 13.2: Example of a small contrived classification problem.

Next, we can integer encode each document. This means that as input the Embedding layer
will have sequences of integers. We could experiment with other more sophisticated bag of word
model encoding like counts or TF-IDF. Keras provides the one hot() function that creates a
hash of each word as an efficient integer encoding. We will estimate the vocabulary size of 50,
which is much larger than needed to reduce the probability of collisions from the hash function.
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# integer encode the documents

vocab_size = 50

encoded_docs = [one_hot(d, vocab_size) for d in docs]

print(encoded_docs)

Listing 13.3: Integer encode the text.

The sequences have different lengths and Keras prefers inputs to be vectorized and all inputs
to have the same length. We will pad all input sequences to have the length of 4. Again, we can
do this with a built in Keras function, in this case the pad sequences() function.

# pad documents to a max length of 4 words

max_length = 4

padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post')

print(padded_docs)

Listing 13.4: Pad the encoded text.

We are now ready to define our Embedding layer as part of our neural network model.
The Embedding layer has a vocabulary of 50 and an input length of 4. We will choose a
small embedding space of 8 dimensions. The model is a simple binary classification model.
Importantly, the output from the Embedding layer will be 4 vectors of 8 dimensions each, one
for each word. We flatten this to a one 32-element vector to pass on to the Dense output layer.

# define the model

model = Sequential()

model.add(Embedding(vocab_size, 8, input_length=max_length))

model.add(Flatten())

model.add(Dense(1, activation='sigmoid'))

# compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

# summarize the model

model.summary()

Listing 13.5: Define a simple model with an Embedding input.

Finally, we can fit and evaluate the classification model.

# fit the model

model.fit(padded_docs, labels, epochs=50, verbose=0)

# evaluate the model

loss, accuracy = model.evaluate(padded_docs, labels, verbose=0)

print('Accuracy: %f' % (accuracy*100))

Listing 13.6: Fit the defined model and print model accuracy.

The complete code listing is provided below.

from keras.preprocessing.text import one_hot

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers.embeddings import Embedding

# define documents

docs = ['Well done!',

'Good work',
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'Great effort',

'nice work',

'Excellent!',

'Weak',

'Poor effort!',

'not good',

'poor work',

'Could have done better.']

# define class labels

labels = [1,1,1,1,1,0,0,0,0,0]

# integer encode the documents

vocab_size = 50

encoded_docs = [one_hot(d, vocab_size) for d in docs]

print(encoded_docs)

# pad documents to a max length of 4 words

max_length = 4

padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post')

print(padded_docs)

# define the model

model = Sequential()

model.add(Embedding(vocab_size, 8, input_length=max_length))

model.add(Flatten())

model.add(Dense(1, activation='sigmoid'))

# compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

# summarize the model

model.summary()

# fit the model

model.fit(padded_docs, labels, epochs=50, verbose=0)

# evaluate the model

loss, accuracy = model.evaluate(padded_docs, labels, verbose=0)

print('Accuracy: %f' % (accuracy*100))

Listing 13.7: Example of fitting and evaluating a Keras model with an Embedding input layer.

Running the example first prints the integer encoded documents.

[[6, 16], [42, 24], [2, 17], [42, 24], [18], [17], [22, 17], [27, 42], [22, 24], [49, 46,

16, 34]]

Listing 13.8: Example output of the encoded documents.

Then the padded versions of each document are printed, making them all uniform length.

[[ 6 16 0 0]

[42 24 0 0]

[ 2 17 0 0]

[42 24 0 0]

[18 0 0 0]

[17 0 0 0]

[22 17 0 0]

[27 42 0 0]

[22 24 0 0]

[49 46 16 34]]

Listing 13.9: Example output of the padded encoded documents.
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After the network is defined, a summary of the layers is printed. We can see that as expected,
the output of the Embedding layer is a 4 x 8 matrix and this is squashed to a 32-element vector
by the Flatten layer.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding_1 (Embedding) (None, 4, 8) 400

_________________________________________________________________

flatten_1 (Flatten) (None, 32) 0

_________________________________________________________________

dense_1 (Dense) (None, 1) 33

=================================================================

Total params: 433

Trainable params: 433

Non-trainable params: 0

_________________________________________________________________

Listing 13.10: Example output of the model summary.

Finally, the accuracy of the trained model is printed, showing that it learned the training
dataset perfectly (which is not surprising).

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Accuracy: 100.000000

Listing 13.11: Example output of the model accuracy.

You could save the learned weights from the Embedding layer to file for later use in other
models. You could also use this model generally to classify other documents that have the
same kind vocabulary seen in the test dataset. Next, let’s look at loading a pre-trained word
embedding in Keras.

13.5 Example of Using Pre-Trained GloVe Embedding

The Keras Embedding layer can also use a word embedding learned elsewhere. It is common
in the field of Natural Language Processing to learn, save, and make freely available word
embeddings. For example, the researchers behind GloVe method provide a suite of pre-trained
word embeddings on their website released under a public domain license.

The smallest package of embeddings is 822 Megabytes, called glove.6B.zip. It was trained
on a dataset of one billion tokens (words) with a vocabulary of 400 thousand words. There
are a few different embedding vector sizes, including 50, 100, 200 and 300 dimensions. You
can download this collection of embeddings and we can seed the Keras Embedding layer with
weights from the pre-trained embedding for the words in your training dataset.

This example is inspired by an example in the Keras project: pretrained word embeddings.py.
After downloading and unzipping, you will see a few files, one of which is glove.6B.100d.txt,
which contains a 100-dimensional version of the embedding. If you peek inside the file, you will
see a token (word) followed by the weights (100 numbers) on each line. For example, below are
the first line of the embedding ASCII text file showing the embedding for the.
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the -0.038194 -0.24487 0.72812 -0.39961 0.083172 0.043953 -0.39141 0.3344 -0.57545 0.087459

0.28787 -0.06731 0.30906 -0.26384 -0.13231 -0.20757 0.33395 -0.33848 -0.31743 -0.48336

0.1464 -0.37304 0.34577 0.052041 0.44946 -0.46971 0.02628 -0.54155 -0.15518 -0.14107

-0.039722 0.28277 0.14393 0.23464 -0.31021 0.086173 0.20397 0.52624 0.17164 -0.082378

-0.71787 -0.41531 0.20335 -0.12763 0.41367 0.55187 0.57908 -0.33477 -0.36559 -0.54857

-0.062892 0.26584 0.30205 0.99775 -0.80481 -3.0243 0.01254 -0.36942 2.2167 0.72201

-0.24978 0.92136 0.034514 0.46745 1.1079 -0.19358 -0.074575 0.23353 -0.052062 -0.22044

0.057162 -0.15806 -0.30798 -0.41625 0.37972 0.15006 -0.53212 -0.2055 -1.2526 0.071624

0.70565 0.49744 -0.42063 0.26148 -1.538 -0.30223 -0.073438 -0.28312 0.37104 -0.25217

0.016215 -0.017099 -0.38984 0.87424 -0.72569 -0.51058 -0.52028 -0.1459 0.8278 0.27062

Listing 13.12: Example GloVe word vector for the word ’the’.

As in the previous section, the first step is to define the examples, encode them as integers,
then pad the sequences to be the same length. In this case, we need to be able to map words to
integers as well as integers to words. Keras provides a Tokenizer class that can be fit on the
training data, can convert text to sequences consistently by calling the texts to sequences()

method on the Tokenizer class, and provides access to the dictionary mapping of words to
integers in a word index attribute.

# define documents

docs = ['Well done!',

'Good work',

'Great effort',

'nice work',

'Excellent!',

'Weak',

'Poor effort!',

'not good',

'poor work',

'Could have done better.']

# define class labels

labels = [1,1,1,1,1,0,0,0,0,0]

# prepare tokenizer

t = Tokenizer()

t.fit_on_texts(docs)

vocab_size = len(t.word_index) + 1

# integer encode the documents

encoded_docs = t.texts_to_sequences(docs)

print(encoded_docs)

# pad documents to a max length of 4 words

max_length = 4

padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post')

print(padded_docs)

Listing 13.13: Define encode and pad sample documents.

Next, we need to load the entire GloVe word embedding file into memory as a dictionary of
word to embedding array.

# load the whole embedding into memory

embeddings_index = dict()

f = open('glove.6B.100d.txt')

for line in f:

values = line.split()

word = values[0]
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coefs = asarray(values[1:], dtype='float32')

embeddings_index[word] = coefs

f.close()

print('Loaded %s word vectors.' % len(embeddings_index))

Listing 13.14: Load the GloVe word embedding into memory.

This is pretty slow. It might be better to filter the embedding for the unique words in your
training data. Next, we need to create a matrix of one embedding for each word in the training
dataset. We can do that by enumerating all unique words in the Tokenizer.word index and
locating the embedding weight vector from the loaded GloVe embedding. The result is a matrix
of weights only for words we will see during training.

# create a weight matrix for words in training docs

embedding_matrix = zeros((vocab_size, 100))

for word, i in t.word_index.items():

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

Listing 13.15: Covert the word embedding into a weight matrix.

Now we can define our model, fit, and evaluate it as before. The key difference is that
the Embedding layer can be seeded with the GloVe word embedding weights. We chose the
100-dimensional version, therefore the Embedding layer must be defined with output dim set to
100. Finally, we do not want to update the learned word weights in this model, therefore we
will set the trainable attribute for the model to be False.

e = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=4, trainable=False)

Listing 13.16: Create an Embedding layer with the pre-loaded weights.

The complete worked example is listed below.

from numpy import asarray

from numpy import zeros

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Embedding

# define documents

docs = ['Well done!',

'Good work',

'Great effort',

'nice work',

'Excellent!',

'Weak',

'Poor effort!',

'not good',

'poor work',

'Could have done better.']

# define class labels

labels = [1,1,1,1,1,0,0,0,0,0]

# prepare tokenizer

t = Tokenizer()
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t.fit_on_texts(docs)

vocab_size = len(t.word_index) + 1

# integer encode the documents

encoded_docs = t.texts_to_sequences(docs)

print(encoded_docs)

# pad documents to a max length of 4 words

max_length = 4

padded_docs = pad_sequences(encoded_docs, maxlen=max_length, padding='post')

print(padded_docs)

# load the whole embedding into memory

embeddings_index = dict()

f = open('glove.6B.100d.txt', mode='rt', encoding='utf-8')

for line in f:

values = line.split()

word = values[0]

coefs = asarray(values[1:], dtype='float32')

embeddings_index[word] = coefs

f.close()

print('Loaded %s word vectors.' % len(embeddings_index))

# create a weight matrix for words in training docs

embedding_matrix = zeros((vocab_size, 100))

for word, i in t.word_index.items():

embedding_vector = embeddings_index.get(word)

if embedding_vector is not None:

embedding_matrix[i] = embedding_vector

# define model

model = Sequential()

e = Embedding(vocab_size, 100, weights=[embedding_matrix], input_length=4, trainable=False)

model.add(e)

model.add(Flatten())

model.add(Dense(1, activation='sigmoid'))

# compile the model

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])

# summarize the model

model.summary()

# fit the model

model.fit(padded_docs, labels, epochs=50, verbose=0)

# evaluate the model

loss, accuracy = model.evaluate(padded_docs, labels, verbose=0)

print('Accuracy: %f' % (accuracy*100))

Listing 13.17: Example loading pre-trained GloVe weights into an Embedding input layer.

Running the example may take a bit longer, but then demonstrates that it is just as capable
of fitting this simple problem.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

...

Accuracy: 100.000000

Listing 13.18: Example output of loading pre-trained GloVe weights into an Embedding input
layer.
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In practice, I would encourage you to experiment with learning a word embedding using
a pre-trained embedding that is fixed and trying to perform learning on top of a pre-trained
embedding. See what works best for your specific problem.

13.6 Tips for Cleaning Text for Word Embedding

Recently, the field of natural language processing has been moving away from bag-of-word
models and word encoding toward word embeddings. The benefit of word embeddings is that
they encode each word into a dense vector that captures something about its relative meaning
within the training text. This means that variations of words like case, spelling, punctuation,
and so on will automatically be learned to be similar in the embedding space. In turn, this
can mean that the amount of cleaning required from your text may be less and perhaps quite
different to classical text cleaning. For example, it may no-longer make sense to stem words or
remove punctuation for contractions.

Tomas Mikolov is one of the developers of Word2Vec, a popular word embedding method.
He suggests only very minimal text cleaning is required when learning a word embedding model.
Below is his response when pressed with the question about how to best prepare text data for
Word2Vec.

There is no universal answer. It all depends on what you plan to use the vectors
for. In my experience, it is usually good to disconnect (or remove) punctuation from
words, and sometimes also convert all characters to lowercase. One can also replace
all numbers (possibly greater than some constant) with some single token such as .

All these pre-processing steps aim to reduce the vocabulary size without removing
any important content (which in some cases may not be true when you lowercase
certain words, ie. ‘Bush’ is different than ‘bush’, while ‘Another’ has usually the
same sense as ‘another’). The smaller the vocabulary is, the lower is the memory
complexity, and the more robustly are the parameters for the words estimated. You
also have to pre-process the test data in the same way.

[...]

In short, you will understand all this much better if you will run experiments.

— Tomas Mikolov, word2vec-toolkit: google groups thread., 2015.
https://goo.gl/KtDGst

13.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Word Embedding on Wikipedia.
https://en.wikipedia.org/wiki/Word_embedding

� Keras Embedding Layer API.
https://keras.io/layers/embeddings/#embedding



13.8. Summary 143

� Using pre-trained word embeddings in a Keras model, 2016.
https://blog.keras.io/using-pre-trained-word-embeddings-in-a-keras-model.html

� Example of using a pre-trained GloVe Embedding in Keras.
https://github.com/fchollet/keras/blob/master/examples/pretrained_word_embeddings.

py

� GloVe Embedding.
https://nlp.stanford.edu/projects/glove/

� An overview of word embeddings and their connection to distributional semantic models,
2016.
http://blog.aylien.com/overview-word-embeddings-history-word2vec-cbow-glove/

� Deep Learning, NLP, and Representations, 2014.
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

13.8 Summary

In this tutorial, you discovered how to use word embeddings for deep learning in Python with
Keras. Specifically, you learned:

� About word embeddings and that Keras supports word embeddings via the Embedding

layer.

� How to learn a word embedding while fitting a neural network.

� How to use a pre-trained word embedding in a neural network.

13.8.1 Next

This is the end of the part on word embeddings. In the next part you will discover neural text
classification.
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Chapter 14

Neural Models for Document
Classification

Text classification describes a general class of problems such as predicting the sentiment of
tweets and movie reviews, as well as classifying email as spam or not. Deep learning methods are
proving very good at text classification, achieving state-of-the-art results on a suite of standard
academic benchmark problems. In this chapter, you will discover some best practices to consider
when developing deep learning models for text classification. After reading this chapter, you
will know:

� The general combination of deep learning methods to consider when starting your text
classification problems.

� The first architecture to try with specific advice on how to configure hyperparameters.

� That deeper networks may be the future of the field in terms of flexibility and capability.

Let’s get started.

14.1 Overview

This tutorial is divided into the following parts:

1. Word Embeddings + CNN = Text Classification

2. Use a Single Layer CNN Architecture

3. Dial in CNN Hyperparameters

4. Consider Character-Level CNNs

5. Consider Deeper CNNs for Classification
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14.2 Word Embeddings + CNN = Text Classification

The modus operandi for text classification involves the use of a word embedding for representing
words and a Convolutional Neural Network (CNN) for learning how to discriminate documents
on classification problems. Yoav Goldberg, in his primer on deep learning for natural language
processing, comments that neural networks in general offer better performance than classical
linear classifiers, especially when used with pre-trained word embeddings.

The non-linearity of the network, as well as the ability to easily integrate pre-trained
word embeddings, often lead to superior classification accuracy.

— A Primer on Neural Network Models for Natural Language Processing, 2015.

He also comments that convolutional neural networks are effective at document classification,
namely because they are able to pick out salient features (e.g. tokens or sequences of tokens) in
a way that is invariant to their position within the input sequences.

Networks with convolutional and pooling layers are useful for classification tasks in
which we expect to find strong local clues regarding class membership, but these
clues can appear in different places in the input. [...] We would like to learn that
certain sequences of words are good indicators of the topic, and do not necessarily
care where they appear in the document. Convolutional and pooling layers allow
the model to learn to find such local indicators, regardless of their position.

— A Primer on Neural Network Models for Natural Language Processing, 2015.

The architecture is therefore comprised of three key pieces:

� Word Embedding: A distributed representation of words where different words that
have a similar meaning (based on their usage) also have a similar representation.

� Convolutional Model: A feature extraction model that learns to extract salient features
from documents represented using a word embedding.

� Fully Connected Model: The interpretation of extracted features in terms of a predictive
output.

Yoav Goldberg highlights the CNNs role as a feature extractor model in his book:

... the CNN is in essence a feature-extracting architecture. It does not constitute a
standalone, useful network on its own, but rather is meant to be integrated into a
larger network, and to be trained to work in tandem with it in order to produce an
end result. The CNNs layer’s responsibility is to extract meaningful sub-structures
that are useful for the overall prediction task at hand.

— Page 152, Neural Network Methods for Natural Language Processing, 2017.

The tying together of these three elements is demonstrated in perhaps one of the most widely
cited examples of the combination, described in the next section.
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14.3 Use a Single Layer CNN Architecture

You can get good results for document classification with a single layer CNN, perhaps with
differently sized kernels across the filters to allow grouping of word representations at different
scales. Yoon Kim in his study of the use of pre-trained word vectors for classification tasks with
Convolutional Neural Networks found that using pre-trained static word vectors does very well.
He suggests that pre-trained word embeddings that were trained on very large text corpora,
such as the freely available Word2Vec vectors trained on 100 billion tokens from Google news
may offer good universal features for use in natural language processing.

Despite little tuning of hyperparameters, a simple CNN with one layer of convolution
performs remarkably well. Our results add to the well-established evidence that
unsupervised pre-training of word vectors is an important ingredient in deep learning
for NLP

— Convolutional Neural Networks for Sentence Classification, 2014.

He also discovered that further task-specific tuning of the word vectors offer a small additional
improvement in performance. Kim describes the general approach of using CNN for natural
language processing. Sentences are mapped to embedding vectors and are available as a matrix
input to the model. Convolutions are performed across the input word-wise using differently
sized kernels, such as 2 or 3 words at a time. The resulting feature maps are then processed
using a max pooling layer to condense or summarize the extracted features.

The architecture is based on the approach used by Ronan Collobert, et al. in their paper
Natural Language Processing (almost) from Scratch, 2011. In it, they develop a single end-to-end
neural network model with convolutional and pooling layers for use across a range of fundamental
natural language processing problems. Kim provides a diagram that helps to see the sampling
of the filters using differently sized kernels as different colors (red and yellow).

Figure 14.1: An example of a CNN Filter and Polling Architecture for Natural Language
Processing. Taken from Convolutional Neural Networks for Sentence Classification.

Usefully, he reports his chosen model configuration, discovered via grid search and used
across a suite of 7 text classification tasks, summarized as follows:



14.4. Dial in CNN Hyperparameters 148

� Transfer function: rectified linear.

� Kernel sizes: 2, 4, 5.

� Number of filters: 100.

� Dropout rate: 0.5.

� Weight regularization (L2): 3.

� Batch Size: 50.

� Update Rule: Adadelta.

These configurations could be used to inspire a starting point for your own experiments.

14.4 Dial in CNN Hyperparameters

Some hyperparameters matter more than others when tuning a convolutional neural network on
your document classification problem. Ye Zhang and Byron Wallace performed a sensitivity
analysis into the hyperparameters needed to configure a single layer convolutional neural network
for document classification. The study is motivated by their claim that the models are sensitive
to their configuration.

Unfortunately, a downside to CNN-based models - even simple ones - is that they
require practitioners to specify the exact model architecture to be used and to set
the accompanying hyperparameters. To the uninitiated, making such decisions can
seem like something of a black art because there are many free parameters in the
model.

— A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for
Sentence Classification, 2015.

Their aim was to provide general configurations that can be used for configuring CNNs on
new text classification tasks. They provide a nice depiction of the model architecture and the
decision points for configuring the model, reproduced below.
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Figure 14.2: Convolutional Neural Network Architecture for Sentence Classification. Taken
from A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for
Sentence Classification.

The study makes a number of useful findings that could be used as a starting point for
configuring shallow CNN models for text classification. The general findings were as follows:

� The choice of pre-trained Word2Vec and GloVe embeddings differ from problem to problem,
and both performed better than using one hot encoded word vectors.

� The size of the kernel is important and should be tuned for each problem.

� The number of feature maps is also important and should be tuned.

� The 1-max pooling generally outperformed other types of pooling.

� Dropout has little effect on the model performance.

They go on to provide more specific heuristics, as follows:

� Use Word2Vec or GloVe word embeddings as a starting point and tune them while fitting
the model.

� Grid search across different kernel sizes to find the optimal configuration for your problem,
in the range 1-10.
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� Search the number of filters from 100-600 and explore a dropout of 0.0-0.5 as part of the
same search.

� Explore using tanh, relu, and linear activation functions.

The key caveat is that the findings are based on empirical results on binary text classification
problems using single sentences as input.

14.5 Consider Character-Level CNNs

Text documents can be modeled at the character level using convolutional neural networks
that are capable of learning the relevant hierarchical structure of words, sentences, paragraphs,
and more. Xiang Zhang, et al. use a character-based representation of text as input for a
convolutional neural network. The promise of the approach is that all of the labor-intensive
effort required to clean and prepare text could be overcome if a CNN can learn to abstract the
salient details.

... deep ConvNets do not require the knowledge of words, in addition to the conclusion
from previous research that ConvNets do not require the knowledge about the
syntactic or semantic structure of a language. This simplification of engineering could
be crucial for a single system that can work for different languages, since characters
always constitute a necessary construct regardless of whether segmentation into
words is possible. Working on only characters also has the advantage that abnormal
character combinations such as misspellings and emoticons may be naturally learnt.

— Character-level Convolutional Networks for Text Classification, 2015.

The model reads in one hot encoded characters in a fixed-sized alphabet. Encoded characters
are read in blocks or sequences of 1,024 characters. A stack of 6 convolutional layers with
pooling follows, with 3 fully connected layers at the output end of the network in order to make
a prediction.

Figure 14.3: Character-based Convolutional Neural Network for Text Classification. Taken from
Character-level Convolutional Networks for Text Classification.

The model achieves some success, performing better on problems that offer a larger corpus
of text.

... analysis shows that character-level ConvNet is an effective method. [...] how well
our model performs in comparisons depends on many factors, such as dataset size,
whether the texts are curated and choice of alphabet.
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— Character-level Convolutional Networks for Text Classification, 2015.

Results using an extended version of this approach were pushed to the state-of-the-art in a
follow-up paper covered in the next section.

14.6 Consider Deeper CNNs for Classification

Better performance can be achieved with very deep convolutional neural networks, although
standard and reusable architectures have not been adopted for classification tasks, yet. Alexis
Conneau, et al. comment on the relatively shallow networks used for natural language processing
and the success of much deeper networks used for computer vision applications. For example,
Kim (above) restricted the model to a single convolutional layer.

Other architectures used for natural language reviewed in the paper are limited to 5 and 6
layers. These are contrasted with successful architectures used in computer vision with 19 or
even up to 152 layers. They suggest and demonstrate that there are benefits for hierarchical
feature learning with very deep convolutional neural network model, called VDCNN.

... we propose to use deep architectures of many convolutional layers to approach
this goal, using up to 29 layers. The design of our architecture is inspired by recent
progress in computer vision [...] The proposed deep convolutional network shows
significantly better results than previous ConvNets approach.

— Very Deep Convolutional Networks for Text Classification, 2016.

Key to their approach is an embedding of individual characters, rather than a word embed-
ding.

We present a new architecture (VDCNN) for text processing which operates directly
at the character level and uses only small convolutions and pooling operations.

— Very Deep Convolutional Networks for Text Classification, 2016.

Results on a suite of 8 large text classification tasks show better performance than more
shallow networks. Specifically, state-of-the-art results on all but two of the datasets tested,
at the time of writing. Generally, they make some key findings from exploring the deeper
architectural approach:

� The very deep architecture worked well on small and large datasets.

� Deeper networks decrease classification error.

� Max-pooling achieves better results than other, more sophisticated types of pooling.

� Generally going deeper degrades accuracy; the shortcut connections used in the architecture
are important.

... this is the first time that the “benefit of depths” was shown for convolutional
neural networks in NLP.

— Very Deep Convolutional Networks for Text Classification, 2016.
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14.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� A Primer on Neural Network Models for Natural Language Processing, 2015.
https://arxiv.org/abs/1510.00726

� Convolutional Neural Networks for Sentence Classification, 2014.
https://arxiv.org/abs/1103.0398

� Natural Language Processing (almost) from Scratch, 2011.
https://arxiv.org/abs/1103.0398

� Very Deep Convolutional Networks for Text Classification, 2016.
https://arxiv.org/abs/1606.01781

� Character-level Convolutional Networks for Text Classification, 2015.
https://arxiv.org/abs/1509.01626

� A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks
for Sentence Classification, 2015.
https://arxiv.org/abs/1510.03820

14.8 Summary

In this chapter, you discovered some best practices for developing deep learning models for
document classification. Specifically, you learned:

� That a key approach is to use word embeddings and convolutional neural networks for
text classification.

� That a single layer model can do well on moderate-sized problems, and ideas on how to
configure it.

� That deeper models that operate directly on text may be the future of natural language
processing.

14.8.1 Next

In the next chapter, you will discover how you can develop a neural text classification model
with word embeddings and a convolutional neural network.



Chapter 15

Project: Develop an Embedding +
CNN Model for Sentiment Analysis

Word embeddings are a technique for representing text where different words with similar
meaning have a similar real-valued vector representation. They are a key breakthrough that has
led to great performance of neural network models on a suite of challenging natural language
processing problems. In this tutorial, you will discover how to develop word embedding models
with convolutional neural networks to classify movie reviews. After completing this tutorial,
you will know:

� How to prepare movie review text data for classification with deep learning methods.

� How to develop a neural classification model with word embedding and convolutional
layers.

� How to evaluate the developed a neural classification model.

Let’s get started.

15.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Movie Review Dataset

2. Data Preparation

3. Train CNN With Embedding Layer

4. Evaluate Model

15.2 Movie Review Dataset

In this tutorial, we will use the Movie Review Dataset. This dataset designed for sentiment
analysis was described previously in Chapter 9. You can download the dataset from here:
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� Movie Review Polarity Dataset (review polarity.tar.gz, 3MB).
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

After unzipping the file, you will have a directory called txt sentoken with two sub-
directories containing the text neg and pos for negative and positive reviews. Reviews are stored
one per file with a naming convention cv000 to cv999 for each of neg and pos.

15.3 Data Preparation

Note: The preparation of the movie review dataset was first described in Chapter 9. In this
section, we will look at 3 things:

1. Separation of data into training and test sets.

2. Loading and cleaning the data to remove punctuation and numbers.

3. Defining a vocabulary of preferred words.

15.3.1 Split into Train and Test Sets

We are pretending that we are developing a system that can predict the sentiment of a textual
movie review as either positive or negative. This means that after the model is developed, we
will need to make predictions on new textual reviews. This will require all of the same data
preparation to be performed on those new reviews as is performed on the training data for the
model. We will ensure that this constraint is built into the evaluation of our models by splitting
the training and test datasets prior to any data preparation. This means that any knowledge in
the data in the test set that could help us better prepare the data (e.g. the words used) are
unavailable in the preparation of data used for training the model.

That being said, we will use the last 100 positive reviews and the last 100 negative reviews
as a test set (100 reviews) and the remaining 1,800 reviews as the training dataset. This is a
90% train, 10% split of the data. The split can be imposed easily by using the filenames of the
reviews where reviews named 000 to 899 are for training data and reviews named 900 onwards
are for test.

15.3.2 Loading and Cleaning Reviews

The text data is already pretty clean; not much preparation is required. Without getting bogged
down too much in the details, we will prepare the data using the following way:

� Split tokens on white space.

� Remove all punctuation from words.

� Remove all words that are not purely comprised of alphabetical characters.

� Remove all words that are known stop words.

� Remove all words that have a length ≤ 1 character.
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We can put all of these steps into a function called clean doc() that takes as an argument
the raw text loaded from a file and returns a list of cleaned tokens. We can also define a function
load doc() that loads a document from file ready for use with the clean doc() function. An
example of cleaning the first positive review is listed below.

from nltk.corpus import stopwords

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load the document

filename = 'txt_sentoken/pos/cv000_29590.txt'

text = load_doc(filename)

tokens = clean_doc(text)

print(tokens)

Listing 15.1: Example of cleaning a movie review.

Running the example prints a long list of clean tokens. There are many more cleaning steps
we may want to explore and I leave them as further exercises.

...

'creepy', 'place', 'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning',

'typically', 'strong', 'performance', 'deftly', 'handling', 'british', 'accent',

'ians', 'holm', 'joe', 'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great',

'supporting', 'roles', 'big', 'surprise', 'graham', 'cringed', 'first', 'time',

'opened', 'mouth', 'imagining', 'attempt', 'irish', 'accent', 'actually', 'wasnt',

'half', 'bad', 'film', 'however', 'good', 'strong', 'violencegore', 'sexuality',

'language', 'drug', 'content']

Listing 15.2: Example output of cleaning a movie review.
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15.3.3 Define a Vocabulary

It is important to define a vocabulary of known words when using a text model. The more
words, the larger the representation of documents, therefore it is important to constrain the
words to only those believed to be predictive. This is difficult to know beforehand and often it
is important to test different hypotheses about how to construct a useful vocabulary. We have
already seen how we can remove punctuation and numbers from the vocabulary in the previous
section. We can repeat this for all documents and build a set of all known words.

We can develop a vocabulary as a Counter, which is a dictionary mapping of words and
their count that allows us to easily update and query. Each document can be added to the
counter (a new function called add doc to vocab()) and we can step over all of the reviews in
the negative directory and then the positive directory (a new function called process docs()).
The complete example is listed below.

import string

import re

from os import listdir

from collections import Counter

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)

# clean doc

tokens = clean_doc(doc)

# update counts



15.3. Data Preparation 157

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/pos', vocab)

process_docs('txt_sentoken/neg', vocab)

# print the size of the vocab

print(len(vocab))

# print the top words in the vocab

print(vocab.most_common(50))

Listing 15.3: Example of selecting a vocabulary for the dataset.

Running the example shows that we have a vocabulary of 44,276 words. We also can see
a sample of the top 50 most used words in the movie reviews. Note that this vocabulary was
constructed based on only those reviews in the training dataset.

44276

[('film', 7983), ('one', 4946), ('movie', 4826), ('like', 3201), ('even', 2262), ('good',

2080), ('time', 2041), ('story', 1907), ('films', 1873), ('would', 1844), ('much',

1824), ('also', 1757), ('characters', 1735), ('get', 1724), ('character', 1703),

('two', 1643), ('first', 1588), ('see', 1557), ('way', 1515), ('well', 1511), ('make',

1418), ('really', 1407), ('little', 1351), ('life', 1334), ('plot', 1288), ('people',

1269), ('could', 1248), ('bad', 1248), ('scene', 1241), ('movies', 1238), ('never',

1201), ('best', 1179), ('new', 1140), ('scenes', 1135), ('man', 1131), ('many', 1130),

('doesnt', 1118), ('know', 1092), ('dont', 1086), ('hes', 1024), ('great', 1014),

('another', 992), ('action', 985), ('love', 977), ('us', 967), ('go', 952),

('director', 948), ('end', 946), ('something', 945), ('still', 936)]

Listing 15.4: Example output of selecting a vocabulary for the dataset.

We can step through the vocabulary and remove all words that have a low occurrence, such
as only being used once or twice in all reviews. For example, the following snippet will retrieve
only the tokens that appear 2 or more times in all reviews.

# keep tokens with a min occurrence

min_occurane = 2

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

Listing 15.5: Example of filtering the vocabulary by occurrence.

Finally, the vocabulary can be saved to a new file called vocab.txt that we can later load
and use to filter movie reviews prior to encoding them for modeling. We define a new function
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called save list() that saves the vocabulary to file, with one word per line. For example:

# save list to file

def save_list(lines, filename):

# convert lines to a single blob of text

data = '\n'.join(lines)

# open file

file = open(filename, 'w')

# write text

file.write(data)

# close file

file.close()

# save tokens to a vocabulary file

save_list(tokens, 'vocab.txt')

Listing 15.6: Example of saving the filtered vocabulary.

Pulling all of this together, the complete example is listed below.

import string

import re

from os import listdir

from collections import Counter

from nltk.corpus import stopwords

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load doc and add to vocab

def add_doc_to_vocab(filename, vocab):

# load doc

doc = load_doc(filename)
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# clean doc

tokens = clean_doc(doc)

# update counts

vocab.update(tokens)

# load all docs in a directory

def process_docs(directory, vocab):

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# add doc to vocab

add_doc_to_vocab(path, vocab)

# save list to file

def save_list(lines, filename):

# convert lines to a single blob of text

data = '\n'.join(lines)

# open file

file = open(filename, 'w')

# write text

file.write(data)

# close file

file.close()

# define vocab

vocab = Counter()

# add all docs to vocab

process_docs('txt_sentoken/pos', vocab)

process_docs('txt_sentoken/neg', vocab)

# print the size of the vocab

print(len(vocab))

# keep tokens with a min occurrence

min_occurane = 2

tokens = [k for k,c in vocab.items() if c >= min_occurane]

print(len(tokens))

# save tokens to a vocabulary file

save_list(tokens, 'vocab.txt')

Listing 15.7: Example of filtering the vocabulary for the dataset.

Running the above example with this addition shows that the vocabulary size drops by a
little more than half its size, from 44,276 to 25,767 words.

25767

Listing 15.8: Example output of filtering the vocabulary by min occurrence.

Running the min occurrence filter on the vocabulary and saving it to file, you should now
have a new file called vocab.txt with only the words we are interested in. The order of words
in your file will differ, but should look something like the following:

aberdeen

dupe
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burt

libido

hamlet

arlene

available

corners

web

columbia

...

Listing 15.9: Sample of the vocabulary file vocab.txt.

We are now ready to look at extracting features from the reviews ready for modeling.

15.4 Train CNN With Embedding Layer

In this section, we will learn a word embedding while training a convolutional neural network on
the classification problem. A word embedding is a way of representing text where each word in
the vocabulary is represented by a real valued vector in a high-dimensional space. The vectors
are learned in such a way that words that have similar meanings will have similar representation
in the vector space (close in the vector space). This is a more expressive representation for text
than more classical methods like bag-of-words, where relationships between words or tokens are
ignored, or forced in bigram and trigram approaches.

The real valued vector representation for words can be learned while training the neural
network. We can do this in the Keras deep learning library using the Embedding layer. The
first step is to load the vocabulary. We will use it to filter out words from movie reviews that
we are not interested in. If you have worked through the previous section, you should have a
local file called vocab.txt with one word per line. We can load that file and build a vocabulary
as a set for checking the validity of tokens.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

Listing 15.10: Load vocabulary.

Next, we need to load all of the training data movie reviews. For that we can adapt the
process docs() from the previous section to load the documents, clean them, and return them
as a list of strings, with one document per string. We want each document to be a string for
easy encoding as a sequence of integers later. Cleaning the document involves splitting each
review based on white space, removing punctuation, and then filtering out all tokens not in the
vocabulary. The updated clean doc() function is listed below.
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# turn a doc into clean tokens

def clean_doc(doc, vocab):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# filter out tokens not in vocab

tokens = [w for w in tokens if w in vocab]

tokens = ' '.join(tokens)

return tokens

Listing 15.11: Function to load and filter a loaded review.

The updated process docs() can then call the clean doc() for each document in a given
directory.

# load all docs in a directory

def process_docs(directory, vocab, is_train):

documents = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load the doc

doc = load_doc(path)

# clean doc

tokens = clean_doc(doc, vocab)

# add to list

documents.append(tokens)

return documents

Listing 15.12: Example to clean all movie reviews.

We can call the process docs function for both the neg and pos directories and combine
the reviews into a single train or test dataset. We also can define the class labels for the dataset.
The load clean dataset() function below will load all reviews and prepare class labels for the
training or test dataset.

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = array([0 for _ in range(len(neg))] + [1 for _ in range(len(pos))])

return docs, labels

Listing 15.13: Function to load and clean all train or test movie reviews.



15.4. Train CNN With Embedding Layer 162

The next step is to encode each document as a sequence of integers. The Keras Embedding

layer requires integer inputs where each integer maps to a single token that has a specific
real-valued vector representation within the embedding. These vectors are random at the
beginning of training, but during training become meaningful to the network. We can encode
the training documents as sequences of integers using the Tokenizer class in the Keras API.
First, we must construct an instance of the class then train it on all documents in the training
dataset. In this case, it develops a vocabulary of all tokens in the training dataset and develops
a consistent mapping from words in the vocabulary to unique integers. We could just as easily
develop this mapping ourselves using our vocabulary file. The create tokenizer() function
below will prepare a Tokenizer from the training data.

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

Listing 15.14: Function to create a Tokenizer from training.

Now that the mapping of words to integers has been prepared, we can use it to encode the
reviews in the training dataset. We can do that by calling the texts to sequences() function
on the Tokenizer. We also need to ensure that all documents have the same length. This is a
requirement of Keras for efficient computation. We could truncate reviews to the smallest size
or zero-pad (pad with the value 0) reviews to the maximum length, or some hybrid. In this case,
we will pad all reviews to the length of the longest review in the training dataset. First, we can
find the longest review using the max() function on the training dataset and take its length.
We can then call the Keras function pad sequences() to pad the sequences to the maximum
length by adding 0 values on the end.

max_length = max([len(s.split()) for s in train_docs])

print('Maximum length: %d' % max_length)

Listing 15.15: Calculate the maximum movie review length.

We can then use the maximum length as a parameter to a function to integer encode and
pad the sequences.

# integer encode and pad documents

def encode_docs(tokenizer, max_length, docs):

# integer encode

encoded = tokenizer.texts_to_sequences(docs)

# pad sequences

padded = pad_sequences(encoded, maxlen=max_length, padding='post')

return padded

Listing 15.16: Function to integer encode and pad movie reviews.

We are now ready to define our neural network model. The model will use an Embedding

layer as the first hidden layer. The Embedding layer requires the specification of the vocabulary
size, the size of the real-valued vector space, and the maximum length of input documents. The
vocabulary size is the total number of words in our vocabulary, plus one for unknown words.
This could be the vocab set length or the size of the vocab within the tokenizer used to integer
encode the documents, for example:
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# define vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary size: %d' % vocab_size)

Listing 15.17: Calculate the size of the vocabulary for the Embedding layer.

We will use a 100-dimensional vector space, but you could try other values, such as 50 or
150. Finally, the maximum document length was calculated above in the max length variable
used during padding. The complete model definition is listed below including the Embedding

layer. We use a Convolutional Neural Network (CNN) as they have proven to be successful
at document classification problems. A conservative CNN configuration is used with 32 filters
(parallel fields for processing words) and a kernel size of 8 with a rectified linear (relu) activation
function. This is followed by a pooling layer that reduces the output of the convolutional layer
by half.

Next, the 2D output from the CNN part of the model is flattened to one long 2D vector to
represent the features extracted by the CNN. The back-end of the model is a standard Multilayer
Perceptron layers to interpret the CNN features. The output layer uses a sigmoid activation
function to output a value between 0 and 1 for the negative and positive sentiment in the review.

# define the model

def define_model(vocab_size, max_length):

model = Sequential()

model.add(Embedding(vocab_size, 100, input_length=max_length))

model.add(Conv1D(filters=32, kernel_size=8, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(10, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 15.18: Define a CNN model with the Embedding Layer.

Running just this piece provides a summary of the defined network. We can see that the
Embedding layer expects documents with a length of 1,317 words as input and encodes each
word in the document as a 100 element vector.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding_1 (Embedding) (None, 1317, 100) 2576800

_________________________________________________________________

conv1d_1 (Conv1D) (None, 1310, 32) 25632

_________________________________________________________________

max_pooling1d_1 (MaxPooling1 (None, 655, 32) 0

_________________________________________________________________

flatten_1 (Flatten) (None, 20960) 0

_________________________________________________________________

dense_1 (Dense) (None, 10) 209610

_________________________________________________________________



15.4. Train CNN With Embedding Layer 164

dense_2 (Dense) (None, 1) 11

=================================================================

Total params: 2,812,053

Trainable params: 2,812,053

Non-trainable params: 0

_________________________________________________________________

Listing 15.19: Summary of the defined model.

A plot the defined model is then saved to file with the name model.png.

Figure 15.1: Plot of the defined CNN classification model.

Next, we fit the network on the training data. We use a binary cross entropy loss function
because the problem we are learning is a binary classification problem. The efficient Adam
implementation of stochastic gradient descent is used and we keep track of accuracy in addition
to loss during training. The model is trained for 10 epochs, or 10 passes through the training
data. The network configuration and training schedule were found with a little trial and error,
but are by no means optimal for this problem. If you can get better results with a different
configuration, let me know.

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

Listing 15.20: Train the defined classification model.

After the model is fit, it is saved to a file named model.h5 for later evaluation.

# save the model

model.save('model.h5')
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Listing 15.21: Save the fit model to file.

We can tie all of this together. The complete code listing is provided below.

import string

import re

from os import listdir

from numpy import array

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Embedding

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc, vocab):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# filter out tokens not in vocab

tokens = [w for w in tokens if w in vocab]

tokens = ' '.join(tokens)

return tokens

# load all docs in a directory

def process_docs(directory, vocab, is_train):

documents = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load the doc

doc = load_doc(path)
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# clean doc

tokens = clean_doc(doc, vocab)

# add to list

documents.append(tokens)

return documents

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = array([0 for _ in range(len(neg))] + [1 for _ in range(len(pos))])

return docs, labels

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# integer encode and pad documents

def encode_docs(tokenizer, max_length, docs):

# integer encode

encoded = tokenizer.texts_to_sequences(docs)

# pad sequences

padded = pad_sequences(encoded, maxlen=max_length, padding='post')

return padded

# define the model

def define_model(vocab_size, max_length):

model = Sequential()

model.add(Embedding(vocab_size, 100, input_length=max_length))

model.add(Conv1D(filters=32, kernel_size=8, activation='relu'))

model.add(MaxPooling1D(pool_size=2))

model.add(Flatten())

model.add(Dense(10, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

# compile network

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load training data

train_docs, ytrain = load_clean_dataset(vocab, True)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# define vocabulary size

vocab_size = len(tokenizer.word_index) + 1
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print('Vocabulary size: %d' % vocab_size)

# calculate the maximum sequence length

max_length = max([len(s.split()) for s in train_docs])

print('Maximum length: %d' % max_length)

# encode data

Xtrain = encode_docs(tokenizer, max_length, train_docs)

# define model

model = define_model(vocab_size, max_length)

# fit network

model.fit(Xtrain, ytrain, epochs=10, verbose=2)

# save the model

model.save('model.h5')

Listing 15.22: Complete example of fitting a CNN model with an Embedding input layer.

Running the example will first provide a summary of the training dataset vocabulary (25,768)
and maximum input sequence length in words (1,317). The example should run in a few minutes
and the fit model will be saved to file.

...

Vocabulary size: 25768

Maximum length: 1317

Epoch 1/10

8s - loss: 0.6927 - acc: 0.4800

Epoch 2/10

7s - loss: 0.6610 - acc: 0.5922

Epoch 3/10

7s - loss: 0.3461 - acc: 0.8844

Epoch 4/10

7s - loss: 0.0441 - acc: 0.9889

Epoch 5/10

7s - loss: 0.0058 - acc: 1.0000

Epoch 6/10

7s - loss: 0.0024 - acc: 1.0000

Epoch 7/10

7s - loss: 0.0015 - acc: 1.0000

Epoch 8/10

7s - loss: 0.0011 - acc: 1.0000

Epoch 9/10

7s - loss: 8.0111e-04 - acc: 1.0000

Epoch 10/10

7s - loss: 5.4109e-04 - acc: 1.0000

Listing 15.23: Example output from fitting the model.

15.5 Evaluate Model

In this section, we will evaluate the trained model and use it to make predictions on new data.
First, we can use the built-in evaluate() function to estimate the skill of the model on both
the training and test dataset. This requires that we load and encode both the training and test
datasets.

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab, True)
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test_docs, ytest = load_clean_dataset(vocab, False)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# define vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary size: %d' % vocab_size)

# calculate the maximum sequence length

max_length = max([len(s.split()) for s in train_docs])

print('Maximum length: %d' % max_length)

# encode data

Xtrain = encode_docs(tokenizer, max_length, train_docs)

Xtest = encode_docs(tokenizer, max_length, test_docs)

Listing 15.24: Load and encode both training and test datasets.

We can then load the model and evaluate it on both datasets and print the accuracy.

# load the model

model = load_model('model.h5')

# evaluate model on training dataset

_, acc = model.evaluate(Xtrain, ytrain, verbose=0)

print('Train Accuracy: %f' % (acc*100))

# evaluate model on test dataset

_, acc = model.evaluate(Xtest, ytest, verbose=0)

print('Test Accuracy: %f' % (acc*100))

Listing 15.25: Load and evaluate model on both train and test datasets.

New data must then be prepared using the same text encoding and encoding schemes as was
used on the training dataset. Once prepared, a prediction can be made by calling the predict()

function on the model. The function below named predict sentiment() will encode and pad
a given movie review text and return a prediction in terms of both the percentage and a label.

# classify a review as negative or positive

def predict_sentiment(review, vocab, tokenizer, max_length, model):

# clean review

line = clean_doc(review, vocab)

# encode and pad review

padded = encode_docs(tokenizer, max_length, [line])

# predict sentiment

yhat = model.predict(padded, verbose=0)

# retrieve predicted percentage and label

percent_pos = yhat[0,0]

if round(percent_pos) == 0:

return (1-percent_pos), 'NEGATIVE'

return percent_pos, 'POSITIVE'

Listing 15.26: Function to predict the sentiment for an ad hoc movie review.

We can test out this model with two ad hoc movie reviews. The complete example is listed
below.

import string

import re

from os import listdir

from numpy import array

from keras.preprocessing.text import Tokenizer
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from keras.preprocessing.sequence import pad_sequences

from keras.models import load_model

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc, vocab):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# filter out tokens not in vocab

tokens = [w for w in tokens if w in vocab]

tokens = ' '.join(tokens)

return tokens

# load all docs in a directory

def process_docs(directory, vocab, is_train):

documents = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load the doc

doc = load_doc(path)

# clean doc

tokens = clean_doc(doc, vocab)

# add to list

documents.append(tokens)

return documents

# load and clean a dataset

def load_clean_dataset(vocab, is_train):

# load documents

neg = process_docs('txt_sentoken/neg', vocab, is_train)

pos = process_docs('txt_sentoken/pos', vocab, is_train)

docs = neg + pos

# prepare labels

labels = array([0 for _ in range(len(neg))] + [1 for _ in range(len(pos))])

return docs, labels
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# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# integer encode and pad documents

def encode_docs(tokenizer, max_length, docs):

# integer encode

encoded = tokenizer.texts_to_sequences(docs)

# pad sequences

padded = pad_sequences(encoded, maxlen=max_length, padding='post')

return padded

# classify a review as negative or positive

def predict_sentiment(review, vocab, tokenizer, max_length, model):

# clean review

line = clean_doc(review, vocab)

# encode and pad review

padded = encode_docs(tokenizer, max_length, [line])

# predict sentiment

yhat = model.predict(padded, verbose=0)

# retrieve predicted percentage and label

percent_pos = yhat[0,0]

if round(percent_pos) == 0:

return (1-percent_pos), 'NEGATIVE'

return percent_pos, 'POSITIVE'

# load the vocabulary

vocab_filename = 'vocab.txt'

vocab = load_doc(vocab_filename)

vocab = set(vocab.split())

# load all reviews

train_docs, ytrain = load_clean_dataset(vocab, True)

test_docs, ytest = load_clean_dataset(vocab, False)

# create the tokenizer

tokenizer = create_tokenizer(train_docs)

# define vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary size: %d' % vocab_size)

# calculate the maximum sequence length

max_length = max([len(s.split()) for s in train_docs])

print('Maximum length: %d' % max_length)

# encode data

Xtrain = encode_docs(tokenizer, max_length, train_docs)

Xtest = encode_docs(tokenizer, max_length, test_docs)

# load the model

model = load_model('model.h5')

# evaluate model on training dataset

_, acc = model.evaluate(Xtrain, ytrain, verbose=0)

print('Train Accuracy: %.2f' % (acc*100))

# evaluate model on test dataset

_, acc = model.evaluate(Xtest, ytest, verbose=0)

print('Test Accuracy: %.2f' % (acc*100))

# test positive text
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text = 'Everyone will enjoy this film. I love it, recommended!'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, max_length, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

# test negative text

text = 'This is a bad movie. Do not watch it. It sucks.'

percent, sentiment = predict_sentiment(text, vocab, tokenizer, max_length, model)

print('Review: [%s]\nSentiment: %s (%.3f%%)' % (text, sentiment, percent*100))

Listing 15.27: Complete example of making a prediction on new text data.

Running the example first prints the skill of the model on the training and test dataset. We
can see that the model achieves 100% accuracy on the training dataset and 87.5% on the test
dataset, an impressive score.

Next, we can see that the model makes the correct prediction on two contrived movie reviews.
We can see that the percentage or confidence of the prediction is close to 50% for both, this
may be because the two contrived reviews are very short and the model is expecting sequences
of 1,000 or more words.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Train Accuracy: 100.00

Test Accuracy: 87.50

Review: [Everyone will enjoy this film. I love it, recommended!]

Sentiment: POSITIVE (55.431%)

Review: [This is a bad movie. Do not watch it. It sucks.]

Sentiment: NEGATIVE (54.746%)

Listing 15.28: Example output from making a prediction on new reviews.

15.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Data Cleaning. Explore better data cleaning, perhaps leaving some punctuation in tact
or normalizing contractions.

� Truncated Sequences. Padding all sequences to the length of the longest sequence
might be extreme if the longest sequence is very different to all other reviews. Study the
distribution of review lengths and truncate reviews to a mean length.

� Truncated Vocabulary. We removed infrequently occurring words, but still had a large
vocabulary of more than 25,000 words. Explore further reducing the size of the vocabulary
and the effect on model skill.

� Filters and Kernel Size. The number of filters and kernel size are important to model
skill and were not tuned. Explore tuning these two CNN parameters.

� Epochs and Batch Size. The model appears to fit the training dataset quickly. Explore
alternate configurations of the number of training epochs and batch size and use the test
dataset as a validation set to pick a better stopping point for training the model.
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� Deeper Network. Explore whether a deeper network results in better skill, either in
terms of CNN layers, MLP layers and both.

� Pre-Train an Embedding. Explore pre-training a Word2Vec word embedding in the
model and the impact on model skill with and without further fine tuning during training.

� Use GloVe Embedding. Explore loading the pre-trained GloVe embedding and the
impact on model skill with and without further fine tuning during training.

� Longer Test Reviews. Explore whether the skill of model predictions is dependent on
the length of movie reviews as suspected in the final section on evaluating the model.

� Train Final Model. Train a final model on all available data and use it make predictions
on real ad hoc movie reviews from the internet.

If you explore any of these extensions, I’d love to know.

15.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

15.7.1 Dataset

� Movie Review Data.
http://www.cs.cornell.edu/people/pabo/movie-review-data/

� A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based
on Minimum Cuts, 2004.
http://xxx.lanl.gov/abs/cs/0409058

� Movie Review Polarity Dataset.
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

15.7.2 APIs

� collections API - Container datatypes.
https://docs.python.org/3/library/collections.html

� Tokenizer Keras API.
https://keras.io/preprocessing/text/#tokenizer

� Embedding Keras API.
https://keras.io/layers/embeddings/
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15.8 Summary

In this tutorial, you discovered how to develop word embeddings for the classification of movie
reviews. Specifically, you learned:

� How to prepare movie review text data for classification with deep learning methods.

� How to develop a neural classification model with word embedding and convolutional
layers.

� How to evaluate the developed a neural classification model.

15.8.1 Next

In the next chapter, you will discover how you can develop an n-gram multichannel convolutional
neural network for text classification.



Chapter 16

Project: Develop an n-gram CNN
Model for Sentiment Analysis

A standard deep learning model for text classification and sentiment analysis uses a word
embedding layer and one-dimensional convolutional neural network. The model can be expanded
by using multiple parallel convolutional neural networks that read the source document using
different kernel sizes. This, in effect, creates a multichannel convolutional neural network for
text that reads text with different n-gram sizes (groups of words). In this tutorial, you will
discover how to develop a multichannel convolutional neural network for sentiment prediction
on text movie review data. After completing this tutorial, you will know:

� How to prepare movie review text data for modeling.

� How to develop a multichannel convolutional neural network for text in Keras.

� How to evaluate a fit model on unseen movie review data.

Let’s get started.

16.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Movie Review Dataset.

2. Data Preparation.

3. Develop Multichannel Model.

4. Evaluate Model.

16.2 Movie Review Dataset

In this tutorial, we will use the Movie Review Dataset. This dataset designed for sentiment
analysis was described previously in Chapter 9. You can download the dataset from here:

174
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� Movie Review Polarity Dataset (review polarity.tar.gz, 3MB).
http://www.cs.cornell.edu/people/pabo/movie-review-data/review_polarity.tar.

gz

After unzipping the file, you will have a directory called txt sentoken with two sub-
directories containing the text neg and pos for negative and positive reviews. Reviews are stored
one per file with a naming convention cv000 to cv999 for each of neg and pos.

16.3 Data Preparation

Note: The preparation of the movie review dataset was first described in Chapter 9. In this
section, we will look at 3 things:

1. Separation of data into training and test sets.

2. Loading and cleaning the data to remove punctuation and numbers.

3. Clean All Reviews and Save.

16.3.1 Split into Train and Test Sets

We are pretending that we are developing a system that can predict the sentiment of a textual
movie review as either positive or negative. This means that after the model is developed, we
will need to make predictions on new textual reviews. This will require all of the same data
preparation to be performed on those new reviews as is performed on the training data for the
model. We will ensure that this constraint is built into the evaluation of our models by splitting
the training and test datasets prior to any data preparation. This means that any knowledge in
the data in the test set that could help us better prepare the data (e.g. the words used) are
unavailable in the preparation of data used for training the model.

That being said, we will use the last 100 positive reviews and the last 100 negative reviews
as a test set (100 reviews) and the remaining 1,800 reviews as the training dataset. This is a
90% train, 10% split of the data. The split can be imposed easily by using the filenames of the
reviews where reviews named 000 to 899 are for training data and reviews named 900 onwards
are for test.

16.3.2 Loading and Cleaning Reviews

The text data is already pretty clean; not much preparation is required. Without getting bogged
down too much in the details, we will prepare the data using the following way:

� Split tokens on white space.

� Remove all punctuation from words.

� Remove all words that are not purely comprised of alphabetical characters.

� Remove all words that are known stop words.

� Remove all words that have a length ≤ 1 character.
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We can put all of these steps into a function called clean doc() that takes as an argument
the raw text loaded from a file and returns a list of cleaned tokens. We can also define a function
load doc() that loads a document from file ready for use with the clean doc() function. An
example of cleaning the first positive review is listed below.

from nltk.corpus import stopwords

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

return tokens

# load the document

filename = 'txt_sentoken/pos/cv000_29590.txt'

text = load_doc(filename)

tokens = clean_doc(text)

print(tokens)

Listing 16.1: Example of cleaning a movie review.

Running the example prints a long list of clean tokens. There are many more cleaning steps
we may want to explore and I leave them as further exercises.

...

'creepy', 'place', 'even', 'acting', 'hell', 'solid', 'dreamy', 'depp', 'turning',

'typically', 'strong', 'performance', 'deftly', 'handling', 'british', 'accent',

'ians', 'holm', 'joe', 'goulds', 'secret', 'richardson', 'dalmatians', 'log', 'great',

'supporting', 'roles', 'big', 'surprise', 'graham', 'cringed', 'first', 'time',

'opened', 'mouth', 'imagining', 'attempt', 'irish', 'accent', 'actually', 'wasnt',

'half', 'bad', 'film', 'however', 'good', 'strong', 'violencegore', 'sexuality',

'language', 'drug', 'content']

Listing 16.2: Example output of cleaning a movie review.
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16.3.3 Clean All Reviews and Save

We can now use the function to clean reviews and apply it to all reviews. To do this, we will
develop a new function named process docs() below that will walk through all reviews in a
directory, clean them, and return them as a list. We will also add an argument to the function
to indicate whether the function is processing train or test reviews, that way the filenames can
be filtered (as described above) and only those train or test reviews requested will be cleaned
and returned. The full function is listed below.

# load all docs in a directory

def process_docs(directory, is_train):

documents = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename

# load the doc

doc = load_doc(path)

# clean doc

tokens = clean_doc(doc)

# add to list

documents.append(tokens)

return documents

Listing 16.3: Function for cleaning multiple review documents.

We can call this function with negative training reviews. We also need labels for the train
and test documents. We know that we have 900 training documents and 100 test documents.
We can use a Python list comprehension to create the labels for the negative (0) and positive
(1) reviews for both train and test sets. The function below named load clean dataset() will
load and clean the movie review text and also create the labels for the reviews.

# load and clean a dataset

def load_clean_dataset(is_train):

# load documents

neg = process_docs('txt_sentoken/neg', is_train)

pos = process_docs('txt_sentoken/pos', is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

Listing 16.4: Function to prepare reviews and labels for a dataset.

Finally, we want to save the prepared train and test sets to file so that we can load them
later for modeling and model evaluation. The function below-named save dataset() will save
a given prepared dataset (X and y elements) to a file using the pickle API (this is the standard
API for saving objects in Python).

# save a dataset to file

def save_dataset(dataset, filename):
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dump(dataset, open(filename, 'wb'))

print('Saved: %s' % filename)

Listing 16.5: Function for saving clean documents to file.

16.3.4 Complete Example

We can tie all of these data preparation steps together. The complete example is listed below.

import string

import re

from os import listdir

from nltk.corpus import stopwords

from pickle import dump

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# filter out stop words

stop_words = set(stopwords.words('english'))

tokens = [w for w in tokens if not w in stop_words]

# filter out short tokens

tokens = [word for word in tokens if len(word) > 1]

tokens = ' '.join(tokens)

return tokens

# load all docs in a directory

def process_docs(directory, is_train):

documents = list()

# walk through all files in the folder

for filename in listdir(directory):

# skip any reviews in the test set

if is_train and filename.startswith('cv9'):

continue

if not is_train and not filename.startswith('cv9'):

continue

# create the full path of the file to open

path = directory + '/' + filename
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# load the doc

doc = load_doc(path)

# clean doc

tokens = clean_doc(doc)

# add to list

documents.append(tokens)

return documents

# load and clean a dataset

def load_clean_dataset(is_train):

# load documents

neg = process_docs('txt_sentoken/neg', is_train)

pos = process_docs('txt_sentoken/pos', is_train)

docs = neg + pos

# prepare labels

labels = [0 for _ in range(len(neg))] + [1 for _ in range(len(pos))]

return docs, labels

# save a dataset to file

def save_dataset(dataset, filename):

dump(dataset, open(filename, 'wb'))

print('Saved: %s' % filename)

# load and clean all reviews

train_docs, ytrain = load_clean_dataset(True)

test_docs, ytest = load_clean_dataset(False)

# save training datasets

save_dataset([train_docs, ytrain], 'train.pkl')

save_dataset([test_docs, ytest], 'test.pkl')

Listing 16.6: Complete example of cleaning and saving all movie reviews.

Running the example cleans the text movie review documents, creates labels, and saves the
prepared data for both train and test datasets in train.pkl and test.pkl respectively. Now
we are ready to develop our model.

16.4 Develop Multichannel Model

In this section, we will develop a multichannel convolutional neural network for the sentiment
analysis prediction problem. This section is divided into 3 parts:

1. Encode Data

2. Define Model.

3. Complete Example.

16.4.1 Encode Data

The first step is to load the cleaned training dataset. The function below-named load dataset()

can be called to load the pickled training dataset.
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# load a clean dataset

def load_dataset(filename):

return load(open(filename, 'rb'))

trainLines, trainLabels = load_dataset('train.pkl')

Listing 16.7: Example of loading the cleaned and saved reviews.

Next, we must fit a Keras Tokenizer on the training dataset. We will use this tokenizer to
both define the vocabulary for the Embedding layer and encode the review documents as integers.
The function create tokenizer() below will create a Tokenizer given a list of documents.

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

Listing 16.8: Function for creating a Tokenizer.

We also need to know the maximum length of input sequences as input for the model and
to pad all sequences to the fixed length. The function max length() below will calculate the
maximum length (number of words) for all reviews in the training dataset.

# calculate the maximum document length

def max_length(lines):

return max([len(s.split()) for s in lines])

Listing 16.9: Function to calculate the maximum movie review length.

We also need to know the size of the vocabulary for the Embedding layer. This can be
calculated from the prepared Tokenizer, as follows:

# calculate vocabulary size

vocab_size = len(tokenizer.word_index) + 1

Listing 16.10: Calculate the size of the vocabulary.

Finally, we can integer encode and pad the clean movie review text. The function below
named encode text() will both encode and pad text data to the maximum review length.

# encode a list of lines

def encode_text(tokenizer, lines, length):

# integer encode

encoded = tokenizer.texts_to_sequences(lines)

# pad encoded sequences

padded = pad_sequences(encoded, maxlen=length, padding='post')

return padded

Listing 16.11: Function to encode and pad movie review text.

16.4.2 Define Model

A standard model for document classification is to use an Embedding layer as input, followed by
a one-dimensional convolutional neural network, pooling layer, and then a prediction output
layer. The kernel size in the convolutional layer defines the number of words to consider as
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the convolution is passed across the input text document, providing a grouping parameter. A
multi-channel convolutional neural network for document classification involves using multiple
versions of the standard model with different sized kernels. This allows the document to be
processed at different resolutions or different n-grams (groups of words) at a time, whilst the
model learns how to best integrate these interpretations.

This approach was first described by Yoon Kim in his 2014 paper titled Convolutional Neural
Networks for Sentence Classification. In the paper, Kim experimented with static and dynamic
(updated) embedding layers, we can simplify the approach and instead focus only on the use of
different kernel sizes. This approach is best understood with a diagram taken from Kim’s paper,
see Chapter 14.

In Keras, a multiple-input model can be defined using the functional API. We will define a
model with three input channels for processing 4-grams, 6-grams, and 8-grams of movie review
text. Each channel is comprised of the following elements:

� Input layer that defines the length of input sequences.

� Embedding layer set to the size of the vocabulary and 100-dimensional real-valued repre-
sentations.

� Conv1D layer with 32 filters and a kernel size set to the number of words to read at once.

� MaxPooling1D layer to consolidate the output from the convolutional layer.

� Flatten layer to reduce the three-dimensional output to two dimensional for concatenation.

The output from the three channels are concatenated into a single vector and process by a
Dense layer and an output layer. The function below defines and returns the model. As part of
defining the model, a summary of the defined model is printed and a plot of the model graph is
created and saved to file.

# define the model

def define_model(length, vocab_size):

# channel 1

inputs1 = Input(shape=(length,))

embedding1 = Embedding(vocab_size, 100)(inputs1)

conv1 = Conv1D(filters=32, kernel_size=4, activation='relu')(embedding1)

drop1 = Dropout(0.5)(conv1)

pool1 = MaxPooling1D(pool_size=2)(drop1)

flat1 = Flatten()(pool1)

# channel 2

inputs2 = Input(shape=(length,))

embedding2 = Embedding(vocab_size, 100)(inputs2)

conv2 = Conv1D(filters=32, kernel_size=6, activation='relu')(embedding2)

drop2 = Dropout(0.5)(conv2)

pool2 = MaxPooling1D(pool_size=2)(drop2)

flat2 = Flatten()(pool2)

# channel 3

inputs3 = Input(shape=(length,))

embedding3 = Embedding(vocab_size, 100)(inputs3)

conv3 = Conv1D(filters=32, kernel_size=8, activation='relu')(embedding3)

drop3 = Dropout(0.5)(conv3)

pool3 = MaxPooling1D(pool_size=2)(drop3)

flat3 = Flatten()(pool3)
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# merge

merged = concatenate([flat1, flat2, flat3])

# interpretation

dense1 = Dense(10, activation='relu')(merged)

outputs = Dense(1, activation='sigmoid')(dense1)

model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)

# compile

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize

model.summary()

plot_model(model, show_shapes=True, to_file='multichannel.png')

return model

Listing 16.12: Function for defining the classification model.

16.4.3 Complete Example

Pulling all of this together, the complete example is listed below.

from pickle import load

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.utils.vis_utils import plot_model

from keras.models import Model

from keras.layers import Input

from keras.layers import Dense

from keras.layers import Flatten

from keras.layers import Dropout

from keras.layers import Embedding

from keras.layers.convolutional import Conv1D

from keras.layers.convolutional import MaxPooling1D

from keras.layers.merge import concatenate

# load a clean dataset

def load_dataset(filename):

return load(open(filename, 'rb'))

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# calculate the maximum document length

def max_length(lines):

return max([len(s.split()) for s in lines])

# encode a list of lines

def encode_text(tokenizer, lines, length):

# integer encode

encoded = tokenizer.texts_to_sequences(lines)

# pad encoded sequences

padded = pad_sequences(encoded, maxlen=length, padding='post')

return padded
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# define the model

def define_model(length, vocab_size):

# channel 1

inputs1 = Input(shape=(length,))

embedding1 = Embedding(vocab_size, 100)(inputs1)

conv1 = Conv1D(filters=32, kernel_size=4, activation='relu')(embedding1)

drop1 = Dropout(0.5)(conv1)

pool1 = MaxPooling1D(pool_size=2)(drop1)

flat1 = Flatten()(pool1)

# channel 2

inputs2 = Input(shape=(length,))

embedding2 = Embedding(vocab_size, 100)(inputs2)

conv2 = Conv1D(filters=32, kernel_size=6, activation='relu')(embedding2)

drop2 = Dropout(0.5)(conv2)

pool2 = MaxPooling1D(pool_size=2)(drop2)

flat2 = Flatten()(pool2)

# channel 3

inputs3 = Input(shape=(length,))

embedding3 = Embedding(vocab_size, 100)(inputs3)

conv3 = Conv1D(filters=32, kernel_size=8, activation='relu')(embedding3)

drop3 = Dropout(0.5)(conv3)

pool3 = MaxPooling1D(pool_size=2)(drop3)

flat3 = Flatten()(pool3)

# merge

merged = concatenate([flat1, flat2, flat3])

# interpretation

dense1 = Dense(10, activation='relu')(merged)

outputs = Dense(1, activation='sigmoid')(dense1)

model = Model(inputs=[inputs1, inputs2, inputs3], outputs=outputs)

# compile

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize

model.summary()

plot_model(model, show_shapes=True, to_file='model.png')

return model

# load training dataset

trainLines, trainLabels = load_dataset('train.pkl')

# create tokenizer

tokenizer = create_tokenizer(trainLines)

# calculate max document length

length = max_length(trainLines)

print('Max document length: %d' % length)

# calculate vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary size: %d' % vocab_size)

# encode data

trainX = encode_text(tokenizer, trainLines, length)

# define model

model = define_model(length, vocab_size)

# fit model

model.fit([trainX,trainX,trainX], trainLabels, epochs=7, batch_size=16)

# save the model

model.save('model.h5')

Listing 16.13: Complete example of fitting the n-gram CNN model.
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Running the example first prints a summary of the prepared training dataset.

Max document length: 1380

Vocabulary size: 44277

Listing 16.14: Example output from preparing the training data.

The model is fit relatively quickly and appears to show good skill on the training dataset.

...

Epoch 3/7

1800/1800 [==============================] - 29s - loss: 0.0460 - acc: 0.9894

Epoch 4/7

1800/1800 [==============================] - 30s - loss: 0.0041 - acc: 1.0000

Epoch 5/7

1800/1800 [==============================] - 31s - loss: 0.0010 - acc: 1.0000

Epoch 6/7

1800/1800 [==============================] - 30s - loss: 3.0271e-04 - acc: 1.0000

Epoch 7/7

1800/1800 [==============================] - 28s - loss: 1.3875e-04 - acc: 1.0000

Listing 16.15: Example output from fitting the model.

A plot of the defined model is saved to file, clearly showing the three input channels for the
model.

Figure 16.1: Plot of the Multichannel Convolutional Neural Network For Text.

The model is fit for a number of epochs and saved to the file model.h5 for later evaluation.
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16.5 Evaluate Model

In this section, we can evaluate the fit model by predicting the sentiment on all reviews in the
unseen test dataset. Using the data loading functions developed in the previous section, we can
load and encode both the training and test datasets.

# load datasets

trainLines, trainLabels = load_dataset('train.pkl')

testLines, testLabels = load_dataset('test.pkl')

# create tokenizer

tokenizer = create_tokenizer(trainLines)

# calculate max document length

length = max_length(trainLines)

# calculate vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Max document length: %d' % length)

print('Vocabulary size: %d' % vocab_size)

# encode data

trainX = encode_text(tokenizer, trainLines, length)

testX = encode_text(tokenizer, testLines, length)

print(trainX.shape, testX.shape)

Listing 16.16: Prepare train and test data for evaluating the model.

We can load the saved model and evaluate it on both the training and test datasets. The
complete example is listed below.

from pickle import load

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from keras.models import load_model

# load a clean dataset

def load_dataset(filename):

return load(open(filename, 'rb'))

# fit a tokenizer

def create_tokenizer(lines):

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

return tokenizer

# calculate the maximum document length

def max_length(lines):

return max([len(s.split()) for s in lines])

# encode a list of lines

def encode_text(tokenizer, lines, length):

# integer encode

encoded = tokenizer.texts_to_sequences(lines)

# pad encoded sequences

padded = pad_sequences(encoded, maxlen=length, padding='post')

return padded

# load datasets
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trainLines, trainLabels = load_dataset('train.pkl')

testLines, testLabels = load_dataset('test.pkl')

# create tokenizer

tokenizer = create_tokenizer(trainLines)

# calculate max document length

length = max_length(trainLines)

print('Max document length: %d' % length)

# calculate vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary size: %d' % vocab_size)

# encode data

trainX = encode_text(tokenizer, trainLines, length)

testX = encode_text(tokenizer, testLines, length)

# load the model

model = load_model('model.h5')

# evaluate model on training dataset

_, acc = model.evaluate([trainX,trainX,trainX], trainLabels, verbose=0)

print('Train Accuracy: %.2f' % (acc*100))

# evaluate model on test dataset dataset

_, acc = model.evaluate([testX,testX,testX], testLabels, verbose=0)

print('Test Accuracy: %.2f' % (acc*100))

Listing 16.17: Complete example of evaluating the fit model.

Running the example prints the skill of the model on both the training and test datasets. We
can see that, as expected, the skill on the training dataset is excellent, here at 100% accuracy.
We can also see that the skill of the model on the unseen test dataset is also very impressive,
achieving 88.5%, which is above the skill of the model reported in the 2014 paper (although not
a direct apples-to-apples comparison).

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Train Accuracy: 100.00

Test Accuracy: 88.50

Listing 16.18: Example output from evaluating the fit model.

16.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Different n-grams. Explore the model by changing the kernel size (number of n-grams)
used by the channels in the model to see how it impacts model skill.

� More or Fewer Channels. Explore using more or fewer channels in the model and see
how it impacts model skill.

� Shared Embedding. Explore configurations where each channel shares the same word
embedding and report on the impact on model skill.
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� Deeper Network. Convolutional neural networks perform better in computer vision
when they are deeper. Explore using deeper models here and see how it impacts model
skill.

� Truncated Sequences. Padding all sequences to the length of the longest sequence
might be extreme if the longest sequence is very different to all other reviews. Study the
distribution of review lengths and truncate reviews to a mean length.

� Truncated Vocabulary. We removed infrequently occurring words, but still had a large
vocabulary of more than 25,000 words. Explore further reducing the size of the vocabulary
and the effect on model skill.

� Epochs and Batch Size. The model appears to fit the training dataset quickly. Explore
alternate configurations of the number of training epochs and batch size and use the test
dataset as a validation set to pick a better stopping point for training the model.

� Pre-Train an Embedding. Explore pre-training a Word2Vec word embedding in the
model and the impact on model skill with and without further fine tuning during training.

� Use GloVe Embedding. Explore loading the pre-trained GloVe embedding and the
impact on model skill with and without further fine tuning during training.

� Train Final Model. Train a final model on all available data and use it make predictions
on real ad hoc movie reviews from the internet.

If you explore any of these extensions, I’d love to know.

16.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

� Convolutional Neural Networks for Sentence Classification, 2014.
https://arxiv.org/abs/1408.5882

� Convolutional Neural Networks for Sentence Classification (code).
https://github.com/yoonkim/CNN_sentence

� Keras Functional API.
https://keras.io/getting-started/functional-api-guide/

16.8 Summary

In this tutorial, you discovered how to develop a multichannel convolutional neural network for
sentiment prediction on text movie review data. Specifically, you learned:

� How to prepare movie review text data for modeling.

� How to develop a multichannel convolutional neural network for text in Keras.

� How to evaluate a fit model on unseen movie review data.
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16.8.1 Next

This chapter is the last in the text classification part. In the next part, you will discover how to
develop neural language models.



Part VII

Language Modeling
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Chapter 17

Neural Language Modeling

Language modeling is central to many important natural language processing tasks. Recently,
neural-network-based language models have demonstrated better performance than classical
methods both standalone and as part of more challenging natural language processing tasks. In
this chapter, you will discover language modeling for natural language processing. After reading
this chapter, you will know:

� Why language modeling is critical to addressing tasks in natural language processing.

� What a language model is and some examples of where they are used.

� How neural networks can be used for language modeling.

Let’s get started.

17.1 Overview

This tutorial is divided into the following parts:

1. Problem of Modeling Language

2. Statistical Language Modeling

3. Neural Language Models

17.2 Problem of Modeling Language

Formal languages, like programming languages, can be fully specified. All the reserved words
can be defined and the valid ways that they can be used can be precisely defined. We cannot do
this with natural language. Natural languages are not designed; they emerge, and therefore
there is no formal specification.

There may be formal rules and heuristics for parts of the language, but as soon as rules
are defined, you will devise or encounter counter examples that contradict the rules. Natural
languages involve vast numbers of terms that can be used in ways that introduce all kinds of
ambiguities, yet can still be understood by other humans. Further, languages change, word
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usages change: it is a moving target. Nevertheless, linguists try to specify the language with
formal grammars and structures. It can be done, but it is very difficult and the results can
be fragile. An alternative approach to specifying the model of the language is to learn it from
examples.

17.3 Statistical Language Modeling

Statistical Language Modeling, or Language Modeling and LM for short, is the development of
probabilistic models that are able to predict the next word in the sequence given the words that
precede it.

Language modeling is the task of assigning a probability to sentences in a language.
[...] Besides assigning a probability to each sequence of words, the language models
also assigns a probability for the likelihood of a given word (or a sequence of words)
to follow a sequence of words

— Page 105, Neural Network Methods in Natural Language Processing, 2017.

A language model learns the probability of word occurrence based on examples of text.
Simpler models may look at a context of a short sequence of words, whereas larger models may
work at the level of sentences or paragraphs. Most commonly, language models operate at the
level of words.

The notion of a language model is inherently probabilistic. A language model is a
function that puts a probability measure over strings drawn from some vocabulary.

— Page 238, An Introduction to Information Retrieval, 2008.

A language model can be developed and used standalone, such as to generate new sequences
of text that appear to have come from the corpus. Language modeling is a root problem for a
large range of natural language processing tasks. More practically, language models are used
on the front-end or back-end of a more sophisticated model for a task that requires language
understanding.

... language modeling is a crucial component in real-world applications such as
machine-translation and automatic speech recognition, [...] For these reasons, lan-
guage modeling plays a central role in natural-language processing, AI, and machine-
learning research.

— Page 105, Neural Network Methods in Natural Language Processing, 2017.

A good example is speech recognition, where audio data is used as an input to the model
and the output requires a language model that interprets the input signal and recognizes each
new word within the context of the words already recognized.

Speech recognition is principally concerned with the problem of transcribing the
speech signal as a sequence of words. [...] From this point of view, speech is assumed
to be a generated by a language model which provides estimates of Pr(w) for all word
strings w independently of the observed signal [...] The goal of speech recognition is
to find the most likely word sequence given the observed acoustic signal.
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— Pages 205-206, The Oxford Handbook of Computational Linguistics, 2005

Similarly, language models are used to generate text in many similar natural language
processing tasks, for example:

� Optical Character Recognition

� Handwriting Recognition.

� Machine Translation.

� Spelling Correction.

� Image Captioning.

� Text Summarization

� And much more.

Language modeling is the art of determining the probability of a sequence of words.
This is useful in a large variety of areas including speech recognition, optical character
recognition, handwriting recognition, machine translation, and spelling correction

— A Bit of Progress in Language Modeling, 2001.

Developing better language models often results in models that perform better on their
intended natural language processing task. This is the motivation for developing better and
more accurate language models.

[language models] have played a key role in traditional NLP tasks such as speech
recognition, machine translation, or text summarization. Often (although not
always), training better language models improves the underlying metrics of the
downstream task (such as word error rate for speech recognition, or BLEU score for
translation), which makes the task of training better LMs valuable by itself.

— Exploring the Limits of Language Modeling, 2016.

17.4 Neural Language Models

Recently, the use of neural networks in the development of language models has become very
popular, to the point that it may now be the preferred approach. The use of neural networks in
language modeling is often called Neural Language Modeling, or NLM for short. Neural network
approaches are achieving better results than classical methods both on standalone language
models and when models are incorporated into larger models on challenging tasks like speech
recognition and machine translation. A key reason for the leaps in improved performance may
be the method’s ability to generalize.
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Nonlinear neural network models solve some of the shortcomings of traditional
language models: they allow conditioning on increasingly large context sizes with
only a linear increase in the number of parameters, they alleviate the need for
manually designing backoff orders, and they support generalization across different
contexts.

— Page 109, Neural Network Methods in Natural Language Processing, 2017.

Specifically, a word embedding is adopted that uses a real-valued vector to represent each
word in a projected vector space. This learned representation of words based on their usage
allows words with a similar meaning to have a similar representation.

Neural Language Models (NLM) address the n-gram data sparsity issue through
parameterization of words as vectors (word embeddings) and using them as inputs to
a neural network. The parameters are learned as part of the training process. Word
embeddings obtained through NLMs exhibit the property whereby semantically close
words are likewise close in the induced vector space.

— Character-Aware Neural Language Model, 2015.

This generalization is something that the representation used in classical statistical language
models cannot easily achieve.

“True generalization” is difficult to obtain in a discrete word indice space, since
there is no obvious relation between the word indices.

— Connectionist language modeling for large vocabulary continuous speech recognition, 2002.

Further, the distributed representation approach allows the embedding representation to scale
better with the size of the vocabulary. Classical methods that have one discrete representation
per word fight the curse of dimensionality with larger and larger vocabularies of words that
result in longer and more sparse representations. The neural network approach to language
modeling can be described using the three following model properties, taken from A Neural
Probabilistic Language Model, 2003.

1. Associate each word in the vocabulary with a distributed word feature vector.

2. Express the joint probability function of word sequences in terms of the feature vectors of
these words in the sequence.

3. Learn simultaneously the word feature vector and the parameters of the probability
function.

This represents a relatively simple model where both the representation and probabilistic
model are learned together directly from raw text data. Recently, the neural based approaches
have started to outperform the classical statistical approaches.

We provide ample empirical evidence to suggest that connectionist language mod-
els are superior to standard n-gram techniques, except their high computational
(training) complexity.
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— Recurrent neural network based language model, 2010.

Initially, feedforward neural network models were used to introduce the approach. More
recently, recurrent neural networks and then networks with a long-term memory like the Long
Short-Term Memory network, or LSTM, allow the models to learn the relevant context over
much longer input sequences than the simpler feedforward networks.

[an RNN language model] provides further generalization: instead of considering
just several preceding words, neurons with input from recurrent connections are
assumed to represent short term memory. The model learns itself from the data how
to represent memory. While shallow feedforward neural networks (those with just
one hidden layer) can only cluster similar words, recurrent neural network (which
can be considered as a deep architecture) can perform clustering of similar histories.
This allows for instance efficient representation of patterns with variable length.

— Extensions of recurrent neural network language model, 2011.

Recently, researchers have been seeking the limits of these language models. In the paper
Exploring the Limits of Language Modeling, evaluating language models over large datasets,
such as the corpus of one million words, the authors find that LSTM-based neural language
models out-perform the classical methods.

... we have shown that RNN LMs can be trained on large amounts of data, and
outperform competing models including carefully tuned N-grams.

— Exploring the Limits of Language Modeling, 2016.

Further, they propose some heuristics for developing high-performing neural language models
in general:

� Size matters. The best models were the largest models, specifically number of memory
units.

� Regularization matters. Use of regularization like dropout on input connections
improves results.

� CNNs vs Embeddings. Character-level Convolutional Neural Network (CNN) models
can be used on the front-end instead of word embeddings, achieving similar and sometimes
better results.

� Ensembles matter. Combining the prediction from multiple models can offer large
improvements in model performance.

17.5 Further Reading

This section provides more resources on the topic if you are looking go deeper.



17.5. Further Reading 195

17.5.1 Books

� Neural Network Methods in Natural Language Processing, 2017.
http://amzn.to/2vStiIS

� Natural Language Processing, Artificial Intelligence A Modern Approach, 2009.
http://amzn.to/2fDPfF3

� Language models for information retrieval, An Introduction to Information Retrieval, 2008.
http://amzn.to/2vAavQd

17.5.2 Papers

� A Neural Probabilistic Language Model, NIPS, 2001.
https://papers.nips.cc/paper/1839-a-neural-probabilistic-language-model.pdf

� A Neural Probabilistic Language Model, JMLR, 2003.
http://www.jmlr.org/papers/v3/bengio03a.html

� Connectionist language modeling for large vocabulary continuous speech recognition, 2002.
https://pdfs.semanticscholar.org/b4db/83366f925e9a1e1528ee9f6b41d7cd666f41.

pdf

� Recurrent neural network based language model, 2010.
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_

IS100722.pdf

� Extensions of recurrent neural network language model, 2011.
http://ieeexplore.ieee.org/abstract/document/5947611/

� Character-Aware Neural Language Model, 2015.
https://arxiv.org/abs/1508.06615

� LSTM Neural Networks for Language Modeling, 2012.
https://pdfs.semanticscholar.org/f9a1/b3850dfd837793743565a8af95973d395a4e.

pdf

� Exploring the Limits of Language Modeling, 2016.
https://arxiv.org/abs/1602.02410

17.5.3 Articles

� Language Model, Wikipedia.
https://en.wikipedia.org/wiki/Language_model

� Neural net language models, Scholarpedia.
http://www.scholarpedia.org/article/Neural_net_language_models
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17.6 Summary

In this chapter, you discovered language modeling for natural language processing tasks. Specif-
ically, you learned:

� That natural language is not formally specified and requires the use of statistical models
to learn from examples.

� That statistical language models are central to many challenging natural language pro-
cessing tasks.

� That state-of-the-art results are achieved using neural language models, specifically those
with word embeddings and recurrent neural network algorithms.

17.6.1 Next

In the next chapter, you will discover how you can develop a character-based neural language
model.



Chapter 18

How to Develop a Character-Based
Neural Language Model

A language model predicts the next word in the sequence based on the specific words that have
come before it in the sequence. It is also possible to develop language models at the character
level using neural networks. The benefit of character-based language models is their small
vocabulary and flexibility in handling any words, punctuation, and other document structure.
This comes at the cost of requiring larger models that are slower to train. Nevertheless, in the
field of neural language models, character-based models offer a lot of promise for a general,
flexible and powerful approach to language modeling. In this tutorial, you will discover how to
develop a character-based neural language model. After completing this tutorial, you will know:

� How to prepare text for character-based language modeling.

� How to develop a character-based language model using LSTMs.

� How to use a trained character-based language model to generate text.

Let’s get started.

18.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Sing a Song of Sixpence

2. Data Preparation

3. Train Language Model

4. Generate Text
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18.2 Sing a Song of Sixpence

The nursery rhyme Sing a Song of Sixpence is well known in the west. The first verse is common,
but there is also a 4 verse version that we will use to develop our character-based language
model. It is short, so fitting the model will be fast, but not so short that we won’t see anything
interesting. The complete 4 verse version we will use as source text is listed below.

Sing a song of sixpence,

A pocket full of rye.

Four and twenty blackbirds,

Baked in a pie.

When the pie was opened

The birds began to sing;

Wasn't that a dainty dish,

To set before the king.

The king was in his counting house,

Counting out his money;

The queen was in the parlour,

Eating bread and honey.

The maid was in the garden,

Hanging out the clothes,

When down came a blackbird

And pecked off her nose.

Listing 18.1: Sing a Song of Sixpence nursery rhyme.

Copy the text and save it in a new file in your current working directory with the file name
rhyme.txt.

18.3 Data Preparation

The first step is to prepare the text data. We will start by defining the type of language model.

18.3.1 Language Model Design

A language model must be trained on the text, and in the case of a character-based language
model, the input and output sequences must be characters. The number of characters used
as input will also define the number of characters that will need to be provided to the model
in order to elicit the first predicted character. After the first character has been generated, it
can be appended to the input sequence and used as input for the model to generate the next
character.

Longer sequences offer more context for the model to learn what character to output next
but take longer to train and impose more burden on seeding the model when generating text.
We will use an arbitrary length of 10 characters for this model. There is not a lot of text, and
10 characters is a few words. We can now transform the raw text into a form that our model
can learn; specifically, input and output sequences of characters.
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18.3.2 Load Text

We must load the text into memory so that we can work with it. Below is a function named
load doc() that will load a text file given a filename and return the loaded text.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

Listing 18.2: Function to load a document into memory.

We can call this function with the filename of the nursery rhyme rhyme.txt to load the text
into memory. The contents of the file are then printed to screen as a sanity check.

# load text

raw_text = load_doc('rhyme.txt')

print(raw_text)

Listing 18.3: Load the document into memory.

18.3.3 Clean Text

Next, we need to clean the loaded text. We will not do much to it on this example. Specifically,
we will strip all of the new line characters so that we have one long sequence of characters
separated only by white space.

# clean

tokens = raw_text.split()

raw_text = ' '.join(tokens)

Listing 18.4: Tokenize the loaded document.

You may want to explore other methods for data cleaning, such as normalizing the case to
lowercase or removing punctuation in an effort to reduce the final vocabulary size and develop a
smaller and leaner model.

18.3.4 Create Sequences

Now that we have a long list of characters, we can create our input-output sequences used to
train the model. Each input sequence will be 10 characters with one output character, making
each sequence 11 characters long. We can create the sequences by enumerating the characters
in the text, starting at the 11th character at index 10.

# organize into sequences of characters

length = 10

sequences = list()

for i in range(length, len(raw_text)):

# select sequence of tokens

seq = raw_text[i-length:i+1]
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# store

sequences.append(seq)

print('Total Sequences: %d' % len(sequences))

Listing 18.5: Convert text into fixed-length sequences.

Running this snippet, we can see that we end up with just under 400 sequences of characters
for training our language model.

Total Sequences: 399

Listing 18.6: Example output of converting text into fixed-length sequences.

18.3.5 Save Sequences

Finally, we can save the prepared data to file so that we can load it later when we develop our
model. Below is a function save doc() that, given a list of strings and a filename, will save the
strings to file, one per line.

# save tokens to file, one dialog per line

def save_doc(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)

file.close()

Listing 18.7: Function to save sequences to file.

We can call this function and save our prepared sequences to the filename char sequences.txt

in our current working directory.

# save sequences to file

out_filename = 'char_sequences.txt'

save_doc(sequences, out_filename)

Listing 18.8: Call function to save sequences to file.

18.3.6 Complete Example

Tying all of this together, the complete code listing is provided below.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# save tokens to file, one dialog per line

def save_doc(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')
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file.write(data)

file.close()

# load text

raw_text = load_doc('rhyme.txt')

print(raw_text)

# clean

tokens = raw_text.split()

raw_text = ' '.join(tokens)

# organize into sequences of characters

length = 10

sequences = list()

for i in range(length, len(raw_text)):

# select sequence of tokens

seq = raw_text[i-length:i+1]

# store

sequences.append(seq)

print('Total Sequences: %d' % len(sequences))

# save sequences to file

out_filename = 'char_sequences.txt'

save_doc(sequences, out_filename)

Listing 18.9: Complete example of preparing the text data.

Run the example to create the char sequences.txt file. Take a look inside you should see
something like the following:

Sing a song

ing a song

ng a song o

g a song of

a song of

a song of s

song of si

song of six

ong of sixp

ng of sixpe

...

Listing 18.10: Sample of the output file.

We are now ready to train our character-based neural language model.

18.4 Train Language Model

In this section, we will develop a neural language model for the prepared sequence data. The
model will read encoded characters and predict the next character in the sequence. A Long
Short-Term Memory recurrent neural network hidden layer will be used to learn the context
from the input sequence in order to make the predictions.

18.4.1 Load Data

The first step is to load the prepared character sequence data from char sequences.txt. We
can use the same load doc() function developed in the previous section. Once loaded, we split
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the text by new line to give a list of sequences ready to be encoded.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load

in_filename = 'char_sequences.txt'

raw_text = load_doc(in_filename)

lines = raw_text.split('\n')

Listing 18.11: Load the prepared text data.

18.4.2 Encode Sequences

The sequences of characters must be encoded as integers. This means that each unique character
will be assigned a specific integer value and each sequence of characters will be encoded as a
sequence of integers. We can create the mapping given a sorted set of unique characters in the
raw input data. The mapping is a dictionary of character values to integer values.

chars = sorted(list(set(raw_text)))

mapping = dict((c, i) for i, c in enumerate(chars))

Listing 18.12: Create a mapping between chars and integers.

Next, we can process each sequence of characters one at a time and use the dictionary
mapping to look up the integer value for each character.

sequences = list()

for line in lines:

# integer encode line

encoded_seq = [mapping[char] for char in line]

# store

sequences.append(encoded_seq)

Listing 18.13: Integer encode sequences of characters.

The result is a list of integer lists. We need to know the size of the vocabulary later. We can
retrieve this as the size of the dictionary mapping.

# vocabulary size

vocab_size = len(mapping)

print('Vocabulary Size: %d' % vocab_size)

Listing 18.14: Summarize the size of the vocabulary.

Running this piece, we can see that there are 38 unique characters in the input sequence
data.

Vocabulary Size: 38

Listing 18.15: Example output from summarizing the size of the vocabulary.



18.4. Train Language Model 203

18.4.3 Split Inputs and Output

Now that the sequences have been integer encoded, we can separate the columns into input and
output sequences of characters. We can do this using a simple array slice.

sequences = array(sequences)

X, y = sequences[:,:-1], sequences[:,-1]

Listing 18.16: Split sequences into input and output elements.

Next, we need to one hot encode each character. That is, each character becomes a vector as
long as the vocabulary (38 elements) with a 1 marked for the specific character. This provides
a more precise input representation for the network. It also provides a clear objective for the
network to predict, where a probability distribution over characters can be output by the model
and compared to the ideal case of all 0 values with a 1 for the actual next character. We can
use the to categorical() function in the Keras API to one hot encode the input and output
sequences.

sequences = [to_categorical(x, num_classes=vocab_size) for x in X]

X = array(sequences)

y = to_categorical(y, num_classes=vocab_size)

Listing 18.17: Convert sequences into a format ready for training.

We are now ready to fit the model.

18.4.4 Fit Model

The model is defined with an input layer that takes sequences that have 10 time steps and 38
features for the one hot encoded input sequences. Rather than specify these numbers, we use
the second and third dimensions on the X input data. This is so that if we change the length of
the sequences or size of the vocabulary, we do not need to change the model definition. The
model has a single LSTM hidden layer with 75 memory cells, chosen with a little trial and
error. The model has a fully connected output layer that outputs one vector with a probability
distribution across all characters in the vocabulary. A softmax activation function is used on
the output layer to ensure the output has the properties of a probability distribution.

# define the model

def define_model(X):

model = Sequential()

model.add(LSTM(75, input_shape=(X.shape[1], X.shape[2])))

model.add(Dense(vocab_size, activation='softmax'))

# compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 18.18: Define the language model.

The model is learning a multiclass classification problem, therefore we use the categorical log
loss intended for this type of problem. The efficient Adam implementation of gradient descent
is used to optimize the model and accuracy is reported at the end of each batch update. The
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model is fit for 100 training epochs, again found with a little trial and error. Running this prints
a summary of the defined network as a sanity check.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

lstm_1 (LSTM) (None, 75) 34200

_________________________________________________________________

dense_1 (Dense) (None, 38) 2888

=================================================================

Total params: 37,088

Trainable params: 37,088

Non-trainable params: 0

_________________________________________________________________

Listing 18.19: Example output from summarizing the defined model.

A plot the defined model is then saved to file with the name model.png.

Figure 18.1: Plot of the defined character-based language model.

18.4.5 Save Model

After the model is fit, we save it to file for later use. The Keras model API provides the save()

function that we can use to save the model to a single file, including weights and topology
information.

# save the model to file

model.save('model.h5')

Listing 18.20: Save the fit model to file.

We also save the mapping from characters to integers that we will need to encode any input
when using the model and decode any output from the model.

# save the mapping

dump(mapping, open('mapping.pkl', 'wb'))

Listing 18.21: Save the mapping of chars to integers to file.



18.4. Train Language Model 205

18.4.6 Complete Example

Tying all of this together, the complete code listing for fitting the character-based neural
language model is listed below.

from numpy import array

from pickle import dump

from keras.utils import to_categorical

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# define the model

def define_model(X):

model = Sequential()

model.add(LSTM(75, input_shape=(X.shape[1], X.shape[2])))

model.add(Dense(vocab_size, activation='softmax'))

# compile model

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# load

in_filename = 'char_sequences.txt'

raw_text = load_doc(in_filename)

lines = raw_text.split('\n')

# integer encode sequences of characters

chars = sorted(list(set(raw_text)))

mapping = dict((c, i) for i, c in enumerate(chars))

sequences = list()

for line in lines:

# integer encode line

encoded_seq = [mapping[char] for char in line]

# store

sequences.append(encoded_seq)

# vocabulary size

vocab_size = len(mapping)

print('Vocabulary Size: %d' % vocab_size)

# separate into input and output

sequences = array(sequences)

X, y = sequences[:,:-1], sequences[:,-1]

sequences = [to_categorical(x, num_classes=vocab_size) for x in X]

X = array(sequences)
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y = to_categorical(y, num_classes=vocab_size)

# define model

model = define_model(X)

# fit model

model.fit(X, y, epochs=100, verbose=2)

# save the model to file

model.save('model.h5')

# save the mapping

dump(mapping, open('mapping.pkl', 'wb'))

Listing 18.22: Complete example of training the language model.

Running the example might take one minute. You will see that the model learns the problem
well, perhaps too well for generating surprising sequences of characters.

...

Epoch 96/100

0s - loss: 0.2193 - acc: 0.9950

Epoch 97/100

0s - loss: 0.2124 - acc: 0.9950

Epoch 98/100

0s - loss: 0.2054 - acc: 0.9950

Epoch 99/100

0s - loss: 0.1982 - acc: 0.9950

Epoch 100/100

0s - loss: 0.1910 - acc: 0.9950

Listing 18.23: Example output from training the language model.

At the end of the run, you will have two files saved to the current working directory,
specifically model.h5 and mapping.pkl. Next, we can look at using the learned model.

18.5 Generate Text

We will use the learned language model to generate new sequences of text that have the same
statistical properties.

18.5.1 Load Model

The first step is to load the model saved to the file model.h5. We can use the load model()

function from the Keras API.

# load the model

model = load_model('model.h5')

Listing 18.24: Load the saved model.

We also need to load the pickled dictionary for mapping characters to integers from the file
mapping.pkl. We will use the Pickle API to load the object.

# load the mapping

mapping = load(open('mapping.pkl', 'rb'))

Listing 18.25: Load the saved mapping from chars to integers.

We are now ready to use the loaded model.
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18.5.2 Generate Characters

We must provide sequences of 10 characters as input to the model in order to start the generation
process. We will pick these manually. A given input sequence will need to be prepared in the
same way as preparing the training data for the model. First, the sequence of characters must
be integer encoded using the loaded mapping.

# encode the characters as integers

encoded = [mapping[char] for char in in_text]

Listing 18.26: Encode input text to integers.

Next, the integers need to be one hot encoded using the to categorical() Keras function.
We also need to reshape the sequence to be 3-dimensional, as we only have one sequence and
LSTMs require all input to be three dimensional (samples, time steps, features).

# one hot encode

encoded = to_categorical(encoded, num_classes=len(mapping))

encoded = encoded.reshape(1, encoded.shape[0], encoded.shape[1])

Listing 18.27: One hot encode the integer encoded text.

We can then use the model to predict the next character in the sequence. We use
predict classes() instead of predict() to directly select the integer for the character with
the highest probability instead of getting the full probability distribution across the entire set of
characters.

# predict character

yhat = model.predict_classes(encoded, verbose=0)

Listing 18.28: Predict the next character in the sequence.

We can then decode this integer by looking up the mapping to see the character to which it
maps.

out_char = ''

for char, index in mapping.items():

if index == yhat:

out_char = char

break

Listing 18.29: Map the predicted integer back to a character.

This character can then be added to the input sequence. We then need to make sure that the
input sequence is 10 characters by truncating the first character from the input sequence text.
We can use the pad sequences() function from the Keras API that can perform this truncation
operation. Putting all of this together, we can define a new function named generate seq()

for using the loaded model to generate new sequences of text.

# generate a sequence of characters with a language model

def generate_seq(model, mapping, seq_length, seed_text, n_chars):

in_text = seed_text

# generate a fixed number of characters

for _ in range(n_chars):

# encode the characters as integers

encoded = [mapping[char] for char in in_text]

# truncate sequences to a fixed length
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encoded = pad_sequences([encoded], maxlen=seq_length, truncating='pre')

# one hot encode

encoded = to_categorical(encoded, num_classes=len(mapping))

encoded = encoded.reshape(1, encoded.shape[0], encoded.shape[1])

# predict character

yhat = model.predict_classes(encoded, verbose=0)

# reverse map integer to character

out_char = ''

for char, index in mapping.items():

if index == yhat:

out_char = char

break

# append to input

in_text += char

return in_text

Listing 18.30: Function to predict a sequence of characters given seed text.

18.5.3 Complete Example

Tying all of this together, the complete example for generating text using the fit neural language
model is listed below.

from pickle import load

from keras.models import load_model

from keras.utils import to_categorical

from keras.preprocessing.sequence import pad_sequences

# generate a sequence of characters with a language model

def generate_seq(model, mapping, seq_length, seed_text, n_chars):

in_text = seed_text

# generate a fixed number of characters

for _ in range(n_chars):

# encode the characters as integers

encoded = [mapping[char] for char in in_text]

# truncate sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=seq_length, truncating='pre')

# one hot encode

encoded = to_categorical(encoded, num_classes=len(mapping))

encoded = encoded.reshape(1, encoded.shape[0], encoded.shape[1])

# predict character

yhat = model.predict_classes(encoded, verbose=0)

# reverse map integer to character

out_char = ''

for char, index in mapping.items():

if index == yhat:

out_char = char

break

# append to input

in_text += out_char

return in_text

# load the model

model = load_model('model.h5')

# load the mapping
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mapping = load(open('mapping.pkl', 'rb'))

# test start of rhyme

print(generate_seq(model, mapping, 10, 'Sing a son', 20))

# test mid-line

print(generate_seq(model, mapping, 10, 'king was i', 20))

# test not in original

print(generate_seq(model, mapping, 10, 'hello worl', 20))

Listing 18.31: Complete example of generating characters with the fit model.

Running the example generates three sequences of text. The first is a test to see how the
model does at starting from the beginning of the rhyme. The second is a test to see how well it
does at beginning in the middle of a line. The final example is a test to see how well it does
with a sequence of characters never seen before.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Sing a song of sixpence, A poc

king was in his counting house

hello worls e pake wofey. The

Listing 18.32: Example output from generating sequences of characters.

We can see that the model did very well with the first two examples, as we would expect.
We can also see that the model still generated something for the new text, but it is nonsense.

18.6 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Sing a Song of Sixpence on Wikipedia.
https://en.wikipedia.org/wiki/Sing_a_Song_of_Sixpence

� Keras Utils API.
https://keras.io/utils/

� Keras Sequence Processing API.
https://keras.io/preprocessing/sequence/

18.7 Summary

In this tutorial, you discovered how to develop a character-based neural language model.
Specifically, you learned:

� How to prepare text for character-based language modeling.

� How to develop a character-based language model using LSTMs.

� How to use a trained character-based language model to generate text.
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18.7.1 Next

In the next chapter, you will discover how you can develop a word-based neural language model.



Chapter 19

How to Develop a Word-Based Neural
Language Model

Language modeling involves predicting the next word in a sequence given the sequence of words
already present. A language model is a key element in many natural language processing models
such as machine translation and speech recognition. The choice of how the language model is
framed must match how the language model is intended to be used. In this tutorial, you will
discover how the framing of a language model affects the skill of the model when generating
short sequences from a nursery rhyme. After completing this tutorial, you will know:

� The challenge of developing a good framing of a word-based language model for a given
application.

� How to develop one-word, two-word, and line-based framings for word-based language
models.

� How to generate sequences using a fit language model.

Let’s get started.

19.1 Tutorial Overview

This tutorial is divided into the following parts:

1. Framing Language Modeling

2. Jack and Jill Nursery Rhyme

3. Model 1: One-Word-In, One-Word-Out Sequences

4. Model 2: Line-by-Line Sequence

5. Model 3: Two-Words-In, One-Word-Out Sequence

211
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19.2 Framing Language Modeling

A statistical language model is learned from raw text and predicts the probability of the next
word in the sequence given the words already present in the sequence. Language models are
a key component in larger models for challenging natural language processing problems, like
machine translation and speech recognition. They can also be developed as standalone models
and used for generating new sequences that have the same statistical properties as the source
text.

Language models both learn and predict one word at a time. The training of the network
involves providing sequences of words as input that are processed one at a time where a prediction
can be made and learned for each input sequence. Similarly, when making predictions, the
process can be seeded with one or a few words, then predicted words can be gathered and
presented as input on subsequent predictions in order to build up a generated output sequence

Therefore, each model will involve splitting the source text into input and output sequences,
such that the model can learn to predict words. There are many ways to frame the sequences
from a source text for language modeling. In this tutorial, we will explore 3 different ways of
developing word-based language models in the Keras deep learning library. There is no single
best approach, just different framings that may suit different applications.

19.3 Jack and Jill Nursery Rhyme

Jack and Jill is a simple nursery rhyme. It is comprised of 4 lines, as follows:

Jack and Jill went up the hill

To fetch a pail of water

Jack fell down and broke his crown

And Jill came tumbling after

Listing 19.1: Jack and Jill nursery rhyme.

We will use this as our source text for exploring different framings of a word-based language
model. We can define this text in Python as follows:

# source text

data = """ Jack and Jill went up the hill\n

To fetch a pail of water\n

Jack fell down and broke his crown\n

And Jill came tumbling after\n """

Listing 19.2: Sample text for this tutorial.

19.4 Model 1: One-Word-In, One-Word-Out Sequences

We can start with a very simple model. Given one word as input, the model will learn to predict
the next word in the sequence. For example:

X, y

Jack, and

and, Jill

Jill, went



19.4. Model 1: One-Word-In, One-Word-Out Sequences 213

...

Listing 19.3: Example of input and output pairs.

The first step is to encode the text as integers. Each lowercase word in the source text is
assigned a unique integer and we can convert the sequences of words to sequences of integers.
Keras provides the Tokenizer class that can be used to perform this encoding. First, the
Tokenizer is fit on the source text to develop the mapping from words to unique integers. Then
sequences of text can be converted to sequences of integers by calling the texts to sequences()

function.

# integer encode text

tokenizer = Tokenizer()

tokenizer.fit_on_texts([data])

encoded = tokenizer.texts_to_sequences([data])[0]

Listing 19.4: Example of training a Tokenizer on the sample text.

We will need to know the size of the vocabulary later for both defining the word embedding
layer in the model, and for encoding output words using a one hot encoding. The size of the
vocabulary can be retrieved from the trained Tokenizer by accessing the word index attribute.

# determine the vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary Size: %d' % vocab_size)

Listing 19.5: Summarize the size of the vocabulary.

Running this example, we can see that the size of the vocabulary is 21 words. We add one,
because we will need to specify the integer for the largest encoded word as an array index, e.g.
words encoded 1 to 21 with array indicies 0 to 21 or 22 positions. Next, we need to create
sequences of words to fit the model with one word as input and one word as output.

# create word -> word sequences

sequences = list()

for i in range(1, len(encoded)):

sequence = encoded[i-1:i+1]

sequences.append(sequence)

print('Total Sequences: %d' % len(sequences))

Listing 19.6: Example of encoding the source text.

Running this piece shows that we have a total of 24 input-output pairs to train the network.

Total Sequences: 24

Listing 19.7: Example of output of summarizing the encoded text.

We can then split the sequences into input (X) and output elements (y). This is straightfor-
ward as we only have two columns in the data.

# split into X and y elements

sequences = array(sequences)

X, y = sequences[:,0],sequences[:,1]

Listing 19.8: Split the encoded text into input and output pairs.
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We will fit our model to predict a probability distribution across all words in the vocabulary.
That means that we need to turn the output element from a single integer into a one hot
encoding with a 0 for every word in the vocabulary and a 1 for the actual word that the value.
This gives the network a ground truth to aim for from which we can calculate error and update
the model. Keras provides the to categorical() function that we can use to convert the
integer to a one hot encoding while specifying the number of classes as the vocabulary size.

# one hot encode outputs

y = to_categorical(y, num_classes=vocab_size)

Listing 19.9: One hot encode the output words.

We are now ready to define the neural network model. The model uses a learned word
embedding in the input layer. This has one real-valued vector for each word in the vocabulary,
where each word vector has a specified length. In this case we will use a 10-dimensional
projection. The input sequence contains a single word, therefore the input length=1. The
model has a single hidden LSTM layer with 50 units. This is far more than is needed. The
output layer is comprised of one neuron for each word in the vocabulary and uses a softmax
activation function to ensure the output is normalized to look like a probability.

# define the model

def define_model(vocab_size):

model = Sequential()

model.add(Embedding(vocab_size, 10, input_length=1))

model.add(LSTM(50))

model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 19.10: Define and compile the language model.

The structure of the network can be summarized as follows:

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding_1 (Embedding) (None, 1, 10) 220

_________________________________________________________________

lstm_1 (LSTM) (None, 50) 12200

_________________________________________________________________

dense_1 (Dense) (None, 22) 1122

=================================================================

Total params: 13,542

Trainable params: 13,542

Non-trainable params: 0

_________________________________________________________________

Listing 19.11: Example output summarizing the defined model.

A plot the defined model is then saved to file with the name model.png.
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Figure 19.1: Plot of the defined word-based language model.

We will use this same general network structure for each example in this tutorial, with
minor changes to the learned embedding layer. We can compile and fit the network on the
encoded text data. Technically, we are modeling a multiclass classification problem (predict the
word in the vocabulary), therefore using the categorical cross entropy loss function. We use the
efficient Adam implementation of gradient descent and track accuracy at the end of each epoch.
The model is fit for 500 training epochs, again, perhaps more than is needed. The network
configuration was not tuned for this and later experiments; an over-prescribed configuration
was chosen to ensure that we could focus on the framing of the language model.

After the model is fit, we test it by passing it a given word from the vocabulary and
having the model predict the next word. Here we pass in ‘Jack ’ by encoding it and calling
model.predict classes() to get the integer output for the predicted word. This is then looked
up in the vocabulary mapping to give the associated word.

# evaluate

in_text = 'Jack'

print(in_text)

encoded = tokenizer.texts_to_sequences([in_text])[0]

encoded = array(encoded)

yhat = model.predict_classes(encoded, verbose=0)

for word, index in tokenizer.word_index.items():

if index == yhat:

print(word)

Listing 19.12: Evaluate the fit language model.

This process could then be repeated a few times to build up a generated sequence of words.
To make this easier, we wrap up the behavior in a function that we can call by passing in our
model and the seed word.

# generate a sequence from the model

def generate_seq(model, tokenizer, seed_text, n_words):
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in_text, result = seed_text, seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

encoded = array(encoded)

# predict a word in the vocabulary

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text, result = out_word, result + ' ' + out_word

return result

Listing 19.13: Function to generate output sequences given a fit model.

We can tie all of this together. The complete code listing is provided below.

from numpy import array

from keras.preprocessing.text import Tokenizer

from keras.utils import to_categorical

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

# generate a sequence from the model

def generate_seq(model, tokenizer, seed_text, n_words):

in_text, result = seed_text, seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

encoded = array(encoded)

# predict a word in the vocabulary

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text, result = out_word, result + ' ' + out_word

return result

# define the model

def define_model(vocab_size):

model = Sequential()

model.add(Embedding(vocab_size, 10, input_length=1))

model.add(LSTM(50))

model.add(Dense(vocab_size, activation='softmax'))
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# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# source text

data = """ Jack and Jill went up the hill\n

To fetch a pail of water\n

Jack fell down and broke his crown\n

And Jill came tumbling after\n """

# integer encode text

tokenizer = Tokenizer()

tokenizer.fit_on_texts([data])

encoded = tokenizer.texts_to_sequences([data])[0]

# determine the vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary Size: %d' % vocab_size)

# create word -> word sequences

sequences = list()

for i in range(1, len(encoded)):

sequence = encoded[i-1:i+1]

sequences.append(sequence)

print('Total Sequences: %d' % len(sequences))

# split into X and y elements

sequences = array(sequences)

X, y = sequences[:,0],sequences[:,1]

# one hot encode outputs

y = to_categorical(y, num_classes=vocab_size)

# define model

model = define_model(vocab_size)

# fit network

model.fit(X, y, epochs=500, verbose=2)

# evaluate

print(generate_seq(model, tokenizer, 'Jack', 6))

Listing 19.14: Complete example of model1.

Running the example prints the loss and accuracy each training epoch.

...

Epoch 496/500

0s - loss: 0.2358 - acc: 0.8750

Epoch 497/500

0s - loss: 0.2355 - acc: 0.8750

Epoch 498/500

0s - loss: 0.2352 - acc: 0.8750

Epoch 499/500

0s - loss: 0.2349 - acc: 0.8750

Epoch 500/500

0s - loss: 0.2346 - acc: 0.8750

Listing 19.15: Example output of fitting the language model.

We can see that the model does not memorize the source sequences, likely because there is
some ambiguity in the input sequences, for example:
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jack => and

jack => fell

Listing 19.16: Example output of predicting the next word.

And so on. At the end of the run, Jack is passed in and a prediction or new sequence is
generated. We get a reasonable sequence as output that has some elements of the source.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Jack and jill came tumbling after down

Listing 19.17: Example output of predicting a sequence of words.

This is a good first cut language model, but does not take full advantage of the LSTM’s
ability to handle sequences of input and disambiguate some of the ambiguous pairwise sequences
by using a broader context.

19.5 Model 2: Line-by-Line Sequence

Another approach is to split up the source text line-by-line, then break each line down into a
series of words that build up. For example:

X, y

_, _, _, _, _, Jack, and

_, _, _, _, Jack, and, Jill

_, _, _, Jack, and, Jill, went

_, _, Jack, and, Jill, went, up

_, Jack, and, Jill, went, up, the

Jack, and, Jill, went, up, the, hill

Listing 19.18: Example framing of the problem as sequences of words.

This approach may allow the model to use the context of each line to help the model in those
cases where a simple one-word-in-and-out model creates ambiguity. In this case, this comes at
the cost of predicting words across lines, which might be fine for now if we are only interested
in modeling and generating lines of text. Note that in this representation, we will require a
padding of sequences to ensure they meet a fixed length input. This is a requirement when
using Keras. First, we can create the sequences of integers, line-by-line by using the Tokenizer

already fit on the source text.

# create line-based sequences

sequences = list()

for line in data.split('\n'):

encoded = tokenizer.texts_to_sequences([line])[0]

for i in range(1, len(encoded)):

sequence = encoded[:i+1]

sequences.append(sequence)

print('Total Sequences: %d' % len(sequences))

Listing 19.19: Example of preparing sequences of words.
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Next, we can pad the prepared sequences. We can do this using the pad sequences()

function provided in Keras. This first involves finding the longest sequence, then using that as
the length by which to pad-out all other sequences.

# pad input sequences

max_length = max([len(seq) for seq in sequences])

sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')

print('Max Sequence Length: %d' % max_length)

Listing 19.20: Example of padding sequences of words.

Next, we can split the sequences into input and output elements, much like before.

# split into input and output elements

sequences = array(sequences)

X, y = sequences[:,:-1],sequences[:,-1]

y = to_categorical(y, num_classes=vocab_size)

Listing 19.21: Example of preparing the input and output sequences.

The model can then be defined as before, except the input sequences are now longer than a
single word. Specifically, they are max length-1 in length, -1 because when we calculated the
maximum length of sequences, they included the input and output elements.

# define the model

def define_model(vocab_size, max_length):

model = Sequential()

model.add(Embedding(vocab_size, 10, input_length=max_length-1))

model.add(LSTM(50))

model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 19.22: Define and compile the language model.

We can use the model to generate new sequences as before. The generate seq() function
can be updated to build up an input sequence by adding predictions to the list of input words
each iteration.

# generate a sequence from a language model

def generate_seq(model, tokenizer, max_length, seed_text, n_words):

in_text = seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

# pre-pad sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:
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out_word = word

break

# append to input

in_text += ' ' + out_word

return in_text

Listing 19.23: Function to generate sequences of words given input text.

Tying all of this together, the complete code example is provided below.

from numpy import array

from keras.preprocessing.text import Tokenizer

from keras.utils import to_categorical

from keras.preprocessing.sequence import pad_sequences

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

# generate a sequence from a language model

def generate_seq(model, tokenizer, max_length, seed_text, n_words):

in_text = seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

# pre-pad sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text += ' ' + out_word

return in_text

# define the model

def define_model(vocab_size, max_length):

model = Sequential()

model.add(Embedding(vocab_size, 10, input_length=max_length-1))

model.add(LSTM(50))

model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# source text

data = """ Jack and Jill went up the hill\n

To fetch a pail of water\n
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Jack fell down and broke his crown\n

And Jill came tumbling after\n """

# prepare the tokenizer on the source text

tokenizer = Tokenizer()

tokenizer.fit_on_texts([data])

# determine the vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary Size: %d' % vocab_size)

# create line-based sequences

sequences = list()

for line in data.split('\n'):

encoded = tokenizer.texts_to_sequences([line])[0]

for i in range(1, len(encoded)):

sequence = encoded[:i+1]

sequences.append(sequence)

print('Total Sequences: %d' % len(sequences))

# pad input sequences

max_length = max([len(seq) for seq in sequences])

sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')

print('Max Sequence Length: %d' % max_length)

# split into input and output elements

sequences = array(sequences)

X, y = sequences[:,:-1],sequences[:,-1]

y = to_categorical(y, num_classes=vocab_size)

# define model

model = define_model(vocab_size, max_length)

# fit network

model.fit(X, y, epochs=500, verbose=2)

# evaluate model

print(generate_seq(model, tokenizer, max_length-1, 'Jack', 4))

print(generate_seq(model, tokenizer, max_length-1, 'Jill', 4))

Listing 19.24: Complete example of model2.

Running the example achieves a better fit on the source data. The added context has allowed
the model to disambiguate some of the examples. There are still two lines of text that start
with “Jack” that may still be a problem for the network.

...

Epoch 496/500

0s - loss: 0.1039 - acc: 0.9524

Epoch 497/500

0s - loss: 0.1037 - acc: 0.9524

Epoch 498/500

0s - loss: 0.1035 - acc: 0.9524

Epoch 499/500

0s - loss: 0.1033 - acc: 0.9524

Epoch 500/500

0s - loss: 0.1032 - acc: 0.9524

Listing 19.25: Example output of fitting the language model.

At the end of the run, we generate two sequences with different seed words: Jack and Jill.
The first generated line looks good, directly matching the source text. The second is a bit

strange. This makes sense, because the network only ever saw Jill within an input sequence,
not at the beginning of the sequence, so it has forced an output to use the word Jill, i.e. the
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last line of the rhyme.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

Jack fell down and broke

Jill jill came tumbling after

Listing 19.26: Example output of generating sequences of words.

This was a good example of how the framing may result in better new lines, but not good
partial lines of input.

19.6 Model 3: Two-Words-In, One-Word-Out Sequence

We can use an intermediate between the one-word-in and the whole-sentence-in approaches
and pass in a sub-sequences of words as input. This will provide a trade-off between the two
framings allowing new lines to be generated and for generation to be picked up mid line. We will
use 3 words as input to predict one word as output. The preparation of the sequences is much
like the first example, except with different offsets in the source sequence arrays, as follows:

# encode 2 words -> 1 word

sequences = list()

for i in range(2, len(encoded)):

sequence = encoded[i-2:i+1]

sequences.append(sequence)

Listing 19.27: Example of preparing constrained sequence data.

The complete example is listed below

from numpy import array

from keras.preprocessing.text import Tokenizer

from keras.utils import to_categorical

from keras.preprocessing.sequence import pad_sequences

from keras.utils.vis_utils import plot_model

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

# generate a sequence from a language model

def generate_seq(model, tokenizer, max_length, seed_text, n_words):

in_text = seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

# pre-pad sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=max_length, padding='pre')

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''
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for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text += ' ' + out_word

return in_text

# define the model

def define_model(vocab_size, max_length):

model = Sequential()

model.add(Embedding(vocab_size, 10, input_length=max_length-1))

model.add(LSTM(50))

model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# source text

data = """ Jack and Jill went up the hill\n

To fetch a pail of water\n

Jack fell down and broke his crown\n

And Jill came tumbling after\n """

# integer encode sequences of words

tokenizer = Tokenizer()

tokenizer.fit_on_texts([data])

encoded = tokenizer.texts_to_sequences([data])[0]

# retrieve vocabulary size

vocab_size = len(tokenizer.word_index) + 1

print('Vocabulary Size: %d' % vocab_size)

# encode 2 words -> 1 word

sequences = list()

for i in range(2, len(encoded)):

sequence = encoded[i-2:i+1]

sequences.append(sequence)

print('Total Sequences: %d' % len(sequences))

# pad sequences

max_length = max([len(seq) for seq in sequences])

sequences = pad_sequences(sequences, maxlen=max_length, padding='pre')

print('Max Sequence Length: %d' % max_length)

# split into input and output elements

sequences = array(sequences)

X, y = sequences[:,:-1],sequences[:,-1]

y = to_categorical(y, num_classes=vocab_size)

# define model

model = define_model(vocab_size, max_length)

# fit network

model.fit(X, y, epochs=500, verbose=2)

# evaluate model

print(generate_seq(model, tokenizer, max_length-1, 'Jack and', 5))

print(generate_seq(model, tokenizer, max_length-1, 'And Jill', 3))

print(generate_seq(model, tokenizer, max_length-1, 'fell down', 5))

print(generate_seq(model, tokenizer, max_length-1, 'pail of', 5))
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Listing 19.28: Complete example of model3.

Running the example again gets a good fit on the source text at around 95% accuracy.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

...

Epoch 496/500

0s - loss: 0.0685 - acc: 0.9565

Epoch 497/500

0s - loss: 0.0685 - acc: 0.9565

Epoch 498/500

0s - loss: 0.0684 - acc: 0.9565

Epoch 499/500

0s - loss: 0.0684 - acc: 0.9565

Epoch 500/500

0s - loss: 0.0684 - acc: 0.9565

Listing 19.29: Example output of fitting the language model.

We look at 4 generation examples, two start of line cases and two starting mid line.

Jack and jill went up the hill

And Jill went up the

fell down and broke his crown and

pail of water jack fell down and

Listing 19.30: Example output of generating sequences of words.

The first start of line case generated correctly, but the second did not. The second case was
an example from the 4th line, which is ambiguous with content from the first line. Perhaps a
further expansion to 3 input words would be better. The two mid-line generation examples were
generated correctly, matching the source text.

We can see that the choice of how the language model is framed and the requirements on
how the model will be used must be compatible. That careful design is required when using
language models in general, perhaps followed-up by spot testing with sequence generation to
confirm model requirements have been met.

19.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Jack and Jill on Wikipedia.
https://en.wikipedia.org/wiki/Jack_and_Jill_(nursery_rhyme)

� Language Model on Wikpedia.
https://en.wikipedia.org/wiki/Language_model

� Keras Embedding Layer API.
https://keras.io/layers/embeddings/#embedding
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� Keras Text Processing API.
https://keras.io/preprocessing/text/

� Keras Sequence Processing API.
https://keras.io/preprocessing/sequence/

� Keras Utils API.
https://keras.io/utils/

19.8 Summary

In this tutorial, you discovered how to develop different word-based language models for a simple
nursery rhyme. Specifically, you learned:

� The challenge of developing a good framing of a word-based language model for a given
application.

� How to develop one-word, two-word, and line-based framings for word-based language
models.

� How to generate sequences using a fit language model.

19.8.1 Next

In the next chapter, you will discover how you can develop a word-based neural language model
on a large corpus of text.



Chapter 20

Project: Develop a Neural Language
Model for Text Generation

A language model can predict the probability of the next word in the sequence, based on the
words already observed in the sequence. Neural network models are a preferred method for
developing statistical language models because they can use a distributed representation where
different words with similar meanings have similar representation and because they can use a
large context of recently observed words when making predictions. In this tutorial, you will
discover how to develop a statistical language model using deep learning in Python. After
completing this tutorial, you will know:

� How to prepare text for developing a word-based language model.

� How to design and fit a neural language model with a learned embedding and an LSTM
hidden layer.

� How to use the learned language model to generate new text with similar statistical
properties as the source text.

Let’s get started.

20.1 Tutorial Overview

This tutorial is divided into the following parts:

1. The Republic by Plato

2. Data Preparation

3. Train Language Model

4. Use Language Model

226
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20.2 The Republic by Plato

The Republic is the classical Greek philosopher Plato’s most famous work. It is structured as a
dialog (e.g. conversation) on the topic of order and justice within a city state The entire text is
available for free in the public domain. It is available on the Project Gutenberg website in a
number of formats. You can download the ASCII text version of the entire book (or books)
here (you might need to open the URL twice):

� Download The Republic by Plato.
http://www.gutenberg.org/cache/epub/1497/pg1497.txt

Download the book text and place it in your current working directly with the filename
republic.txt. Open the file in a text editor and delete the front and back matter. This
includes details about the book at the beginning, a long analysis, and license information at the
end. The text should begin with:

BOOK I.

I went down yesterday to the Piraeus with Glaucon the son of Ariston, ...

And end with:

... And it shall be well with us both in this life and in the pilgrimage of a thousand
years which we have been describing.

Save the cleaned version as republic clean.txt in your current working directory. The
file should be about 15,802 lines of text. Now we can develop a language model from this text.

20.3 Data Preparation

We will start by preparing the data for modeling. The first step is to look at the data.

20.3.1 Review the Text

Open the text in an editor and just look at the text data. For example, here is the first piece of
dialog:

BOOK I.

I went down yesterday to the Piraeus with Glaucon the son of Ariston, that I might
offer up my prayers to the goddess (Bendis, the Thracian Artemis.); and also because
I wanted to see in what manner they would celebrate the festival, which was a
new thing. I was delighted with the procession of the inhabitants; but that of the
Thracians was equally, if not more, beautiful. When we had finished our prayers
and viewed the spectacle, we turned in the direction of the city; and at that instant
Polemarchus the son of Cephalus chanced to catch sight of us from a distance as we
were starting on our way home, and told his servant to run and bid us wait for him.
The servant took hold of me by the cloak behind, and said: Polemarchus desires you
to wait.
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I turned round, and asked him where his master was.

There he is, said the youth, coming after you, if you will only wait.

Certainly we will, said Glaucon; and in a few minutes Polemarchus appeared, and
with him Adeimantus, Glaucon’s brother, Niceratus the son of Nicias, and several
others who had been at the procession.

Polemarchus said to me: I perceive, Socrates, that you and your companion are
already on your way to the city.

You are not far wrong, I said.

...

What do you see that we will need to handle in preparing the data? Here’s what I see from
a quick look:

� Book/Chapter headings (e.g. BOOK I.).

� Lots of punctuation (e.g. -, ;-, ?-, and more).

� Strange names (e.g. Polemarchus).

� Some long monologues that go on for hundreds of lines.

� Some quoted dialog (e.g. ‘...’).

These observations, and more, suggest at ways that we may wish to prepare the text data.
The specific way we prepare the data really depends on how we intend to model it, which in
turn depends on how we intend to use it.

20.3.2 Language Model Design

In this tutorial, we will develop a model of the text that we can then use to generate new
sequences of text. The language model will be statistical and will predict the probability of
each word given an input sequence of text. The predicted word will be fed in as input to in
turn generate the next word. A key design decision is how long the input sequences should be.
They need to be long enough to allow the model to learn the context for the words to predict.
This input length will also define the length of seed text used to generate new sequences when
we use the model.

There is no correct answer. With enough time and resources, we could explore the ability of
the model to learn with differently sized input sequences. Instead, we will pick a length of 50
words for the length of the input sequences, somewhat arbitrarily. We could process the data so
that the model only ever deals with self-contained sentences and pad or truncate the text to
meet this requirement for each input sequence. You could explore this as an extension to this
tutorial.

Instead, to keep the example brief, we will let all of the text flow together and train the
model to predict the next word across sentences, paragraphs, and even books or chapters in the
text. Now that we have a model design, we can look at transforming the raw text into sequences
of 100 input words to 1 output word, ready to fit a model.
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20.3.3 Load Text

The first step is to load the text into memory. We can develop a small function to load the
entire text file into memory and return it. The function is called load doc() and is listed below.
Given a filename, it returns a sequence of loaded text.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

Listing 20.1: Function to load text into memory.

Using this function, we can load the cleaner version of the document in the file
republic clean.txt as follows:

# load document

in_filename = 'republic_clean.txt'

doc = load_doc(in_filename)

print(doc[:200])

Listing 20.2: Example of loading the text into memory.

Running this snippet loads the document and prints the first 200 characters as a sanity
check.

BOOK I.

I went down yesterday to the Piraeus with Glaucon the son of Ariston,

that I might offer up my prayers to the goddess (Bendis, the Thracian

Artemis.); and also because I wanted to see in what

Listing 20.3: Example output of loading the text into memory.

So far, so good. Next, let’s clean the text.

20.3.4 Clean Text

We need to transform the raw text into a sequence of tokens or words that we can use as a
source to train the model. Based on reviewing the raw text (above), below are some specific
operations we will perform to clean the text. You may want to explore more cleaning operations
yourself as an extension.

� Replace ‘-’ with a white space so we can split words better.

� Split words based on white space.

� Remove all punctuation from words to reduce the vocabulary size (e.g. ‘What?’ becomes
‘What’).

� Remove all words that are not alphabetic to remove standalone punctuation tokens.
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� Normalize all words to lowercase to reduce the vocabulary size.

Vocabulary size is a big deal with language modeling. A smaller vocabulary results in a
smaller model that trains faster. We can implement each of these cleaning operations in this
order in a function. Below is the function clean doc() that takes a loaded document as an
argument and returns an array of clean tokens.

# turn a doc into clean tokens

def clean_doc(doc):

# replace '--' with a space ' '

doc = doc.replace('--', ' ')

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# make lower case

tokens = [word.lower() for word in tokens]

return tokens

Listing 20.4: Function to clean text.

We can run this cleaning operation on our loaded document and print out some of the tokens
and statistics as a sanity check.

# clean document

tokens = clean_doc(doc)

print(tokens[:200])

print('Total Tokens: %d' % len(tokens))

print('Unique Tokens: %d' % len(set(tokens)))

Listing 20.5: Example of cleaning text.

First, we can see a nice list of tokens that look cleaner than the raw text. We could remove
the ’Book I’ chapter markers and more, but this is a good start.

['book', 'i', 'i', 'went', 'down', 'yesterday', 'to', 'the', 'piraeus', 'with', 'glaucon',

'the', 'son', 'of', 'ariston', 'that', 'i', 'might', 'offer', 'up', 'my', 'prayers',

'to', 'the', 'goddess', 'bendis', 'the', 'thracian', 'artemis', 'and', 'also',

'because', 'i', 'wanted', 'to', 'see', 'in', 'what', 'manner', 'they', 'would',

'celebrate', 'the', 'festival', 'which', 'was', 'a', 'new', 'thing', 'i', 'was',

'delighted', 'with', 'the', 'procession', 'of', 'the', 'inhabitants', 'but', 'that',

'of', 'the', 'thracians', 'was', 'equally', 'if', 'not', 'more', 'beautiful', 'when',

'we', 'had', 'finished', 'our', 'prayers', 'and', 'viewed', 'the', 'spectacle', 'we',

'turned', 'in', 'the', 'direction', 'of', 'the', 'city', 'and', 'at', 'that',

'instant', 'polemarchus', 'the', 'son', 'of', 'cephalus', 'chanced', 'to', 'catch',

'sight', 'of', 'us', 'from', 'a', 'distance', 'as', 'we', 'were', 'starting', 'on',

'our', 'way', 'home', 'and', 'told', 'his', 'servant', 'to', 'run', 'and', 'bid', 'us',

'wait', 'for', 'him', 'the', 'servant', 'took', 'hold', 'of', 'me', 'by', 'the',

'cloak', 'behind', 'and', 'said', 'polemarchus', 'desires', 'you', 'to', 'wait', 'i',

'turned', 'round', 'and', 'asked', 'him', 'where', 'his', 'master', 'was', 'there',

'he', 'is', 'said', 'the', 'youth', 'coming', 'after', 'you', 'if', 'you', 'will',

'only', 'wait', 'certainly', 'we', 'will', 'said', 'glaucon', 'and', 'in', 'a', 'few',

'minutes', 'polemarchus', 'appeared', 'and', 'with', 'him', 'adeimantus', 'glaucons',
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'brother', 'niceratus', 'the', 'son', 'of', 'nicias', 'and', 'several', 'others',

'who', 'had', 'been', 'at', 'the', 'procession', 'polemarchus', 'said']

Listing 20.6: Example output of tokenized and clean text.

We also get some statistics about the clean document. We can see that there are just under
120,000 words in the clean text and a vocabulary of just under 7,500 words. This is smallish
and models fit on this data should be manageable on modest hardware.

Total Tokens: 118684

Unique Tokens: 7409

Listing 20.7: Example output summarizing properties of the clean text.

Next, we can look at shaping the tokens into sequences and saving them to file.

20.3.5 Save Clean Text

We can organize the long list of tokens into sequences of 50 input words and 1 output word.
That is, sequences of 51 words. We can do this by iterating over the list of tokens from token 51
onwards and taking the prior 50 tokens as a sequence, then repeating this process to the end of
the list of tokens. We will transform the tokens into space-separated strings for later storage
in a file. The code to split the list of clean tokens into sequences with a length of 51 tokens is
listed below.

# organize into sequences of tokens

length = 50 + 1

sequences = list()

for i in range(length, len(tokens)):

# select sequence of tokens

seq = tokens[i-length:i]

# convert into a line

line = ' '.join(seq)

# store

sequences.append(line)

print('Total Sequences: %d' % len(sequences))

Listing 20.8: Split document into sequences of text.

Running this piece creates a long list of lines. Printing statistics on the list, we can see that
we will have exactly 118,633 training patterns to fit our model.

Total Sequences: 118633

Listing 20.9: Example output of splitting the document into sequences.

Next, we can save the sequences to a new file for later loading. We can define a new function
for saving lines of text to a file. This new function is called save doc() and is listed below. It
takes as input a list of lines and a filename. The lines are written, one per line, in ASCII format.

# save tokens to file, one dialog per line

def save_doc(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)

file.close()
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Listing 20.10: Function to save sequences of text to file.

We can call this function and save our training sequences to the file republic sequences.txt.

# save sequences to file

out_filename = 'republic_sequences.txt'

save_doc(sequences, out_filename)

Listing 20.11: Example of saving sequences to file.

Take a look at the file with your text editor. You will see that each line is shifted along one
word, with a new word at the end to be predicted; for example, here are the first 3 lines in
truncated form:

book i i ... catch sight of

i i went ... sight of us

i went down ... of us from

...

Listing 20.12: Example contents of sequences saved to file.

20.3.6 Complete Example

Tying all of this together, the complete code listing is provided below.

import string

import re

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# turn a doc into clean tokens

def clean_doc(doc):

# replace '--' with a space ' '

doc = doc.replace('--', ' ')

# split into tokens by white space

tokens = doc.split()

# prepare regex for char filtering

re_punc = re.compile('[%s]' % re.escape(string.punctuation))

# remove punctuation from each word

tokens = [re_punc.sub('', w) for w in tokens]

# remove remaining tokens that are not alphabetic

tokens = [word for word in tokens if word.isalpha()]

# make lower case

tokens = [word.lower() for word in tokens]

return tokens

# save tokens to file, one dialog per line
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def save_doc(lines, filename):

data = '\n'.join(lines)

file = open(filename, 'w')

file.write(data)

file.close()

# load document

in_filename = 'republic_clean.txt'

doc = load_doc(in_filename)

print(doc[:200])

# clean document

tokens = clean_doc(doc)

print(tokens[:200])

print('Total Tokens: %d' % len(tokens))

print('Unique Tokens: %d' % len(set(tokens)))

# organize into sequences of tokens

length = 50 + 1

sequences = list()

for i in range(length, len(tokens)):

# select sequence of tokens

seq = tokens[i-length:i]

# convert into a line

line = ' '.join(seq)

# store

sequences.append(line)

print('Total Sequences: %d' % len(sequences))

# save sequences to file

out_filename = 'republic_sequences.txt'

save_doc(sequences, out_filename)

Listing 20.13: Complete example preparing text data for modeling.

You should now have training data stored in the file republic sequences.txt in your
current working directory. Next, let’s look at how to fit a language model to this data.

20.4 Train Language Model

We can now train a statistical language model from the prepared data. The model we will train
is a neural language model. It has a few unique characteristics:

� It uses a distributed representation for words so that different words with similar meanings
will have a similar representation.

� It learns the representation at the same time as learning the model.

� It learns to predict the probability for the next word using the context of the last 100
words.

Specifically, we will use an Embedding Layer to learn the representation of words, and a
Long Short-Term Memory (LSTM) recurrent neural network to learn to predict words based on
their context. Let’s start by loading our training data.
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20.4.1 Load Sequences

We can load our training data using the load doc() function we developed in the previous
section. Once loaded, we can split the data into separate training sequences by splitting based
on new lines. The snippet below will load the republic sequences.txt data file from the
current working directory.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# load

in_filename = 'republic_sequences.txt'

doc = load_doc(in_filename)

lines = doc.split('\n')

Listing 20.14: Load the clean sequences from file.

Next, we can encode the training data.

20.4.2 Encode Sequences

The word embedding layer expects input sequences to be comprised of integers. We can map
each word in our vocabulary to a unique integer and encode our input sequences. Later, when
we make predictions, we can convert the prediction to numbers and look up their associated
words in the same mapping. To do this encoding, we will use the Tokenizer class in the Keras
API.

First, the Tokenizer must be trained on the entire training dataset, which means it finds
all of the unique words in the data and assigns each a unique integer. We can then use the fit
Tokenizer to encode all of the training sequences, converting each sequence from a list of words
to a list of integers.

# integer encode sequences of words

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

sequences = tokenizer.texts_to_sequences(lines)

Listing 20.15: Train a tokenizer on the loaded sequences.

We can access the mapping of words to integers as a dictionary attribute called word index

on the Tokenizer object. We need to know the size of the vocabulary for defining the embedding
layer later. We can determine the vocabulary by calculating the size of the mapping dictionary.

Words are assigned values from 1 to the total number of words (e.g. 7,409). The Embedding

layer needs to allocate a vector representation for each word in this vocabulary from index 1 to
the largest index and because indexing of arrays is zero-offset, the index of the word at the end
of the vocabulary will be 7,409; that means the array must be 7,409 + 1 in length. Therefore,
when specifying the vocabulary size to the Embedding layer, we specify it as 1 larger than the
actual vocabulary.
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# vocabulary size

vocab_size = len(tokenizer.word_index) + 1

Listing 20.16: Calculate the size of the vocabulary.

20.4.3 Sequence Inputs and Output

Now that we have encoded the input sequences, we need to separate them into input (X) and
output (y) elements. We can do this with array slicing. After separating, we need to one hot
encode the output word. This means converting it from an integer to a vector of 0 values, one
for each word in the vocabulary, with a 1 to indicate the specific word at the index of the words
integer value.

This is so that the model learns to predict the probability distribution for the next word and
the ground truth from which to learn from is 0 for all words except the actual word that comes
next. Keras provides the to categorical() that can be used to one hot encode the output
words for each input-output sequence pair.

Finally, we need to specify to the Embedding layer how long input sequences are. We know
that there are 50 words because we designed the model, but a good generic way to specify that
is to use the second dimension (number of columns) of the input data’s shape. That way, if
you change the length of sequences when preparing data, you do not need to change this data
loading code; it is generic.

# separate into input and output

sequences = array(sequences)

X, y = sequences[:,:-1], sequences[:,-1]

y = to_categorical(y, num_classes=vocab_size)

seq_length = X.shape[1]

Listing 20.17: Split text data into input and output sequences.

20.4.4 Fit Model

We can now define and fit our language model on the training data. The learned embedding
needs to know the size of the vocabulary and the length of input sequences as previously
discussed. It also has a parameter to specify how many dimensions will be used to represent
each word. That is, the size of the embedding vector space.

Common values are 50, 100, and 300. We will use 50 here, but consider testing smaller or
larger values. We will use a two LSTM hidden layers with 100 memory cells each. More memory
cells and a deeper network may achieve better results.

A dense fully connected layer with 100 neurons connects to the LSTM hidden layers to
interpret the features extracted from the sequence. The output layer predicts the next word as
a single vector the size of the vocabulary with a probability for each word in the vocabulary. A
softmax activation function is used to ensure the outputs have the characteristics of normalized
probabilities.

# define the model

def define_model(vocab_size, seq_length):

model = Sequential()

model.add(Embedding(vocab_size, 50, input_length=seq_length))
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model.add(LSTM(100, return_sequences=True))

model.add(LSTM(100))

model.add(Dense(100, activation='relu'))

model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

Listing 20.18: Define the language model.

A summary of the defined network is printed as a sanity check to ensure we have constructed
what we intended.

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

embedding_1 (Embedding) (None, 50, 50) 370500

_________________________________________________________________

lstm_1 (LSTM) (None, 50, 100) 60400

_________________________________________________________________

lstm_2 (LSTM) (None, 100) 80400

_________________________________________________________________

dense_1 (Dense) (None, 100) 10100

_________________________________________________________________

dense_2 (Dense) (None, 7410) 748410

=================================================================

Total params: 1,269,810

Trainable params: 1,269,810

Non-trainable params: 0

_________________________________________________________________

Listing 20.19: Example output from summarizing the defined model.

A plot the defined model is then saved to file with the name model.png.
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Figure 20.1: Plot of the defined word-based language model.

The model is compiled specifying the categorical cross entropy loss needed to fit the model.
Technically, the model is learning a multiclass classification and this is the suitable loss function
for this type of problem. The efficient Adam implementation to mini-batch gradient descent
is used and accuracy is evaluated of the model. Finally, the model is fit on the data for 100
training epochs with a modest batch size of 128 to speed things up. Training may take a few
hours on modern hardware without GPUs. You can speed it up with a larger batch size and/or
fewer training epochs.

During training, you will see a summary of performance, including the loss and accuracy
evaluated from the training data at the end of each batch update. You will get different results,
but perhaps an accuracy of just over 50% of predicting the next word in the sequence, which is
not bad. We are not aiming for 100% accuracy (e.g. a model that memorized the text), but
rather a model that captures the essence of the text.

...

Epoch 96/100

118633/118633 [==============================] - 265s - loss: 2.0324 - acc: 0.5187

Epoch 97/100

118633/118633 [==============================] - 265s - loss: 2.0136 - acc: 0.5247

Epoch 98/100
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118633/118633 [==============================] - 267s - loss: 1.9956 - acc: 0.5262

Epoch 99/100

118633/118633 [==============================] - 266s - loss: 1.9812 - acc: 0.5291

Epoch 100/100

118633/118633 [==============================] - 270s - loss: 1.9709 - acc: 0.5315

Listing 20.20: Example output from training the language model.

20.4.5 Save Model

At the end of the run, the trained model is saved to file. Here, we use the Keras model API to
save the model to the file model.h5 in the current working directory. Later, when we load the
model to make predictions, we will also need the mapping of words to integers. This is in the
Tokenizer object, and we can save that too using Pickle.

# save the model to file

model.save('model.h5')

# save the tokenizer

dump(tokenizer, open('tokenizer.pkl', 'wb'))

Listing 20.21: Save the fit model and Tokenizer to file.

20.4.6 Complete Example

We can put all of this together; the complete example for fitting the language model is listed
below.

from numpy import array

from pickle import dump

from keras.preprocessing.text import Tokenizer

from keras.utils.vis_utils import plot_model

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Embedding

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# define the model

def define_model(vocab_size, seq_length):

model = Sequential()

model.add(Embedding(vocab_size, 50, input_length=seq_length))

model.add(LSTM(100, return_sequences=True))

model.add(LSTM(100))

model.add(Dense(100, activation='relu'))
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model.add(Dense(vocab_size, activation='softmax'))

# compile network

model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# summarize defined model

model.summary()

plot_model(model, to_file='model.png', show_shapes=True)

return model

# load

in_filename = 'republic_sequences.txt'

doc = load_doc(in_filename)

lines = doc.split('\n')

# integer encode sequences of words

tokenizer = Tokenizer()

tokenizer.fit_on_texts(lines)

sequences = tokenizer.texts_to_sequences(lines)

# vocabulary size

vocab_size = len(tokenizer.word_index) + 1

# separate into input and output

sequences = array(sequences)

X, y = sequences[:,:-1], sequences[:,-1]

y = to_categorical(y, num_classes=vocab_size)

seq_length = X.shape[1]

# define model

model = define_model(vocab_size, seq_length)

# fit model

model.fit(X, y, batch_size=128, epochs=100)

# save the model to file

model.save('model.h5')

# save the tokenizer

dump(tokenizer, open('tokenizer.pkl', 'wb'))

Listing 20.22: Complete example training the language model.

20.5 Use Language Model

Now that we have a trained language model, we can use it. In this case, we can use it to generate
new sequences of text that have the same statistical properties as the source text. This is not
practical, at least not for this example, but it gives a concrete example of what the language
model has learned. We will start by loading the training sequences again.

20.5.1 Load Data

We can use the same code from the previous section to load the training data sequences of text.
Specifically, the load doc() function.

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file
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file.close()

return text

# load cleaned text sequences

in_filename = 'republic_sequences.txt'

doc = load_doc(in_filename)

lines = doc.split('\n')

Listing 20.23: Load the clean sequences from file.

We need the text so that we can choose a source sequence as input to the model for generating
a new sequence of text. The model will require 50 words as input. Later, we will need to specify
the expected length of input. We can determine this from the input sequences by calculating
the length of one line of the loaded data and subtracting 1 for the expected output word that is
also on the same line.

seq_length = len(lines[0].split()) - 1

Listing 20.24: Calculate the expected input length.

20.5.2 Load Model

We can now load the model from file. Keras provides the load model() function for loading
the model, ready for use.

# load the model

model = load_model('model.h5')

Listing 20.25: Load the saved model from file.

We can also load the tokenizer from file using the Pickle API.

# load the tokenizer

tokenizer = load(open('tokenizer.pkl', 'rb'))

Listing 20.26: Load the saved Tokenizer from file.

We are ready to use the loaded model.

20.5.3 Generate Text

The first step in generating text is preparing a seed input. We will select a random line of text
from the input text for this purpose. Once selected, we will print it so that we have some idea
of what was used.

# select a seed text

seed_text = lines[randint(0,len(lines))]

print(seed_text + '\n')

Listing 20.27: Select random examples as seed text.

Next, we can generate new words, one at a time. First, the seed text must be encoded to
integers using the same tokenizer that we used when training the model.

encoded = tokenizer.texts_to_sequences([seed_text])[0]

Listing 20.28: Encode the selected seed text.
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The model can predict the next word directly by calling model.predict classes() that
will return the index of the word with the highest probability.

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

Listing 20.29: Predict the next word in the sequence.

We can then look up the index in the Tokenizer’s mapping to get the associated word.

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

Listing 20.30: Map the predicted integer to a word in the known vocabulary.

We can then append this word to the seed text and repeat the process. Importantly, the
input sequence is going to get too long. We can truncate it to the desired length after the input
sequence has been encoded to integers. Keras provides the pad sequences() function that we
can use to perform this truncation.

encoded = pad_sequences([encoded], maxlen=seq_length, truncating='pre')

Listing 20.31: Pad the encoded sequence.

We can wrap all of this into a function called generate seq() that takes as input the model,
the tokenizer, input sequence length, the seed text, and the number of words to generate. It
then returns a sequence of words generated by the model.

# generate a sequence from a language model

def generate_seq(model, tokenizer, seq_length, seed_text, n_words):

result = list()

in_text = seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

# truncate sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=seq_length, truncating='pre')

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text += ' ' + out_word

result.append(out_word)

return ' '.join(result)

Listing 20.32: Function to generate a sequence of words given the model and seed text.

We are now ready to generate a sequence of new words given some seed text.
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# generate new text

generated = generate_seq(model, tokenizer, seq_length, seed_text, 50)

print(generated)

Listing 20.33: Example of generating a sequence of text.

Putting this all together, the complete code listing for generating text from the learned-
language model is listed below.

from random import randint

from pickle import load

from keras.models import load_model

from keras.preprocessing.sequence import pad_sequences

# load doc into memory

def load_doc(filename):

# open the file as read only

file = open(filename, 'r')

# read all text

text = file.read()

# close the file

file.close()

return text

# generate a sequence from a language model

def generate_seq(model, tokenizer, seq_length, seed_text, n_words):

result = list()

in_text = seed_text

# generate a fixed number of words

for _ in range(n_words):

# encode the text as integer

encoded = tokenizer.texts_to_sequences([in_text])[0]

# truncate sequences to a fixed length

encoded = pad_sequences([encoded], maxlen=seq_length, truncating='pre')

# predict probabilities for each word

yhat = model.predict_classes(encoded, verbose=0)

# map predicted word index to word

out_word = ''

for word, index in tokenizer.word_index.items():

if index == yhat:

out_word = word

break

# append to input

in_text += ' ' + out_word

result.append(out_word)

return ' '.join(result)

# load cleaned text sequences

in_filename = 'republic_sequences.txt'

doc = load_doc(in_filename)

lines = doc.split('\n')

seq_length = len(lines[0].split()) - 1

# load the model

model = load_model('model.h5')

# load the tokenizer

tokenizer = load(open('tokenizer.pkl', 'rb'))
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# select a seed text

seed_text = lines[randint(0,len(lines))]

print(seed_text + '\n')

# generate new text

generated = generate_seq(model, tokenizer, seq_length, seed_text, 50)

print(generated)

Listing 20.34: Complete example of generating sequences of text.

Running the example first prints the seed text.

when he said that a man when he grows old may learn many things for he can no more learn

much than he can run much youth is the time for any extraordinary toil of course and

therefore calculation and geometry and all the other elements of instruction which are a

Listing 20.35: Example output from selecting seed text.

Then 50 words of generated text are printed.

Note: Given the stochastic nature of neural networks, your specific results may vary. Consider
running the example a few times.

preparation for dialectic should be presented to the name of idle spendthrifts of whom the

other is the manifold and the unjust and is the best and the other which delighted to

be the opening of the soul of the soul and the embroiderer will have to be said at

Listing 20.36: Example output of generated text.

You can see that the text seems reasonable. In fact, the addition of concatenation would
help in interpreting the seed and the generated text. Nevertheless, the generated text gets the
right kind of words in the right kind of order. Try running the example a few times to see other
examples of generated text.

20.6 Extensions

This section lists some ideas for extending the tutorial that you may wish to explore.

� Contrived Seed Text. Hand craft or select seed text and evaluate how the seed text
impacts the generated text, specifically the initial words or sentences generated.

� Simplify Vocabulary. Explore a simpler vocabulary, perhaps with stemmed words or
stop words removed.

� Data Cleaning. Consider using more or less cleaning of the text, perhaps leave in some
punctuation or perhaps replacing all fancy names with one or a handful. Evaluate how
these changes to the size of the vocabulary impact the generated text.

� Tune Model. Tune the model, such as the size of the embedding or number of memory
cells in the hidden layer, to see if you can develop a better model.

� Deeper Model. Extend the model to have multiple LSTM hidden layers, perhaps with
dropout to see if you can develop a better model.
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� Develop Pre-Trained Embedding. Extend the model to use pre-trained Word2Vec
vectors to see if it results in a better model.

� Use GloVe Embedding. Use the GloVe word embedding vectors with and without fine
tuning by the network and evaluate how it impacts training and the generated words.

� Sequence Length. Explore training the model with different length input sequences,
both shorter and longer, and evaluate how it impacts the quality of the generated text.

� Reduce Scope. Consider training the model on one book (chapter) or a subset of
the original text and evaluate the impact on training, training speed and the resulting
generated text.

� Sentence-Wise Model. Split the raw data based on sentences and pad each sentence
to a fixed length (e.g. the longest sentence length).

If you explore any of these extensions, I’d love to know.

20.7 Further Reading

This section provides more resources on the topic if you are looking go deeper.

� Project Gutenberg.
https://www.gutenberg.org/

� The Republic by Plato on Project Gutenberg.
https://www.gutenberg.org/ebooks/1497

� Republic (Plato) on Wikipedia.
https://en.wikipedia.org/wiki/Republic_(Plato)

� Language model on Wikipedia.
https://en.wikipedia.org/wiki/Language_model

20.8 Summary

In this tutorial, you discovered how to develop a word-based language model using a word
embedding and a recurrent neural network. Specifically, you learned:

� How to prepare text for developing a word-based language model.

� How to design and fit a neural language model with a learned embedding and an LSTM
hidden layer.

� How to use the learned language model to generate new text with similar statistical
properties as the source text.

20.8.1 Next

This is the final chapter in the language modeling part. In the next part you will discover how
to develop automatic caption generation for photographs.


