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6.8 � Plücker Line Coordinate 534

6.9 � Geometry of Plane and Line 540

6.9.1 � Moment 540

6.9.2 � Angle and Distance 541

6.9.3 � Plane and Line 541

6.10 � Screw and Plücker Coordinate 545
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Preface

This book is arranged in such a way, and covers those materials, that I would have
liked to have had available as a student: straightforward, right to the point, analyzing
a subject from different viewpoints, showing practical aspects and application of every
subject, considering physical meaning and sense, with interesting and clear examples.
This book was written for graduate students who want to learn every aspect of dynam-
ics and its application. It is based on two decades of research and teaching courses in
advanced dynamics, attitude dynamics, vehicle dynamics, classical mechanics, multi-
body dynamics, and robotics.

I know that the best way to learn dynamics is repeat and practice, repeat and
practice. So, you are going to see some repeating and much practicing in this book.
I begin with fundamental subjects in dynamics and end with advanced materials. I
introduce the fundamental knowledge used in particle and rigid-body dynamics. This
knowledge can be used to develop computer programs for analyzing the kinematics,
dynamics, and control of dynamic systems.

The subject of rigid body has been at the heart of dynamics since the 1600s
and remains alive with modern developments of applications. Classical kinematics and
dynamics have their roots in the work of great scientists of the past four centuries who
established the methodology and understanding of the behavior of dynamic systems.
The development of dynamic science, since the beginning of the twentieth century, has
moved toward analysis of controllable man-made autonomous systems.

LEVEL OF THE BOOK

More than half of the material is in common with courses in advanced dynamics,
classical mechanics, multibody dynamics, and spacecraft dynamics. Graduate students
in mechanical and aerospace engineering have the potential to work on projects that
are related to either of these engineering disciplines. However, students have not seen
enough applications in all areas. Although their textbooks introduce rigid-body dynam-
ics, mechanical engineering students only work on engineering applications while
aerospace engineering students only see spacecraft applications and attitude dynam-
ics. The reader of this text will have no problem in analyzing a dynamic system in any
of these areas. This book bridges the gap between rigid-body, classical, multibody, and
spacecraft dynamics for graduate students and specialists in mechanical and aerospace
engineering. Engineers and graduate students who read this book will be able to apply
their knowledge to a wide range of engineering disciplines.

This book is aimed primarily at graduate students in engineering, physics, and
mathematics. It is especially useful for courses in the dynamics of rigid bodies such
as advanced dynamics, classical mechanics, attitude dynamics, spacecraft dynamics,
and multibody dynamics. It provides both fundamental and advanced topics on the

xiii



xiv Preface

kinematics and dynamics of rigid bodies. The whole book can be covered in two
successive courses; however, it is possible to jump over some sections and cover the
book in one course.

The contents of the book have been kept at a fairly theoretical–practical level.
Many concepts are deeply explained and their use emphasized, and most of the related
theory and formal proofs have been explained. Throughout the book, a strong emphasis
is put on the physical meaning of the concepts introduced. Topics that have been
selected are of high interest in the field. An attempt has been made to expose the
students to a broad range of topics and approaches.

ORGANIZATION OF THE BOOK

The book begins with a review of coordinate systems and particle dynamics. This
introduction will teach students the importance of coordinate frames. Transformation
and rotation theory along with differentiation theory in different coordinate frames will
provide the required background to learn rigid-body dynamics based on Newton–Euler
principles. The method will show its applications in rigid-body and multibody dynam-
ics. The Newton equations of motion will be transformed to Lagrangian equations as
a bridge to analytical dynamics. The methods of Lagrange will be applied on particles
and rigid bodies.

Through its examination of specialist applications highlighting the many different
aspects of dynamics, this text provides an excellent insight into advanced systems
without restricting itself to a particular discipline. The result is essential reading for
all those requiring a general understanding of the more advanced aspects of rigid-body
dynamics.

The text is organized such that it can be used for teaching or for self-study. Part
I “Fundamentals,” contains general preliminaries and provides a deep review of the
kinematics and dynamics. A new classification of vectors is the highlight of Part I.

Part II, “Geometric Kinematics,” presents the mathematics of the displacement of
rigid bodies using the matrix method. The order-free transformation theory, classifi-
cation of industrial links, kinematics of spherical wrists, and mechanical surgery of
multibodies are the highlights of Part II.

Part III, “Derivative Kinematics,” presents the mathematics of velocity and accel-
eration of rigid bodies. The time derivatives of vectors in different coordinate frames,
Razı acceleration, integrals of motion, and methods of dynamics are the highlights of
Part III.

Part IV, “Dynamics,” presents a detailed discussion of rigid-body and Lagrangian
dynamics. Rigid-body dynamics is studied from different viewpoints to provide differ-
ent classes of solutions. Lagrangian mechanics is reviewed in detail from an applied
viewpoint. Multibody dynamics and Lagrangian mechanics in generalized coordinates
are the highlights of Part IV.

METHOD OF PRESENTATION

The structure of the presentation is in a fact–reason–application fashion. The “fact” is
the main subject we introduce in each section. Then the “reason” is given as a proof.



Preface xv

Finally the “application” of the fact is examined in some examples. The examples are
a very important part of the book because they show how to implement the knowledge
introduced in the facts. They also cover some other material needed to expand the
subject.

PREREQUISITES

The book is written for graduate students, so the assumption is that users are familiar
with the fundamentals of kinematics and dynamics as well as basic knowledge of linear
algebra, differential equations, and the numerical method.

UNIT SYSTEM

The system of units adopted in this book is, unless otherwise stated, the International
System of Units (SI). The units of degree (deg) and radian (rad) are utilized for variables
representing angular quantities.

SYMBOLS

• Lowercase bold letters indicate a vector. Vectors may be expressed in an n-
dimensional Euclidean space:

r, s, d, a, b, c
p, q, v, w, y, z
ω, α, ε, θ , δ, φ

• Uppercase bold letters indicate a dynamic vector or a dynamic matrix:

F, M, I, L

• Lowercase letters with a hat indicate a unit vector. Unit vectors are not bolded:

ı̂, ̂ , k̂, ê, û, n̂

Î , Ĵ , K̂, êθ , êϕ, êψ

• Lowercase letters with a tilde indicate a 3 × 3 skew symmetric matrix associated
to a vector:

ã =
 0 −a3 a2

a3 0 −a1

−a2 a1 0

 a =
a1

a2

a3


• An arrow above two uppercase letters indicates the start and end points of a

position vector:

−→
ON = a position vector from point O to point N
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• A double arrow above a lowercase letter indicates a 4 × 4 matrix associated to a
quaternion:

←→q =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


q = q0 + q1i + q2j + q3k

• The length of a vector is indicated by a nonbold lowercase letter:

r = |r| a = |a| b = |b| s = |s|
• Capital letters A, Q, R, and T indicate rotation or transformation matrices:

QZ,α =
cos α − sin α 0

sin α cos α 0
0 0 1

 GTB =


cα 0 −sα −1
0 1 0 0.5
sα 0 cα 0.2
0 0 0 1


• Capital letter B is utilized to denote a body coordinate frame:

B(oxyz), B(Oxyz), B1(o1x1y1z1)

• Capital letter G is utilized to denote a global, inertial, or fixed coordinate frame:

G, G(XYZ), G(OXYZ)

• Right subscript on a transformation matrix indicates the departure frames:

TB = transformation matrix from frame B(oxyz)

• Left superscript on a transformation matrix indicates the destination frame:

GTB = transformation matrix from frame B(oxyz)

to frame G(OXYZ)

• Whenever there is no subscript or superscript, the matrices are shown in brackets:

[T ] =


cα 0 −sα −1
0 1 0 0.5
sα 0 cα 0.2
0 0 0 1


• Left superscript on a vector denotes the frame in which the vector is expressed.

That superscript indicates the frame that the vector belongs to, so the vector is
expressed using the unit vectors of that frame:

Gr = position vector expressed in frame G(OXYZ)
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• Right subscript on a vector denotes the tip point to which the vector is referred:

GrP = position vector of point P

expressed in coordinate frame G(OXYZ)

• Right subscript on an angular velocity vector indicates the frame to which the
angular vector is referred:

ωB = angular velocity of the body coordinate frame B(oxyz)

• Left subscript on an angular velocity vector indicates the frame with respect to
which the angular vector is measured:

GωB = angular velocity of the body coordinateframe B(oxyz)

with respect to the global coordinate frame G(OXYZ)

• Left superscript on an angular velocity vector denotes the frame in which the
angular velocity is expressed:

B2
G ωB1 = angular velocity of the bodycoordinate frame B1

with respect to the global coordinate frame G

and expressed in body coordinate frame B2

Whenever the subscript and superscript of an angular velocity are the same, we
usually drop the left superscript:

GωB ≡ G
GωB

Also for position, velocity, and acceleration vectors, we drop the left subscripts
if it is the same as the left superscript:

B
BvP ≡ BvP

• If the right subscript on a force vector is a number, it indicates the number of
coordinate frames in a serial robot. Coordinate frame Bi is set up at joint i + 1:

Fi = force vector at joint i + 1 measured at the originof Bi(oxyz)

At joint i there is always an action force Fi that link (i) applies on link (i + 1)
and a reaction force −Fi that link (i + 1) applies on link (i). On link (i) there is
always an action force Fi−1 coming from link (i − 1) and a reaction force −Fi

coming from link (i + 1). The action force is called the driving force , and the
reaction force is called the driven force.

• If the right subscript on a moment vector is a number, it indicates the number of
coordinate frames in a serial robot. Coordinate frame Bi is set up at joint i + 1:

Mi = moment vector at joint i + 1 measured at theorigin of Bi(oxyz)

At joint i there is always an action moment Mi that link (i) applies on link
(i + 1), and a reaction moment −Mi that link (i + 1) applies on link (i). On
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link (i) there is always an action moment Mi−1 coming from link (i − 1) and a
reaction moment −Mi coming from link (i + 1). The action moment is called the
driving moment , and the reaction moment is called the driven moment .

• Left superscript on derivative operators indicates the frame in which the derivative
of a variable is taken:

Gd
dt

x,
Gd
dt

BrP ,
Bd
dt

G
B rP

If the variable is a vector function and the frame in which the vector is defined is
the same as the frame in which a time derivative is taken, we may use the short
notation

Gd

dt

GrP = GṙP ,
Bd

dt

B
o rP = B

o ṙP

and write equations simpler. For example,

Gv =
Gd

dt

Gr(t) = Gṙ

• If followed by angles, lowercase c and s denote cos and sin functions in mathe-
matical equations:

cα = cos α sϕ = sin ϕ

• Capital bold letter I indicates a unit matrix, which, depending on the dimension
of the matrix equation, could be a 3 × 3 or a 4 × 4 unit matrix. I3 or I4 are also
being used to clarify the dimension of I. For example,

I = I3 =
1 0 0

0 1 0
0 0 1


• Two parallel joint axes are indicated by a parallel sign (‖).
• Two orthogonal joint axes are indicated by an orthogonal sign (�). Two orthogonal

joint axes are intersecting at a right angle.
• Two perpendicular joint axes are indicated by a perpendicular sign (⊥). Two

perpendicular joint axes are at a right angle with respect to their common normal.



Part I

Fundamentals

The required fundamentals of kinematics and dynamics are reviewed in this part.
It should prepare us for the more advanced parts.





1

Fundamentals of Kinematics

Vectors and coordinate frames are human-made tools to study the motion of particles
and rigid bodies. We introduce them in this chapter to review the fundamentals of
kinematics.

1.1 COORDINATE FRAME AND POSITION VECTOR

To indicate the position of a point P relative to another point O in a three-dimensional
(3D) space, we need to establish a coordinate frame and provide three relative coordi-
nates. The three coordinates are scalar functions and can be used to define a position
vector and derive other kinematic characteristics.

1.1.1 Triad

Take four non-coplanar points O , A, B , C and make three lines OA, OB , OC . The
triad OABC is defined by taking the lines OA, OB , OC as a rigid body. The position
of A is arbitrary provided it stays on the same side of O . The positions of B and C are
similarly selected. Now rotate OB about O in the plane OAB so that the angle AOB
becomes 90 deg. Next, rotate OC about the line in AOB to which it is perpendicular
until it becomes perpendicular to the plane AOB . The new triad OABC is called an
orthogonal triad .

Having an orthogonal triad OABC , another triad OA′BC may be derived by moving
A to the other side of O to make the opposite triad OA′BC . All orthogonal triads can
be superposed either on the triad OABC or on its opposite OA′BC .

One of the two triads OABC and OA′BC can be defined as being a positive triad
and used as a standard . The other is then defined as a negative triad . It is immaterial
which one is chosen as positive; however, usually the right-handed convention is chosen
as positive. The right-handed convention states that the direction of rotation from OA
to OB propels a right-handed screw in the direction OC . A right-handed or positive
orthogonal triad cannot be superposed to a left-handed or negative triad. Therefore,
there are only two essentially distinct types of triad. This is a property of 3D space.

We use an orthogonal triad OABC with scaled lines OA, OB , OC to locate a point
in 3D space. When the three lines OA, OB , OC have scales, then such a triad is called
a coordinate frame.

Every moving body is carrying a moving or body frame that is attached to the body
and moves with the body. A body frame accepts every motion of the body and may
also be called a local frame. The position and orientation of a body with respect to
other frames is expressed by the position and orientation of its local coordinate frame.

3



4 Fundamentals of Kinematics

When there are several relatively moving coordinate frames, we choose one of them
as a reference frame in which we express motions and measure kinematic information.
The motion of a body may be observed and measured in different reference frames;
however, we usually compare the motion of different bodies in the global reference
frame. A global reference frame is assumed to be motionless and attached to the ground.

Example 1 Cyclic Interchange of Letters In any orthogonal triad OABC , cyclic
interchanging of the letters ABC produce another orthogonal triad superposable on the
original triad. Cyclic interchanging means relabeling A as B , B as C , and C as A or
picking any three consecutive letters from ABCABCABC . . . .

Example 2 � Independent Orthogonal Coordinate Frames Having only two types
of orthogonal triads in 3D space is associated with the fact that a plane has just two
sides. In other words, there are two opposite normal directions to a plane. This may
also be interpreted as: we may arrange the letters A, B , and C in just two orders when
cyclic interchange is allowed:

ABC , ACB

In a 4D space, there are six cyclic orders for four letters A, B, C , and D :

ABCD, ABDC , ACBD, ACDB , ADBC , ADCB

So, there are six different tetrads in a 4D space.
In an nD space there are (n − 1)! cyclic orders for n letters, so there are (n − 1)!

different coordinate frames in an nD space.

Example 3 Right-Hand Rule A right-handed triad can be identified by a right-hand
rule that states: When we indicate the OC axis of an orthogonal triad by the thumb of
the right hand, the other fingers should turn from OA to OB to close our fist.

The right-hand rule also shows the rotation of Earth when the thumb of the right
hand indicates the north pole.

Push your right thumb to the center of a clock, then the other fingers simulate the
rotation of the clock’s hands.

Point your index finger of the right hand in the direction of an electric current.
Then point your middle finger in the direction of the magnetic field. Your thumb now
points in the direction of the magnetic force.

If the thumb, index finger, and middle finger of the right hand are held so that
they form three right angles, then the thumb indicates the Z -axis when the index finger
indicates the X -axis and the middle finger the Y -axis.

1.1.2 Coordinate Frame and Position Vector

Consider a positive orthogonal triad OABC as is shown in Figure 1.1. We select a unit
length and define a directed line ı̂ on OA with a unit length. A point P1 on OA is at
a distance x from O such that the directed line

−−→
OP1 from O to P1 is

−−→
OP1 = xı̂. The
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y
x

P

O

A
B

C

i

z

α1 r

j

k

P1
P2

P3

D

α2

α3

Figure 1.1 A positive orthogonal triad OABC , unit vectors ı̂, ̂ , k̂, and a position vector r with
components x , y , z .

directed line ı̂ is called a unit vector on OA, the unit length is called the scale, point
O is called the origin , and the real number x is called the ı̂-coordinate of P1. The
distance x may also be called the ı̂ measure number of

−−→
OP1. Similarly, we define the

unit vectors ̂ and k̂ on OB and OC and use y and z as their coordinates, respectively.
Although it is not necessary, we usually use the same scale for ı̂, ̂ , k̂ and refer to OA,
OB , OC by ı̂, ̂ , k̂ and also by x , y , z .

The scalar coordinates x , y , z are respectively the length of projections of P on
OA, OB , and OC and may be called the components of r. The components x , y , z are
independent and we may vary any of them while keeping the others unchanged.

A scaled positive orthogonal triad with unit vectors ı̂, ̂ , k̂ is called an orthogonal
coordinate frame. The position of a point P with respect to O is defined by three
coordinates x , y , z and is shown by a position vector r = rP :

r = rP = xı̂ + ŷ + zk̂ (1.1)

To work with multiple coordinate frames, we indicate coordinate frames by a capital
letter, such as G and B , to clarify the coordinate frame in which the vector r is
expressed. We show the name of the frame as a left superscript to the vector:

Br = xı̂ + ŷ + zk̂ (1.2)

A vector r is expressed in a coordinate frame B only if its unit vectors ı̂, ̂ , k̂ belong
to the axes of B . If necessary, we use a left superscript B and show the unit vectors
as B ı̂, B̂ , Bk̂ to indicate that ı̂, ̂ , k̂ belong to B :

Br = x B ı̂ + y B̂ + z Bk̂ (1.3)

We may drop the superscript B as long as we have just one coordinate frame.
The distance between O and P is a scalar number r that is called the length ,

magnitude, modulus , norm , or absolute value of the vector r:

r = |r| =
√

x2 + y2 + z2 (1.4)
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We may define a new unit vector ûr on r and show r by

r = rûr (1.5)

The equation r = rûr is called the natural expression of r, while the equation r =
xı̂ + ŷ + zk̂ is called the decomposition or decomposed expression of r over the axes
ı̂, ̂ , k̂. Equating (1.1) and (1.5) shows that

ûr = xı̂ + ŷ + zk̂

r
= xı̂ + ŷ + zk̂√

x2 + y2 + z2

= x√
x2 + y2 + z2

ı̂ + y√
x2 + y2 + z2

̂ + z√
x2 + y2 + z2

k̂ (1.6)

Because the length of ûr is unity, the components of ûr are the cosines of the angles
α1, α2, α3 between ûr and ı̂, ̂ , k̂, respectively:

cos α1 = x

r
= x√

x2 + y2 + z2
(1.7)

cos α2 = y

r
= y√

x2 + y2 + z2
(1.8)

cos α3 = z

r
= z√

x2 + y2 + z2
(1.9)

The cosines of the angles α1, α2, α3 are called the directional cosines of ûr , which, as
is shown in Figure 1.1, are the same as the directional cosines of any other vector on
the same axis as ûr , including r.

Equations (1.7)–(1.9) indicate that the three directional cosines are related by the
equation

cos2 α1 + cos2 α2 + cos3 α3 = 1 (1.10)

Example 4 Position Vector of a Point P Consider a point P with coordinates x = 3,
y = 2, z = 4. The position vector of P is

r = 3ı̂ + 2̂ + 4k̂ (1.11)

The distance between O and P is

r = |r| =
√

32 + 22 + 42 = 5.3852 (1.12)

and the unit vector ûr on r is

ûr = x

r
ı̂ + y

r
̂ + z

r
k̂ = 3

5.3852
ı̂ + 2

5.3852
̂ + 4

5.3852
k̂

= 0.55708ı̂ + 0.37139̂ + 0.74278k̂ (1.13)
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The directional cosines of ûr are

cos α1 = x

r
= 0.55708

cos α2 = y

r
= 0.37139 (1.14)

cos α3 = z

r
= 0.74278

and therefore the angles between r and the x -, y-, z -axes are

α1 = cos−1 x

r
= cos−1 0.55708 = 0.97993 rad ≈ 56.146 deg

α2 = cos−1 y

r
= cos−1 0.37139 = 1.1903 rad ≈ 68.199 deg (1.15)

α3 = cos−1 z

r
= cos−1 0.74278 = 0.73358 rad ≈ 42.031 deg

Example 5 Determination of Position Figure 1.2 illustrates a point P in a scaled
triad OABC . We determine the position of the point P with respect to O by:

1. Drawing a line PD parallel OC to meet the plane AOB at D
2. Drawing DP1 parallel to OB to meet OA at P1

y

x

P

O

A
B

C

i

z
r

j

k

P1

D

Figure 1.2 Determination of position.

The lengths OP1, P1D, DP are the coordinates of P and determine its position in
triad OABC . The line segment OP is a diagonal of a parallelepiped with OP1, P1D, DP
as three edges. The position of P is therefore determined by means of a parallelepiped
whose edges are parallel to the legs of the triad and one of its diagonal is the line
joining the origin to the point.
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Example 6 Vectors in Different Coordinate Frames Figure 1.3 illustrates a globally
fixed coordinate frame G at the center of a rotating disc O . Another smaller rotating
disc with a coordinate frame B is attached to the first disc at a position GdO . Point P
is on the periphery of the small disc.

x

G

y
Y

X

B

GrP

Gdo

P

O

BrP

ϕ

α

θ

Figure 1.3 A globally fixed frame G at the center of a rotating disc O and a coordinate frame
B at the center of a moving disc.

If the coordinate frame G(OXYZ ) is fixed and B(oxyz ) is always parallel to G ,
the position vectors of P in different coordinate frames are expressed by

GrP = Xı̂ + Ŷ + Zk̂ = GrP

(
cos ϕ ı̂ + sin ϕ ̂

)
(1.16)

BrP = xı̂ + ŷ + zk̂ = BrP

(
cos θ ı̂ + sin θ ̂

)
(1.17)

The coordinate frame B in G may be indicated by a position vector Gdo:

Gdo = do

(
cos α ı̂ + sin α̂

)
(1.18)

Example 7 Variable Vectors There are two ways that a vector can vary: length and
direction. A variable-length vector is a vector in the natural expression where its mag-
nitude is variable, such as

r = r(t) ûr (1.19)

The axis of a variable-length vector is fixed.
A variable-direction vector is a vector in its natural expression where the axis of its

unit vector varies. To show such a variable vector, we use the decomposed expression
of the unit vector and show that its directional cosines are variable:

r = r ûr (t) = r
(
u1(t)ı̂ + u2(t)̂ + u3(t)k̂

)
(1.20)√

u2
1 + u2

2 + u2
3 = 1 (1.21)
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The axis and direction characteristics are not fixed for a variable-direction vector, while
its magnitude remains constant. The end point of a variable-direction vector slides on
a sphere with a center at the starting point.

A variable vector may have both the length and direction variables. Such a vector
is shown in its decomposed expression with variable components:

r = x(t)ı̂ + y(t)̂ + z(t)k̂ (1.22)

It can also be shown in its natural expression with variable length and direction:

r = r(t) ûr (t) (1.23)

Example 8 Parallel and Perpendicular Decomposition of a Vector Consider a line
l and a vector r intersecting at the origin of a coordinate frame such as shown is in
Figure 1.4. The line l and vector r indicate a plane (l, r). We define the unit vectors
û‖ parallel to l and û⊥ perpendicular to l in the (l, r)-plane. If the angle between r
and l is α, then the component of r parallel to l is

r‖ = r cos α (1.24)

and the component of r perpendicular to l is

r⊥ = r sin α (1.25)

These components indicate that we can decompose a vector r to its parallel and perpen-
dicular components with respect to a line l by introducing the parallel and perpendicular
unit vectors û‖ and û⊥:

r = r‖û‖ + r⊥û⊥ = r cos α û‖ + r sin α û⊥ (1.26)

y

x

r

P

l

z

O

u

u

Figure 1.4 Decomposition of a vector r with respect to a line l into parallel and perpendicular
components.
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1.1.3 � Vector Definition

By a vector we mean any physical quantity that can be represented by a directed section
of a line with a start point, such as O , and an end point, such as P . We may show a
vector by an ordered pair of points with an arrow, such as

−→
OP . The sign

−→
PP indicates

a zero vector at point P .
Length and direction are necessary to have a vector; however, a vector may have

five characteristics:

1. Length . The length of section OP corresponds to the magnitude of the physical
quantity that the vector is representing.

2. Axis . A straight line that indicates the line on which the vector is. The vector
axis is also called the line of action .

3. End point . A start or an end point indicates the point at which the vector is
applied. Such a point is called the affecting point .

4. Direction . The direction indicates at what direction on the axis the vector is
pointing.

5. Physical quantity . Any vector represents a physical quantity. If a physical quan-
tity can be represented by a vector, it is called a vectorial physical quantity .
The value of the quantity is proportional to the length of the vector. Having
a vector that represents no physical quantity is meaningless, although a vector
may be dimensionless.

Depending on the physical quantity and application, there are seven types of
vectors:

1. Vecpoint . When all of the vector characteristics—length, axis, end point, direc-
tion, and physical quantity—are specified, the vector is called a bounded vector ,
point vector , or vecpoint . Such a vector is fixed at a point with no movability.

2. Vecline. If the start and end points of a vector are not fixed on the vector axis,
the vector is called a sliding vector , line vector , or vecline. A sliding vector is
free to slide on its axis.

3. Vecface. When the affecting point of a vector can move on a surface while
the vector displaces parallel to itself, the vector is called a surface vector or
vecface. If the surface is a plane, then the vector is a plane vector or veclane.

4. Vecfree. If the axis of a vector is not fixed, the vector is called a free vector ,
direction vector , or vecfree. Such a vector can move to any point of a specified
space while it remains parallel to itself and keeps its direction.

5. Vecpoline. If the start point of a vector is fixed while the end point can slide
on a line, the vector is a point-line vector or vecpoline. Such a vector has a
constraint variable length and orientation. However, if the start and end points
of a vecpoline are on the sliding line, its orientation is constant.

6. Vecpoface. If the start point of a vector is fixed while the end point can slide
on a surface, the vector is a point-surface vector or vecpoface. Such a vector
has a constraint variable length and orientation. The start and end points of a
vecpoface may both be on the sliding surface. If the surface is a plane, the
vector is called a point-plane vector or vecpolane.
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Figure 1.5 (a) A vecpoint, (b) a vecline, (c) a vecface, and (d ) a vecfree.
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Figure 1.6 (a) a vecpoline, (b) vecpoface, (c) vecporee.

7. Vecporee. When the start point of a vector is fixed and the end point can
move anywhere in a specified space, the vector is called a point-free vector or
vecporee. Such a vector has a variable length and orientation.

Figure 1.5 illustrates a vecpoint, a vecline, vecface, and a vecfree and Figure 1.6
illustrates a vecpoline, a vecpoface, and a vecporee.

We may compare two vectors only if they represent the same physical quantity and
are expressed in the same coordinate frame. Two vectors are equal if they are compara-
ble and are the same type and have the same characteristics. Two vectors are equivalent
if they are comparable and the same type and can be substituted with each other.

In summary, any physical quantity that can be represented by a directed section
of a line with a start and an end point is a vector quantity. A vector may have five
characteristics: length, axis, end point, direction, and physical quantity. The length and
direction are necessary. There are seven types of vectors: vecpoint, vecline, vecface,
vecfree, vecpoline, vecpoface, and vecporee. Vectors can be added when they are
coaxial. In case the vectors are not coaxial, the decomposed expression of vectors
must be used to add the vectors.

Example 9 Examples of Vector Types Displacement is a vecpoint. Moving from a
point A to a point B is called the displacement. Displacement is equal to the difference
of two position vectors. A position vector starts from the origin of a coordinate frame
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and ends as a point in the frame. If point A is at rA and point B at rB , then displacement
from A to B is

rA/B = BrA = rA − rB (1.27)

Force is a vecline. In Newtonian mechanics, a force can be applied on a body at
any point of its axis and provides the same motion.

Torque is an example of vecfree. In Newtonian mechanics, a moment can be applied
on a body at any point parallel to itself and provides the same motion.

A space curve is expressed by a vecpoline, a surface is expressed by a vecpoface,
and a field is expressed by a vecporee.

Example 10 Scalars Physical quantities which can be specified by only a number
are called scalars . If a physical quantity can be represented by a scalar, it is called
a scalaric physical quantity . We may compare two scalars only if they represent the
same physical quantity. Temperature, density, and work are some examples of scalaric
physical quantities.

Two scalars are equal if they represent the same scalaric physical quantity and they
have the same number in the same system of units. Two scalars are equivalent if we
can substitute one with the other. Scalars must be equal to be equivalent.

1.2 VECTOR ALGEBRA

Most of the physical quantities in dynamics can be represented by vectors. Vector addi-
tion, multiplication, and differentiation are essential for the development of dynamics.
We can combine vectors only if they are representing the same physical quantity, they
are the same type, and they are expressed in the same coordinate frame.

1.2.1 Vector Addition

Two vectors can be added when they are coaxial . The result is another vector on the
same axis with a component equal to the sum of the components of the two vectors.
Consider two coaxial vectors r1 and r2 in natural expressions:

r1 = r1ûr r2 = r2ûr (1.28)

Their addition would be a new vector r3 = r3ûr that is equal to

r3 = r1 + r2 = (r1 + r2)ûr = r3ûr (1.29)

Because r1 and r2 are scalars, we have r1 + r2 = r1 + r2, and therefore, coaxial vector
addition is commutative,

r1 + r2 = r2 + r1 (1.30)

and also associative,
r1 + (r2 + r3) = (r1 + r2) + r3 (1.31)
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When two vectors r1 and r2 are not coaxial, we use their decomposed expressions

r1 = x1 ı̂ + y1̂ + z1k̂ r2 = x2 ı̂ + y2̂ + z2k̂ (1.32)

and add the coaxial vectors x1 ı̂ by x2 ı̂, y1̂ by y2̂ , and z1k̂ by z2k̂ to write the result
as the decomposed expression of r3 = r1 + r2:

r3 = r1 + r2

=
(
x1 ı̂ + y1̂ + z1k̂

)
+

(
x2 ı̂ + y2̂ + z2k̂

)
= (

x1 ı̂ + x2 ı̂
) + (

y1̂ + y2̂
) +

(
z1k̂ + z2k̂

)
= (x1 + x2) ı̂ + (y1 + y2) ̂ + (z1 + z2) k̂

= x3 ı̂ + y3̂ + z3k̂ (1.33)

So, the sum of two vectors r1 and r2 is defined as a vector r3 where its components
are equal to the sum of the associated components of r1 and r2. Figure 1.7 illustrates
vector addition r3 = r1 + r2 of two vecpoints r1 and r2.

Subtraction of two vectors consists of adding to the minuend the subtrahend with
the opposite sense:

r1 − r2 = r1 + (−r2) (1.34)

The vectors −r2 and r2 have the same axis and length and differ only in having opposite
direction.

If the coordinate frame is known, the decomposed expression of vectors may also
be shown by column matrices to simplify calculations:

r1 = x1 ı̂ + y1̂ + z1k̂ =
x1

y1

z1

 (1.35)

X Y

Z

G

r1

r2

r3

y1
y2

y3

z1

z2

z3

x3

Figure 1.7 Vector addition of two vecpoints r1 and r2.
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r2 = x2 ı̂ + y2̂ + z2k̂ =
x2

y2

z2

 (1.36)

r3 = r1 + r2 =
x1

y1

z1

 +
x2

y2

z2

 =
x1 + x2

y1 + y2

z1 + z2

 (1.37)

Vectors can be added only when they are expressed in the same frame. Thus, a
vector equation such as

r3 = r1 + r2 (1.38)

is meaningless without indicating that all of them are expressed in the same frame,
such that

Br3 = Br1 + Br2 (1.39)

The three vectors r1, r2, and r3 are coplanar, and r3 may be considered as the
diagonal of a parallelogram that is made by r1, r2.

Example 11 Displacement of a Point Point P moves from the origin of a global
coordinate frame G to a point at (1, 2, 0) and then moves to (4, 3, 0). If we express the
first displacement by a vector r1 and its final position by r3, the second displacement
is r2, where

r2 = r3 − r1 =
4

3
0

 −
1

2
0

 =
3

1
0

 (1.40)

Example 12 Vector Interpolation Problem Having two digits n1 and n2 as the start
and the final interpolants, we may define a controlled digit n with a variable q such that

n =
{
n1 q = 0
n2 q = 1

0 ≤ q ≤ 1 (1.41)

Defining or determining such a controlled digit is called the interpolation problem.
There are many functions to be used for solving the interpolation problem. Linear
interpolation is the simplest and is widely used in engineering design, computer
graphics, numerical analysis, and optimization:

n = n1(1 − q) + n2q (1.42)

The control parameter q determines the weight of each interpolants n1 and n2 in the
interpolated n . In a linear interpolation, the weight factors are proportional to the
distance of q from 1 and 0.
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Figure 1.8 Vector linear interpolation.

Employing the linear interpolation technique, we may define a vector r = r (q) to
interpolate between the interpolant vectors r1 and r2:

r = (1 − q)r1 + qr2 =
x1 (1 − q) + qx2

y1 (1 − q) + qy2

z1 (1 − q) + qz2

 (1.43)

In this interpolation, we assumed that equal steps in q results in equal steps in r between
r1 and r2. The tip point of r will move on a line connecting the tip points of r1 and
r2, as is shown in Figure 1.8.

We may interpolate the vectors r1 and r2 by interpolating the angular distance θ

between r1 and r2:

r = sin
[
(1 − q)θ

]
sin θ

r1 + sin (qθ)

sin θ
r2 (1.44)

To derive Equation (1.44), we may start with

r = ar1 + br2 (1.45)

and find a and b from the following trigonometric equations:

a sin (qθ) − b sin
[
(1 − q)θ

] = 0 (1.46)

a cos (qθ) + b cos
[
(1 − q)θ

] = 1 (1.47)

Example 13 Vector Addition and Linear Space Vectors and adding operation make
a linear space because for any vectors r1, r2 we have the following properties:

1. Commutative:
r1 + r2 = r2 + r1 (1.48)

2. Associative:
r1 + (r2 + r3) = (r1 + r2) + r3 (1.49)
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3. Null element:
0 + r = r (1.50)

4. Inverse element:
r + (−r) = 0 (1.51)

Example 14 Linear Dependence and Independence The n vectors r1, r2, r3, . . . , rn

are linearly dependent if there exist n scalars c1, c2, c3, . . . , cn not all equal to zero
such that a linear combination of the vectors equals zero:

c1r1 + c2r2 + c3r3 + · · · + cnrn = 0 (1.52)

The vectors r1, r2, r3, . . . , rn are linearly independent if they are not linearly dependent,
and it means the n scalars c1, c2, c3, . . . , cn must all be zero to have Equation (1.52):

c1 = c2 = c3 = · · · = cn = 0 (1.53)

Example 15 Two Linearly Dependent Vectors Are Colinear Consider two linearly
dependent vectors r1 and r2:

c1r1 + c2r2 = 0 (1.54)

If c1 �= 0, we have
r1 = −c2

c1
r2 (1.55)

and if c2 �= 0, we have
r2 = −c1

c2
r1 (1.56)

which shows r1 and r2 are colinear.

Example 16 Three Linearly Dependent Vectors Are Coplanar Consider three linearly
dependent vectors r1, r2, and r3,

c1r1 + c2r2 + c3r3 = 0 (1.57)

where at least one of the scalars c1, c2, c3, say c3, is not zero; then

r3 = −c1

c3
r1 − c2

c3
r2 (1.58)

which shows r3 is in the same plane as r1 and r2.
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1.2.2 Vector Multiplication

There are three types of vector multiplications for two vectors r1 and r2:

1. Dot, Inner, or Scalar Product

r1 · r2 =
x1

y1

z1

 ·
x2

y2

z2

 = x1x2 + y1y2 + z1z2

= r1r2 cos α (1.59)

The inner product of two vectors produces a scalar that is equal to the product
of the length of individual vectors and the cosine of the angle between them.
The vector inner product is commutative in orthogonal coordinate frames,

r1 · r2 = r2 · r1 (1.60)

The inner product is dimension free and can be calculated in n-dimensional
spaces. The inner product can also be performed in nonorthogonal coordinate
systems.

2. Cross, Outer, or Vector Product

r3 = r1 × r2 =
x1

y1

z1

 ×
x2

y2

z2

 =
y1z2 − y2z1

x2z1 − x1z2

x1y2 − x2y1


= (r1r2 sin α) ûr3 = r3ûr3 (1.61)

ûr3 = ûr1 × ûr2 (1.62)

The outer product of two vectors r1 and r2 produces another vector r3 that
is perpendicular to the plane of r1, r2 such that the cycle r1r2r3 makes a
right-handed triad. The length of r3 is equal to the product of the length of
individual vectors multiplied by the sine of the angle between them. Hence r3

is numerically equal to the area of the parallelogram made up of r1 and r2.
The vector inner product is skew commutative or anticommutative:

r1 × r2 = −r2 × r1 (1.63)

The outer product is defined and applied only in 3D space. There is no
outer product in lower or higher dimensions than 3. If any vector of r1and r2

is in a lower dimension than 3D, we must make it a 3D vector by adding zero
components for missing dimensions to be able to perform their outer product.

3. Quaternion Product

r1r2 = r1 × r2 − r1 · r2 (1.64)

We will talk about the quaternion product in Section 5.3.
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In summary, there are three types of vector multiplication: inner, outer, and quater-
nion products, of which the inner product is the only one with commutative property.

Example 17 Geometric Expression of Inner Products Consider a line l and a vector
r intersecting at the origin of a coordinate frame as is shown in Figure 1.9. If the angle
between r and l is α, the parallel component of r to l is

r‖ = OA = r cos α (1.65)

This is the length of the projection of r on l . If we define a unit vector ûl on l by its
direction cosines β1, β2, β3,

ûl = u1 ı̂ + u2̂ + u3k̂ =
u1

u2

u3

 =
cos β1

cos β2

cos β3

 (1.66)

then the inner product of r and ûl is

r · ûl = r‖ = r cos α (1.67)

We may show r by using its direction cosines α1, α2, α3,

r = rûr = xı̂ + ŷ + zk̂ = r

x/r

y/r

z/r

 = r

cos α1

cos α2

cos α3

 (1.68)

Then, we may use the result of the inner product of r and ûl ,

r · ûl = r

cos α1

cos α2

cos α3

 ·
cos β1

cos β2

cos β3


= r (cos β1 cos α1 + cos β2 cos α2 + cos β3 cos α3) (1.69)

to calculate the angle α between r and l based on their directional cosines:

cos α = cos β1 cos α1 + cos β2 cos α2 + cos β3 cos α3 (1.70)

y

x

r

P

O

A

l

α

B

z

ul

Figure 1.9 A line l and a vector r intersecting at the origin of a coordinate frame.



1.2 Vector Algebra 19

So, the inner product can be used to find the projection of a vector on a given line. It
is also possible to use the inner product to determine the angle α between two given
vectors r1 and r2 as

cos α = r1 · r2

r1r2
= r1 · r2√

r1 · r1
√

r2 · r2
(1.71)

Example 18 Power 2 of a Vector By writing a vector r to a power 2, we mean the
inner product of r to itself:

r2 = r · r =
x

y

z

 ·
x

y

z

 = x2 + y2 + z2 = r2 (1.72)

Using this definition we can write

(r1 + r2)
2 = (r1 + r2) · (r1 + r2) = r2

1 + 2r1 · r2 + r2
2 (1.73)

(r1 − r2) · (r1 + r2) = r2
1 − r2

2 (1.74)

There is no meaning for a vector with a negative or positive odd exponent.

Example 19 Unit Vectors and Inner and Outer Products Using the set of unit vectors
ı̂, ̂ , k̂ of a positive orthogonal triad and the definition of inner product, we conclude that

ı̂2 = 1 ̂ 2 = 1 k̂2 = 1 (1.75)

Furthermore, by definition of the vector product we have

ı̂ × ̂ = − (
̂ × ı̂

) = k̂ (1.76)

̂ × k̂ = −
(
k̂ × ̂

)
= ı̂ (1.77)

k̂ × ı̂ = −
(
ı̂ × k̂

)
= ̂ (1.78)

It might also be useful if we have these equalities:

ı̂ · ̂ = 0 ̂ · k̂ = 0 k̂ · ı̂ = 0 (1.79)

ı̂ × ı̂ = 0 ̂ × ̂ = 0 k̂ × k̂ = 0 (1.80)

Example 20 Vanishing Dot Product If the inner product of two vectors a and
b is zero,

a · b = 0 (1.81)

then either a = 0 or b = 0, or a and b are perpendicular.
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Example 21 Vector Equations Assume x is an unknown vector, k is a scalar, and a,
b, and c are three constant vectors in the following vector equation:

kx + (b · x) a = c (1.82)

To solve the equation for x, we dot product both sides of (1.82) by b:

kx · b + (x · b) (a · b) = c · b (1.83)

This is a linear equation for x · b with the solution

x · b = c · b
k + a · b

(1.84)

provided
k + a · b �= 0 (1.85)

Substituting (1.84) in (1.82) provides the solution x:

x = 1

k
c − c · b

k (k + a · b)
a (1.86)

An alternative method is decomposition of the vector equation along the axes ı̂,
̂ , k̂ of the coordinate frame and solving a set of three scalar equations to find the
components of the unknown vector.

Assume the decomposed expression of the vectors x, a, b, and c are

x =
[
x
y
z

]
a =

[
a1
a2
a3

]
b =

[
b1
b2
b3

]
c =

[
c1
c2
c3

]
(1.87)

Substituting these expressions in Equation (1.82),

k

x

y

z

 +
b1

b2

b3

 ·
x

y

z

a1

a2

a3

 =
c1

c2

c3

 (1.88)

provides a set of three scalar equationsk + a1b1 a1b2 a1b3

a2b1 k + a2b2 a2b3

a3b1 a3b2 k + a3b3

x

y

z

 =
c1

c2

c3

 (1.89)

that can be solved by matrix inversion:[
x
y
z

]
=

k + a1b1 a1b2 a1b3

a2b1 k + a2b2 a2b3

a3b1 a3b2 k + a3b3

−1 c1

c2

c3



=



kc1 − a1b2c2 + a2b2c1 − a1b3c3 + a3b3c1

k (k + a1b1 + a2b2 + a3b3)

kc2 + a1b1c2 − a2b1c1 − a2b3c3 + a3b3c2

k (k + a1b1 + a2b2 + a3b3)

kc3 + a1b1c3 − a3b1c1 + a2b2c3 − a3b2c2

k (k + a1b1 + a2b2 + a3b3)

 (1.90)

Solution (1.90) is compatible with solution (1.86).
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Example 22 Vector Addition, Scalar Multiplication, and Linear Space Vector addi-
tion and scalar multiplication make a linear space, because

k1 (k2r) = (k1k2) r (1.91)

(k1 + k2) r = k1r + k2r (1.92)

k (r1 + r2) = kr1 + kr2 (1.93)

1 · r = r (1.94)

(−1) · r = −r (1.95)

0 · r = 0 (1.96)

k · 0 = 0 (1.97)

Example 23 Vanishing Condition of a Vector Inner Product Consider three non-
coplanar constant vectors a, b, c and an arbitrary vector r. If

a · r = 0 b · r = 0 c · r = 0 (1.98)
then

r = 0 (1.99)

Example 24 Vector Product Expansion We may prove the result of the inner and
outer products of two vectors by using decomposed expression and expansion:

r1 · r2 =
(
x1 ı̂ + y1̂ + z1k̂

)
·
(
x2 ı̂ + y2̂ + z2k̂

)
= x1x2 ı̂ · ı̂ + x1y2 ı̂ · ̂ + x1z2 ı̂ · k̂

+ y1x2̂ · ı̂ + y1y2̂ · ̂ + y1z2̂ · k̂
+ z1x2k̂ · ı̂ + z1y2k̂ · ̂ + z1z2k̂ · k̂

= x1x2 + y1y2 + z1z2 (1.100)

r1 × r2 =
(
x1 ı̂ + y1̂ + z1k̂

)
×

(
x2 ı̂ + y2̂ + z2k̂

)
= x1x2 ı̂ × ı̂ + x1y2 ı̂ × ̂ + x1z2 ı̂ × k̂

+ y1x2̂ × ı̂ + y1y2̂ × ̂ + y1z2̂ × k̂

+ z1x2k̂ × ı̂ + z1y2k̂ × ̂ + z1z2k̂ × k̂

= (y1z2 − y2z1) ı̂ + (x2z1 − x1z2) ̂ + (x1y2 − x2y1) k̂ (1.101)

We may also find the outer product of two vectors by expanding a determinant and
derive the same result as Equation (1.101):

r1 × r2 =
∣∣∣∣∣∣

ı̂ ̂ k̂

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣ (1.102)
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Example 25 bac–cab Rule If a, b, c are three vectors, we may expand their triple
cross product and show that

a × (b × c) = b (a · c) − c (a · b) (1.103)
because a1

a2

a3

 ×
b1

b2

b3

 ×
c1

c2

c3



=
 a2 (b1c2 − b2c1) + a3 (b1c3 − b3c1)

a3 (b2c3 − b3c2) − a1 (b1c2 − b2c1)

−a1 (b1c3 − b3c1) − a2 (b2c3 − b3c2)



=
b1 (a1c1 + a2c2 + a3c3) − c1 (a1b1 + a2b2 + a3b3)

b2 (a1c1 + a2c2 + a3c3) − c2 (a1b1 + a2b2 + a3b3)

b3 (a1c1 + a2c2 + a3c3) − c3 (a1b1 + a2b2 + a3b3)

 (1.104)

Equation (1.103) may be referred to as the bac–cab rule, which makes it easy to
remember. The bac–cab rule is the most important in 3D vector algebra. It is the key
to prove a great number of other theorems.

Example 26 Geometric Expression of Outer Products Consider the free vectors r1

from A to B and r2 from A to C , as are shown in Figure 1.10:

r1 =
−1

3
0

 =
√

10

−0.31623
0.94868

0

 (1.105)

r2 =
 −1

0
2.5

 = 2.6926

−0.37139
0

0.92847

 (1.106)

x

y
r1

z

r2

r 3

A B

C
D

Figure 1.10 The cross product of the two free vectors r1 and r2 and the resultant r3.
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The cross product of the two vectors is r3:

r3 = r1 × r2 =
7.5

2.5
3

 = 8.4558

0.88697
0.29566
0.35479


= r3ûr3 = (r1r2 sin α) ûr3 (1.107)

ûr3 = ûr1 × ûr2 =
0.88697

0.29566
0.35479

 (1.108)

where r3 = 8.4558 is numerically equivalent to the area A of the parallelogram ABCD
made by the sides AB and AC :

AABCD = |r1 × r2| = 8.4558 (1.109)

The area of the triangle ABC is A/2. The vector r3 is perpendicular to this plane and,
hence, its unit vector ûr3 can be used to indicate the plane ABCD .

Example 27 Scalar Triple Product The dot product of a vector r1 with the cross
product of two vectors r2 and r3 is called the scalar triple product of r1, r2, and r3.
The scalar triple product can be shown and calculated by a determinant:

r1 · (r2 × r3) = r1 · r2 × r3 =
∣∣∣∣∣∣
x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ (1.110)

Interchanging two rows (or columns) of a matrix changes the sign of its determinant.
So, we may conclude that the scalar triple product of three vectors r1, r2, r3 is also
equal to

r1 · r2 × r3 = r2 · r3 × r1 = r3 · r1 × r2

= r1 × r2 · r3 = r2 × r3 · r1 = r3 × r1 · r2

= −r1 · r3 × r2 = −r2 · r1 × r3 = −r3 · r2 × r1

= −r1 × r3 · r2 = −r2 × r1 · r3 = −r3 × r2 · r1 (1.111)

Because of Equation (1.111), the scalar triple product of the vectors r1, r2, r3 can be
shown by the short notation [r1r2r3]:

[r1r2r3] = r1 · r2 × r3 (1.112)

This notation gives us the freedom to set the position of the dot and cross product signs
as required.

If the three vectors r1, r2, r3 are position vectors, then their scalar triple product
geometrically represents the volume of the parallelepiped formed by the three vectors.
Figure 1.11 illustrates such a parallelepiped for three vectors r1, r2, r3.
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y

x

r1

O

z

r2

r3

Figure 1.11 The parallelepiped made by three vectors r1, r2, r3.

Example 28 Vector Triple Product The cross product of a vector r1 with the cross
product of two vectors r2 and r3 is called the vector triple product of r1, r2, and r3.
The bac–cab rule is always used to simplify a vector triple product:

r1 × (r2 × r3) = r2 (r1 · r3) − r3 (r1 · r2) (1.113)

Example 29 � Norm and Vector Space Assume r, r1, r2, r3 are arbitrary vectors
and c, c1, c3 are scalars. The norm of a vector ‖r‖ is defined as a real-valued function
on a vector space v such that for all {r1, r2} ∈ V and all c ∈ R we have:

1. Positive definition: ‖r‖> 0 if r �= 0 and ‖r‖ = 0 if r = 0.
2. Homogeneity: ‖cr‖ = ‖c‖ ‖r‖.
3. Triangle inequality: ‖r1 + r2‖ = ‖r1‖ + ‖r2‖.

The definition of norm is up to the investigator and may vary depending on the
application. The most common definition of the norm of a vector is the length:

‖r‖ = |r| =
√

r2
1 + r2

2 + r2
3 (1.114)

The set v with vector elements is called a vector space if the following conditions
are fulfilled:

1. Addition: If {r1, r2} ∈ V and r1 + r2 = r, then r ∈ V .
2. Commutativity: r1 + r2 = r2 + r1.
3. Associativity: r1 + (r2 + r3) = (r1 + r2) + r3 and c1 (c2r) = (c1c2) r.
4. Distributivity: c (r1 + r2) = cr1 + cr2 and (c1 + c2) r = c1r + c2r.
5. Identity element: r + 0 = r, 1r = r, and r − r = r + (−1) r = 0.

Example 30 � Nonorthogonal Coordinate Frame It is possible to define a coordi-
nate frame in which the three scaled lines OA, OB , OC are nonorthogonal. Defining
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three unit vectors b̂1, b̂2, and b̂3 along the nonorthogonal non-coplanar axes OA, OB ,
OC , respectively, we can express any vector r by a linear combination of the three
non-coplanar unit vectors b̂1, b̂2, and b̂3 as

r = r1b̂1 + r2b̂2 + r3b̂3 (1.115)

where, r1, r2, and r3 are constant.
Expression of the unit vectors b̂1, b̂2, b̂3 and vector r in a Cartesian coordinate

frame is
r = xı̂ + ŷ + zk̂ (1.116)

b̂1 = b11 ı̂ + b12̂ + b13k̂ (1.117)

b̂2 = b21 ı̂ + b22̂ + b23k̂ (1.118)

b̂3 = b31 ı̂ + b32̂ + b33k̂ (1.119)

Substituting (1.117)–(1.119) in (1.115) and comparing with (1.116) show thatx

y

z

 =
b11 b12 b13

b21 b22 b23

b31 b32 b33

r1

r2

r3

 (1.120)

The set of equations (1.120) may be solved for the components r1, r2, and r3:r1

r2

r3

 =
b11 b12 b13

b21 b22 b23

b31 b32 b33

−1 x

y

z

 (1.121)

We may also express them by vector scalar triple product:

r1 = 1∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣

∣∣∣∣∣∣
x y z

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣ = r · b̂2 × b̂3

b̂1 · b̂2 × b̂3

(1.122)

r2 = 1∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣

∣∣∣∣∣∣
b11 b12 b13

x y z

b31 b32 b33

∣∣∣∣∣∣ = r · b̂3 × b̂1

b̂1 · b̂2 × b̂3

(1.123)

r3 = 1∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣

∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

x y z

∣∣∣∣∣∣ = r · b̂1 × b̂2

b̂1 · b̂2 × b̂3

(1.124)

The set of equations (1.120) is solvable provided b̂1 · b̂2 × b̂3 �= 0, which means b̂1,
b̂2, b̂3 are not coplanar.
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1.2.3 � Index Notation

Whenever the components of a vector or a vector equation are structurally similar, we
may employ the summation sign,

∑
, and show only one component with an index to

be changed from 1 to 2 and 3 to indicate the first, second, and third components. The
axes and their unit vectors of the coordinate frame may also be shown by x1, x2, x3 and
û1, û2, û3 instead of x, y, z and ı̂, ̂ , k̂. This is called index notation and may simplify
vector calculations.

There are two symbols that may be used to make the equations even more concise:

1. Kronecker delta δij :

δij =
{

1 i = j

0 i �= j

}
= δji (1.125)

It states that δjk = 1 if j = k and δjk = 0 if j �= k.
2. Levi-Civita symbol εijk :

εijk = 1
2 (i − j)(j − k)(k − i) i, j, k = 1, 2, 3 (1.126)

It states that εijk = 1 if i , j , k is a cyclic permutation of 1, 2, 3, εijk = −1 if i ,
j , k is a cyclic permutation of 3, 2, 1, and εijk = 0 if at least two of i , j , k are
equal. The Levi-Civita symbol is also called the permutation symbol .

The Levi-Civita symbol εijk can be expanded by the Kronecker delta δij :

3∑
k=1

εijk εmnk = δimδjn − δinδjm (1.127)

This relation between ε and δ is known as the e–delta or ε–delta identity.
Using index notation, the vectors a and b can be shown as

a = a1 ı̂ + a2̂ + a3k̂ =
3∑

i=1

aiûi (1.128)

b = b1 ı̂ + b2̂ + b3k̂ =
3∑

i=1

biûi (1.129)

and the inner and outer products of the unit vectors of the coordinate system as

ûj · ûk = δjk (1.130)

ûj × ûk = εijk ûi (1.131)

Example 31 Fundamental Vector Operations and Index Notation Index notation
simplifies the vector equations. By index notation, we show the elements ri,

i = 1, 2, 3 instead of indicating the vector r. The fundamental vector operations by
index notation are:
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1. Decomposition of a vector r:

r =
3∑

i=1

ri ûi (1.132)

2. Orthogonality of unit vectors:

ûi · ûj = δij ûi × ûj = εijk ûk (1.133)

3. Projection of a vector r on ûi :

r · ûj =
3∑

i=1

ri ûi · ûj =
3∑

i=1

riδij = rj (1.134)

4. Scalar, dot, or inner product of vectors a and b:

a · b =
3∑

i=1

aiûi ·
3∑

j=1

bj ûj =
3∑

j=1

3∑
i=1

aibj

(
ûi · ûj

) =
3∑

j=1

3∑
i=1

aibj δij

=
3∑

i=1

aibi (1.135)

5. Vector, cross, or outer product of vectors a and b:

a × b =
3∑

j=1

3∑
k=1

εijk ûiaj bk (1.136)

6. Scalar triple product of vectors a, b, and c:

a · b × c = [abc] =
3∑

k=1

3∑
j=1

3∑
i=1

εijk ajbj ck (1.137)

Example 32 Levi-Civita Density and Unit Vectors The Levi-Civita symbol εijk , also
called the “e” tensor, Levi-Civita density , and permutation tensor and may be defined
by the clearer expression

εijk =
 1 ijk = 123, 231, 312

0 i = j or j = k or k = 1
−1 ijk = 321, 213, 132

(1.138)

can be shown by the scalar triple product of the unit vectors of the coordinate system,

εijk = [
ûi ûj ûk

] = ûi · ûj × ûk (1.139)

and therefore,
εijk = εjki = εkij = −εkji = −εjik = −εikj (1.140)
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The product of two Levi-Civita densities is

εijk εlmn =
∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣ i, j, k, l, m, n = 1, 2, 3 (1.141)

If k = l, we have
3∑

k=1

εijk εmnk =
∣∣∣∣ δim δin

δjm δjn

∣∣∣∣ = δimδjn − δinδjm (1.142)

and if also j = n, then
3∑

k=1

3∑
j=1

εijk εmjk = 2δim (1.143)

and finally, if also i = m, we have

3∑
k=1

3∑
j=1

3∑
i=1

εijk εijk = 6 (1.144)

Employing the permutation symbol εijk , we can show the vector scalar triple
product as

a · b × c =
3∑

i=1

3∑
j=1

3∑
k=1

εijk aibj ck =
3∑

i,j,k=1

εijk aibj ck (1.145)

Example 33 � Einstein Summation Convention The Einstein summation convention
implies that we may not show the summation symbol if we agree that there is a hidden
summation symbol for every repeated index over all possible values for that index.
In applied kinematics and dynamics, we usually work in a 3D space, so the range of
summation symbols are from 1 to 3. Therefore, Equations (1.135) and (1.136) may be
shown more simply as

d = aibi (1.146)

ci = εijk ajbk (1.147)

and the result of a · b × c as

a · b × c =
3∑

i=1

ai

3∑
j=1

3∑
k=1

εijk bj ck =
3∑

i=1

3∑
j=1

3∑
k=1

εijk aibj ck

= εijk aibj ck (1.148)

The repeated index in a term must appear only twice to define a summation rule. Such
an index is called a dummy index because it is immaterial what character is used for
it. As an example, we have

aibi = ambm = a1b1 + a2b2 + a3b3 (1.149)
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Example 34 � A Vector Identity We may use the index notation and verify vector
identities such as

(a × b) × (c × d) = c (d · a × b) − d (c · a × b) (1.150)

Let us assume that

a × b = p = piûi (1.151)

c × d = q = qiûi (1.152)

The components of these vectors are

pi = εijk ajbk (1.153)

qi = εijk cjdk (1.154)

and therefore the components of p × q are

r = p × q = ri ûi (1.155)

ri = εijk pjqk = εijk εjmnεkrsambncrds

= εijk εrsk εjmnambncrds

= (
δirδjs − δisδjr

)
εjmnambncrds

= εjmn
(
(crδir )

(
dsδjs

)
ambn − (

crδjr
)
(dsδis) ambn

)
= εjmn

(
ambncidj − ambncjdi

)
= ci

(
εjmndjambn

) − di

(
εjmncjambn

)
(1.156)

so we have
r = c (d · a × b) − d (c · a × b) (1.157)

Example 35 � bac–cab Rule and ε–Delta Identity Employing the ε–delta identity
(1.127), we can prove the bac–cab rule (1.103):

a × (b × c) = εijk aibkcmεnjm ûn = εijk εjmnaibkcmûn

= (δimδkn − δinδkm) aibkcmûn

= ambncmûn − anbmcmûn

= amcmb − bmcmc = b (a · c) − c (a · b) (1.158)

Example 36 � Series Solution for Three-Body Problem Consider three point
masses m1, m2, and m3 each subjected to Newtonian gravitational attraction from the
other two particles. Let us indicate them by position vectors X1, X2, and X3 with
respect to their mass center C . If their position and velocity vectors are given at a time
t0, how will the particles move? This is called the three-body problem .
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This is one of the most celebrated unsolved problems in dynamics. The three-body
problem is interesting and challenging because it is the smallest n-body problem that
cannot be solved mathematically. Here we present a series solution and employ index
notation to provide concise equations. We present the expanded form of the equations
in Example 177.

The equations of motion of m1, m2, and m3 are

Ẍi = −G

3∑
j=1

mj

Xi − Xj∣∣Xji

∣∣3 i = 1, 2, 3 (1.159)

Xij = Xj − Xi (1.160)

Using the mass center as the origin implies

3∑
i=1

GiXi = 0 Gi = Gmi i = 1, 2, 3 (1.161)

G = 6.67259 × 10−11 m3 kg−1 s−2 (1.162)

Following Belgium-American mathematician Roger Broucke (1932–2005), we use
the relative position vectors x1, x2, x3 to derive the most symmetric form of the three-
body equations of motion:

xi = εijk
(
Xk − Xj

)
i = 1, 2, 3 (1.163)

Using xi , the kinematic constraint (1.161) reduces to

3∑
i=1

xi = 0 (1.164)

The absolute position vectors in terms of the relative positions are

mXi = εijk
(
mkxjj − mj xk

)
i = 1, 2, 3 (1.165)

m = m1 + m2 + m3 (1.166)

Substituting Equation (1.165) in (1.161), we have

ẍi = −Gm
xi

|xi |3
+ Gi

3∑
j=1

xj∣∣xj

∣∣3 i = 1, 2, 3 (1.167)

We are looking for a series solution of Equations (1.167) in the following form:

xi (t) = xi0 + ẋi0 (t − t0) + ẍi0

(t − t0)
2

2!
+ ...

x i0

(t − t0)
3

3!
+ · · · (1.168)

xi0 = xi (t0) ẋi0 = ẋi (t0) i = 1, 2, 3 (1.169)

Let us define µ = Gm along with an ε-set of parameters

µ = Gm εi = 1

|xi |3
i = 1, 2, 3 (1.170)
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to rewrite Equations (1.167) as

ẍi = −µεixi + Gi

3∑
j=1

εj xj i = 1, 2, 3 (1.171)

We also define three new sets of parameters

aijk = xi · xj

|xk|2
bijk = ẋi · xj

|xk|2
cijk = ẋi · ẋj

|xk|2
(1.172)

where

aiii = 1 aijk = ajik cijk = cjik (1.173)

The time derivatives of the ε-set, a-set, b-set, and c-set are

ε̇i = −3biii εi (1.174)

ȧijk = −2bkkkaijk + bijk + bjik ȧiii = 0 (1.175)

ḃijk = −2bkkkbijk + cijk − µεiaijk + Gi

3∑
r=1

εrarjk (1.176)

ċijk = −2bkkkcijk − µ
(
εibjik + εjbijk

)
+ Gi

3∑
r=1

εrbjrk + Gi

3∑
s=1

εsaisk (1.177)

The ε-set, a-set, b-set, and c-set make 84 fundamental parameters that are indepen-
dent of coordinate systems. Their time derivatives are expressed only by themselves.
Therefore, we are able to find the coefficients of series (1.168) to develop the series
solution of the three-body problem.

1.3 ORTHOGONAL COORDINATE FRAMES

Orthogonal coordinate frames are the most important type of coordinates. It is compati-
ble to our everyday life and our sense of dimensions. There is an orthogonality condition
that is the principal equation to express any vector in an orthogonal coordinate frame.

1.3.1 Orthogonality Condition

Consider a coordinate system (Ouvw) with unit vectors ûu, ûv , ûw. The condition
for the coordinate system (Ouvw) to be orthogonal is that ûu, ûv , ûw are mutually
perpendicular and hence

ûu · ûv = 0

ûv · ûw = 0 (1.178)

ûw · ûu = 0
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In an orthogonal coordinate system, every vector r can be shown in its decomposed
description as

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûw)ûw (1.179)

We call Equation (1.179) the orthogonality condition of the coordinate system (Ouvw).
The orthogonality condition for a Cartesian coordinate system reduces to

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂ (1.180)

Proof : Assume that the coordinate system (Ouvw) is an orthogonal frame. Using the
unit vectors ûu, ûv , ûw and the components u, v, and w, we can show any vector r in
the coordinate system (Ouvw) as

r = u ûu + v ûv + w ûw (1.181)

Because of orthogonality, we have

ûu · ûv = 0 ûv · ûw = 0 ûw · ûu = 0 (1.182)

Therefore, the inner product of r by ûu, ûv , ûw would be equal to

r · ûu = (
u ûu + v ûv + w ûw

) · (1ûu + 0ûv + 0ûw

) = u

r · ûv = (
u ûu + v ûv + w ûw

) · (0ûu + 1ûv + 0ûw

) = v (1.183)

r · ûv = (
u ûu + v ûv + w ûw

) · (0ûu + 0ûv + 1ûw

) = w

Substituting for the components u, v, and w in Equation (1.181), we may show the
vector r as

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûw)ûw (1.184)

If vector r is expressed in a Cartesian coordinate system, then ûu = ı̂, ûv = ̂ ,
ûw = k̂, and therefore,

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂ (1.185)

The orthogonality condition is the most important reason for defining a coordinate
system (Ouvw) orthogonal. �

Example 37 � Decomposition of a Vector in a Nonorthogonal Frame Let a, b,
and c be any three non-coplanar, nonvanishing vectors; then any other vector r can be
expressed in terms of a, b, and c,

r = ua + vb + wc (1.186)

provided u, v, and w are properly chosen numbers. If the coordinate system (a, b, c)
is a Cartesian system (Î , Ĵ , K̂), then

r = (r · Î )Î + (r · Ĵ )Ĵ + (r · K̂)K̂ (1.187)
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To find u, v, and w, we dot multiply Equation (1.186) by b × c:

r · (b × c) = ua · (b × c) + vb · (b × c) + wc · (b × c) (1.188)

Knowing that b × c is perpendicular to both b and c, we find

r · (b × c) = ua · (b × c) (1.189)

and therefore,

u = [rbc]

[abc]
(1.190)

where [abc] is a shorthand notation for the scalar triple product

[abc] = a · (b × c) =
∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ (1.191)

Similarly, v and w would be

v = [rca]

[abc]
w = [rab]

[abc]
(1.192)

Hence,

r = [rbc]

[abc]
a + [rca]

[abc]
b + [rab]

[abc]
c (1.193)

which can also be written as

r =
(

r · b × c
[abc]

)
a +

(
r · c × a

[abc]

)
b +

(
r · a × b

[abc]

)
c (1.194)

Multiplying (1.194) by [abc] gives the symmetric equation

[abc] r − [bcr] a + [cra] b − [rab] c = 0 (1.195)

If the coordinate system (a, b, c) is a Cartesian system (Î , Ĵ , K̂), then[
ÎĴK̂

]
= 1 (1.196)

Î × Ĵ = K̂ Ĵ × Î = K̂ K̂ × Î = Ĵ (1.197)

and Equation (1.194) becomes

r =
(

r·Î
)

Î +
(

r·Ĵ
)

Ĵ +
(

r·K̂
)

K̂ (1.198)

This example may considered as a general case of Example 30.
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1.3.2 Unit Vector

Consider an orthogonal coordinate system (Oq1q2q3). Using the orthogonality condi-
tion (1.179), we can show the position vector of a point P in this frame by

r = (r · û1)û1 + (r · û2)û2 + (r · û3)û3 (1.199)

where q1, q2, q3 are the coordinates of P and û1, û2, û3 are the unit vectors along
q1, q2, q3 axes, respectively. Because the unit vectors û1, û2, û3 are orthogonal and
independent, they respectively show the direction of change in r when q1, q2, q3 are
positively varied. Therefore, we may define the unit vectors û1, û2, û3 by

û1 = ∂r/∂q1

|∂r/∂q1| û2 = ∂r/∂q2

|∂r/∂q2| û3 = ∂r/∂q3

|∂r/∂q3| (1.200)

Example 38 Unit Vector of Cartesian Coordinate Frames If a vector r given as

r = q1û1 + q2û2 + q3û3 (1.201)

is expressed in a Cartesian coordinate frame, then

q1 = x q2 = y q3 = z (1.202)

and the unit vectors would be

û1 = ûx = ∂r/∂x

|∂r/∂x| = ı̂

1
= ı̂

û2 = ûy = ∂r/∂y
|∂r/∂y| = ̂

1
= ̂ (1.203)

û3 = ûz = ∂r/∂z

|∂r/∂z| = k̂

1
= k̂

Substituting r and the unit vectors in (1.199) regenerates the orthogonality condition
in Cartesian frames:

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂ (1.204)

Example 39 Unit Vectors of a Spherical Coordinate System Figure 1.12 illustrates
an option for spherical coordinate system. The angle ϕ may be measured from the
equatorial plane or from the Z -axis. Measuring ϕ from the equator is used in geography
and positioning a point on Earth, while measuring ϕ from the Z -axis is an applied
method in geometry. Using the latter option, the spherical coordinates r , θ , ϕ are
related to the Cartesian system by

x = r cos θ sin ϕ y = r sin θ sin ϕ z = r cos ϕ (1.205)
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X Y

Z

r
P

G
S

ûθ

ûr

ûϕ

θ

ϕ

Figure 1.12 An optional spherical coordinate system.

To find the unit vectors ûr , ûθ , ûϕ associated with the coordinates r , θ , ϕ, we substitute
the coordinate equations (1.205) in the Cartesian position vector,

r = xı̂ + ŷ + zk̂

= (r cos θ sin ϕ) ı̂ + (r sin θ sin ϕ) ̂ + (r cos ϕ) k̂ (1.206)

and apply the unit vector equation (1.203):

ûr = ∂r/∂r

|∂r/∂r| = (cos θ sin ϕ) ı̂ + (sin θ sin ϕ) ̂ + (cos ϕ) k̂

1

= cos θ sin ϕı̂ + sin θ sin ϕ̂ + cos ϕk̂ (1.207)

ûθ = ∂r/∂θ

|∂r/∂θ | = (−r sin θ sin ϕ) ı̂ + (r cos θ sin ϕ) ̂

r sin ϕ

= − sin θ ı̂ + cos θ ̂ (1.208)

ûϕ = ∂r/∂ϕ

|∂r/∂ϕ| = (r cos θ cos ϕ) ı̂ + (r sin θ cos ϕ) ̂ + (−r sin ϕ) k̂

r

= cos θ cos ϕı̂ + sin θ cos ϕ̂ − sin ϕk̂ (1.209)

where ûr , ûθ , ûϕ are the unit vectors of the spherical system expressed in the Cartesian
coordinate system.

Example 40 Cartesian Unit Vectors in Spherical System The unit vectors of an
orthogonal coordinate system are always a linear combination of Cartesian unit vectors
and therefore can be expressed by a matrix transformation. Having unit vectors of an
orthogonal coordinate system B1 in another orthogonal system B2 is enough to find the
unit vectors of B2 in B1.
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Based on Example 39, the unit vectors of the spherical system shown in Figure 1.12
can be expressed asûr

ûθ

ûϕ

 =
cos θ sin ϕ sin θ sin ϕ cos ϕ

− sin θ cos θ 0
cos θ cos ϕ sin θ cos ϕ − sin ϕ

 ı̂

̂

k̂

 (1.210)

So, the Cartesian unit vectors in the spherical system are ı̂

̂

k̂

 =
cos θ sin ϕ sin θ sin ϕ cos ϕ

− sin θ cos θ 0
cos θ cos ϕ sin θ cos ϕ − sin ϕ

−1 ûr

ûθ

ûϕ


=

cos θ sin ϕ − sin θ cos θ cos ϕ

sin θ sin ϕ cos θ cos ϕ sin θ

cos ϕ 0 − sin ϕ

ûr

ûθ

ûϕ

 (1.211)

1.3.3 Direction of Unit Vectors

Consider a moving point P with the position vector r in a coordinate system (Oq1q2q3).
The unit vectors û1, û2, û3 associated with q1, q2, q3 are tangent to the curve traced
by r when the associated coordinate varies.

Proof : Consider a coordinate system
(
Oq1q2q3

)
that has the following relations with

Cartesian coordinates:

x = f (q1, q2, q3)

y = g (q1, q2, q3) (1.212)

z = h (q1, q2, q3)

The unit vector û1 given as

û1 = ∂r/∂q1

|∂r/∂q1| (1.213)

associated with q1 at a point P (x0, y0, z0) can be found by fixing q2, q3 to q20 , q30

and varying q1. At the point, the equations

x = f
(
q1, q20, q30

)
y = g

(
q1, q20, q30

)
(1.214)

z = h
(
q1, q20 , q30

)
provide the parametric equations of a space curve passing through (x0, y0, z0). From
(1.228) and (1.358), the tangent line to the curve at point P is

x − x0

dx/dq1
= y − y0

dy/dq1
= z − z0

dz/dq1
(1.215)
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and the unit vector on the tangent line is

û1 = dx

dq1
ı̂ + dy

dq1
̂ + dz

dq1
k̂ (1.216)(

dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

= 1 (1.217)

This shows that the unit vector û1 (1.213) associated with q1 is tangent to the space
curve generated by varying q1. When q1 is varied positively, the direction of û1 is
called positive and vice versa.

Similarly, the unit vectors û2 and û3 given as

û2 = ∂r/∂q2

|∂r/∂q2| û3 = ∂r/∂q3

|∂r/∂q3| (1.218)

associated with q2 and q3 are tangent to the space curve generated by varying q2 and
q3, respectively. �

Example 41 Tangent Unit Vector to a Helix Consider a helix

x = a cos ϕ y = a sin ϕ z = kϕ (1.219)

where a and k are constant and ϕ is an angular variable. The position vector of a
moving point P on the helix

r = a cos ϕ ı̂ + a sin ϕ ̂ + kϕ k̂ (1.220)

may be used to find the unit vector ûϕ :

ûϕ = ∂r/∂q1

|∂r/∂q1| = −a sin ϕ ı̂ + a cos ϕ ̂ + k k̂√
(−a sin ϕ)2 + (a cos ϕ)2 + (k)2

= − a sin ϕ√
a2 + k2

ı̂ + a cos ϕ√
a2 + k2

̂ + k√
a2 + k2

k̂ (1.221)

The unit vector ûϕ at ϕ = π/4 given as

ûϕ = −
√

2a

2
√

a2 + k2
ı̂ +

√
2a

2
√

a2 + k2
̂ + k√

a2 + k2
k̂ (1.222)

is on the tangent line (1.255).

1.4 DIFFERENTIAL GEOMETRY

Geometry is the world in which we express kinematics. The path of the motion of
a particle is a curve in space. The analytic equation of the space curve is used to
determine the vectorial expression of kinematics of the moving point.
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1.4.1 Space Curve

If the position vector GrP of a moving point P is such that each component is a function
of a variable q ,

Gr = Gr (q) = x (q) ı̂ + y (q) ̂ + z (q) k̂ (1.223)

then the end point of the position vector indicates a curve C in G , as is shown in
Figure 1.13. The curve Gr = Gr (q) reduces to a point on C if we fix the parameter q .
The functions

x = x (q) y = y (q) z = z (q) (1.224)

are the parametric equations of the curve.
When the parameter q is the arc length s , the infinitesimal arc distance ds on the

curve is

ds2 = dr · dr (1.225)

The arc length of a curve is defined as the limit of the diagonal of a rectangular box
as the length of the sides uniformly approach zero.

When the space curve is a straight line that passes through point P(x0, y0, z0)

where x0 = x(q0), y0 = y(q0), z0 = z(q0), its equation can be shown by

x − x0

α
= y − y0

β
= z − z0

γ
(1.226)

α2 + β2 + γ 2 = 1 (1.227)

where α, β, and γ are the directional cosines of the line.
The equation of the tangent line to the space curve (1.224) at a point P(x0, y0, z0) is

x − x0

dx/dq
= y − y0

dy/dq
= z − z0

dz/dq
(1.228)

(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

= 1 (1.229)

X Y

Z

G
C

drdy

dx

dz

ds

r2r1

Figure 1.13 A space curve and increment arc length ds
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Proof : Consider a position vector Gr = Gr (s) that describes a space curve using the
length parameter s:

Gr = Gr (s) = x (s) ı̂ + y (s) ̂ + z (s) k̂ (1.230)

The arc length s is measured from a fixed point on the curve. By a very small change
ds , the position vector will move to a very close point such that the increment in the
position vector would be

dr = dx (s) ı̂ + dy (s) ̂ + dz (s) k̂ (1.231)

The length of dr and ds are equal for infinitesimal displacement:

ds =
√

dx2 + dy2 + dz 2 (1.232)

The arc length has a better expression in the square form:

ds2 = dx2 + dy2 + dz 2 = dr · dr (1.233)

If the parameter of the space curve is q instead of s , the increment arc length would be(
ds

dq

)2

= dr
dq

· dr
dq

(1.234)

Therefore, the arc length between two points on the curve can be found by integration:

s =
∫ q2

q1

√
dr
dq

· dr
dq

dq (1.235)

=
∫ q2

q1

√(
dx

dq

)2

+
(

dy

dq

)2

+
(

dz

dq

)2

dq (1.236)

Let us expand the parametric equations of the curve (1.224) at a point P(x0, y0, z0),

x = x0 + dx

dq
�q + 1

2

d2x

dq2
�q2 + · · ·

y = y0 + dy

dq
�q + 1

2

d2y

dq2
�q2 + · · · (1.237)

z = z0 + dz

dq
�q + 1

2

d2z

dq2
�q2 + · · ·

and ignore the nonlinear terms to find the tangent line to the curve at P :

x − x0

dx/dq
= y − y0

dy/dq
= z − z0

dz/dq
= �q (1.238)

�
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Example 42 Arc Length of a Planar Curve A planar curve in the (x, y)-plane

y = f (x) (1.239)

can be expressed vectorially by

r = xı̂ + y (x) ̂ (1.240)

The displacement element on the curve

dr
dx

= ı̂ + dy

dx
̂ (1.241)

provides (
ds

dx

)2

= dr
dx

· dr
dx

= 1 +
(

dy

dx

)2

(1.242)

Therefore, the arc length of the curve between x = x1 and x = x2 is

s =
∫ x2

x1

√
1 +

(
dy

dx

)2

dx (1.243)

In case the curve is given parametrically,

x = x(q) y = y(q) (1.244)

we have (
ds

dq

)2

= dr
dq

· dr
dq

=
(

dx

dq

)2

+
(

dy

dq

)2

(1.245)

and hence,

s =
∫ q2

q1

∣∣∣∣ dr
dq

∣∣∣∣ =
∫ q2

q1

√(
dx

dq

)2

+
(

dy

dq

)2

dq (1.246)

As an example, we may show a circle with radius R by its polar expression using
the angle θ as a parameter:

x = R cos θ y = R sin θ (1.247)

The circle is made when the parameter θ varies by 2π . The arc length between θ = 0
and θ = π/2 would then be one-fourth the perimeter of the circle. The equation for
calculating the perimeter of a circle with radius R is

s = 4
∫ π/2

0

√(
dx

dθ

)2

+
(

dy

dθ

)2

dθ = R

∫ π/2

0

√
sin2 θ + cos2 θ dθ

= 4R

∫ π/2

0
dθ = 2πR (1.248)
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Example 43 Alternative Space Curve Expressions We can represent a space curve
by functions

y = y (x) z = z (x) (1.249)

or vector
r (q) = xı̂ + y (x) ̂ + z (x) k̂ (1.250)

We may also show a space curve by two relationships between x , y , and z ,

f (x, y, z) = 0 g(x, y, z) = 0 (1.251)

where f (x, y, z) = 0 and g(x, y, z) = 0 represent two surfaces. The space curve would
then be indicated by intersecting the surfaces.

Example 44 Tangent Line to a Helix Consider a point P that is moving on a helix
with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.252)

where a and k are constant and ϕ is an angular variable. To find the tangent line to
the helix at ϕ = π/4,

x0 =
√

2

2
a y0 =

√
2

2
a z0 = k

π

4
(1.253)

we calculate the required derivatives:

dx

dϕ
= −a sin ϕ = −

√
2

2
a

dy

dϕ
= a cos ϕ =

√
2

2
a (1.254)

dz

dϕ
= k

So, the equation of the tangent line is

−
√

2

a

(
x − 1

2

√
2a

)
=

√
2

a

(
y − 1

2

√
2a

)
= 1

k

(
z − 1

4
πk

)
(1.255)

Example 45 Parametric Form of a Line The equation of a line that connects two
points P1(x1, y1, z1) and P2(x2, y2, z3) is

x − x1

x2 − x1
= y − y1

y2 − y1
= z − z1

z2 − z1
(1.256)
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This line may also be expressed by the following parametric equations:

x = x1 + (x2 − x1) t

y = y1 + (y2 − y1) t (1.257)

z = z1 + (z2 − z1) t

Example 46 Length of a Roller Coaster Consider the roller coaster illustrated later
in Figure 1.22 with the following parametric equations:

x = (a + b sin θ) cos θ

y = (a + b sin θ) sin θ (1.258)

z = b + b cos θ

for
a = 200 m b = 150 m (1.259)

The total length of the roller coaster can be found by the integral of ds for θ from 0
to 2π :

s =
∫ θ2

θ1

√
dr
dθ

· dr
dθ

dθ =
∫ θ2

θ1

√(
∂x

∂θ

)2

+
(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

dθ

=
∫ 2π

0

√
2

2

√
2a2 + 3b2 − b2 cos 2θ + 4ab sin θdθ

= 1629.367 m (1.260)

Example 47 Two Points Indicate a Line Consider two points A and B with position
vectors a and b in a coordinate frame. The condition for a point P with position vector
r to lie on the line AB is that r − a and b − a be parallel. So,

r − a = c (b − a) (1.261)

where c is a parameter. The outer product of Equation (1.261) by b − a provides

(r − a) × (b − a) = 0 (1.262)

which is the equation of the line AB .

Example 48 Line through a Point and Parallel to a Given Line Consider a point A
with position vector a and a line l that is indicated by a unit vector ûl . To determine
the equation of the parallel line to ûl that goes over A, we employ the condition that
r − a and ûl must be parallel:

r = a + cûl (1.263)
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We can eliminate the parameter c by the outer product of both sides with ûl :

r × ûl = a × ûl (1.264)

1.4.2 Surface and Plane

A plane is the locus of the tip point of a position vector

r = xı̂ + ŷ + zk̂ (1.265)

such that the coordinates satisfy a linear equation

Ax + By + Cz + D = 0 (1.266)

A space surface is the locus of the tip point of the position vector (1.265) such that its
coordinates satisfy a nonlinear equation:

f (x, y, z) = 0 (1.267)

Proof : The points P1, P2, and P3 at r1, r2, and r3,

r1 =

−D

A
0

0

 r2 =


0

−D

B
0

 r3 =


0

0

−D

C

 (1.268)

satisfy the equations of the plane (1.266). The position of P2 and P3 with respect to
P1 are shown by 1r2 and 1r3 or r2/1 and r3/1:

1r2 = r2 − r1 =


D

A

−D

B

0

 1r3 = r3 − r1 =


D

A
0

−D

C

 (1.269)

The cross product of 1r2 and 1r3 is a normal vector to the plane:

1r2 × 1r3 =


D

A

−D

B

0

 ×


D

A

0

−D

C

 =


D2

BC
D2

AC
D2

AB

 (1.270)

The equation of the plane is the locus of any point P ,

rP =
x

y

z

 (1.271)
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where its position with respect to P1,

1rP = rP − r1 =

x + D

A
y

z

 (1.272)

is perpendicular to the normal vector:

1rP · (1r2 × 1r3) = D + Ax + By + Cz = 0 (1.273)

�

Example 49 Plane through Three Points Every three points indicate a plane.
Assume that (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3) are the coordinates of three points
P1, P2, and P3. The plane made by the points can be found by∣∣∣∣∣∣∣∣

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣∣ = 0 (1.274)

The points P1, P2, and P3 satisfy the equation of the plane

Ax1 + By1 + Cz1 + D = 0

Ax2 + By2 + Cz2 + D = 0 (1.275)

Ax3 + By3 + Cz3 + D = 0

and if P with coordinates (x, y, z) is a general point on the surface,

Ax + By + Cz + D = 0 (1.276)

then there are four equations to determine A, B , C , and D :
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1




A

B

C

D

 =


0
0
0
0

 (1.277)

The determinant of the equations must be zero, which determines the equation of
the plane.

Example 50 Normal Vector to a Plane A plane may be expressed by the linear
equation

Ax + By + Cz + D = 0 (1.278)
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or by its intercept form

x

a
+ y

b
+ z

c
= 1 (1.279)

a = −D

A
b = −D

B
c = −D

C
(1.280)

In either case, the vector

n1 = Aı̂ + B̂ + Ck̂ (1.281)

or
n2 = aı̂ + b̂ + ck̂ (1.282)

is normal to the plane and may be used to represent the plane.

Example 51 Quadratic Surfaces A quadratic relation between x, y, z is called the
quadratic form and is an equation containing only terms of degree 0, 1, and 2 in the
variables x, y, z. Quadratic surfaces have special names:

x2

a2
+ y2

b2
+ z2

c2
= 1 Ellipsoid (1.283)

x2

a2
+ y2

b2
− z2

c2
= 1 Hyperboloid of one sheet (1.284)

x2

a2
− y2

b2
− z2

c2
= 1 Hyperboloid of two sheets (1.285)

x2

a2
+ y2

b2
+ z2

c2
= −1 Imaginary ellipsoid (1.286)

x2

a2
+ y2

b2
= 2nz Elliptic paraboloid (1.287)

x2

a2
− y2

b2
= 2nz Hyperbolic paraboloid (1.288)

x2

a2
+ y2

b2
− z2

c2
= 0 Real quadratic cone (1.289)

x2

a2
+ y2

b2
+ z2

c2
= 0 Real imaginary cone (1.290)

x2

a2
± y2

b2
= ±1 y2 = 2px Quadratic cylinders (1.291)
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1.5 MOTION PATH KINEMATICS

The derivative of vector functions is based on the derivative of scalar functions. To find
the derivative of a vector, we take the derivative of its components in a decomposed
Cartesian expression.

1.5.1 Vector Function and Derivative

The derivative of a vector is possible only when the vector is expressed in a Cartesian
coordinate frame. Its derivative can be found by taking the derivative of its components.
The Cartesian unit vectors are invariant and have zero derivative with respect to any
parameter.

A vector r = r (t) is called a vector function of the scalar variable t if there is
a definite vector for every value of t from a certain set T = [τ1, τ2]. In a Cartesian
coordinate frame G , the specification of the vector function r (t) is equivalent to the
specification of three scalar functions x (t), y (t), z (t):

Gr (t) = x (t) ı̂ + y (t) ̂ + z (t) k̂ (1.292)

If the vector r is expressed in Cartesian decomposition form, then the derivative
dr/dt is

Gd

dt
Gr = dx (t)

dt
ı̂ + dy (t)

dt
̂ + dz (t)

dt
k̂ (1.293)

and if r is expressed in its natural form

Gr = rûr = r (t)
[
u1 (t) ı̂ + u2 (t) ̂ + u3 (t) k̂

]
(1.294)

then, using the chain rule, the derivative dr/dt is

Gd

dt
Gr = dr

dt
ûr + r

d

dt
ûr

= dr

dt

(
u1 ı̂ + u2̂ + u3k̂

)
+ r

(
du1

dt
ı̂ + du2

dt
̂ + du3

dt
k̂

)
=

(
dr

dt
u1 + r

du1

dt

)
ı̂ +

(
dr

dt
u2 + r

du2

dt

)
̂ +

(
dr

dt
u3 + r

du3

dt

)
k̂ (1.295)

When the independent variable t is time, an overdot ṙ (t) is used as a shorthand notation
to indicate the time derivative.

Consider a moving point P with a continuously varying position vector r = r (t).
When the starting point of r is fixed at the origin of G , its end point traces a continuous
curve C as is shown in Figure 1.14. The curve C is called a configuration path that
describes the motion of P , and the vector function r (t) is its vector representation.
At each point of the continuously smooth curve C = {r (t) , t ∈ [τ1, τ2]} there exists a
tangent line and a derivative vector dr (t) /dt that is directed along the tangent line
and directed toward increasing the parameter t . If the parameter is the arc length s of
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X Y

Z

G

Cr(t)

Figure 1.14 A space curve is the trace point of a single variable position vector.

the curve that is measured from a convenient point on the curve, the derivative of Gr
with respect to s is the tangential unit vector ût to the curve at Gr:

Gd

ds
Gr = ût (1.296)

Proof : The position vector Gr in its decomposed expression

Gr (t) = x (t) ı̂ + y (t) ̂ + z (t) k̂ (1.297)

is a combination of three variable-length vectors x (t) ı̂, y (t) ̂ , and z (t) k̂. Consider
the first one that is a multiple of a scalar function x (t) and a constant unit vector ı̂. If
the variable is time, then the time derivative of this variable-length vector in the same
frame in which the vector is expressed is

Gd

dt

(
x (t) ı̂

) = ẋ (t) ı̂ + x (t)
Gd

dt
ı̂ = ẋ (t) ı̂ (1.298)

Similarly, the time derivatives of y (t) ̂ and z (t) k̂ are ẏ (t) ̂ and ż (t) k̂, and therefore,
the time derivative of the vector Gr (t) can be found by taking the derivative of its
components

Gv =
Gd

dt
Gr (t) = ẋ (t) ı̂ + ẏ (t) ̂ + ż (t) k̂ (1.299)

If a variable vector Gr is expressed in a natural form

Gr = r (t) ûr (t) (1.300)

we express the unit vector ûr (t) in its decomposed form

Gr = r (t) ûr (t)

= r (t)
[
u1 (t) ı̂ + u2 (t) ̂ + u3 (t) k̂

]
(1.301)
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and take the derivative using the chain rule and variable-length vector derivative:

Gv =
Gd

dt
Gr = ṙ ûr + r

Gd

dt
ûr

= ṙ
(
u1 ı̂ + u2̂ + u3k̂

)
+ r

(
u̇1 ı̂ + u̇2̂ + u̇3k̂

)
= (ṙu1 + ru̇1) ı̂ + (ṙu2 + ru̇2) ̂ + (ṙu3 + ru̇3) k̂ (1.302)

�

Example 52 Geometric Expression of Vector Derivative Figure 1.15 depicts a con-
figuration path C that is the trace of a position vector r (t) when t varies. If �t > 0,
then the vector �r is directed along the secant AB of the curve C toward increasing
values of the parameter t . The derivative vector dr (t) /dt is the limit of �r when
�t → 0:

d

ds
r (t) = lim

�t→0

�r
�t

(1.303)

where dr (t) /dt is directed along the tangent line to C .
Let us show the unit vectors along �r and dr (t) /dt by �r/�r and ût to get

ût = lim
�r→0

�r
�r

= lim
�t→0

�r/�t

�r/�t
= dr (t) /dt

dr/dt
(1.304)

The tangent unit vector ût to the curve C is called the orientation of the curve C .
When �t → 0, the length of �r approaches the arc length �s between A and B . So,
Equation (1.304) can also be written as

ût = lim
�s→0

�r
�s

= lim
�t→0

�r/�t

�s/�t
= dr (t) /dt

ds (t) /dt
(1.305)

If �t < 0, then the vector �r is directed toward decreasing values of t .

X Y

Z

G

r(t) C

r(t + ∆t) ∆r
A

B

∆r
∆r dr/dt

ut
s

Figure 1.15 The increment vector �r for �t > 0 of a position vector r (t) is directed along
the increasing secant AB of the curve configuration path C .
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X Y

Z

G

∆r

Gr1

Gv2

Gv1

∆v

Gr2

v z

G

∆v

∆a

vx vy

Gv2

Gv1

Ga1

Ga2

(a) (b)

Figure 1.16 (a) Path of a position vector r. (b) Path of the velocity vector v = dr/dt .

Consider a moving point P in a coordinate frame G(x, y, z), with a continuously
varying position vector r = r (t) from a fixed origin, as is shown in Figure 1.16(a). The
end point of the vector describes a path C when time t varies. Assume that r = Gr1 is
the position vector at a time t = t1 and r = Gr2 is the position vector at a time t = t2.
The difference vector

G�r = Gr2 − Gr1 (1.306)

becomes smaller by shortening the time duration:

�t = t2 − t1 (1.307)

The quotient �r/�t is the average rate of change of r in the interval �t . Following
the method of calculus, the limit of this quotient when �t → 0 by moving t2 toward
t1 is the derivative of r at t1:

lim
�t→0

G�r
�t

=
Gd

dt
Gr = Gv (1.308)

where Gv is a tangent vector to the path C at the position Gr1 and is called the
velocity of P .

We may express the velocity vector in a new orthogonal coordinate frame
G(vx, vy, vz). The tip point of the velocity vector traces a path in the velocity
coordinate frame called a velocity hodograph . Employing the same method, we can
define the velocity v = Gv1 at time t = t1 and the velocity v = Gv2 at time t = t2.
The difference vector

G�v = Gv2 − Gv1 (1.309)

becomes smaller by shortening the time duration

�t = t2 − t1 (1.310)

The quotient �v/�t is the average rate of change of v in the interval �t . The limit of
this quotient is the derivative of v that makes the acceleration of P :

lim
�t→0

G�v
�t

=
Gd

dt
Gv = Ga (1.311)
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Example 53 A Moving Point on a Helix Consider the point P in Figure 1.17 with
position vector Gr (ϕ),

Gr (ϕ) = a cos ϕ ı̂ + a sin ϕ ̂ + kϕ k̂ (1.312)

that is moving on a helix with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.313)

where a and k are constant and ϕ is an angular variable. The first, second, and third
derivatives of Gr (ϕ) with respect to ϕ are

Gd

dϕ
r (ϕ) = r′ (ϕ) = −a sin ϕ ı̂ + a cos ϕ ̂ + k k̂ (1.314)

Gd2

dϕ2
r (ϕ) = r′′ (ϕ) = −a cos ϕ ı̂ − a sin ϕ ̂ (1.315)

Gd3

dϕ3
r (ϕ) = r′′′ (ϕ) = a sin ϕ ı̂ − a cos ϕ ̂ (1.316)

If the angle ϕ is a function of time t , then the first, second, and third derivatives of
Gr (ϕ) with respect to t are

Gd

dt
r (t) = −aϕ̇ sin ϕ ı̂ + aϕ̇ cos ϕ ̂ + kϕ̇ k̂ (1.317)

Gd2

dt2
r (t) = (−aϕ̈ sin ϕ − aϕ̇2 cos ϕ

)
ı̂

+ (
aϕ̈ cos ϕ − aϕ̇2 sin ϕ

)
̂ + kϕ̈ k̂ (1.318)

Gd3

dt3
r (t) = (−a

...
ϕ sin ϕ − 3aϕ̇ϕ̈ cos ϕ + aϕ̇3 sin ϕ

)
ı̂

+ (
a

...
ϕ cos ϕ − 3aϕ̇ϕ̈ sin ϕ − aϕ̇3 cos ϕ

)
̂ + k

...
ϕ k̂ (1.319)

X

Y

Z

G

r

a

2πk

Figure 1.17 Helical path of a moving point.
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Example 54 Vector Function If the magnitude of a vector r and/or direction of r
in a reference frame B depends on a scalar variable, say q , then r is called a vector
function of q in B . A vector may be a function of a variable in one coordinate frame
but be independent of this variable in another coordinate frame.

1.5.2 Velocity and Acceleration

If the vector r = Gr (t) is a position vector in a coordinate frame G , then its time
derivative is a velocity vector Gv. It shows the speed and the direction of motion of
the tip point of Gr:

Gv =
Gd

dt
Gr (t) = ẋ (t) ı̂ + ẏ (t) ̂ + ż (t) k̂ (1.320)

The time derivative of a velocity vector Gv is called the acceleration Ga,

Ga =
Gd

dt
Gv (t) = ẍ (t) ı̂ + ÿ (t) ̂ + z̈ (t) k̂ (1.321)

and the time derivative of an acceleration vector Ga is called the jerk Gj,

Gj =
Gd

dt
Ga (t) = ...

x (t) ı̂ + ...
y (t) ̂ + ...

z (t) k̂ (1.322)

Example 55 Velocity, Acceleration, and Jerk of a Moving Point on a Helix Consider
a moving point P with position vector in a coordinate frame G as

Gr (t) = cos (ωt) ı̂ + sin (ωt) ̂ + 2t k̂ (1.323)

Such a path is called a helix or screw . The helix is uniformly turning on a circle in
the (x, y)-plane while the circle is moving with a constant speed in the z -direction.

Taking the derivative shows that the velocity, acceleration, and jerk of the point
P are

Gv (t) = −ω sin (ωt) ı̂ + ω cos (ωt) ̂ + 2 k̂ (1.324)
Ga (t) = −ω2 cos (ωt) ı̂ − ω2 sin (ωt) ̂ (1.325)
Gj (t) = ω3 sin (ωt) ı̂ − ω3 cos (ωt) ̂ (1.326)

Example 56 � Flight of a Bug Consider two cars A and B that are initially 15 km
apart. The cars begin moving toward each other. The speeds of cars A and B are 10
and 5 km/ h, respectively. The instant they started a bug on the bumper of car A starts
flying with speed 12 km/ h straight toward car B . As soon as it reaches the other car
it turns and flies back. The bug flies back and forth from one car to the other until the
two cars meet. The total length that the bug flies would be 12 km.
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To calculate the total length of the bug’s motion, let us show the velocities of the
cars by vA and vB and the velocity of the bug by vF . Figure 1.18 illustrates the position
of the cars and the bug at a time t > 0. Their positions are

XA = vAt XB = l − vBt XF = vF t (1.327)

l

A X
vA vB

vF

B

Figure 1.18 Two cars A and B moving toward each other and a bug F flying from one car to
the other.

The bug reaches B at time t1 after flying the distance d1:

t1 = l

vB + vF

d1 = vF t1 = vF

vB + vF

l (1.328)

At this time, cars A, B and the bug are at

XA1 = vA

vB + vF

l (1.329)

XB1 =
(

1 − vB

vB + vF

)
l (1.330)

XF1 = XB1 (1.331)

so their positions when the bug is flying back are

XA = XA1 + vAt = vA

vB + vF

l + vAt (1.332)

XB = XB1 − vBt =
(

1 − vB

vB + vF

)
l − vBt (1.333)

XF = XF1 − vF t =
(

1 − vB

vB + vF

)
l − vF t (1.334)

The bug reaches A at time t2 after flying the distance d2:

t2 = l

vB + vF

vF − vA

vA + vF

d2 = vF

vB + vF

vA

vA + vF

l (1.335)

At this time cars A, B and the bug are at

XA2 = 2
vF

vB + vF

vA

vA + vF

l (1.336)

XB2 =
(

1 − vB

vB + vF

+ vB

vB + vF

vF − vA

vA + vF

)
l (1.337)

XF2 = XA2 (1.338)
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so their positions when the bug is flying forward are

XA = XA2 + vAt = 2
vA

vB + vF

vF

vA + vF

l + vAt (1.339)

XB = XB2 − vBt = l − vB

vB + vF

l

(
1 − vF − vA

vA + vF

)
− vBt (1.340)

XF = XF2 + vF t = 2
vA

vB + vF

vF

vA + vF

l − vF t (1.341)

By repeating this procedure, we can find the next times and distances and determine
the total time t and distance d as

t = t1 + t2 + t3 + · · · (1.342)

d = d1 + d2 + d3 + · · · (1.343)

However, there is a simpler method to analyze this problem. The total time t at
which the cars meet is

t = l

vA + vB

(1.344)

At this time, the bug can fly a distance d :

d = vF t = vF

vA + vB

l (1.345)

Therefore, if the speeds of the cars are vA = 10 km/ h and vB = 5 km/ h and their
distance is d = 15 km, it takes an hour for the cars to meet. The bug with a speed of
vF = 12 km/ h can fly d = 12 km in an hour.

Example 57 � Jerk, Snap, and Other Derivatives The derivative of acceleration
or the third time derivative of the position vector r is called the jerk j; in England
the word jolt is used instead of jerk. The third derivative may also wrongly be called
pulse, impulse, bounce, surge, shock, or superacceleration.

In engineering, jerk is important for evaluating the destructive effects of motion on
a moving object. For instance, high jerk is a reason for the discomfort of passengers in
a vehicle. Jerk is the reason for liquid splashing from an open container. The movement
of fragile objects, such as eggs, needs to be kept within specified limits of jerk to avoid
damage. It is required that engineers keep the jerk of public transportation vehicles less
than 2 m/ s3 for passenger comfort. There is an instrument in the aerospace industry
called a jerkmeter that measures jerk.

There are no universally accepted names for the fourth and higher derivatives
of a position vector r. However, the terms snap s and jounce s have been used for
derivatives of jerk. The fifth derivative of r is crackle c, the sixth derivative is pop þ,
the seventh derivative is larz z, the eight derivative is bong b, the ninth derivative is
jeeq q, and the tenth derivative is sooz u.
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1.5.3 � Natural Coordinate Frame

Consider a space curve

x = x (s) y = y (s) z = z (s) (1.346)

where s is the arc length of the curve from a fixed point on the curve. At the point
there are three important planes: the perpendicular plane to the curve,

(x − x0)
dx

ds
+ (y − y0)

dy

ds
+ (z − z0)

dz

ds
= 0 (1.347)

the osculating plane,(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
(x − x0) +

(
dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
(y − y0)

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)
(z − z0) = 0 (1.348)

and the rectifying plane,

(x − x0)
d2x

ds2
+ (y − y0)

d2y

ds2
+ (z − z0)

d2z

ds2
= 0 (1.349)

The osculating plane is the plane that includes the tangent line and the curvature center
of the curve at P . The rectifying plane is perpendicular to both the osculating and
normal planes.

The curvature of the curve at P is

κ =
√(

d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.350)

and the radius of curvature is
ρ = 1

κ
(1.351)

The radius of curvature indicates the center of curvature in the osculating plane.
Figure 1.19 illustrates a space curve and the three planes at a point P . The unit vectors
ût , ûn, and ûb are indicators of the rectifying, perpendicular, and osculating planes and
make an orthogonal triad. This triad can be used to express the velocity and acceleration
of the moving point P along the space curve C :

v = ṡût (1.352)

a = s̈ût + ṡ2

ρ
ûn (1.353)
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ûn

r

X Y

Z

ût

Osculating plane

C

Rectifying plane

Perpendicular
plane

ûb

P

ρ

Figure 1.19 A space curve C and the three associated planes to the natural coordinates at a
point P .

The orthogonal triad ût , ûn, ûb is called the natural triad or natural coordinate frame:

ût = dr
ds

(1.354)

ûn = 1∣∣d2r/ds2
∣∣ d2r

ds2
(1.355)

ûb = 1∣∣(dr/ds) × (d2r/ds2)
∣∣
(

dr
ds

× d2r

ds2

)
(1.356)

Proof : Consider the tangent line (1.228) to the space curve (1.346) at point
P (x0, y0, z0):

x − x0

dx/ds
= y − y0

dy/ds
= z − z0

dz/ds
(1.357)

The unit vector along the tangent line lt is

ût = dx

ds
ı̂ + dy

ds
̂ + dz

ds
k̂ = dr

ds
(1.358)

because dx/ds, dy/ds, dz/ds are the directional cosines of the tangent line. A perpen-
dicular plane to this vector is

dx

ds
x + dy

ds
y + dz

ds
z = c (1.359)
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where c is a constant. The coordinates of P (x0, y0, z0) must satisfy the equation of
the plane

dx

ds
x0 + dy

ds
y0 + dz

ds
z0 = c (1.360)

and the perpendicular plane to the space curve at P (x0, y0, z0) is

(x − x0)
dx

ds
+ (y − y0)

dy

ds
+ (z − z0)

dz

ds
= 0 (1.361)

The equation of any plane that includes P (x0, y0, z0) is

A(x − x0) + B (y − y0) + C (z − z0) = 0 (1.362)

It also includes the tangent line (1.357) if

A
dx

ds
+ B

dy

ds
+ C

dz

ds
= 0 (1.363)

and includes the space curve up to �s2 if

A
d2x

ds2
+ B

d2y

ds2
+ C

d2z

ds2
= 0 (1.364)

Eliminating A, B , and C provides∣∣∣∣∣∣∣∣∣∣
x − x0 y − y0 z − z0

dx

ds

dy

ds

dz

ds
d2x

ds2

d2y

ds2

d2z

ds2

∣∣∣∣∣∣∣∣∣∣
= 0 (1.365)

which is the equation of the osculating plane (1.348). The osculating plane can be
identified by its unit vector ûb, called the bivector :

ûb = 1

ub

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
ı̂ + 1

ub

(
dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
̂

+ 1

ub

(
dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)
k̂ = 1

ub

(
dr
ds

× d2r

ds2

)
(1.366)

u2
b =

(
dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)2

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)2

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)2

=
(

dr
ds

× d2r

ds2

)2

(1.367)

The line of intersection of the osculating plane (1.348) and the perpendicular plane
(1.361) is called the principal normal line to the curve at P . From (1.361) and (1.348)
the equation of the principal normal is

x − x0

d2x/ds2
= y − y0

d2y/ds2
= z − z0

d2z/ds2
(1.368)
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The plane through P and perpendicular to the principal normal is called the rectifying
or tangent plane, which has the equation

(x − x0)
d2x

ds2
+ (y − y0)

d2y

ds2
+ (z − z0)

d2z

ds2
= 0 (1.369)

The intersection of the rectifying plane and the perpendicular plane is a line that is
called the binormal line:

x − x0

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

= y − y0

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

= z − z0

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

(1.370)

The bivector (1.366) is along the binormal line (1.370). The unit vector perpendicular
to the rectifying plane is called the normal vector ûn, which is in the osculating plane
and in the direction of the center of curvature of the curve at P :

ûn = 1

un

d2x

ds2
ı̂ + 1

un

d2y

ds2
̂ + 1

un

d2z

ds2
k̂ = 1

un

d2r

ds2
(1.371)

u2
n =

(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.372)

The unit vectors ût , ûn, and ûb make an orthogonal triad that is called the natural
coordinate frame:

ût × ûn = ûb (1.373)

The curvature κ of a space curve is defined as the limit of the ratio of the angle
�θ between two tangents to the arc length �s of the curve between the tangents as
the arc length approaches zero:

κ = lim
�s→0

�θ

�s
(1.374)

The directional cosines of the tangent line are dx/ds , dy/ds , dz/ds at point
P1 (x1, y1, z1) and dx/ds + (d2x)/(ds2)�s, dy/ds + (d2y)/(ds2)�s, dz/ds +
(d2z)/(ds2)�s at

P2 (x2, y2, z2) = P2

(
x1 + dx

ds �s, y1 + dy
ds �s, z1 + dz

ds �s
)

Using the cross product of the unit vectors along the two tangent lines, we have

sin2 �θ =
[(

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)2

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)2

+
(

dx

ds

d2y

ds2
− dy

ds

d2x

ds2

)2
]

(�s)2 (1.375)
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Because of the constraint among the directional cosines and

lim
�θ→0

sin �θ

�θ
= 1 (1.376)

the coefficient of (�s)2 reduces to (d2x/ds2)2 + (d2y/ds2)2 + (d2z/ds2)2 and we can
calculate the curvature of the curve as

κ = dθ

ds
=

√(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.377)

Consider a circle with x = ρ cos ϕ, y = ρ sin ϕ, z = 0. The curvature of the circle
would be κ = 1/ρ because ds = ρ dϕ. Equating the curvature of the curve with the
curvature of the circle provides the radius of curvature of the curve:

ρ = 1

κ
(1.378)

Using the radius of curvature, we may simplify the unit normal vector ûn to

ûn = ρ

(
d2x

ds2 ı̂ + d2y

ds2 ̂ + d2z

ds2 k̂

)
= ρ

d2r

ds2 (1.379)

Because the unit vector ût in (1.358) is tangent to the space curve in the direc-
tion of increasing curve length s , the velocity vector v must be tangent to the curve
in the direction of increasing time t . Therefore, v is proportional to ût where the
proportionality factor is the speed ṡ of P :

v = ṡût = ṡ

(
dx

ds
ı̂ + dy

ds
̂ + dz

ds
k̂

)
= ṡ

dr
ds

(1.380)

v = ṡ (1.381)

The acceleration of P would be

a = s̈ût + ṡ
d

dt
ût (1.382)

However,
d

dt
ût = ṡ

d2x

ds2
ı̂ + ṡ

d2y

ds2
̂ + ṡ

d2z

ds2
k̂ = ṡ

ρ
ûn (1.383)

which shows that

a = s̈ût + ṡ2

ρ
ûn (1.384)

a =
√

s̈2 + ṡ4

ρ2
(1.385)

The natural coordinate frame ût , ûn, and ûb may also be called the Frenet frame,
Frenet trihedron, repère mobile frame, moving frame, or path frame. �
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Example 58 Osculating Plane to a Helix A point P is moving on a helix with equation

x = a cos ϕ y = a sin ϕ z = kϕ (1.386)

where a and k are constant and ϕ is an angular variable. The tangent line (1.357) to
the helix at ϕ = π/4 is

−
√

2

a

(
x − 1

2

√
2a

)
=

√
2

a

(
y − 1

2

√
2a

)
= 1

k

(
z − 1

4
πk

)
(1.387)

Using

x0 =
√

2

2
a y0 =

√
2

2
a z0 = k

π

4
(1.388)

and
dx

dϕ
= −a sin ϕ = −

√
2

2
a

dy

dϕ
= a cos ϕ =

√
2

2
a (1.389)

dz

dϕ
= k (1.390)

we can find the perpendicular plane (1.347) to the helix at ϕ = π/4:

−
√

2ax +
√

2ay + 2zk = 1
2πk2 (1.391)

To find the osculating and rectifying planes, we need to calculate the second deriva-
tives of the curve at ϕ = π/4,

d2x

dϕ2
= −a cos ϕ = −

√
2

2
a

d2y

dϕ2
= −a sin ϕ = −

√
2

2
a

d2z

dϕ2
= 0

(1.392)

substitute in Equation (1.369) for the osculating plane,

√
2x −

√
2ky + 2az = 1

2
πak (1.393)

and substitute in Equation (1.392) for the rectifying plane,
√

2x +
√

2y = 2a (1.394)

Because of (1.392), the curvature of the helix at ϕ = π/4 is

κ = a (1.395)

and therefore the curvature radius of the helix at that point is

ρ = 1

κ
= 1

a
(1.396)
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Having the equations of the three planes and the curvature radius ρ, we are able
to identify the unit vectors ût , ûn, and ûb:

ût = 1√
a2 + k2

(
−

√
2

2
aı̂ +

√
2

2
â + kk̂

)
(1.397)

ûn = −
√

2

2
ı̂ −

√
2

2
̂ (1.398)

ûb = 1√
a2 + k2

(
1

2

√
2kı̂ − 1

2

√
2k̂ + ak̂

)
(1.399)

We can check and see that

ût × ûn = ûb (1.400)

A helix is a category of space curves with a constant curvature–torsion ratio:
κ

τ
= const (1.401)

The circular helix is only a special case of the general helix curves.

Example 59 Uniform Motion on a Circle Consider a particle P that is moving on a
circle with radius R around the origin of the coordinate frame at a constant speed v.
The equation of the circle is

r · r = r2 (1.402)

where r is the constant length of r. Differentiating (1.402) with respect to time
results in

r · v = 0 (1.403)

which shows that r and v are perpendicular when r has a constant length. If the speed
of the particle is constant, then

v · v = v2 (1.404)

which shows that
v · a = 0 (1.405)

Now differentiating (1.403) with respect to time results in

r · a = −v2 (1.406)

It indicates that r and a are collinear and oppositely directed. So, the value of their
product must be

r · a = −ra (1.407)

which determines the length of the acceleration vector a on a uniformly circular motion:

a = −v2

r
(1.408)
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Example 60 Curvature of a Plane Curve Let us consider a curve C in the (x, y)-
plane as is shown in Figure 1.20, which is defined time parametrically as

x = x(t) y = y(t) (1.409)

The curve increment ds is

ds2 = dr · dr = dx2 + dy2 (1.410)

which after dividing by dt would be

ṡ2 = ẋ2 + ẏ2 (1.411)

Differentiating from the slop of the curve θ ,

tan θ = dy

dx
= ẏ

ẋ
(1.412)

we have
θ̇
(
1 + tan2 θ

) = ẋÿ − ẏẍ

ẋ2
(1.413)

and therefore
θ̇ = ẋÿ − ẏẍ

ẋ2 + ẏ2
(1.414)

However, because of

θ̇ = dθ

dt
= dθ

ds

ds

dt
= ṡ

dθ

ds
= ṡ

ρ
=

√
ẋ2 + ẏ2

ρ
(1.415)

we get

κ = 1

ρ
= ẋÿ − ẏẍ(

ẋ2 + ẏ2
)3/2

(1.416)

x

y

dx

dy
ds

C

Figure 1.20 A curve C in the (x, y)-plane.

Whenever, instead of (1.409), we have the equation of the plane curve as

y = y(x) (1.417)
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then the curvature equation would simplify to

κ = 1

ρ
=

∣∣∣∣∣ d2y/dx2(
1 + (dy/dx)2)3/2

∣∣∣∣∣ (1.418)

As an example, consider a plane curve given by the parametric equations

x = t y = 2t2 (1.419)

The curvature at t = 3 s is 2.2909 × 10−3 m−1 because

κ = 1

ρ
= ẋÿ − ẏẍ(

ẋ2 + ẏ2
)3/2

= 4 − 0(
1 + 16t2

)3/2
= 2.2909 × 10−3 m−1 (1.420)

The same curve can be expressed by

y = 2x2 (1.421)

which has the same radius of curvature ρ = 1/κ = 2.2909 × 10−3 m−1 = 436.5 m at
x = 3 m because dy/dx = 4x = 12 and d2y/dx 2 = 4:

κ = 1

ρ
=

∣∣∣∣∣ d2y/dx 2[
1 + (dy/dx)2

]3/2

∣∣∣∣∣ =
∣∣∣∣∣ 4[

1 + (12)2
]3/2

∣∣∣∣∣
= 2.2909 × 10−3 m−1 (1.422)

Example 61 Natural Coordinate Frame Is Orthogonal To show that the natural
coordinate frame ût , ûn, ûb in Equations (1.354)–(1.356) is orthogonal, we may dif-
ferentiate the relation

ût · ût = 1 (1.423)

with respect to s and get

2
dr
ds

· d2r

ds2 = 0 (1.424)

It indicates that ût is orthogonal to ûn. Equation (1.356) also shows that ûb is orthogonal
to both ût and ûn.

Example 62 Vectorial Expression of Curvature Assume that the position vector of
a moving point on a space curve is given by

r = r(s) (1.425)



1.5 Motion Path Kinematics 63

where s is the arc length on the curve measured from a fixed point on the curve. Then,

v = ṡût (1.426)

ût = dr
ds

(1.427)

d2r

ds2 = d

ds
ût = 1

ρ
ûn = κûn (1.428)

and therefore,

κ = 1

ρ
=

∣∣∣∣d2r

ds2

∣∣∣∣ (1.429)

We may also employ the velocity and acceleration vectors of the moving point and
determine the curvature of the curve. Because the outer product of v and a is

v × a = (
ṡût

) ×
(

s̈ût + ṡ2

ρ
ûn

)
= v × an (1.430)

|v × a| = van (1.431)

we have

an = ṡ2

ρ
= v2

ρ
= |v × a|

v
(1.432)

and therefore,

κ = 1

ρ
= |v × a|

v3
= |v × a|

|v|3 (1.433)

As an example, consider a moving point at

r =
[

t

2t2

]
(1.434)

Its velocity and acceleration are

v =
[

1
4t

]
a =

[
0
4

]
(1.435)

and therefore the curvature of the motion is

κ = 1

ρ
= |v × a|

|v|3 = 4(√
16t2 + 1

)3
(1.436)

The curvature at t = 3 s is κ = 2.290 9 × 10−3 m−1.

Example 63 � Curvature Vector κ Using the definition of tangential unit vector ût ,

ût = dr
ds

(1.437)



64 Fundamentals of Kinematics

and taking a curve length derivative we can define a curvature vector κ as

κ = dût

ds
= d2r

ds2
= κûn (1.438)

that has a length κ and indicates the curvature center of the curve. So, the curvature
vector κ points in the direction in which ût is turning, orthogonal to ût . The length
κ = |κ | gives the rate of turning. It can be found from

κ2 = d2r

ds2
· d2r

ds2
(1.439)

Furthermore, because
ût = v

ṡ
(1.440)

we may also define the curvature vector κ as

κ = d

ds

v
ṡ

= 1

ṡ

d

dt

v
ṡ

= aṡ − vs̈

ṡ3
(1.441)

Example 64 � Frenet–Serret Formulas When the position vector of a moving
point on a space curve is given as a function of the arc length s ,

r = r(s) (1.442)

we define the unit vectors ût , ûn, and ûb and an orthogonal coordinate frame

ût × ûn = ûb (1.443)

that is carried by the point. Because s is the variable that indicates the point, it is useful
to determine the derivatives of the unit vectors with respect to s .

Using Equation (1.383), we can find the s-derivative of the tangent unit vector ût :

dût

ds
= dût

dt

dt

ds
= dût

dt

1

ṡ
= 1

ρ
ûn = κûn (1.444)

∣∣∣∣dût

ds

∣∣∣∣ = 1

ρ
=

√(
d2x

ds2

)2

+
(

d2y

ds2

)2

+
(

d2z

ds2

)2

(1.445)

To find dûb/ds, we may take a derivative from (1.443):

dûb

ds
= d

ds

(
ût × ûn

) = dût

ds
× ûn + ût × dûn

ds
= ût × dûn

ds
(1.446)

Because ûb is a constant-length vector, dûb/ds is perpendicular to ûb. It must also be
perpendicular to ût . So, dûb/ds is parallel to ûn:

dûb

ds
= −τ ûn = − 1

σ
ûn (1.447)
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The coefficient τ is called the torsion of the curve, while σ = 1/τ is called the radius
of torsion . The torsion at a point of the curve indicates that the osculating plane rotates
about the tangent to the curve as the point moves along the curve. The torsion is
considered positive if the osculating plane rotates about ût and negative if it rotates
about −ût . A curve with κ �= 0 is planar if and only if τ = 0.

The derivative of the normal unit vector dûn/ds may be calculated from

dûn

ds
= d

ds

(
ûb × ût

) = dûb

ds
× ût + ûb × dût

ds

= − 1

σ

(
ûn × ût

) + 1

ρ

(
ûb × ûn

) = 1

σ
ûb − 1

ρ
ût (1.448)

Equations (1.444), (1.447), and (1.448) are called the Frenet–Serret formulas. The
Frenet–Serret formulas may be summarized in a matrix form:

dût

ds
dûn

ds
dûb

ds

 =

 0 κ 0

−κ 0 τ

0 −τ 0


ût

ûn

ûb

 (1.449)

It shows that the derivative of the natural coordinate unit vectors can be found by
multiplying a skew-symmetric matrix and the coordinate unit vectors.

Having the Frenet–Serret formulas, we are able to calculate the kinematics of a
moving point on the space curve:

v = dr
dt

= dr
ds

ṡ = ṡût (1.450)

a = dv
dt

= s̈ût + ṡ
dût

dt
= s̈ût + ṡ2 dût

ds
= s̈ût + ṡ2 1

ρ
ûn (1.451)

j = da
dt

=
(

...
s − ṡ3

ρ2

)
ût + 1

ρ

(
3ṡ s̈ + ṡ2

ρ
ρ̇

)
ûn + ṡ3

ρσ
ûb (1.452)

Frenet (1816–1900) and Serret (1819–1885) were two French mathematicians.

Example 65 Characteristics of a Space Curve Consider a space curve C with the
parametric equation

r = r (t) (1.453)
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The natural coordinate frame and curve characteristics are

ût = ṙ
|ṙ| (1.454)

ûb = ṙ × r̈
|ṙ × r̈| (1.455)

ûn = ûb × ût (1.456)

κ = ṙ × r̈

|ṙ|3 (1.457)

τ = (ṙ × r̈) · ...
r

|ṙ × r̈|2 (1.458)

Employing these equations, the Frenet–Serret formulas (1.449) can be determined in
time derivatives:

dût

dt
= κ |ṙ| ûn (1.459)

dûn

dt
= −κ |ṙ| ût + τ |ṙ| ûb (1.460)

dûb

dt
= −τ |ṙ| ûb (1.461)

Example 66 � Osculating Sphere The sphere that has a contact of third order with a
space curve at a point P(x, y, z) is called the osculating sphere of the curve at P . If the
center of the sphere is denoted by C (xC, yC, zC), then the equation of the osculating
sphere is

(x − xC)2 + (y − yC)2 + (z − zC)2 = R (1.462)

where R is the radius of the sphere. Taking three derivatives from (1.462) provides a
set of four equations to determine xC , yC , zC and R. To set up the equations, we show
the equation of the sphere as

(rC − r)2 = R2

where rC − r indicates the position of the center of the sphere from point P . Taking
derivatives with respect to the arc length s provides

(rC − r) · dr
ds

= 0 (1.463)

−1 + (rC − r) · d2r

ds2
= 0 (1.464)

−dr
ds

· d2r

ds2
+ (rC − r) · d3r

ds3
= 0 (1.465)
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Employing the curvature τ and torsion κ , we can rewrite these equations:

(rC − r) · ût = 0 (1.466)

−1 + (rC − r) · κûn = 0 (1.467)

(rC − r) ·
(

dκ

ds
ûn + κ

(
τ ûb − κût

)) = 0 (1.468)

Expanding (1.468) yields

dκ

ds
(rC − r) · ûn + κτ (rC − r) · ûb − κ2 (rC − r) · ût = 0 (1.469)

and using Equations (1.466) and (1.467), we find

1

κ

dκ

ds
+ κτ (rC − r) · ûb = 0 (1.470)

Knowing that
dρ

ds
= d

ds

(
1

κ

)
= − 1

κ2

dκ

ds
(1.471)

we can simplify Equation (1.470):

(rC − r) · ûb = σ
dρ

ds
(1.472)

From Equations (1.466), (1.467), and (1.472), we have

(rC − r) · ût = 0 (1.473)

(rC − r) · ûn = ρ (1.474)

(rC − r) · ûb = σ
dρ

ds
(1.475)

that indicates rC − r lies in a perpendicular plane. The components of rC − r are ρ

along ûn and σ (dρ/ds) along ûb:

rC − r = ρûn + σ
dρ

ds
ûb (1.476)

Therefore, the position vector of the center of the osculating sphere is at

rC = r + ρûn + σ
dρ

ds
ûb (1.477)

and the radius of the osculating sphere is

R = |rC − r| =
√

ρ2 + σ 2

(
dρ

ds

)2

(1.478)
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Example 67 � Taylor Series Expansion of a Space Curve Consider a point P that
is moving on a space curve that is parametrically expressed as r = r(s). If at s = 0
we have the position and velocity of P , it is possible to express the curve by a Taylor
expansion:

r(s) = r(0) + dr(0)

ds
s + d2r(0)

ds2

s2

2!
+ d3r(0)

ds3

s3

3!
+ · · · (1.479)

Using the natural coordinate system, we have

dr
ds

= ût (1.480)

d2r

ds2
= κ ûn (1.481)

d3r

ds3
= d

ds

(
κ ûn

) = dκ

ds
ûn + κ

(−κût + τ ûb

)
(1.482)

d4r

ds4
= d2κ

ds2
ûn + dκ

ds

(−κût + τ ûb

) + dκ

ds

(−κût + τ ûb

)
+ κ

(
−dκ

ds
ût − κ2ûn + dτ

ds
ûb − τ 2ûn

)
= −3κ

dκ

ds
ût +

(
d2κ

ds2
− κ3 − κτ 2

)
ûn +

(
2τ

dκ

ds
+ κ

dτ

ds

)
ûb (1.483)

and therefore,
dr(0)

ds
= ût (0) = ût0 (1.484)

d2r(0)

ds2 = κ(0) ûn(0) = κ0ûn0 (1.485)

d3r(0)

ds3
= −κ2

0 ût0 + dκ0

ds
ûn0 + κ0τ0ûb0 (1.486)

d4r(0)

ds4
= −3κ0

dκ0

ds
ût0 +

(
d2κ0

ds2
− κ3

0 − κ0τ
2
0

)
ûn0

+
(

2τ0
dκ0

ds
+ κ0

dτ0

ds

)
ûb0 (1.487)

Substituting these results in Equation (1.479) shows that

r = r0 + sût0 + 1

2
κ0s

2ûn0 + s3

6

(
−κ2

0 ût0 + dκ0

ds
ûn0 + κ0τ0ûb0

)
+ s4

24

(
−3κ0

dκ0

ds

)
ût0 + s4

24

(
d2κ0

ds2 − κ3
0 − κ0τ

2
0

)
ûn0

+ s4

24

(
2τ0

dκ0

ds
+ κ0

dτ0

ds

)
ûb0 + · · · (1.488)
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Let us rearrange the equation to determine the natural components of r − r0:

r − r0 =
(

s − κ2
0

6
s3 − κ0

8

dκ0

ds
s4 + · · ·

)
ût0

+
[

1

2
κ0s

2 + 1

6

dκ0

ds
s3 + 1

24

(
d2κ0

ds2 − κ3
0 − κ0τ

2
0

)
s4 + · · ·

]
ûn0

+
[

1

6
κ0τ0s

3 + 1

24

(
2τ0

dκ0

ds
+ κ0

dτ0

ds

)
s4 + · · ·

]
ûb0 (1.489)

It follows from these equations that in the neighborhood of a point at which κ = 0 the
curve approximates a straight line. Furthermore, if τ = 0 at a point, the curve remains
on a plane. Accepting only the first term of each series, we may approximate a curve as

r(s) − r0 ≈ sût0 + 1
2κ0s

2ûn0 + 1
6κ0τ0s

3ûb0 (1.490)

Now assume that the position vector of the point P is expressed as a function of
time r = r(t). If at t = t0 we have the position and velocity of P , it is possible to
express the path of motion by a Taylor expansion:

r(t) = r0 + (t − t0) ṙ0 + (t − t0)
2

2!
r̈0 + (t − t0)

3

3!
...
r 0 + · · · (1.491)

Using the natural coordinate system (1.454)–(1.461) and defining ṡ = |ṙ|, we have

ṙ = |ṙ| ût = ṡût (1.492)

r̈ = s̈ût + κṡ2ûn (1.493)
...
r = (...

s − κ2ṡ3) ût + κ
(
3ṡs̈ + κ̇ ṡ2) ûn + κτ ṡ3ûb (1.494)

and therefore,

r(t) = r0 + (t − t0) ṡût + (t − t0)
2

2!

(
s̈ût + κṡ2ûn

)
+ (t − t0)

3

3!

[(...
s − κ2ṡ3) ût + κ

(
3ṡs̈ + κ̇ ṡ2) ûn + κτ ṡ3ûb

] + · · ·

= r0 +
(

(t − t0) ṡ + (t − t0)
2

2!
s̈ + (t − t0)

3

3!

(...
s − κ2ṡ3) + · · ·

)
ût

+
(

(t − t0)
2

2!
κṡ2 + (t − t0)

3

3!
κ
(
3ṡs̈ + κ̇ ṡ2) + · · ·

)
ûn

+
(

(t − t0)
3

3!
κτ ṡ3 + · · ·

)
ûb (1.495)
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Example 68 � Torsion of a Space Curve We may use (1.447) to determine the
torsion of a curve analytically. Let us start with

τ = −ûn · dûb

ds
(1.496)

and employ

ûb = ût × ûn ût = dr
ds

ûn = ρ
d2r

ds2
(1.497)

to get

ûb = ρ

(
dr
ds

× d2r

ds2

)
(1.498)

and hence

τ = −ρ2 d2r

ds2 · d

ds

(
dr
ds

× d2r

ds2

)
= ρ2 dr

ds
· d2r

ds2 × d3r

ds3 (1.499)

So, the scalar triple product of velocity, acceleration, and jerk
[
v, a, j

]
is[

dr
ds

d2r

ds2

d3r

ds3

]
= dr

ds
· d2r

ds2 × d3r

ds3 = τκ2 (1.500)

Example 69 � Darboux Vector By defining a vector u as

u = 1

ρ
ûb + 1

σ
ût (1.501)

the Frenet–Serret formulas simplify to

dût

ds
= u × ût

dûn

ds
= u × ûn

dûb

ds
= u × ûb (1.502)

The vector u is called the Darboux vector . Darboux (1842–1917) was a French math-
ematician.

Example 70 � Curvature as the Change of a Deformed Curve Curvature determines
how the length of a curve changes as the curve is deformed. Consider an infinitesimal
arc ds of a planar curve, as is shown in Figure 1.21. The arc length ds lies to second
order on a circle of radius ρ = 1/κ . Let us push ds a distance dr in the direction of
the curvature vector κ . The arc length ds will change to (1 − κdr) ds that is on a
new circle of radius 1/κ − dr = (1/κ) (1 − κdr). In general, the displacement is not
necessarily in direction κ and may be indicated by a vector dr. In this case the change
of the arc length is 1 − κ · dr and hence, the rate of change of the curve length is
− ∫

κ · dv ds, where v = dr/dt .



1.5 Motion Path Kinematics 71

ds

dr

1/κ

(1−κdr)ds

1/κ − dr

Figure 1.21 An infinitesimal arc ds of a planar curve.

Example 71 � Jerk in Natural Coordinate Frame ût , ûn, ûb Employing Equation
(1.353) and using the derivatives of the unit vectors of the natural coordinate frame,

dût

dt
= dût

dt
= ṡ

ρ
ûn (1.503)

dûn

dt
= ṡ

σ
ûb − ṡ

ρ
ût (1.504)

dûb

dt
= − ṡ

σ
ûn (1.505)

we can determine the jerk vector of a moving point in the natural coordinate frame:

j = d

dt
a = d

dt

(
s̈ût + ṡ2

ρ
ûn

)

= ...
s ût + s̈

d

dt
ût + 2ρṡs̈ − ρ̇ṡ2

ρ2
ûn + ṡ2

ρ

d

dt
ûn

= ...
s ût + s̈

ṡ

ρ
ûn + 2ρṡs̈ − ρ̇ṡ2

ρ2
ûn + ṡ3

ρ

(
1

σ
ûb − 1

ρ
ût

)

=
(

...
s − ṡ3

ρ2

)
ût +

(
3
s̈ ṡ

ρ
− ρ̇ṡ2

ρ2

)
ûn +

(
ṡ3

ρσ

)
ûb (1.506)
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Example 72 � A Roller Coaster Figure 1.22 illustrates a roller coaster with the
parametric equations

x = (a + b sin θ) cos θ

y = (a + b sin θ) sin θ (1.507)

z = b + b cos θ

for
a = 200 m b = 150 m (1.508)

Such a space curve is on the surface shown in Figure 1.23. The parametric equations
of the surface are

x = (a + b sin θ) cos ϕ

y = (a + b sin θ) sin ϕ (1.509)

z = b + b cos θ

R

2

3

1

2

1

3

−1
−2

X/100

Y/100

Z/100

1

Figure 1.22 A roller coaster.

Let us assume that the car is a particle that moves on the roller coaster when the
parameter θ is a function of time. The velocity and acceleration of the particle are

v = d

dt
r =

bθ̇ cos 2θ − aθ̇ sin θ

aθ̇ cos θ + bθ̇ sin 2θ

−bθ̇ sin θ

 (1.510)

a = d

dt
v =

(b cos 2θ − a sin θ) θ̈ − (a cos θ + 2b sin 2θ) θ̇2

(a cos θ + b sin 2θ) θ̈ + (2b cos 2θ − a sin θ) θ̇2

−bθ̈ sin θ − bθ̇2 cos θ

 (1.511)
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X/100

Z/100

0

2
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0

2

3

2

1

Y/100

Figure 1.23 The path of the roller coaster is a space curve on the torus.

The equation of the tangent line (1.228) to the space curve is

x − x0

b cos 2θ − a sin θ
= y − y0

b sin 2θ + a cos θ
= z − z0

−b sin θ
(1.512)

where
x0 = (a + b sin θ0) cos θ0

y0 = (a + b sin θ0) sin θ0 (1.513)

z0 = b + b cos θ0

and
dx

dθ
= b cos 2θ − a sin θ

dy

dθ
= b sin 2θ + a cos θ (1.514)

dz

dθ
= −b sin θ

As an example the tangent line at θ = π/4 is

x − 216.42

−141.42
= y − 216.42

291.42
= z − 256.07

−106.07
(1.515)

because
x0 =

(
a + b sin

π

4

)
cos

π

4
= 216.42 m

y0 =
(
a + b sin

π

4

)
sin

π

4
= 216.42 m (1.516)

z0 = b + b cos
π

4
= 256.07 m
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dx

dθ
= b cos 2

π

4
− a sin

π

4
= −141.42 m/rad

dy

dθ
= b sin 2

π

4
+ a cos

π

4
= 291.42 m/rad (1.517)

dz

dθ
= −b sin

π

4
= −106.07 m/rad

The arc length element ds of the space curve is

ds =
√

dr
dθ

· dr
dθ

dθ =
√(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

+
(

∂x

∂θ

)2

dθ

=
√

2

2

√
2a2 + 3b2 − b2 cos 2θ + 4ab sin θdθ (1.518)

The perpendicular plane (1.347) to the roller coaster curve is

(x − x0)
dx

dθ

dθ

ds
+ (y − y0)

dy

dθ

dθ

ds
+ (z − z0)

dz

dθ

dθ

ds
= 0 (1.519)

(b cos 2θ − a sin θ) (x − x0)

+ (b sin 2θ + a cos θ) (y − y0) − b sin θ (z − z0) = 0 (1.520)

This perpendicular plane at θ = π/4 is

−141.42x + 42y − 106.07z − 5302.7 = 0 (1.521)

To find the osculating and rectifying planes, we also need to calculate the second
derivatives of the curve:

d2x

dθ2
= −a cos θ − 2b sin 2θ

d2y

dθ2
= 2b cos 2θ − a sin θ (1.522)

d2z

dθ2
= −b cos θ

The osculating plane (1.348) to the roller coaster curve can be found by the deriva-
tive with respect to the arc length ds:(

dy

ds

d2z

ds2
− dz

ds

d2y

ds2

)
(x − x0)

+
(

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

)
(y − y0)

+
(

dx

ds

d2y

ds2 − dy

ds

d2x

ds2

)
(z − z0) = 0 (1.523)

The arc length is a function of θ , so we must transform (1.523) for the deriva-
tive with respect to θ . Consider d2x/ds2, which we may transform to a function
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of θ using (1.518):

d2x

ds2 = d

ds

dx

ds
= d

ds

(
dx

dθ

dθ

ds

)
= d2x

dθ2

(
dθ

ds

)2

+ dx

dθ

dθ

ds

d

dθ

(
dθ

ds

)
= 4(−2b sin 2θ − a cos θ)

6b2 + 8ab sin θ + 4a2 − 2b2 cos 2θ

− 2(b cos 2θ − a sin θ)(8ab cos θ + 4b2 sin 2θ)(
6b2 + 8ab sin θ + 4a2 − 2b2 cos 2θ

)2
(1.524)

Following the same method, Equation (1.523) becomes

− b(a + 2b sin θ − 2b sin θ cos2 θ)

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(x − x0)

+ b2 cos θ(2 cos2 θ − 3)

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(y − y0)

+ a2 + 2b2 + 3ab sin θ

a2 + 2b2 + 2ab sin θ − b2 cos2 θ
(z − z0) = 0 (1.525)

This osculating plane at θ = π/4 is

−0.395174x + 0.273892y + 1.27943z − 301.37061 = 0 (1.526)

The rectifying plane (1.369) is

−3.45942x − 1.91823y − .65786z + 1332.29646 = 0 (1.527)

Figure 1.24 shows the space curve and the three planes—perpendicular, osculating,
and rectifying—at θ = π/4.

The curvature κ of the space curve (1.507) from (1.377) and (1.518) is

κ = dθ

ds
= 2√

4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ
(1.528)

and therefore the curvature radius of the helix at that point is

ρ = 1

κ
= 1

2

√
4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ (1.529)

The equations of the three planes and the curvature κ enable us to identify the unit
vectors ût , ûn, and ûb. The tangent unit vector ût is given as

ût = dr
ds

=



dx

ds
dy

ds
dz

ds

 =



dx

dθ

dθ

ds
dy

dθ

dθ

ds
dz

dθ

dθ

ds

 = κ



dx

dθ

dy

dθ

dz

dθ


= κ

b cos 2θ − a sin θ

b sin 2θ + a cos θ

−b sin θ

 (1.530)
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Figure 1.24 The space curve of a roller coaster and the three planes—perpendicular, osculating,
and rectifying—at a specific point.

and the normal unit vector ûn as

ûn = ρ
d2r

ds2
= ρ



d2x

ds2

d2y

ds2

d2z

ds2

 =


κ

d2x

dθ2
+ dx

dθ

dκ

dθ

κ
d2y

dθ2
+ dy

dθ

dκ

dθ

κ
d2z

dθ2
+ dz

dθ

dκ

dθ

 (1.531)

where
dκ

dθ
= − b (a + b sin θ) cos θ(

a2 + 2b2 − b2 cos2 θ + 2ab sin θ
)3/2 (1.532)

and the other terms come from Equations (1.528), (1.522), and (1.514).
The bivector unit vector ûb from (1.366) and (1.525) is then

ûb =
dr
ds

× d2r

ds2∣∣∣∣dr
ds

× d2r

ds2

∣∣∣∣ = 1

ub



dy

ds

d2z

ds2
− dz

ds

d2y

ds2

dz

ds

d2x

ds2
− dx

ds

d2z

ds2

dx

ds

d2y

ds2
− dy

ds

d2x

ds2



= 2√
Z

−b(a + 2b sin θ − 2b sin θ cos2 θ)

b2 cos θ(2 cos2 θ − 3)

a2 + 2b2 + 3ab sin θ

 (1.533)
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Z = 4a4 + 26b4 + 38a2b2 + 4ab(6a2 + 15b2) sin θ

− 6b2(3a2 + b2) cos 2θ − 4ab3 sin 3θ (1.534)

Example 73 � Curvature Center of a Roller Coaster The position of the center of
curvature of a space curve can be shown by a vector rc, where

rc = ρûn (1.535)

The radius of curvature and the normal unit vector of the roller coaster space curve
(1.507) are give in Equations (1.529) and (1.531). Therefore, the position of the cur-
vature center of the roller coaster is

r + rc =

(a + b sin θ) cos θ

(a + b sin θ) sin θ

b + b cos θ

 +



d2x

dθ2
+ ρ

dx

dθ

dκ

dθ

d2y

dθ2
+ ρ

dy

dθ

dκ

dθ

d2z

dθ2
+ ρ

dz

dθ

dκ

dθ

 (1.536)

ρ = 1
2

√
4a2 + 6b2 − 2b2 cos 2θ + 8ab sin θ (1.537)

Figure 1.25 illustrates the path of motion and the path of curvature center. The initial
positions at θ = 0 are indicated by two small circles and the direction of motion by
increasing θ is shown by two small arrows.

2
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−1
−2

X/100

Y/100

Z/100
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Space curve

Projection of 
the space curve

Curvature
center

Figure 1.25 The path of motion of a roller coaster and the path of its curvature center.

1.6 FIELDS

A field is a domain of space in which there is a physical quantity associated with every
point of the space. If the physical quantity is scalaric, the field is called a scalar field ,
and if the physical quantity is vectorial, the field is a vector field . Furthermore, a field
is called stationary or time invariant if it is independent of time. A field that changes
with time is a nonstationary or time-variant field.
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Figure 1.26 A surface Gr = Gr (p, q) and partial derivatives rp and rq .

1.6.1 Surface and Orthogonal Mesh

If the position vector GrP of a moving point P is such that each component is a function
of two variables p and q ,

Gr = Gr (p, q) = x (p, q) ı̂ + y (p, q) ̂ + z (p, q) k̂ (1.538)

then the end point of the vector indicates a surface S in G , as is shown in Figure 1.26.
The surface Gr = Gr (p, q) reduces to a curve on S if we fix one of the parameters q
or p. The curves Cp and Cq on S at (p0, q0) are indicated by single-variable vectors
Gr (p, q0) and Gr (p0, q), respectively.

At any specific point Gr = Gr (p0, q0) there is a tangent plane to the surface that
is indicated by a normal unit vector n̂,

n̂ = n̂ (p0, q0) = rp × rq∣∣rp × rq

∣∣ (1.539)

where rp and rq are partial derivatives of Gr:

rp = ∂ r (p, q0)

∂p
(1.540)

rq = ∂ r (p0, q)

∂q
(1.541)

Varying p and q provides a set of curves Cp and Cq that make a mesh of S . The mesh
is called orthogonal if we have

rp · rq = 0 (1.542)

Proof : By fixing one of the variables, say p = p0, we can make a single-variable
vector function Gr = Gr (p0, q) to define a curve Cq lying on the surface S . Similarly,
we may fix q = q0 to define another single-variable vector function Gr = Gr (p, q0)

and curve Cp. So, there are two curves Cp and Cq that pass through the point (p0, q0).
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The vectors

rp = ∂ r (p, q0)

∂p
= ∂ x (p, q0)

∂p
ı̂ + ∂ y (p, q0)

∂p
̂ + ∂ z (p, q0)

∂p
k̂ (1.543)

rq = ∂ r (p0, q)

∂q
= ∂ x (p0, q)

∂q
ı̂ + ∂ y (p0, q)

∂q
̂ + ∂ z (p0, q)

∂q
k̂ (1.544)

that are tangent to the curves Cp and Cq are called the partial derivatives of Gr (p, q).
The vectors rp and rq define a tangent plane. The tangent plane may be indicated by
a unit normal vector n̂:

n̂ = n̂ (p0, q0) = rp × rq∣∣rp × rq

∣∣ (1.545)

A surface for which a normal vector n̂ can be constructed at any point is called
orientable. An orientable surface has inner and outer sides. At each point x (p0, q0),
y (p0, q0), z (p0, q0) of an orientable surface S there exists a normal axis on which we
can choose two directions n̂0, −n̂0. The positive normal vector n̂0 cannot be coincident
with −n̂0 by a continuous displacement. The normal unit vector on the convex side is
considered positive and the normal to the concave side negative.

If rp · rq = 0 at any point on the surface S , the mesh that is formed by curves Cp

and Cq is called an orthogonal mesh . The set of unit vectors of an orthogonal mesh,

ûp = rp∣∣rp

∣∣ (1.546)

ûq = rq∣∣rq

∣∣ (1.547)

n̂ = ûp × ûq (1.548)

defines an orthogonal coordinate system. These definitions are consistent with the def-
inition of unit vectors in Equation (1.200).

� We assume that the functions x (p, q), y (p, q), and z (p, q) in the parametric
expression of a surface in Equation (1.538) have continuous derivatives with respect to
the variables q and p. For such a surface, we can define a Jacobian matrix [J ] using
partial derivatives of the functions x , y , and z :

[J ] =
 xp xq

yp yq

zp zq

 (1.549)

The surface at a point P (p0, q0) is called regular if and only if the rank of [J ] is not
less than 2. A point P at which [J ] has rank 1 is called a singular point. At a regular
point, we have

rp × rq �= 0 (1.550)

Therefore, we can determine the tangent plane unit-normal vector n̂ for every regular
point. At a singular point, the rank of [J ] is 1 and we have

rp × rq = 0 (1.551)
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which indicates rp and rq are parallel. There is not a unique tangent plane at a singular
point.

A surface that has no singularity is called an immersed surface. �

Example 74 Sphere and Orthogonal Mesh A sphere is defined as the position of all
points (x, y, z) that have the same distance R from the center (x0, y0, z0):

(x − x0)
2 + (y − y0)

2 + (z − z0)
2 = R2 (1.552)

Consider a moving point P on a sphere with a center at the origin. The position vector
of P is

r = xı̂ + ŷ + zk̂

= ( R cos θ sin ϕ) ı̂ + ( R sin θ sin ϕ) ̂ + ( R cos ϕ) k̂ (1.553)

Eliminating θ and ϕ between x , y , and z generates the surface equation:

z = ±
√

R2 − x2 − y2 (1.554)

As a sample, when (θ, ϕ) = (π/3, π/4), point P is at (x, y, z) = (0.35355R,
0.61237R, 0.70711R) and we may define two curves Cθ and Cϕ as

Cθ =


x = R cos

π

3
sin ϕ

y = R sin
π

3
sin ϕ

z = R cos ϕ

=


x = 0.5 R sin ϕ

y = 0.866 03 R sin ϕ

z = R cos ϕ

(1.555)

Cϕ =


x = R cos θ sin

π

4

y = R sin θ sin
π

4

z = R cos
π

4

=


x = 0.707 11 R cos θ

y = 0.707 11 R sin θ

z = 0.707 11 R

(1.556)

The tangent vectors to Cθ and Cϕ at arbitrary θ and ϕ can be found by partial
derivatives:

rθ = ∂ r (θ, ϕ)

∂θ
= −R sin θ sin ϕ ı̂ + R cos θ sin ϕ ̂ (1.557)

rϕ = ∂ r (θ, ϕ)

∂ϕ
= R cos θ cos ϕ ı̂ + R sin θ cos ϕ ̂ − R sin ϕ k̂ (1.558)

These tangent vectors at the point P reduce to

rϕ = ∂ r (π/3, ϕ)

∂ϕ
=

 0.5R cos ϕ

0.86603R cos ϕ

−R sin ϕ

 (1.559)

rθ = ∂ r (θ, π/4)

∂θ
=

−0.70711R sin θ

0.70711R cos θ

0

 (1.560)



1.6 Fields 81

We can check the orthogonality of the curves Cθ and Cϕ for different θ and ϕ by
examining the inner product of rθ and rϕ from (1.557) and (1.558):

rθ · rϕ =
−R sin θ sin ϕ

R cos θ sin ϕ

0

 ·
R cos θ cos ϕ

R sin θ cos ϕ

−R sin ϕ

 = 0 (1.561)

The tangent vectors rθ and rϕ define a tangent plane with a unit-normal vector n̂:

n̂ = n̂
(π

3
,
π

4

)
= rθ × rϕ∣∣rθ × rϕ

∣∣
= 1

0.70711R2

 0.25R2

0.43301R2

0.5R2

 =
0.35355

0.61237
0.7071

 (1.562)

Therefore, we may establish an orthogonal coordinate system at P (θ, ϕ, r) =
(π/3, π/4, R) with the following unit vectors:

ûθ = rθ

|rθ | = ∂r/∂θ

|∂r/∂θ | = −0.86602ı̂ + 0.5̂ (1.563)

ûϕ = rϕ∣∣rϕ

∣∣ = ∂r/∂ϕ

|∂r/∂ϕ| = 0.35355ı̂ + 0.61238̂ − 0.70711k̂ (1.564)

n̂ = rθ × rϕ∣∣rθ × rϕ

∣∣ = −0.35356ı̂ − 0.61237̂ − 0.70711k̂ (1.565)

Example 75 Surface-Analytic Expressions There are several methods to express a
surface. Three of them are the most applied forms: parametric, Monge, and implicit.

The parametric expression of a surface is when the x -, y-, and z -components of a
position vector are functions of two parameters:

Gr = Gr (p, q) = x (p, q) ı̂ + y (p, q) ̂ + z (p, q) k̂ (1.566)

The Monge expression of a surface is when we eliminate the parameters p and q
from x , y , z and define z as a function of x and y :

Gr (x, y) = xı̂ + ŷ + z (x, y) k̂ (1.567)

The implicit form of a surface is a nonlinear equation f of x , y , z :

f (x, y, z) = 0 (1.568)

Example 76 Directional Cosines of Unit-Normal Vector n̂ We are able to solve the
first two equations of the parametric expression of a surface,

x = x (p, q) y = y (p, q) z = z (p, q) (1.569)
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for p and q , and define the surface by a function

z = z (x, y) = g (x, y) (1.570)

and write the vector representation of the surface by the Monge expression

Gr (x, y) = xı̂ + ŷ + g (x, y) k̂ (1.571)

The partial derivatives and the equation of the two curves Cx and Cy would be

rx = ∂r
∂x

= ı̂ + ∂g (x, y)

∂x
k̂ (1.572)

ry = ∂r
∂y

= ̂ + ∂g (x, y)

∂y
k̂ (1.573)

The cross product of rx and ry is

rx × ry = −∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
̂ + k̂ (1.574)

and hence the unit-normal vector n̂ is

n̂ = rx × ry∣∣rx × ry

∣∣ =
− ∂z

∂x
ı̂ − ∂z

∂y
̂ + k̂√(

∂z

∂x

)2

+
(

∂z

∂y

)2

+ 1

(1.575)

The normal vector (1.575) can never be horizontal.
As an example, the position vector of a moving point on the northern hemisphere

of the sphere,
z = +

√
R2 − x2 − y2 (1.576)

is
Gr (x, y) = xı̂ + ŷ +

√
R2 − x2 − y2k̂ (1.577)

The partial derivatives rx and ry and the unit-normal vector n̂ are

rx = ∂ r
∂x

= ı̂ − x√
R2 − x2 − y2

k̂ (1.578)

ry = ∂ r
∂y

= ̂ − y√
R2 − x2 − y2

k̂ (1.579)

n̂ = rx × ry∣∣rx × ry

∣∣ = 1

R

 x

y√
R2 − x2 − y2

 (1.580)

It shows that the normal vector to a sphere is always in the direction of the position
vector r and away from the center.
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These vectors may be used to make an orthogonal coordinate system. At a point
such as (x, y, z) = (0.35355R, 0.61237R, 0.70711R), we have

ûx = rx

|rx | = ı̂ − 0.49999k̂

1.118
= 0.89445ı̂ − 0.44722k̂

ûy = ry∣∣ry

∣∣ = ̂ − 0.86601k̂

1.3229
= 0.75592̂ − 0.65463k̂ (1.581)

n̂ = ûx × ûy = 0.33806ı̂ + 0.58553̂ + 0.67613k̂

Example 77 Equation of a Tangent Plane Consider a vector n,

n = aı̂ + b̂ + ck̂ (1.582)

that is perpendicular to a plane at a point (x0, y0, z0). The analytic equation of the plane
that includes the point (x0, y0, z0) is indicated by position vector Gr = xı̂ + ŷ + zk̂

such that the vector Gr − Gr0 is perpendicular to n,(
Gr − Gr0

) · n = 0 (1.583)
which reduces to

a(x − x0) + b(y − y0) + c (z − z0) = 0 (1.584)

Because the normal vector to a surface z = g (x, y) is

n = −∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
̂ + k̂ (1.585)

the equation of the tangent plane to the surface at a point (x0, y0, z0) is

z − z0 = ∂g (x0, y0)

∂x
(x − x0) + ∂g (x0, y0)

∂y
(y − y0) (1.586)

As an example consider a surface z = 10 − x2 − y2 and a point P at (x0, y0, z0) =
(1, 2, 5). The normal vector at P is

n = 2ı̂ + 4̂ + k̂ (1.587)
and the tangent plane at P is

z − 5 = −2(x − 1) − 4(y − 2) (1.588)

Example 78 Normal Vector to a Surface Let us eliminate the parameters p and q
from the equations of a surface,

x = x (p, q) y = y (p, q) z = z (p, q) (1.589)

and define the surface by a function

z = z (x, y) = g (x, y) (1.590)
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or alternatively by

f = f (x, y, z) (1.591)

So, we theoretically have

f (x, y, z) = z − g (x, y) (1.592)

The normal vector to surface (1.590) is

n = − ∂z

∂x
ı̂ − ∂z

∂y
̂ + k̂ (1.593)

However, we may use expression (1.592) and substitute the partial derivatives

∂f

∂x
= − ∂z

∂x

∂f

∂y
= − ∂z

∂y

∂f

∂z
= 1 (1.594)

to define the normal vector to the surface (1.592) by

n = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ (1.595)

Such an expression of a normal vector to a surface is denoted by n = ∇f and is called
the gradient of f :

∇f = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ (1.596)

Example 79 � Curvature of a Surface Consider a point P on a surface z with a
continuous second derivative, as is shown in Figure 1.27:

z = f (x, y) (1.597)

To determine the curvature of the surface at P , we find the unit-normal vector ûn to
the surface at P ,

ûn = n
|n| (1.598)

n =
(

−∂g (x, y)

∂x
ı̂ − ∂g (x, y)

∂y
̂ + k̂

)
(1.599)

and slice the surface by planes containing ûn to consider the curvature vector κ of the
intersection curve. The curvature vector at P on any intersecting curve will be

κ = κûn (1.600)

The value of κ will change by turning the plane around ûn. The minimum and maximum
values of κ are indicated by κ1 and κ2 and are called the principal curvatures , where
κ1 and κ2 occur in orthogonal directions . They may be used to determine the curvature
in any other directions.
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n

P

Figure 1.27 A point P on a surface z = f (x, y) with a continuous second derivative.

If the unit vector tangent to the curve at P is shown by ût , the intersection curve is
in the plane spanned by ût and ûn. The curvature of the curve κ is called the directional
curvature at P in direction ût and defined by

κ = ûT
t [D2z] ût = ûT

t


∂2z

∂x2

∂z

∂x∂y
∂z

∂y∂x

∂2z

∂y2

 ût (1.601)

The matrix [D2z] and vector ût should be determined at point P .
The principal curvatures κ1 and κ2 are the eigenvalues of [D2z] and their associated

directions are called the principal directions of surface z at P . If the coordinate frame
(x, y, z) is set up such that z is on ûn and x, y are in the principal directions, then the
frame is called the principal coordinate frame. The second-derivative matrix [D2z] in
a principal coordinate frame would be

[D2z] =
[

κ1 0
0 κ2

]
(1.602)

1.6.2 Scalar Field and Derivative

Consider a scalar function f of a vector variable r,

f = f (r) = f (x, y, z) (1.603)

such that it provides a number f at a point P (x, y, z). Having such a function is
equivalent to associating a numeric value to every point of the space. The space that
f (x, y, z) is defined in is called a scalar field , and the function f is called the scalar
field function . The field function is assumed to be smooth and differentiable. A smooth
field has no singularity, jump, sink, or source.
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Setting f equal to a specific value f0 defines a surface

f (x, y, z) = f0 (1.604)

that is the loci of all points for which f takes the fixed value f0. The surface f (x, y, z) =
f0 is called an isosurface and the associated field value is called the isovalue f0.

The space derivative of f for an infinitesimal displacement dr is a vector:

df (r)
dr

= ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ = ∇f (1.605)

It can also be shown by
df = ∇f · dr (1.606)

where at any point Gr = Gr (x, y, z) there exists a vector ∇f that indicates the value
and direction of the maximum change in f for an infinitesimal change dr in position.

Figure 1.28 illustrates an isosurface f0 and the vector ∇f at a point on the iso-
surface,

∇f = ∇f (x, y, z) = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ (1.607)

The vector ∇f is called the gradient of the scalar field . The gradient (1.607) can be
expressed by a vectorial derivative operator ∇,

∇ = ∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂ =


∂

∂x
∂

∂y
∂

∂z

 (1.608)

that operates on the scalar field f . The gradient operator ∇ is also called the grad ,
del , or nabla operator.

x y

z

G

Cx

rx

ry

f0

Cy

f

∆

Figure 1.28 An isosurface f0 and its gradient vector at a point on the isosurface.
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Proof : By assigning various values to f , we obtain a family of isosurfaces of the
scalar field f = f (r) = f (x, y, z) as is shown in Figure 1.29. These surfaces serve to
geometrically visualize the field’s characteristics.

An isosurface f0 = f (x, y, z) can be expressed by a position vector Gr,

Gr = xı̂ + ŷ + zk̂ (1.609)

where its components x, y, z are constrained by the isosurface equation (1.604). Let us
consider a point P at r = r(x, y, z) on an isosurface f (x, y, z) = f . Any infinitesimal
change

dr = dx ı̂ + dy ̂ + dz k̂ (1.610)

in the position of P will move the point to a new isosurface with a field value f + df ,
where

df = f (x + dx, y + dy, z + dz) − f (x, y, z)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

=
(

∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂

)
·
(
dx ı̂ + dŷ + dz k̂

)
= ∇f · dr (1.611)

So df can be interpreted as an inner product between two vectors ∇f and dr. The first
vector, denoted by

∇f = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ (1.612)

is a Cartesian expression of the gradient of the scalar function f , and the second vector
dr is the displacement vector of the point. If the two nearby points lie on the same
isosurface, then df = 0, dr would be a tangent vector to this isosurface, and

df = ∇f · dr = 0 (1.613)

x
y

z

G xr

f1

f2

f3
f4

Figure 1.29 A family of isosurfaces of a scalar field f = f (r).
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Therefore, ∇f is perpendicular to dr and hence normal to the isosurface f . The gradient
of a scalar field is a coordinate-independent property.

We examine a nonstationary field at the interested specific instant of time. �

Example 80 Derivative of Scalar Function with Vector Variable If c is a constant
vector and f = c · r is a scalar field, then

grad f = grad (c · r) = c (1.614)

If f = r2, then
grad f = grad r2 = 2r (1.615)

If f = |r| and g = r2, then f = g1/2, and therefore,

grad f = 1

2
g−1/2 grad g = r

|r| (1.616)

Example 81 Gradient of Scalar Field Consider a scalar field

f (x, y, z) = x + x2y + y3 + y2x + z2 = C (1.617)

The gradient of the field is

∇f = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂ =

 y2 + 2xy + 1

x2 + 2xy + 3y2

2z

 (1.618)

Now assume that the gradient (1.618) is given. To find the field function, we should
integrate the components of the gradient:

f =
∫ (

y2 + 2xy + 1
)

dx = x2y + xy2 + x + g1 (y, z)

=
∫ (

x2 + 2xy + 3y2) dy = x2y + xy2 + y3 + g2 (x, z)

=
∫

(2z) dz = z2 + g3 (x, y) (1.619)

Comparison shows that

f (x, y, z) = x + x2y + y3 + y2x + z2 = C (1.620)

Example 82 Examples of Scalar and Vector Fields A field is another useful man-
made concept to describe physical quantities. We call a function f = f (x, y, z) a
scalar field function if it assigns a numeric value to any point P(x, y, z) of space. We
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call a function f = f(x, y, z) a vector field function if it assigns a vector to any point
P(x, y, z) of space.

Temperature, density, and humidity are a few examples of scalar fields, and electric,
magnetic, and velocity are a few examples of vector fields.

Example 83 Time Derivative of Scalar Field Consider a time-varying scalar field
of a vector variable

f = f (r(t)) (1.621)

The time derivative of f is

df

dt
= df

dr
· dr

dt
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
= ∇f · v (1.622)

where v = dr/dt is called the velocity of the position vector r:

v = dr
dt

= dx

dt
ı̂ + dy

dt
̂ + dz

dt
k̂ (1.623)

Following the derivative rule of a scalar field function (1.611), we may confirm that
the time derivative of a scalar field is

df

dt
= ∇f · dr

dt
= ∇f · v (1.624)

Example 84 Alternative Definition of Gradient Consider the scalar field function

f = f (r) = f (x, y, z) (1.625)

When the position vector moves from a point at r = r(x, y, z) to a close point at
r + dr, the field function changes from f (r) = f to f (r + dr) = f + df :

f (r + dr) = f (x + dx, y + dy, z + dz)

≈ f (x, y, z) + ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz + · · · (1.626)

Therefore, a change in the field due to an infinitesimal change in position is given as

df = f (r + dr) − f (r)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = ∇f · dr (1.627)

where df is called the total derivative of f .

Example 85 Directional Derivative An isosurface f (x, y, z) = f can be expressed
by the position vector Gr

Gr = xı̂ + ŷ + zk̂ (1.628)
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where its coordinates (x, y, z) are constrained by the isosurface equation (1.604). So,
Gr is a two-variable vector function where its end point indicates a surface in G . To
show this, let us consider a point P at r = r(x, y, z) on an isosurface f (x, y, z) = f .
Any change dr in the position of P will move the point to a new isosurface with a
field value f + df :

df = f (x + dx, y + dy, z + dz) − f (x, y, z)

= ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz (1.629)

Let us move P on a space curve r = r(q),

r = x(q)ı̂ + y(q)̂ + z(q)k̂ (1.630)

The unit vector tangent to the curve at P is

ûq = ∂r/∂q

|∂r/∂q| = (∂x/∂q)ı̂ + (∂y/∂q)̂ + (∂z/∂q)k̂√
(dx/dq)2 + (dy/dq)2 + (dz/dq)2

(1.631)

For an infinitesimal motion on the curve, we have

df

dq
= ∂f

∂x

∂x

∂q
+ ∂f

∂y

∂y

∂q
+ ∂f

∂z

∂z

∂q
(1.632)

which can be interpreted as a dot product between two vectors:

df

dq
=

(
∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂

)
·
(

∂x

∂q
ı̂ + ∂y

∂q
̂ + ∂z

∂q
k̂

)
(1.633)

= ∇f · dr
dq

= ∇f · ûq

∣∣∣∣ dr
dq

∣∣∣∣ (1.634)

The first vector, denoted by

∇f = ∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂

is the gradient of the scalar function f expressed in terms of Cartesian coordinates, and
the second vector,

dr
dq

= ∂x

∂q
ı̂ + ∂y

∂q
̂ + ∂z

∂q
k̂ (1.635)

is a tangent vector to the space curve (1.630) in the direction of increasing q . The dot
product ∇f · ûq calculates the projection of ∇f on the tangent line to the space curve
at P . To maximize this product, the angle between ∇f and ûq must be zero. It happens
when ∇f and dr/dq are parallel:

∂f/∂x

∂x/∂q
= ∂f/∂y

∂y/∂q
= ∂f/∂z

∂z/∂q
(1.636)



1.6 Fields 91

A space curve (1.630) with condition (1.636) is perpendicular to the surface (1.628)
and is called the normal or flow curve. Flow curves are perpendicular to isosurfaces
of a scalar field f and show the lines of maximum change in field f .

The gradient of the scalar field indicates the direction to move for maximum change
in the field, and its magnitude indicates the change in the field for a unit-length move.
The product ∇f · ûq , which determines the change in the field for a unit-length move
in direction ûq , is called the directional derivative.

Example 86 Direction of Maximum Rate of Increase Consider the scalar field

ϕ = 10 + xyz (1.637)

A point P (0.5, 0.4, z ) on an isosurface will have the following z -component:

z = ϕ − 10

xy
= ϕ − 10

0.5 × 0.4
= 5ϕ − 50 (1.638)

The gradient vector ∇ϕ at point P (0.5, 0.4,−50) on the isosurface ϕ = 0 is

∇ϕ =


∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂z

 =

yz

xz

xy

 =

−20

−25

0.2

 (1.639)

Example 87 Directional Derivative of a Field at a Point Consider the scalar field

f = xy2 + yz4 (1.640)

Its rate of change at point P(2,1,1) in the direction r = ı̂ + 2̂ + k̂ is found by the
inner product of its gradient at P ,

∇f =


∂f

∂x
∂f

∂y
∂f

∂z

 =

 y2

z4 + 2xy

4yz3

 =

1

5

4

 (1.641)

and ûr = r/ |r|,

df = ∇f · r
|r| =

1
5
4

 ·


1√
6

2√
6

1√
6

 = 6.1237 (1.642)
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Figure 1.30 Directional derivative of a scalar field f (r) in direction s0 at a point P is defined
by df /ds.

Example 88 � Isosurfaces Have No Common Point Consider a field f = f (r)
that is defined over a domain � of space. The isosurfaces corresponding to different
f = c fill the entire of �, and no two surfaces f (r) = c1 and f (r) = c2, c1 �= c2 have
common points. The isosurfaces, also called level surfaces, enable us to qualitatively
judge the rate of change of the scalar field f (r) in a give direction.

Consider a point P at rP in a scalar field f (r) and a fixed direction s0 as are
shown in Figure 1.30. We draw a straight line s through P parallel to s0 and pick a
point P1 to define the directional derivative of f (r):

df

ds
= lim

P1→P

f (rP ) − f
(
rP1

)
PP1

(1.643)

Such a limit, if it exists, is called the directional derivative of the scalar field f (r) in
direction s0 at point P . Using Equation (1.606), we may show that

df

ds
= ∇f · ûs = ∂f

∂x
cos α + ∂f

∂y
cos β + ∂f

∂z
cos γ (1.644)

where α, β, and γ are the directional cosines of s.

1.6.3 Vector Field and Derivative

Consider a vector function f of a vector variable r,

f = f (r) = f(x, y, z) = fx (r) ı̂ + fy (r) ̂ + fz (r) k̂ (1.645)
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so it provides a vector f at a point P(x, y, z). Having such a function is equivalent
to associating a vector to every point of the space. The space in which there exist an
f (x, y, z) is called a vector field , and the function f is called the vector field function .

The space derivative of f(r) is a quaternion product of ∇ and f,

df(r)
dr

= ∇f (r) = ∇ × f − ∇ · f = curl f − div f (1.646)

where

∇ × f = curl f =

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z
fx fy fz

∣∣∣∣∣∣∣∣
=

(
∂fz

∂y
− ∂fy

∂z

)
ı̂ +

(
∂fx

∂z
− ∂fz

∂x

)
̂ +

(
∂fy

∂x
− ∂fx

∂y

)
k̂ (1.647)

and

∇ · f = div f =
(

∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂

)
·
(
fx ı̂ + fŷ + fzk̂

)
= ∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z
(1.648)

The first term, ∇ × f, is a vector and is called the curl of the vector field. The second
term, ∇ · f, is a scalar and is called the divergence of the vector field. The curl of f
indicates the change in direction and the divergence of f indicates the change in the
magnitude of f.
Proof : If f(r) is the function of a vector field, then each component of f is a scalar
function of a vector variable,

f(r) = fx (r) ı̂ + fy (r) ̂ + fz (r) k̂ (1.649)

So, the differential of the vector field function f(r) with respect to a change in the
position r is equal to the gradient of each component of f(r):

df (r)
dr

= d

dr

(
fx (r) ı̂ + fy (r) ̂ + fz (r) k̂

)
= ∇fxı̂ + ∇fŷ + ∇fzk̂

=
(

∂fx

∂x
ı̂ + ∂fx

∂y
̂ + ∂fx

∂z
k̂

)
ı̂ +

(
∂fy

∂x
ı̂ + ∂fy

∂y
̂ + ∂fy

∂z
k̂

)
̂

+
(

∂fz

∂x
ı̂ + ∂fz

∂y
̂ + ∂fz

∂z
k̂

)
k̂ (1.650)

Knowing that

ı̂2 = ̂ 2 = k̂2 = ı̂̂ k̂ = −1 (1.651)

ı̂̂ = −̂ı̂ = k̂ ̂ k̂ = −k̂̂ = ı̂ k̂ı̂ = −ı̂k̂ = ̂ (1.652)
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we can simplify Equation (1.650) to

df (r)
dr

=
(

−∂fx

∂x
− ∂fx

∂y
k̂ + ∂fx

∂z
̂

)
+

(
∂fy

∂x
k̂ − ∂fy

∂y
− ∂fy

∂z
ı̂

)
+

(
−∂fz

∂x
̂ + ∂fz

∂y
ı̂ − ∂fz

∂z

)
=

(
∂fz

∂y
− ∂fy

∂z

)
ı̂ +

(
∂fx

∂z
− ∂fz

∂x

)
̂ +

(
∂fy

∂x
− ∂fx

∂y

)
k̂

− ∂fx

∂x
− ∂fy

∂y
− ∂fz

∂z
(1.653)

which is equal to

df (r)
dr

= ∇f (r) = ∇ × f − ∇ · f (1.654)

The divergence of the gradient of a scalar field f is a fundamental partial differential
equation in potential theory called the Laplacian of f . The Laplacian of f is shown
by ∇2f and is equal to:

∇2f = div gradf = ∇ · ∇f

=
(

∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂

)
·
(

∂f

∂x
+ ∂f

∂y
+ ∂f

∂z

)
= ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
(1.655)

�

Example 89 Derivative of a Vector Function with a Vector Variable If c is a constant
vector and f = c × r is a vector field, then

df(r)
dr

= grad f = grad (c × r) = 3c (1.656)

because r = xı̂ + ŷ + zk̂ and

df (r)
dr

= ∇ × f − ∇ · f = ∇ × (c × r) − ∇ · (c × r)

= (∇ · r) c − (∇ · c) r − (∇ × c) · r

=
(

∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
c = 3c (1.657)

However, if f = cr, where c is a constant scalar, then its space derivative is a scalar,

df (r)
dr

= grad f = grad cr = 3c (1.658)
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because

df (r)
dr

= ∇ × f − ∇ · f = ∇ × cr − ∇ · cr

=

∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

∂

∂x

∂

∂y

∂

∂z
x y z

∣∣∣∣∣∣∣∣ − c

(
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
= 3c (1.659)

Example 90 Matrix Form of Vector Field Derivative We may arrange the derivative
of a vector field ∇f (r),

df (r)
dr

= ∇f (r) = ∇fx ı̂ + ∇fŷ + ∇fzk̂ (1.660)

in matrix form:

df (r)
dr

=
[

∂fi

∂xj

ı̂j ı̂i

]
=



∂fx

∂x
ı̂ı̂

∂fy

∂x
ı̂̂

∂fz

∂x
ı̂k̂

∂fx

∂y
̂ı̂

∂fy

∂y
̂̂

∂fz

∂y
̂ k̂

∂fx

∂z
k̂ı̂

∂fy

∂z
k̂̂

∂fz

∂z
k̂k̂



=



−∂fx

∂x

∂fy

∂x
k̂ −∂fz

∂x
̂

−∂fx

∂y
k̂ −∂fy

∂y

∂fz

∂y
ı̂

∂fx

∂z
̂ −∂fy

∂z
ı̂ −∂fz

∂z


(1.661)

The trace of the matrix indicates the divergence of f:

tr

[
∂fi

∂xj

ı̂j ı̂i

]
= ∇ · f = ∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z
(1.662)

Example 91 Symmetric and Skew-Symmetric Derivative Matrix Recalling that every
matrix [A] can be decomposed into a symmetric plus a skew-symmetric matrix,

[A] = 1
2

[
[A] + [A]T

] + 1
2

[
[A] − [A]T

]
(1.663)
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we may determine the symmetric and skew-symmetric matrices of the derivative matrix:

[
∂fi

∂xj

ı̂j ı̂i

]T

=


−∂fx

∂x
−∂fx

∂y
k̂

∂fx

∂z
̂

∂fy

∂x
k̂ −∂fy

∂y
−∂fy

∂z
ı̂

−∂fz

∂x
̂

∂fz

∂y
ı̂ −∂fz

∂z

 (1.664)

[
∂fi

∂xj

ı̂j ı̂i

]
+

[
∂fi

∂xj

ı̂j ı̂i

]T

=



−2
∂fx

∂x

(
∂fy

∂x
− ∂fx

∂y

)
k̂

(
∂fx

∂z
− ∂fz

∂x

)
̂(

∂fy

∂x
− ∂fx

∂y

)
k̂ −2

∂fy

∂y

(
∂fz

∂y
− ∂fy

∂z

)
ı̂(

∂fx

∂z
− ∂fz

∂x

)
̂

(
∂fz

∂y
− ∂fy

∂z

)
ı̂ −2

∂fz

∂z


(1.665)

[
∂fi

∂xj

ı̂j ı̂i

]
−

[
∂fi

∂xj

ı̂j ı̂i

]T

=


0

(
∂fy

∂x
+ ∂fx

∂y

)
k̂

(
−∂fz

∂x
− ∂fx

∂z

)
̂(

−∂fx

∂y
− ∂fy

∂x

)
k̂ 0

(
∂fz

∂y
+ ∂fy

∂z

)
ı̂(

∂fx

∂z
+ ∂fz

∂x

)
̂

(
−∂fy

∂z
− ∂fz

∂y

)
ı̂ 0


(1.666)

The skew-symmetric matrix is an equivalent form for −∇ × f:

∇ × f =
[

∂fi

∂xj

ı̂j ı̂i

]T

−
[

∂fi

∂xj

ı̂j ı̂i

]
(1.667)

Example 92 div r = 3 and grad f (r) · r = r ∂f/∂r Direct calculation shows that if

f = r (1.668)
then

div r = ∇ · r =
(

∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂

)
·
(
x ı̂ + y ̂ + z k̂

)
= ∂x

∂x
+ ∂y

∂y
+ ∂z

∂z
= 3 (1.669)

To calculate grad f (r) · r we use

r =
√

x2 + y2 + z2 (1.670)

∂r

∂x
= x

r

∂r

∂y
= y

r

∂r

∂z
= z

r
(1.671)
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and show that

grad f (r) · r = ∇f (r) · r =
(

∂f

∂x
ı̂ + ∂f

∂y
̂ + ∂f

∂z
k̂

)
·
(
x ı̂ + y ̂ + z k̂

)
= x

∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= x

∂f

∂r

∂r

∂x
+ y

∂f

∂r

∂r

∂y
+ z

∂f

∂r

∂r

∂z

= x2

r

∂f

∂r
+ y2

r

∂f

∂r
+ z2

r

∂f

∂r
= r

∂f

∂r
(1.672)

As an application, consider a vector function field f that generates a vector f (r)r at
every point of space,

f = f (r)r (1.673)

Divergence of f would then be

div f = div (f (r)r) = ∇ · f (r)r

=
(

∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂

)
·
[
xf (r) ı̂ + yf (r) ̂ + zf (r) k̂

]
= ∂

∂x
xf (r) + ∂

∂y
yf (r) + ∂

∂z
zf (r)

= f (r)

(
∂x

∂x
+ ∂y

∂y
+ ∂z

∂z

)
+ x

∂f (r)

∂x
+ y

∂f (r)

∂y
+ z

∂f (r)

∂z

= f (r)∇ · r + ∇f · r = 3f (r) + r
∂f (r)

∂r
(1.674)

Example 93 Second Derivative of a Scalar Field Function The first space derivative
of a scalar field function f = f (r) is the gradient of f :

df

dr
= ∇f (1.675)

The second space derivative of f = f (r) is

d2f

dr2
= d

dr

(
df

dr

)
= ∇ (∇f ) = ∇ × ∇f − ∇ · ∇f = −∇2f

= −
(

∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2

)
(1.676)

Example 94 Trajectory of a Vector Field A space curve r (s) whose tangent at every
point has the same direction as a vector field v (r) is called a trajectory of the field.

The trajectories of the vector field f = ∇ϕ are the orthogonal curves to the iso-
surfaces ϕ = const at every point of space. Therefore, the trajectories are the lines of
most rapid change of the function ϕ = ϕ (t).
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Consider a stationary velocity field v (r) of a moving fluid:

v = v (r) = v(x, y, z) (1.677)

The trajectory of a velocity vector field is called the streamline and shows the path of
motion of fluid particles. So, the trajectory of a fluid particle is a space curve r = r (s)

such that

dr × v (r) = 0 (1.678)

or equivalently
dx

vx(x, y, z)
= dy

vy(x, y, z)
= dz

vz(x, y, z)
(1.679)

Equation (1.678) is the vectorial differential equation of the trajectories of the vector
field v (r). Integration of the differential equation provides the family of trajectories of
the field. If the vector field is nonstationary, v = v (r, t), the streamlines change with
time and do not necessarily coincide with the actual path of particles at a specific time.
So, Equation (1.678) will become

dr × v (r, t) = 0 (1.680)

or dx

vx (x, y, z, t)
= dy

vy (x, y, z, t)
= dz

vz (x, y, z, t)
(1.681)

If v (r) = 0 at a point P , Equation (1.678) would be indeterminate. Such a point is
called a singular point.

Example 95 Time Derivative of Vector Field Consider a time-varying vector field
of a vector variable:

f = f (r (t)) (1.682)

The time derivative of f is

df
dt

= dfx

dt
ı̂ + dfy

dt
̂ + dfz

dt
k̂

= (∇fx · v) ı̂ + (∇fy · v
)
̂ + (∇fz · v) k̂ (1.683)

where v = dr/dt is the velocity of position vector r.

Example 96 � Laplacian of ϕ = 1/ |r| Consider a scalar field ϕ that is proportional
to the distance from a fixed point. If we set up a Cartesian coordinate frame at the
point, then

ϕ = k

|r| (1.684)
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This is an acceptable model for gravitational and electrostatic fields. The Laplacian of
such a field is zero,

∇2ϕ = ∇2 k

|r| = 0 (1.685)

because
grad

k

|r| = − k

|r|2 grad |r| = − kr

|r|3 (1.686)

and therefore,

div grad
k

|r| = ∇ · −kr

|r|3 = − k

|r|3 ∇ · r − kr · ∇ 1

|r|3

= −3
k

|r|3 + 3
kr

|r|4 · r
|r| (1.687)

Example 97 � Tensor Fields Recalling that tensor is a general name for any type
of physical quantity, such that a tensor of rank 1 is a scalar, rank 2 is a vector, and
rank 3 is a 3 × 3 matrix, we can define a tensor field as a mathematical rule to assign
a unique value of a tensor to each point of a certain domain of space. Traditionally
tensor is used to indicate a tensor of rank 2 only.

Stress σ and strain ε are examples of the fundamental tensors in solid mechanics.
A stress field is defined by[

σij (r)
] =

σx (r) τxy (r) τxz (r)
τyx (r) σy (r) τyz (r)
τzx (r) τzy (r) σz (r)

 (1.688)

A tensor field may be nonstationary if it is a function of space and time. So, for a
nonstationary stress field σij (r, t), we may define a stress tensor at a specific instant
of time.

Example 98 Gradient of a Scalar Field Makes a Vector Field Consider a scalar
field f = f (r). The gradient of f assigns a vector ∇f at any position r, and hence,
f = ∇f defines a vector field in the same definition domain of f (r).

Example 99 Index Notation and Vector Analysis We may show a function f =
f (x, y, z) by f = f (x1, x2, x3) or in general by f = f (q1, q2, q3) to make it proper
for index notation. If we show the partial derivative of a scalar field function f =
f (q1, q2, q3) with respect to qi by a comma,

∂f

∂qi

= f,i (1.689)

then it is possible to write the vector analysis operations by index notation:

1. Gradient of a scalar field f = f (q1, q2, q3):

∇f = grad f =
3∑

i=1

f,i ûi (1.690)
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2. Laplacian of a scalar function f = f (q1, q2, q3):

∇2f =
3∑

i=1

f,ii (1.691)

3. Divergence of a vector field r = r(q1, q2, q3):

∇ · r = div r =
3∑

i=1

ri,i (1.692)

4. Curl of a vector field r = r(q1, q2, q3):

∇ × r = curl r =
3∑

j=1

3∑
k=1

εijk ûirj,k (1.693)

Example 100 � Nabla Identities If x and y are two vector functions of r and ϕ is
a scalar function of r, then we can verify the following identities:

∇ (x · y) = (∇x) · y + x · (∇y) (1.694)

∇ (x × y) = (∇x) × y + x × (∇y) (1.695)

∇ · ϕx = ∇ϕ · x + ϕ (∇ · x) (1.696)

∇ × ϕx = ∇ϕ × x + ϕ ∇ × x (1.697)

∇ × ∇ϕ = 0 (1.698)

∇ · (x × y) = (∇ × x) · y + x · (∇ × y) (1.699)

∇ · (∇ × x) = 0 (1.700)

∇ × (x × y) = (y · ∇) x − (x · ∇) y + x (∇ · y) − y (∇ · x) (1.701)

x × (∇ × y) = ∇y · x − x · ∇y (1.702)

∇ × (∇ × x) = ∇ (∇ · x) − ∇2x (1.703)

KEY SYMBOLS

0 zero vector
a, ẍ, a, v̇ acceleration
aijk inner product constant of xi

a, b, c, p, q vectors, constant vectors
[abc] scalar triple product a· (b × c)
A, B points
A, B,C axes of triad, constant parameters
A, B,C, D axes of tetrad, coefficient of a plane equation
b̂1, b̂2, b̂3 nonorthogonal unit vectors
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b = ż bong
bijk inner product of xi , ẋj

B(oxyz), B1, B2 body coordinate frames
c constant coefficient
ci weight factors of vector addition
cijk inner product of ẋi , ẋj

c = ṡ crackle
C space curve
Cp,Cq space curves on S for constant q and p at (p0, q0)

df total derivative of f
dr infinitesimal displacement
ds arc length element
Gdo position vector of B in G
[D2z] second-derivative matrix
f = f (r) scalar field function
f, g, h functions of x, y, z of q1, q2, q3

f0 isovalue
f (x, y, z) equation of a surface
f (x, y, z) = f0 isosurface of the scalar field f (r) for f0

f = f(r) vector field function
G gravitational constant
G(OXYZ) global coordinate frame
Gi kinematic constants of three bodies
ı̂, ̂ , k̂ unit vectors of a Cartesian coordinate frame
Î , Ĵ , K̂ unit vectors of a global Cartesian system G
j, ȧ, v̈,

...
r jerk

[J ] Jacobian matrix
k scalar coefficient
l a line
n number of dimensions of an nD space,

controlled digit for vector interpolation
n perpendicular vector to a surface z = g (x, y)

n̂ perpendicular unit vector
O origin of a triad, origin of a coordinate frame
OABC a triad with axes A, B , C
(Ouvw) an orthogonal coordinate frame
(Oq1q2q3) an orthogonal coordinate system
P point, particle
q, p parameters, variables
q = ḃ jeeq
r = |r| length of r
r position vector
rc position vector of curvature center of a space curve
BrA position vector of A relative to B
rp, rq partial derivatives of Gr
r‖, r⊥ parallel and perpendicular components of r on l
R radius
s arc length parameter
s = dj/dt snap, jounce
S surface
t time
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T = [τ1, τ2] the set in which a vector function is defined
u, v, w components of a vector r in (Ouvw)

u Darboux vector
u = q̇ sooz
u1, u2, u3 components of ûr

ûT transpose of û

ûl unit vector on a line l
ûr a unit vector on r
û1, û2, û3 unit vectors along the axes q1, q2, q3

ûr , ûθ , ûϕ unit vectors of a spherical coordinate system
ût , ûn, ûb unit vectors of natural coordinate frame
ûu, ûv, ûw unit vectors of (Ouvw)

û‖, û⊥ parallel and perpendicular unit vectors of l
v speed
v, ẋ, v velocity
v (r) velocity field
v (r) = 0 singular points equation
v vector space
x, y, z axes of an orthogonal Cartesian coordinate frame
x0, y0, z0 coordinates of an interested point P
x, y vector functions
xi relative position vectors of three bodies
X,Y,Z global coordinate axes
Xi global position vectors of three bodies
z = þ̈ larz
Z short notation symbol

Greek
α angle between two vectors, angle between r and l
α, β, γ directional cosines of a line
α1, α2, α3 directional cosines of r and ûr

δij Kronecker delta
ε strain
εi = 1/ |xi |3 relative position constant of three bodies
εijk Levi-Civita symbol
θ angle, angular coordinate, angular parameter
κ curvature
κ = κûn curvature vector
ρ curvature radius
σ stress tensor, normal stress[
σij (r)

]
stress field

τ curvature torsion, shear stress
ϕ = ϕ (r) scalar field function
ω angular speed

Symbol
· inner product of two vectors
D dimension
× outer product of two vectors
∇ gradient operator
∇f (r) gradient of f
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∇ × f = curl f curl of f
∇ · f = div f divergence of f
∇2f Laplacian of f
∇f = grad f gradient of f
P = ċ pop
� difference symbol
R set of real numbers
‖ parallel
⊥ perpendicular

EXERCISES

1. Position Vector Characteristics Three position vectors r1 = OA, r2 = DB , and r3 = EB
are illustrated in Figure 1.31.

(a) Determine the length of OA, DB , and EB .

(b) Determine the directional cosines of OA, DB , EB , and AO , BD , and BE .

(c) Determine the angle between OA and DB .

(d) Determine a vector to be perpendicular to both OA and DB .

(e) Determine the surface area of the box by using the vectors OA, DB , and EB .

(f) Determine the volume of the box by using the vectors OA, DB , and EB .

(g) Determine the equation of the perpendicular plane to OA, DB , and EB .

(h) � Determine the area of the triangle that is made up by the intersection of the planes
in (g) if the plane of OA includes point O , the plane of DB includes point D , and the
plane of EB includes point E.

106

A
O

x
y

z

3

r1

BD

E

r2

r3

Figure 1.31 Three position vectors OA, DB , and EB .

2. � Independent Orthogonal Coordinate Frames in Euclidean Spaces In 3D Euclidean
space, we need a triad to locate a point. There are two independent and nonsuperposable
triads. How many different nonsuperposable Cartesian coordinate systems can be imagined
in 4D Euclidean space? How many Cartesian coordinate systems do we have in an nD
Euclidean space?
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3. Vector Algebra Using

a = 2ı̂ − k̂ b = 2ı̂ − ̂ + 2k̂ c = 2ı̂ − 3̂ + k̂

determine

(a) (a + b) × (a − b) (b) b · c × a

(c) a · b × c (d) a × b × c

(e) A unit vector perpendicular to b and c

4. Bisector Assume that in �OAB of Figure 1.32 we have ∠AOC = ∠BOC . Show that
the vector c divides the side AB such that

AC

CB
= |a|

|b|

YX

a
α α

G

Z

bc

A
BC

O

Figure 1.32 The bisector c divides the side AB such that AC/CB = |a| / |b|.

5. Vector Interpolation Determine a vector r = r (q), 0 ≤ q ≤ 1, to interpolate between
two position vectors with the tip points A and B :

(a) A (1, 0, 0) , B (0, 1, 0) (b) A (1, 1, 0) , B (−1, 1, 0)

(c) �A (1, 0, 0) , B (−1, 1, 0)

6. Vectorial Equation Solve for x:

ax + x × b = c

7. Loci of Tip Point of a Vector Find the locus of points (x, y, z) such that a vector from
point (2,−1, 4) to point (x, y, z) will always be perpendicular to the vector from (2,−1, 4)

to (3, 3, 2).

8. Rotating Triangle The triangle in Figure 1.33 remains equilateral while point A is
moving on an ellipse with a center at O . Assume a corner of the triangle is fixed at O .

(a) What is the path of point B?

(b) What is the area of the triangle?

(c) � If the side OA is turning with a constant angular velocity ω, then what is the area
of the triangle as a function of time t?

(d) � If point A is moving with a constant speed v, then what is the area of the triangle
as a function of time t?
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y

x
a

b

O

B
A

B

Figure 1.33 A rotating triangle.

9. Components of an Unknown Vector Consider a given vector a:

a = b

2

√
x2 + y2

(
ı̂ − ̂

)
Solve the following equations for the components of the vector r = xı̂ + ŷ + zk̂:

r × a = b

2

√
x2 + y2 sinh cy k̂ r · a = 0

10. Cosine Law Consider a triangle ABC where its sides are expressed by vectors as

−→
AB = c −→

AC = b −→
CB = a c = a + b

Use vector algebra and prove the cosine law,

c2 = a2 + b2 − 2ab cos α

where

α = ∠ACB

11. Trigonometric Equation Use two planar vectors a and b which respectively make angles
α and β with the x -axis and prove the following trigonometric equation:

cos (α − β) = cos α cos β + sin α sin β

12. Spherical Trigonometric Equations Use vectors to prove the following spherical
trigonometric equations in a spherical triangle �ABC with sides a, b, c and angle α, β, γ :

cos a = cos b cos c + sin b sin c cos α

cos b = cos c cos a + sin c sin a cos β

cos c = cos a cos b + sin a sin b cos γ

13. Three Colinear Points Consider three points A, B , and C at a, b, and c. If the points
are colinear, then

cx − ax

bx − ax

= cy − ay

by − ay

= cz − az

bz − az

Show that this condition can be expressed as

(a × b) + (b × c) + (c × a) = 0
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YX

a
G

Z

bc

A

BC

Figure 1.34 Dividing a line in a given ratio.

14. Dividing a Line in a Given Ratio The points A and B are at positions a and b as shown
in Figure 1.34.

(a) Find the position vector c of point C that divides the line AB in the ratio of x/y:

AC

CB
= x

y

(b) Show that the equation of a line is

r − a = k (b − a)

(c) Show that the equation of a plane going through A and B and parallel to a vector u is

[(r − a) × (b − a)] · u

(d) Find the equation of a line going through a point A and parallel to a given vector u.

15. Volume of a Parallelepiped Consider three points A, B , C and determine the volume of
the parallelepiped made by the vectors OA, OB , OC .

(a) A (1, 0, 0), B (0, 1, 0), C (0, 0, 1)

(b) A (1, 0, 0), B (0, 1, 0), C is the center of the parallelepiped in part (a)

(c) � A (1, 0, 0), B (0, 1, 0), C is at a point that makes the volume of the parallelepiped
equal to 2. Determine and discuss the possible loci of C .

16. Moving on x -Axis The displacement of a particle moving along the x -axis is given by

x = 0.01t4 − t3 + 4.5t2 − 10 t ≥ 0

(a) Determine t1 at which x becomes positive.

(b) For how long does x remain positive after t = t1?

(c) How long does it take for x to become positive for the second time?

(d) When and where does the particle reach its maximum acceleration?

(e) Derive an equation to calculate its acceleration when its speed is given.
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17. Moving on a Cycloid A particle is moving on a planar curve with the following para-
metric expression:

x = r (ωt − sin ωt) y = r (1 − cos ωt)

(a) Determine the speed of the particle at time t .

(b) Show that the magnitude of acceleration of the particle is constant.

(c) Determine the tangential and normal accelerations of the particle.

(d) Using ds = v dt , determine the length of the path that the particle travels up to time t .

(e) Check if the magnitude of acceleration of the particle is constant for the following
path:

x = a (ωt − sin ωt) y = b (1 − cos ωt)

18. Areal Velocity Point A in Figure 1.35 is moving on the following circle such that its
position vector r sweeps out with a constant areal velocity h:

x2 − 2Rx + y2 = 0

Determine the velocity and acceleration of the point.

y

x
C

ϕ
r

OB

A

R

Figure 1.35 A moving point on a circle with constant areal velocity.

19. Velocity v as a Function of Position x Determine the acceleration of a particle that is
moving according to the following equations:

(a) v2 = 2 (x sin x + cos x)

(b) v2 = 2 (x sinh x + cosh x)

(c) v2 = 4x − x2
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20. Relative Frequency Consider a body B that is moving along the x -axis with a constant
velocity u and every T seconds emits small particles which move with a constant velocity
c along the x -axis. If f denotes the frequency and λ the distance between two successively
emitted particles, then we have

f = 1

T
= c − u

λ

Now suppose that an observer moves along the x -axis with velocity v. Let us show the
number of particles per second that the observer meets by the relative frequency f ′ and
the time between meeting the two successive particles by the relative period T ′, where

f ′ = c − v

λ

Show that
f ′ ≈ f

(
1 − v − u

c

)
21. � A Velocity–Acceleration–Jerk Equation Show that if the path of motion of a moving

particle,
r = r(t)

is such that the scalar triple product of its velocity–acceleration–jerk is zero,

v · (a × j) = 0 v = dr
dt

a = d2r

dt2 j = d3r

dt3

then r(t) is a planar curve.

22. Velocity of End Point of a Stick Point A of the stick in Figure 1.36 has a constant
velocity vA = vı̂ on the x -axis. What is the velocity of point B?

y

R

h

A

B

x

Figure 1.36 A sliding stick.

23. � Disadvantages of a Nonorthogonal Triad Why do we use an orthogonal triad to
define a Cartesian space? Can we define a 3D space with nonorthogonal triads?

24. � Usefulness of an Orthogonal Triad Orthogonality is the common property of all use-
ful coordinate systems, such as Cartesian, cylindrical, spherical, parabolic, and ellipsoidal
coordinate systems. Why do we only define and use orthogonal coordinate systems? Do
you think the ability to define a vector based on the inner product and unit vectors of the
coordinate system, such as

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂

is the main reason for defining the orthogonal coordinate systems?
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25. � Three Coplanar Vectors Show that if a × b · c = 0, then a, b, c are coplanar.

26. A Derivative Identity If a = a (t) and b is a constant vector, show that

d

dt
[a · (ȧ × b)] = a · (ä × b)

27. Lagrange and Jacobi Identities

(a) Show that for any four vectors a, b, c, d the Lagrange identity is correct:

(a × b) · (c × d) = (a · c) (b · d) − (a · d) (b · c)

(b) Show that for any four vectors a, b, c, d the following identities are correct:

(a × b) × (c × d) = [abd] c − [abc] d

[abc] d = [dbc] a + [dca] b + [dab] c

(c) Show that for any four vectors a, b, c, d the Jacobi identity is correct:

a × (b × c) + c × (a × b) + b × (c × a) = 0

28. � Flight and Local Time Figure 1.37 illustrates Earth of radius R with its local coor-
dinate frame E that is turning about the Z -axis of a global coordinate frame G with a
constant angular velocity ω. Consider an airplane that is flying at a height h above the
spherical Earth. The local time of the airplane is the time of the associated point on Earth
right below the airplane. So, the local time of the airplane is determined by its global
coordinates. The speed of the airplane v can be indicated by an angle α with respect to the
local constant latitude circle.

(a) An airplane is flying from Tokyo, Japan (35◦41′6′′N/139◦45′5′′E), to Tehran, Iran
(35◦40′19′′N/51◦25′27′′E). What would be the velocity of the plane to have a constant
local time. For simplicity assume that both cities are at 35◦41′ N.

(b) An airplane is flying from Tehran, Iran (35◦40′19′′N/51◦25′27′′E), to Oklahoma City,
Oklahoma (35◦28′3′′N/97◦30′58′′W). What would be the velocity of the plane to have
a constant local time. For simplicity assume that both cities are at 35◦40′N.

(c) An airplane is flying from Tehran, Iran (35◦40′19′′N/51◦25′27′′E), to Toronto, Canada
(43◦40′0′′N/79◦25′0′′W). What would be the velocity of the plane to have a constant
local time.

(d) An airplane flies from Toronto, Canada (43◦40′0′′N/79◦25′0′′W), to Tehran, Iran
(35◦40′19′′N/51◦25′27′′E). What would be the local time at Tehran if the plane flies
with a constant average velocity of part (c) and begins its flight at 1 AM.

(e) An airplane flies from Melbourne, Australia (37◦49′0′′S/144◦58′0′′E), to Dubai by the
Persian Gulf (25◦15′8′′N/55◦16′48′′E). What would be the velocity of the airplane to
have a constant local time.

(f) An airplane flies from Melbourne, Australia (37◦49′0′′S/144◦58′0′′E), to Dubai by the
Persian Gulf (25◦15′8′′N/55◦16′48′′E) and returns to Melbourne with no stop. What
would be the local time at Melbourne when the airplane is back. Assume the velocity
of the airplane on the way to Dubai is such that its local time remains constant and
the airplane keeps the same velocity profile on the way back.
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Figure 1.37 Flight and local time on Earth.

29. � Vector Function and Vector Variable A vector function is defined as a dependent
vectorial variable that relates to a scalar independent variable:

r = r(t)

Describe the meaning and define an example for a vector function of a vector variable

a = a(b)

and a scalar function of a vector variable

f = f (b)

30. � Index Notation Expand the mass moment of n particles m1,m2, . . . , mn about a line
û,

Iû =
n∑

i=1

mi

(
ri × û

)2

and express Iû by an index equation.

31. � Frame Dependent and Frame Independent A vector function of scalar variables
is a frame-dependent quantity. Is a vector function of vector variables frame dependent?
What about a scalar function of vector variables?

32. � Coordinate Frame and Vector Function Explain the meaning of BvP (GrP ) if r is a
position vector, v is a velocity vector, and v(r) means v is a function of r.

33. A Vector Product Identity Show that for any three vectors a, b, c in a Cartesian coor-
dinate frame, we have

a × (b × c) + b × (c × a) + c × (a × b) = 0

34. Expansion of a Vector with Respect to Two Vectors Consider two linearly independent
vectors r1 and r2. Show that every vector r3 coplanar with r1 and r2 has a unique expansion

r3 = −c1r1 − c2r2
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35. � Natural Coordinate System of a Parametric Path Assume the path s can be
expressed by a one-parameter function s = s (α), where α is the parameter. Show that

(a) r′′s ′ = s ′′s ′ût +
(
s ′)3

ρ
ûn

(b) ûn = ρ

(s ′)3

(
r′′s ′ − s ′′r′)

(c)
1

ρ
= 1

(s ′)3

√
(r′′ · r′′) (s ′)2 − (r′ · r′′)2

36. � Natural Coordinate System of a Planar Path Show that if a planar path is given by
a set of equations of a parameter α which is not necessarily the path length

x = x(α) y = y(α)

then the natural tangential unit vector and derivatives of the path are

ût = 1√
x ′2 + y ′2

[
x ′
y ′

]
dût

dα
= x ′y ′′ − x ′′y ′

x ′2 + y ′2

ds

dα
=

√
x ′2 + y ′2 1

R
=

∣∣x ′y ′′ − x ′′y ′∣∣(
x ′2 + y ′2)3/2

Use the equations and show that the radius of curvature of the parabola y = x2/ (4a) is

R = 4a2(
4a2 + x2

)3/2

37. � Natural Coordinate System and Important Planes Consider the space curve

x = (10 + 2 sin θ) cos θ y = (10 + 2 sin θ) sin θ z = 2 + 2 cos θ

(a) Find the equations of osculating, perpendicular, and rectifying planes and determine
them at θ = 45◦.

(b) Find the radius and coordinates of the center of curvature of the curve.

38. Moving on a Given Curve A particle is moving on a curve y = f (x) such that the
x -component of the velocity of the particle remains constant. Determine the acceleration
and jerk of the particle.

(a) y = x2

(b) y = x3

(c) y = ex

(d) Determine the angle between velocity vectors of curves (a) and (b) at their intersection.

(e) Determine the exponent n of y = xn such that the angle between velocity vectors of
this curve and curve (a) at their intersection is 45 deg.

39. � A Wounding Cable Figure 1.38 illustrates a turning cone and wounding cable that
supports a hanging box. If the cone is turning with angular velocity ω, determine:

(a) Velocity, acceleration, and jerk of the box

(b) The angular velocity ω such that the velocity of the box remains constant

(c) The angular velocity ω such that the acceleration of the box remains constant

(d) The angular velocity ω such that the jerk of the box remains constant
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Figure 1.38 A wounding cable on a cone.

40. � Natural Coordinate Unit Vectors A particle is moving on the following curves.
Determine the tangential ût , normal ûn, and binormal ûb unit vectors.

(a) x = sin α y = 8x2

(b) x = cos α y = −x2

(c) x = sin2 t y = −√
x

41. � Cylindrical Coordinate System and a Helix A particle is moving on a helix of radius
R and pitch a at a constant speed, where

z = aθ

2π

(a) Express the position, velocity, and acceleration of the particle in the cylindrical coor-
dinate system.

(b) Determine the unit vectors in the cylindrical coordinate system.

(c) Determine the radius of curvature.

42. � Torsion and Curvature of a Helix A point P is moving with arc length parameter s
on a space curve,

r(s) = 10 cos

√
2s

20
ı̂ + 10 sin

√
2s

20
̂ + 10

√
2sk̂ =


10 cos

√
2s

20

10 sin

√
2s

20

10
√

2s


Determine the curvature κ and torsion τ .

43. Arc Length Element Find the square of the element of arc length ds in cylindrical and
spherical coordinate systems.

44. Plane through Three Points Show that the equation of a plane that includes the three
points

P1 (0, 1, 2) P2 (−3, 2, 1) P3 (1, 0,−1)

is
4x + 10y − 2z = 6
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45. Vectorial Operation of Scalar Fields Consider a scalar field φ(x, y, z),

φ(x, y, z) = 1
2ax2 + 1

2 by2 + cz

(a) Determine grad φ(x, y, z) = ∇φ(x, y, z).

(b) Determine curl grad φ(x, y, z) = ∇ × ∇φ(x, y, z).

(c) Show that ∇ × ∇φ = 0 regardless of the form of φ.

(d) Show that ∇ · (∇ × a) = 0 regardless of the form of a.

(e) Show that ∇ · (φa) = ∇φ · a + φ (∇ · a).
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Fundamentals of Dynamics

Laws of motion are experiment-based observations of nature that along with the human-
made concept of force are used to model the motion of particles and rigid bodies. In this
chapter, we introduce the Newton equation of motion and its application in predicating
dynamic phenomena and reviewing the fundamentals of dynamics.

2.1 LAWS OF MOTION

Newton’s first law of motion states: Every body persists in a state of rest or of uniform
motion in a straight line with a constant velocity unless a force acting upon it changes
its state. The first law, also referred to as the law of force, defines force as an action
which tends to change the motion of a body.

Newton’s second law of motion states: In a stationary global coordinate frame G,
the time rate of change of the momentum of a body is equal to the acting force on the
body:

Force = time rate of momentum

The second law, also referred to as the law of motion , relates the motion of a body to
the causes. The law of motion for a body with constant mass simplifies to

Force = mass × acceleration

Newtons law of motion is the foundation for the dynamics of particles and rigid bodies.
It is also used to define the mass of a body as the ratio of the force acting on the body
to the resulting acceleration.

Newton’s third law of motion states: When two bodies exert forces on each other,
these interacting forces are equal in opposite directions. The third law, also referred to
as the law of reaction , is important in multibody dynamics.

Example 101 Some Comments on the First Law of Motion The first law defines
an inertial frame as the frame in which the first law is correct, and we measure the
velocities with respect to the inertial frame. Therefore, every frame in which a force-free
body cannot keep its velocity constant is not an inertial frame.

The first law also defines the zero force that is the situation of a force-free body
in an inertial frame. However, it does not distinguish between force-free and force-
balanced situations.

114
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According to the first law, everything that can change the state of motion is a
force. However, it does not provide a clear definition of force independent of motion.

Example 102 Sir Arthur Eddington (1882–1944) Statement According to Edding-
ton’s comment, the first law of motion says nothing but: “Every body persists in a
state of rest or of uniform motion in a straight line with a constant velocity, unless it
does not.”

Example 103 Mass, Particle, and Impenetrability We assume a particle P is a partic-
ular point in three-dimensional Euclidean space where we are interested in its position.
The particle permanently carries with it a label m called the mass of P . We may also
call such a particle a point mass.

Every particle occupies one and only one position in space at any given instant
of time t . Particles have the impenetrability property, which states: If there exists a
single time t = t0 at which any two particles P1 and P2 have different positions r1 and
r2, then their positions never coincide, that is, r1 �= r2 ∀t . If there exists a single time
t = t0 at which any two particles P1 and P2 have the same positions r1 = r2, then their
positions coincide permanently, that is, r1 = r2 ∀t .

Example 104 Some Comments on the Second Law of Motion To discover the second
law,

F = d

dt
p (2.1)

we should recall that momentum is defined as

p = mv (2.2)

When the mass is constant, which is applied to most dynamic problems, the second
law reduces to

F = ma (2.3)

where a = dv/dt = d2r/dt2. It says that the force vector F and the acceleration vector
a are colinear and proportional. The ratio of F/a is called the mass m. So, it provides
a tool to measure masses because it states that, when the same force F applies on two
particles with masses m1 and m2,

a1

a2
= m2

m1
(2.4)

We may use this relation to determine the mass of a particle with respect to a standard
mass by comparing their accelerations under the same force.

Being a vectorial equation helps us to decompose the second law in three orthogonal
directions along the three axes of the inertial frame that have three scalar equations
instead.

The second law also says that the applied force on a mass is proportional to the
second (not the first or third) time derivative of its position vector. This fact is the
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main reason why in the kinematic analysis of dynamic systems we usually talk only
about position, velocity, and acceleration.

Although it is not mentioned in the expression of the second law, it is correct only
in an inertial frame. In other words, the coordinate frame in which the second law
works is an inertial frame.

Example 105 Dynamic Problems A dynamic problem may start from the second
law with a given acceleration to search for the position or the problem may start from
a given position and ask for the required forces.

In the first type, the resultant applied force on a particle is specified, and the motion
is questioned.

In the second type, it is desired to have a particle move in a specified manner, and
the required forces are questioned.

Example 106 � Limits of the Second Law The second law is the relation between
the force F, mass m, position r, and time t . It works as long as the order of magnitude
of these parameters is neither very small nor very large relative to human senses.
For instance, the second law provides little information for very small and very large
masses.

When m is very small, we need quantum mechanics, and when m is too large, we
need general relativity. Both of these sciences were discovered and developed when
scientists observed poor predications based on the second law.

Newton’s second law is the law of motion of massive bodies in Euclidean space
along with these assumption that time flows smoothly and independently. However,
mass is the thing that makes the space non-Euclidean, and time is dependent on the
speed of the mass. So, the second law is not correct in general but it is a very good
approximation from an engineering viewpoint.

Example 107 Some Comments on the Third Law of Motion Newton was very brave
in stating that we apply the same amount of force on Earth as Earth applies on us.

Today, we can define two types of the third law: weak and strong, or general and
constrained. The weak type of the third law states that the forces that the two particles
apply on each other are equal and opposite, but not necessarily on the connecting
line of the particles. The strong type of the third law states that the forces that two
particles apply on each other are equal, opposite, and on the connecting line of the
particles. An example of the weak and strong forms of the third law are shown in
Figure 2.1.

The third law may also be interpreted as the conservation law of momentum.
Consider an isolated system of two masses m1 and m2. An isolated system does not
interact with anything out of the system. The rate of the momentum of the system is

F12 + F21 = dp
dt

= d (m1v1 + m2v2)

dt
(2.5)
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(a)

m1

m2

F21

F12

m1

m2

F21

F12

(b)

Figure 2.1 The third law of motion: (a) weak form; (b) strong form.

where F12 is the force that m1 applies on m2 and F21 is the force that m2 applies on m1.
By the third law we have F12 + F21 = 0, and therefore, the momentum of the system,
p, conserves:

m1v1 + m2v2 = c (2.6)

A conserved physical quantity will not change with a change in time.

Example 108 � The Practical Newton Laws In modern texts, Newton’s laws of
motion have been translated and modified to match today’s language of science. These
laws were originally in the following forms:

Law 1: Corpus omne perseverate in statu suo quiscendi vel movendi uniformiter
in directum, nisi quantenus illud a viribus impressis cogitur statum suum mutare.
“Any body preserves its state of rest or of uniform rectilinear motion if it is not
constrained by induced forces to change its state.”
Law 2: Mutationem motus proportionalem esse vi vel motrici impresse et fieri secun-
dum lineam rectam, qua vis illa imprimitur . “The variation of motion is proportional
to the induced moving force and is directed along the straight line, which is the
support of this induced force.”
Law 3: Actioni contrariam semper et aequalem esse reactionem, sive corporum
duorum actiones in se muto semper esse aequales at in partes contrarias dirigi .
“The reaction is always opposite and equal to the action or the reciprocal actions
of two bodies are always equal and directed in contrary directions.”

Example 109 � Force Function in Equation of Motion The first and second laws
provide no predication or expectation of the force function and its arguments. Quali-
tatively, force is whatever changes the motion, and quantitatively, force is whatever is
equal to mass times acceleration. Mathematically, the equation of motion provides a
vectorial second-order differential equation:

mr̈ = F (ṙ, r, t) (2.7)



118 Fundamentals of Dynamics

We assume that the force function may generally be a function of time t , position r,
and velocity ṙ. In other words, the Newton equation of motion is correct as long as we
can show that force is only a function of ṙ, r, t .

If there is a force that depends on the acceleration, jerk, or other variables that
cannot be reduced to ṙ, r, t , we do not know the equation of motion because

F (r, ṙ, r̈,
...
r , . . . , t) �= mr̈ (2.8)

So, in Newtonian mechanics, we assume that force can only be a function of ṙ, r, t
and nothing else. In the real world, force may be a function of everything; how-
ever, we always ignore any other variables than ṙ, r, t , or make some approximations
accordingly.

Because Equation (2.7) is a linear equation of force F, it accepts the superposition
principle. When a mass m is affected by several forces F1, F2, F3, . . . , we may calculate
their summation vectorially,

F = F1 + F2 + F3 + · · · (2.9)

and apply the resultant force on m. So, if a force F1 provides acceleration r̈1 and F2

provides r̈2,
mr̈1 = F1 (2.10)

mr̈2 = F2 (2.11)

then the resultant force F3 = F1 + F2 provides the acceleration r̈3 such that

r̈3 = r̈1 + r̈2 (2.12)

To see that the Newton equation of motion is not correct when the force is not
only a function of ṙ, r, t , let us assume that a particle with mass m is under two
acceleration-dependent forces F1(ẍ) and F2(ẍ) on the x-axis:

mẍ1 = F1(ẍ1) (2.13)

mẍ2 = F2(ẍ2) (2.14)

The acceleration of m under the action of both forces would be ẍ3,

mẍ3 = F1(ẍ3) + F2(ẍ3) (2.15)

however, we must have

ẍ3 = ẍ1 + ẍ2 (2.16)

but we have

m(ẍ1 + ẍ2) = F1(ẍ1 + ẍ2) + F2(ẍ1 + ẍ2) �= F1(ẍ1) + F2(ẍ2) (2.17)

Example 110 � Employing Newton’s First Law Consider a one-dimensional motion
of a particle with m = 1 and the equation of motion

F = 6x2 = ẍ (2.18)
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starting with the initial conditions

x0 = x(0) = 0 ẋ0 = ẋ(0) = 0. (2.19)

This equation may have three solutions,

x = 0 x = t−2 x = −t−2 (2.20)

that satisfy both the equation of motion and the initial conditions. However, according
to the first law of motion, only x = 0 is an actual solution because at t = 0 we have
x = 0 and therefore no force will apply on the particle. It must remain in its initial
position for any time t > 0.

Any particle with equation of motion

ẍ = an(n − 1)
(x

a

)(n−2)/n

(2.21)

may have three solutions:

x = 0 x = atn x = −t−2 (2.22)

The actual solution will be determined by initial conditions.

Example 111 � Integral Form of Equation of Motion The law of motion (2.7)
is a differential equation. However, we may also express the law of motion with an
integral equation

mv =
∫ t

t0

F (v, r, t) dt + mv(t0) (2.23)

where v(t0) = v0 is the initial velocity vector. The integral is called the impulse of F in
that time interval. This equation states that the change of momentum �p = mv−mv0
of a particle during the time interval [t0, t] is equal to the impulse of the resultant force
over the same interval.

The differential form of the second law of motion (2.7), or force equals the time
rate of momentum, has some disadvantages over the integral form (2.23), or impulse
equals momentum change. The position of a particle must be continuous; however,
its velocity might have discontinuities. At a velocity discontinuity, the acceleration is
not defined, so, at such instants, the differential form of the second law is not valid;
however the integral form (2.23) is valid at these instants.

2.2 EQUATION OF MOTION

To find the equation of motion

F (v, r, t) = ma (2.24)

we only need to determine the applied force F and set up the differential equation.
Having the Newton equation (2.24), our goal would be to solve the equation of motion
and find the position r as a function of time r = r(t).
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2.2.1 Force and Moment

In Newtonian mechanics, the acting forces on a system of bodies can be divided into
internal and external forces . Internal forces are acting between bodies of the system,
and external forces are acting from outside of the system. Forces can also be divided
into contact and body forces .

External forces and moments are called load . The acting forces and moments on a
rigid body are called a force system . The resultant or total force F is the sum of all the
external forces acting on the body, and the resultant or total moment M is the sum of
all the moments of the external forces about a point, such as the origin of a coordinate
frame:

F =
∑

i

Fi (2.25)

M =
∑

i

Mi (2.26)

The moment M of a force F acting at a point P with position vector rP about a
point Q at rQ is

MQ = (
rP − rQ

) × F (2.27)

and therefore, the moment of F about the origin is

M = rP × F (2.28)

Consider a directional line l and a force F acting on a point P at rP . The line is passing
through the origin and its direction is indicated by a unit vector û. The moment of the
force F about the line l is

Ml = lû · (rP × F) (2.29)

The moment of a force may also be called moment for simplicity.
The effect of a force system acting on a rigid body is equivalent to the effect of

the resultant force and resultant moment of the force system. Any two force systems
are equivalent if their resultant forces and resultant moments are equal respectively. If
the resultant force of a force system is zero, then the resultant moment of the force
system is independent of the origin of the coordinate frame. Such a resultant moment
is called torque.

Forces are veclines and they can slide on their line of action. So, pulling a body
from one side or pushing the body from the other side produces the same external
motion. Moments are vecfree and can move parallel to themselves. The magnitude of
moment of a force is dependent on the distance between the origin of the coordinate
frame and the line of action of the force.

When a force system is reduced to a resultant FP and MP with respect to a
reference point P , we may change the reference point to another point Q and find the
new resultants as

FQ = FP (2.30)

MQ = MP + (
rP − rQ

) × FP = MP + QrP × FP (2.31)

where QrP is the position vector of point P with respect to point Q.



2.2 Equation of Motion 121

Example 112 Every Force System Is Equivalent to a Wrench Poinsot (1777–1859)
proved a theorem that says: Every force system is equivalent to a single force plus a
moment parallel to the force. A force and a moment about the force axis is called a
wrench. Poinsot’s theorem is similar to Chasles’s (1793–1880) theorem: Every rigid-
body motion is equivalent to a screw, which is a translation plus a rotation about the
axis of translation.

Let F and M be the resultant force and moment of a force system. We may
decompose the moment into parallel and perpendicular components, M‖ and M⊥, to
the force axis. The perpendicular component M⊥ will change when the axis of force F
changes. If Q is a point on the axis of F, by translating the axis of F to point P such
that QrP satisfies

M⊥ = QrP × F (2.32)

we make M⊥ = 0. So, the force system of M and F at Q can be replaced by force
system M‖ and F at P , and therefore, the force system is reduced to a force F and a
moment M‖ parallel to each other.

Example 113 Newton Law of Gravitation There exists an attractive force between
every two massive particles m1 and m2. The attraction is called gravitation and its
associated force is called gravitational force. Newton presented a mathematical equation
to model the gravitational force of m1 and m2 on each other:

F21 = −Gm1m2
r1 − r2

|r1 − r2|3
(2.33)

F12 = −Gm1m2
r2 − r1

|r2 − r1|3
(2.34)

where G = 6.67259 × 10−11 m3 kg−1s−2 is called the universal gravitational constant ,
Fij is the force of i on j and indicates the force that mi applies on mj , and r1, r2

are the position vectors of the masses in a global coordinate frame G as are shown in
Figure 2.2.

x
y

z

G m1

m2

r1
r2

F12
F21

Figure 2.2 Gravitational force of m1 and m2 on each other.
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Because of the third law of motion, we have

F21 + F12 = 0 (2.35)

So, the resultant force on m1 and m2 is zero, although each feels a force acting
upon it.

Following the gravitational law (2.33), we can calculate the resultant force F1 of
n particles mi , i = 1, . . . , n, on m1:

F1 = −Gm1

n∑
i=1

mi

r1 − ri

|r1 − ri |3
(2.36)

Example 114 Position of Center of Mass The position of the mass center C of a
rigid body or a system of particles in a coordinate frame is indicated by rC . The mass
center C is usually measured in a local coordinate frame.

Consider n particles with masses mi at positions ri , i = 1, . . . , n. The mass center
is a point at rC defined by

rC = 1

mC

n∑
i=1

miri (2.37)

xC

yC

zC

 =



1

mC

n∑
i=1

mixi

1

mC

n∑
i=1

miyi

1

mC

n∑
i=1

mizi


(2.38)

where mC = ∑n
i=1 mi is the total mass of the particles and

∑n
i=1 mixi ,

∑n
i=1 miyi ,

and
∑n

i=1 mizi are the sums of the moments of mi about the (y, z)-, (z, x)-, and
(x, y)-planes, respectively. In a rigid body, the summation will become integral over
the whole rigid body B:

rC = 1

mC

∫
B

r dm (2.39)

xC

yC

zC

 =



1

mC

∫
B

x dm

1

mC

∫
B

y dm

1

mC

∫
B

z dm


(2.40)
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Example 115 � Position of Center of Gravity The gravity center rG of a body with
mass m is the point at which we must put the whole mass m to be attracted by the
same gravitational force of point mass m0 as the distributed mass of the body:

F = −Gm0m
rG

r3
G

= −Gm0

∫
B

r
r3

dm (2.41)

r = |r| rG = |rG| (2.42)

To determine the location of the gravity center, we have to calculate the result of a
spatial integral over the whole body B:

rG

r3
G

= 1

m

∫
B

r
r3

dm (2.43)

This integral cannot be calculated explicitly for a general body, although it can be
solved for some special cases.

Consider a uniform rod satellite with mass m as shown in Figure 2.3. Point C

indicates the mass center, and point G indicates the gravity center of the rod. Because
the rod satellite is a one-dimensional rigid body, Equation (2.43) becomes

1

r2
G

= 1

m

∫
B

1

r2
dm = 1

l

∫ rC+l/2

rC−l/2

1

r2
dr = 4

4r2
C − l2

(2.44)

and the position of the gravity center is at

rG = rC

√
1 − l2

4r2
C

(2.45)

The gravity center rG is closer than the mass center rC to the point planet m0.

m0

l

rG

rC

CG

Figure 2.3 A uniform rod satellite with mass m attracteed by a point mass m0.

The position of the gravity center is not a constant point in the body. It moves
based on the orientation of the body and its distance from the source of attraction.
Figure 2.4 illustrates a rod satellite at an angle θ with respect to the position vector
of its mass center from the planet m0. To determine the gravity center rG, we may
decompose Equation (2.43) in the coordinate frame (X, Y ):

XGı̂ + YĜ

r3
G

= 1

m

∫
B

xı̂ + ŷ

r3
dm (2.46)
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m0

rC

C X

Y

x

θ

r

z

dm

l

Figure 2.4 A rod satellite at an angle θ with the position vector of mass center.

Using dm = (m/l) dz and

x = rC + z cos θ y = z sin θ (2.47)

r =
√

r2
C + 2rCz cos θ + z2 (2.48)

we can find the X- and Y-components of rG:

XG

r3
G

= 1

l

∫ l/2

−l/2

rC + z cos θ(
r2
C + 2rCz cos θ + z2

)3/2
dz

= 1

r2
C

 1√
l2

r2
C

+ 4l

rC

cos θ + 4

+ 1√
l2

r2
C

− 4l

rC

cos θ + 4

 (2.49)

YG

r3
G

= 1

l

∫ l/2

−l/2

z sin θ(
r2
C + 2rCz cos θ + z2

)3/2
dz

= − 1

lrC sin θ


2 + l

rC

cos θ√
l2

r2
C

+ 4l

rC

cos θ + 4

−
2 − l

rC

cos θ√
l2

r2
C

− 4l

rC

cos θ + 4

 (2.50)

Let us define the dimensionless parameters α and β as

α = l

rC

β = rG

rC

(2.51)
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and rewrite Equations (2.49) and (2.50) as

β2 XG

rG

= 1√
α2 + 4α cos θ + 4

+ 1√
α2 − 4α cos θ + 4

(2.52)

β2 YG

rG

= − 1

α sin θ

(
2 + α cos θ√

α2 + 4α cos θ + 4
− 2 − α cos θ√

α2 − 4α cos θ + 4

)
(2.53)

or combine them as

β4 = 1

α2 sin2 θ

(
2 + α cos θ√

α2 + 4α cos θ + 4
− 2 − α cos θ√

α2 − 4α cos θ + 4

)2

+
(

1√
α2 + 4α cos θ + 4

+ 1√
α2 − 4α cos θ + 4

)2

(2.54)

Figure 2.5 depicts the function β = β (α, θ) for 0 < α < 0.5 and −π/2 rad < α <

π/2 rad. The difference between rG and rC fluctuates more for longer rod satellites
when the orientation of the rod satellite changes.

α

θ

β

1.03

1.02

1.01

1

0.99

0
0.1

0.2
0.3

0.4
0.5

0.5
0

1.5
1

−1.5

−0.5
−1

Figure 2.5 The function β = rG/rC = β (α = l/rC, θ) for 0 < α < 0.5 and −π/2 rad < α

< π/2 rad.

2.2.2 Motion Equation

The momentum of a body is a vector quantity proportional to the total mass of the
body times the translational velocity of the mass center C of the body:

p = mv (2.55)

The momentum is also called linear momentum or translational momentum . The
moment of momentum is given as

L = rC × p (2.56)
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Consider a directional line l that is passing through the origin. The moment of
momentum about l is

Ll = lû · (rC × p) (2.57)

where û is a unit vector indicating the direction of the line, rC is the position vector
of the mass center C in the global coordinate frame G, and L = rC × p is the moment
of momentum about the origin of G. The moment of momentum may also be called
angular momentum .

The application of a force system is emphasized by the Newton equation of motion
which states that the global rate of change of the translational momentum is proportional
to the global applied force:

GF =
Gd

dt
Gp =

Gd

dt

(
m Gv

)
(2.58)

The law of motion can be expanded to include rotational motion. Hence, the second
law of motion also states that the global rate of change of the angular momentum is
proportional to the global applied moment :

GM =
Gd

dt
GL =

Gd

dt
G(rC × p) (2.59)

Proof : Differentiating from the angular momentum shows that

Gd

dt
GL =

Gd

dt
G(rC × p) =

(
GdrC

dt
× p + rC ×

Gdp
dt

)
= GrC ×

Gdp
dt

= GrC × GF = GM (2.60)

The formulation of dynamics developed over several centuries through the work
of many scientists. However, because of their critical contributions, the names of New-
ton (1642–1727) and Euler (1707–1783) have been used to refer to the equations of
motion.

Although there is no difference between Equations (2.58) and (2.59) analytically,
we call the equation of motion of an applied force (2.58) the Newton equation and the
equation of motion of an applied moment (2.59) the Euler equation . �

Example 116 Moving on a Parabolic Curve Consider a particle with mass m that
moves along a frictionless parabolic path y = cx2 in the (x, y)-plane such that its
x-component of velocity is constant:

ẋ = vx = const (2.61)

To determine the required force F to move m, we need to calculate its acceleration a:

r = xı̂ + cx2̂ (2.62)

v = vx ı̂ + 2vxcx̂ (2.63)

a = 2v2
xĉ (2.64)
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Therefore, the force on m should be in the y-direction with a constant magnitude
proportional to v2

x :
F = ma = 2mv2

xĉ (2.65)

Now assume that the same particle is moving such that its x-component of accel-
eration is constant:

ẍ = ax = const (2.66)

To determine the required force F to move m, we need to calculate its acceleration
vector a:

r = xı̂ + cx2̂ (2.67)

v = ẋı̂ + 2cxẋ̂ (2.68)

a = ax ı̂ + 2c
(
ẋ2 + axx

)
̂ (2.69)

Therefore, the required force on m should be

F = ma = maxı̂ + 2mc
(
ẋ2 + axx

)
̂ (2.70)

which has a constant x-component and a position- and velocity-dependent y-component.

Example 117 Motion with Constant Moment of Momentum If a particle moves in
such a way that its moment of momentum L is constant,

L = r × m v = c (2.71)

We may differentiate the equation

v × m v + r × m a = r × m a = r × F = 0 (2.72)

to show that there must be no moment applied on the particle. This result also proves
that the force F acting on the particle is always colinear with r. Such a force is called
the central force.

Example 118 Motion Equation of a System of Particles Consider a group of n

particles mi, i = 1, 2, 3, . . . , n, with position vectors ri in a global coordinate frame
G. The position vector of the mass center C of the particles is at

rC = 1

mC

n∑
i=1

miri mC =
n∑

i=1

mi (2.73)

where mC is the total mass of the system.
The force acting on each particle mi can be decomposed into an external force Fi

and an internal force
∑n

j=1 fij . The internal force fij , with the condition fii = 0, is the
force that particle mj applies on mi . The motion equation of the particle mi would be

mi

d2ri

dt2
= Fi +

n∑
j=1

fij i = 1, 2, 3, . . . , n (2.74)
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By adding the n motion equations of all particles, we have

n∑
i=1

mi

d2ri

dt2 =
n∑

i=1

Fi +
n∑

i=1

n∑
j=1

fij (2.75)

Because of the third law of Newton,

fij = −fj i (2.76)

the summation of the internal forces is zero:

n∑
i=1

n∑
j=1

fij = 0 (2.77)

Therefore, the motion equation of all particles reduces to

mC

d2r0

dt2
= FC (2.78)

where

FC =
n∑

i=1

Fi (2.79)

is the resultant of all the external forces.
Equation (2.78) states that the motion of the mass center C of a system of particles

is the same as if all the masses m were concentrated at that point and were acted upon
by the resultant of all the external forces FC .

Example 119 Angular Momentum of a System of Particles Consider a group of n

particles mi, i = 1, 2, 3, . . . , n, mC = ∑n
i=1 mi , with mass center C at rC and position

vectors ri in a global coordinate frame G. Let us show the angular momentum of mi

by Li :
Li = ri × mi ṙi (2.80)

The summation of the angular momentum of all particles is LO :

LO =
n∑

i=1

Li =
n∑

i=1

(ri × mi ṙi) (2.81)

The position vector ri of mi can be shown by an addition r′
i to the position vector of

mass center rC :
ri = rC + r′

i (2.82)
n∑

i=1

r′
i = 0 (2.83)
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Therefore,

LO =
n∑

i=1

(
mi

(
rC + r′

i

) × (
ṙC + ṙ′

i

))
=

n∑
i=1

mi

(
rC × ṙC + r′

i × ṙC + rC × ṙ′
i + r′

i × ṙ′
i

)
= rC × mC ṙC + LC (2.84)

because
n∑

i=1

mir′
i = 0 (2.85)

n∑
i=1

mi ṙ′
i = 0 (2.86)

n∑
i=1

r′
i × mi ṙ′

i = LC (2.87)

where LC is the angular momentum of the system about the mass center C.
Equation (2.84) states that the angular momentum LO of a system of particles

mi, i = 1, 2, 3, . . . , n, about a fixed point O is equal to the angular momentum LC of
a particle mC = ∑n

i=1 mi at the mass center rC plus the angular momentum LC of the
particles about the mass center C.

Example 120 Rotational Motion of a System of Particles Consider a group of n

particles mi, i = 1, 2, 3, . . . , n, mC = ∑n
i=1 mi, with mass center C at rC and position

vectors ri in a global coordinate frame G. The angular momentum of the system of
particles about a fixed point O is equal to the angular momentum of a particle with
the total mass at the mass center rC plus the angular momentum of the particles about
the mass center C:

LO = rC × mC ṙC + LC (2.88)

Taking a time derivative of (2.88) in G yields

dLO

dt
= ṙC × mC ṙC + ṙC × mC r̈C + dLC

dt
(2.89)

and using
ṙC × mC ṙC = 0 (2.90)

mC r̈C =
n∑

i=1

Fi (2.91)

rC = ri − r′
i (2.92)
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we can rewrite (2.89) as

dLO

dt
−

n∑
i=1

ri × Fi = dLC

dt
−

n∑
i=1

r′
i × Fi (2.93)

or as
dLO

dt
− MO = dLC

dt
− MC (2.94)

where MO and MC are the moments of the external forces about O and C, respectively.
Because of the Euler equation (2.59), the left-hand side of (2.94) is zero and therefore

MC = dLC

dt
= d

dt

(
r′
i × mi ṙ′

i

)
(2.95)

Equation (2.95) states that the time derivative of the angular momentum of a system
of particles mi, i = 1, 2, 3, . . . , n, about the mass center C is equal to the moment of
external forces about C. This is true even if the mass center has a translational motion
relative to the globally coordinate frame.

We can use this fact in the development of rigid-body motion. In studying rotational
motion, we may ignore the translational motion of the mass center of the body provided
we refer all moments and angular momenta to the mass center.

Example 121 � Definition of Dynamics Dynamics is the modeling of motion in
nature. We develop some definitions and rules and model the nature’s behavior with
a set of mathematical equations. Solution of the set of equations is used to predict
the behavior of the phenomenon. Being able to predict the behavior of a phenomenon
allows us to adjust the parameters of a man-made device to achieve a desired behavior.

Vector calculus is an example of the rules that we made, and the Newton equation
of motion is a model of what happens in nature. Both the mathematical rules and
our model of nature are subject to change and improvement. Both are approximate
or applicable only in a certain domain of the physical world. The model of nature
is usually based on experiment or experience. They are applied as long as they are
consistent with other models or as long as there is no better model.

Example 122 � The Newton–Laplace Principle of Determinacy Having the posi-
tion r and velocity v = dr/dt of a dynamic system at a moment of time is enough
to uniquely determine its future and past motion. Suppose we know r0 = r(t0) and
v0 = v(t0) at time t = t0. Then the principle of determinacy guarantees that we can
theoretically determine r = r(t) ∀t ∈ R by solving the Newton differential equation of
motion:

GF =
Gd

dt

(
m Gv

) =
Gd

dt

(
m

Gd

dt
Gr

)
(2.96)

So, to determine the past and future of a dynamic system, we only need to have F and
initial conditions at an instant of time.
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Example 123 � Force Derivative The equation of motion is the connecting point
between kinematics and kinetics. Consider a constant mass body for which we can say:
The momentum is equal to mass times velocity:

Gp = m Gv = m
Gd

dt
Gr (2.97)

The equation of motion says that the applied force is equal to the derivative of the
momentum:

GF =
Gd

dt
Gp = m Ga = m

Gd2

dt2
Gr (2.98)

Taking a derivative of both sides states that the first derivative of force is equal to
mass times jerk j:

Y =
Gd

dt
GF = m Gj = m

Gd3

dt3
Gr (2.99)

The derivative of force is called the yank Y.
The next derivative states that the second derivative of force is equal to mass times

snap s:

T =
Gd

dt
GY =

Gd2

dt2
GF = m Gs = m

Gd4

dt4
Gr (2.100)

The derivative of yank is called the tug T.
The next derivative states that the third derivative of force is equal to mass times

crackle c:

S =
Gd

dt
GT =

Gd3

dt3
GF = m Gc = m

Gd5

dt5
Gr (2.101)

The derivative of tug is called the snatch S.
The next derivative states that the fourth derivative of force is equal to mass times

pop þ:

Ş =
Gd

dt
GS =

Gd4

dt4
GF = m Gþ = m

Gd6

dt6
Gr (2.102)

The derivative of snatch is called the shake Ş.
The next derivative states that the fifth derivative of force is equal to mass times

larz z:

Z =
Gd

dt
GŞ =

Gd5

dt5
GF = m Gz = m

Gd7

dt7
Gr (2.103)

The derivative of shake is called the zoor Z. The derivative of zoor is called the
setorg N, the derivative of setorg is called the gorz G, and the derivative of gorz is
called the sharang H. None of these names are standard, mainly because derivatives
of the equation of motion are not much applied.

2.3 SPECIAL SOLUTIONS

Special cases of the equation of motion happen when the force F is only a function of
time t , position r, or velocity v. To show these special cases, we consider the motion
of a particle in one dimension.
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2.3.1 Force Is a Function of Time, F = F(t)

The equation of motion in this case is

m
dv

dt
= F(t) (2.104)

which can be integrated by separation of variables,

m

∫ v

v0

dv =
∫ t

t0

F(t) dt (2.105)

The result of this integral would be a time-dependent velocity function v = v(t) and
can be integrated as ∫ x

x0

dx =
∫ t

t0

v(t) dt (2.106)

to provide the position x as a function of time x = x(t)

Example 124 Exponential Decaying Force Consider a point mass m that is under
an exponentially decaying force F(t) = ce−t , where c is a constant:

m
dv

dt
= ce−t (2.107)

The velocity of the mass is

m

∫ v

v0

dv =
∫ t

t0

ce−tdt

v = v0 + c

m

(
e−t0 − e−t

)
(2.108)

which can be used to find the position:∫ x

x0

dx =
∫ t

t0

(
v0 + c

m

(
e−t0 − e−t

))
dt

x = x0 − c

m
(1 + t0 − t) e−t0 + v0 (t − t0) + c

m
e−t (2.109)

If the initial time t0 is assumed to be zero, then the position and velocity of the mass
are simplified to

x = x0 − c

m
(1 − t) + v0t + c

m
e−t (2.110)

v = v0 + c

m

(
1 − e−t

)
(2.111)

Figure 2.6 illustrates the force, velocity, and position of m for

m = 1 kg c = 1 N (2.112)
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Force [N]

Velocity [m/s]

Position [m]

t [s]

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

0

c = 1 [N]

m = 1 [kg]

Figure 2.6 Position x and velocity v for force F = ce−t .

and initial condition

x0 = 0 v0 = 0 (2.113)

When the force is only a function of time, then F is proportional to acceleration
a and hence to the derivative of velocity v. So, if the force function is complicated to
have a closed-form integral, geometric differentiation and integration can provide the
solution.

Example 125 Constant Force When the applied force is constant, F = const , we
may include the problem in the category of F = F(t). In both cases, the problem
reduces to differential equations with initial conditions. As an example, consider the
two masses m1 and m2 linked by a rigid rod as shown in Figure 2.7.

C

G

F1 = m1g

m1 m2

F2 = m2g

ϕ

C ab

a

b

x

y

v2

t = 0

Figure 2.7 Two masses m1 and m2 linked by a rigid rod and asymmetric initial velocity.
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At t = 0, the mass m1 is at the origin and m2 is on the x-axis at x2 = b + a. The
mass m2 has an initial velocity ẏ2 = v2. The point C indicates the mass center of the
system with m = m1 + m2. The equations of motion of the mass center and its initial
conditions are

mẍC = 0 mÿC = −mg (2.114)

xC = b yC = 0 (2.115)

ẋC = 0 ẏC = bϕ̇0 ϕ̇0 = v2

a + b
(2.116)

The solution of this initial-value problem is

xC (t) = b ẏC (t) = − 1
2gt2 + bϕ̇0t (2.117)

It shows that the mass center of the system is moving on a vertical line, while the bar
is turning about C with constant angular speed ϕ̇.

Example 126 The Projectile Problem When a body is under a constant force F = F0,
the above method for F = F(t) can be used successfully:

m
dv

dt
= F (2.118)

v = v0 + F

m
(t − t0) (2.119)

x = x0 + v0t + F

2m
(t − t0)

2 (2.120)

Consider a projectile with mass m that is shot with an initial velocity v0 from the
origin of the coordinate frame. The initial conditions of the problem are

t0 = 0 r(0) = 0 v(0) = v0 (2.121)

If the velocity of the mass is small, the mass remains near the ground, and we
may assume a flat ground with a uniform gravitational attraction g and no air. So, the
weight is the only applied force on the mass and its equation of motion is

m
dv
dt

= mg (2.122)

g = −gk̂ (2.123)

g = 9.80665 m/s2 ≈ 9.81 m/s2 (2.124)

This is a classical problem in mechanics and is called the projectile problem .
An integral of the equation of motion determines the velocity v of the projectile:

v = −gtk̂ + v0 (2.125)
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Substituting v = dr/dt and integrating provide the position of the projectile as a func-
tion of time:

r = − 1
2 gt2k̂ + v0t (2.126)

The initial velocity of the projectile has a magnitude v0 and is at an angle θ with
respect to the x-axis:

v0 = v0

cos θ

0
sin θ

 (2.127)

Substituting v0 in the kinematic equations of the projectile, we find

v =
 v0 cos θ

0
v0 sin θ − gt

 (2.128)

r =
 v0t cos θ

0
v0t sin θ − 1

2 gt2

 (2.129)

Equation (2.129) is the projectile’s path of motion using t as a parameter. Eliminating
t will provide the path of motion in the (x, z)-plane, which is a parabola:

z = −1

2
g

x2

v2
0 cos2 θ

+ x tan θ (2.130)

The range R of the projectile on a flat ground can be found by setting z = 0 and
solving Equation (2.130) for x:

R = v2
0

g
sin 2θ (2.131)

The range becomes a maximum at the optimal angle θ = 45 deg:

RM = v2
0

g
(2.132)

The projectile reaches the range R at time tR , which can be found from the z-component
of r:

tR = 2
v0

g
sin θ (2.133)

Because of the symmetry of z in Equation (2.130), the projectile will reach its highest
point H at

tH = 1

2
tR = v0

g
sin θ (2.134)

which shows that

H = v2
0

2g
sin2 θ (2.135)

These results are independent of the mass of the projectile.
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Example 127 � Forbidden Umbrella Figure 2.8 illustrates the paths of motion of a
projectile, given in Equation (2.130), with a constant initial speed v0 at different angles
θ . It can be seen that, regardless of the shooting angle, the projectile cannot reach out
of a closed area. The reachable boundary of space is indicated by a curve that is tangent
to all paths. Such a curve that is tangent to all members of a curve family is called the
envelope.

m = 1 [kg]

v0 = 10 [m/s]

x [m]

z

2

4

6

0 5 10−10 −5

Figure 2.8 The path of motion of a projectile with a constant initial speed v0 and different
angles θ .

Members of curve family are related by changing only one or a set of parameters.
To find the envelope of a family, we should eliminate the parameter between the
equation of the family and the equation made up of its derivative with respect to the
parameter.

The family of a projectile with a constant initial speed is made by changing the
angle of the initial velocity. The derivative of z with respect to θ is

dz

dθ
= − 1

v2
0 cos2 θ

(
gx 2 tan θ − xv2

0

) = 0 (2.136)

which yields

tan θ = v2
0

gx
(2.137)

1

cos2 θ
= 1 +

(
v2

0

gx

)2

(2.138)

Substituting (2.137) and (2.133) in (2.130), we find the equation of the envelope:

z = 1

2

(
v2

0

g
− g

v2
0

x2

)
(2.139)

When the shooting device is similar to an antiaircraft gun that can turn about
the z-axis, the envelope of the reachable space is a circular paraboloid called a
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projectile umbrella:

z = v2
0

2g
− g

2v2
0

(
x2 + y2) (2.140)

Such a paraboloid, illustrated in Figure 2.9, is a forbidden umbrella for military aircraft.
The reachable space under the umbrella is

0 ≤ z ≤ v2
0

2g
− g

2v2
0

(
x2 + y2) (2.141)

These results are independent of the mass of the projectile.

Forbidden
umbrella

x

y

z

Figure 2.9 Forbidden umbrella.

Example 128 � Reach a Point in (x, z)-Plane Equation (2.130) provides the path
of motion of a projectile in the no-air and flat-ground conditions when it is thrown
from the origin of the (x, z)-plane. Figure 2.8 illustrates the projectile umbrella and
reachable area of the projectile in the (x, z)-plane when it is thrown with a constant
initial speed v0 at different angles θ .

Every point under the projectile umbrella can be reached at two different angles
and hence at two different times. To show this, we may solve Equation (2.130) for θ :

θ = tan−1

 v2
0

gx
+ 1

x

√
v4

0

g2
− 2z

v2
0

g
− x2

 (2.142)

The two values of θ are equal when

v4
0 − 2v2

0gz − g2x2 = 0 (2.143)
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which indicates the same envelope parabola as in Equation (2.139). Therefore, any
point under the projectile envelope can be reached at two angles, and any point on the
envelope can be reached at only one angle:

θ = tan−1 v2
0

gx
(2.144)

If z = 0, then x = v2
0/g = RM and θ = 45 deg, which confirms that the angle reaches

the maximum range.
To reach a point on the ground, we set z = 0 and simplify Equation (2.142):

θ = tan−1

 gx

v2
0 ±

√
v4

0 − g2x2

 (2.145)

Figure 2.10 illustrates the shooting angle θ as a function of v0 for a different horizontal
range x. It shows the variety of possible θ and v0 to reach an x. The two values of θ

to reach an x at a fixed v0 are symmetric with respect to θ = 45 deg. For every v0, the
maximum x is reached at θ = 45 deg.

v0 [m/s]

45

x = 10 [m]

x = 50 [m]
x = 100 [m]

x = 200 [m]

x = 500 [m]
x = 1000 [m]

x = 1500 [m]

x = 2000 [m]

θ[deg]

90

80

60

40

20

0 20 40 60 80 100 120 140

Figure 2.10 Shooting angle θ as a function of v0 for different values of horizontal range x.

To have a design chart for reaching a point under the projectile umbrella, we write
Equations (2.130) and (2.142) as

w = − 1
2u

(
1 + tan2 θ

) + tan θ (2.146)

θ = tan−1

(
1

u
+

√
1

u2
− 2

w

u
− 1

)
(2.147)
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where
u = x

RM

(2.148)

RM = v2
0

g
(2.149)

w = z

x
(2.150)

0 ≤ u ≤ 1 (2.151)

Figure 2.11 illustrates w as a function of u for different θ . We have a linear relation
between w and u for a given θ . Having v0 determines RM , and therefore u would be
proportional to x. Now, for any x, the value of u is set and the line uniquely indicates
the associated w. The envelope of these curves is

w = 1 − u2

2u
(2.152)

60°
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50°
45°
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35°
30°

25°20°15°
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u = x/RM

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 10.8

zw = x

Figure 2.11 The vertical coordinate w as a function of the horizontal coordinate u of a projectile
for different shooting angle θ .

As an example, let us set

v0 = 10 m/s g = 9.81 m/s2 θ = 30 deg (2.153)

Then

RM = v2
0

g
= 100

9.81
= 10.194 m (2.154)

At any x ≤ 10.194 m, say x = 5 m, we have

u = x

RM

= 5

10.194
= 0.49048 (2.155)
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and hence,
w = − 1

2u
(
1 + tan2 θ

) + tan θ = 0.25036 m (2.156)

which shows that
z = xw = 5 × 0.25036 = 1.2518 m (2.157)

Figure 2.12 illustrates θ as a function of u for different w. This chart may be used
to determine the required v0 and θ to pass through a desired point under the projectile
umbrella. For a given x and z, we determine the value of w and indicate the associated
design curve in the chart. If the initial speed v0 is also given, u is fixed and therefore a
vertical line can show the required shooting angles to reach the desired point (x, z). If
instead of v0 we may shoot the projectile at any speed v0, usually less than a maximum
value vM , there are an infinite number of pairs (v0, θ ) that go through the desired point.
To choose a set, we may include a condition such as the minimum time or minimum
initial speed.

0

zw = x = 0

θ[deg]

u = x/RM

45
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80
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.10.20.30.40.5
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1.0 0.8
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Figure 2.12 Shooting angle θ as a function of horizontal coordinate u for different values of
vertical coordinate w.

As an example, let us determine (v0, θ ) to pass through (x = 5 m, z = 1 m). The
associated design curve is indicated by

w = z

x
= 1

5
= 0.2 (2.158)

Choosing an initial velocity, say v0 = 10 m/s, determines a vertical line

u = x

v2
0/g

= 5

100/9.81
= 0.4905 (2.159)

that hits the design curve at

θ = 26.963 deg θ = 74.347 deg (2.160)
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However, if we are free to have any initial velocity within a range, then there is a
relationship between v0 and θ to pass through the point:

tan θ =
√

4.1564 × 10−4v4
0 − 8.1549 × 10−3v2

0 − 1 + 2.0387 × 10−2v2
0 (2.161)

v0 = 11.074

cos θ
√

5 tan θ − 1
(2.162)

Figure 2.13 illustrates Equation (2.162) graphically. It shows that there is a min-
imum v0 to reach the point (x = 5 m, z = 1 m). Minimum speed usually means the
minimum required effort that is the minimum required explosive material. The mini-
mum point happens at

v0 = 7.735342076 m/s (2.163)

θ = 50.65496622 deg (2.164)

x = 5[m]

z = 1[m]

v0[m/s]

θ[deg]
0

0

4

20

8

12

16

24

28

10 20 30 40 50 60 70 80 90

Figure 2.13 The relationship between the initial velocity v0 and shooting angle θ to reach a
specific point.

2.3.2 Force Is a Function of Position, F = F(x)

We can write the equation of motion in this case as

mv
dv

dx
= F(x) (2.165)

because
a = dv

dt
= dx

dt

dv

dx
= v

dv

dx
(2.166)
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Equation (2.165) may be integrated by separation of variables,

m

∫ v

v0

v dv =
∫ x

x0

F(x) dx (2.167)

to find a position-dependent velocity function v = v(x). This function can be inte-
grated as ∫ x

x0

dx

v(x)
=

∫ t

t0

dt (2.168)

to provide the position x as a function of time, x = x(t).

Example 129 Harmonic Oscillator Consider a point mass m and an attraction force
toward a fixed origin O on the line of the x-axis. The magnitude of attraction is
proportional to the distance from O:

F = −kx (2.169)

The equation of motion of the point

ẍ + ω2x = 0 ω2 = k

m
(2.170)

is a linear equation with constant coefficients. This dynamic system is called a har-
monic oscillator . Following the F = F(x) method, we may rewrite the equation of
motion as ∫

ẋ d ẋ = −
∫

ω2x dx (2.171)

and find
ẋ2 + ω2x2 = ω2C2 (2.172)

C2 = ẋ2
0

ω2
+ x2

0 (2.173)

This motion may be described by a moving point on an ellipse in the (x, ẋ)-plane with
semiaxes ωC on the ẋ-axis and C on the x axis. Such a motion is a libration motion
between x = ±C.

Integration of Equation (2.172),∫
dx

ω
√

C2 − x2
=

∫
dt (2.174)

provides the solution of motion:

x = C sin (ωt − ϕ) (2.175)

ϕ = − arcsin
x0

C
(2.176)

Example 130 Two-Dimensional Harmonic Motion A force that is a function of
position,

F = −kr (2.177)
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is applied on a particle with mass m that is moving on the (x, y)-plane. The equation
of motion of the particle is

mr̈ = −kr (2.178)

The equation of motion can be decomposed into x- and y-directions as

ẍ + ω2x = 0 (2.179)

ÿ + ω2y = 0 (2.180)

where

ω =
√

k

m
(2.181)

The solution of Equations (2.179) and (2.180) are

x(t) = A1 cos (ωt) + A2 sin (ωt) = A sin (ωt − α) (2.182)

y(t) = B1 cos (ωt) + B2 sin (ωt) = B sin (ωt − β) (2.183)

where α, β, A, and B are related to the initial conditions x0 = x(0), y0 = y(0), ẋ0 =
ẋ(0), and ẏ0 = ẏ(0):

x0 = −A sin α y0 = −B sin β (2.184)

ẋ0 = Aω cos α ẏ0 = Bω cos β (2.185)

To find the path of motion in the (x, y)-plane, we should eliminate time t between
x and y. Let us define

γ = α − β (2.186)

to expand y,

y(t) = B sin [(ωt − α) + (α − β)]

= B sin (ωt − α) cos (α − β) + B cos (ωt − α) sin (α − β)

= B sin (ωt − α) cos γ + B cos (ωt − α) sin γ (2.187)

and substitute x,

y = B

A
x cos γ + B

√
1 −

( x

A

)2
sin γ (2.188)

The path (2.188) can be rearranged to

A2y2 − 2ABxy cos γ + B2x2 = A2B2 sin2 γ (2.189)

A special case of the path happens when A = B and γ = ±π/2, which indicates
a circular motion:

x2 + y2 = A2 (2.190)

If A �= B, the path is an ellipse:

x2

A2
+ y2

B2
= 1 (2.191)
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If γ = 0 or γ = ±π , the path reduces to a straight line:

y = B

A
x (2.192)

or
y = −B

A
x (2.193)

Figure 2.14 illustrates the path of motion for A = B = 1, ω = 1, and different γ .

γ = 0 γ = 30° γ = 60° γ = 90°
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Figure 2.14 Path of the harmonic motion of a particle in the (x, y)-plane.

Example 131 � Lissajous Curves Consider a particle with mass m that is moving
on the (x, y)-plane under the action of the force F:

F = −k1x ı̂ − k2y ̂ (2.194)

The equation of motion of the particle is

mr̈ = −kr (2.195)

or
ẍ + ω1x = 0 (2.196)

ÿ + ω2y = 0 (2.197)

where

ω1 =
√

k1

m
ω2 =

√
k2

m
(2.198)

The solutions of Equations (2.196) and (2.197) are

x(t) = A1 cos (ω1t) + A2 sin (ω1t) = A cos (ω1t − α) (2.199)

y(t) = B1 cos (ω2t) + B2 sin (ω2t) = B cos (ω2t − β) (2.200)

These equations indicate the parametric path of motion of the particle. If the frequencies
ω1 and ω2 are commensurable, the path of motion will be closed. The frequencies
ω1 and ω2 are commensurable when their ratio is a rational fraction, ω1/ω2 = m/n,
{m,n ∈ N}. The path of motion in this case is called the Lissajous curve.

If the frequencies ω1 and ω2 are not commensurable, the path of motion will be
open, which means the moving particle will never pass twice through the same point
with the same velocity.

The Lissajous curves can be described better if we assume A = B and write the
parametric equations in the forms
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x(t) = cos (rτ + δ) (2.201)

y(t) = cos (τ ) (2.202)

where
r = ω1

ω2
τ = ω2t − β δ = βr − α (2.203)

So, x is a 2π-periodic and y is a (2π/r)-periodic function of τ .
Figure 2.15 depicts some Lissajous curves and Figure 2.16 shows a few two-

dimensional harmonic curves for incommensurable cases.

r = 1 r = 3/2 r = 4/3 r = 5/4

r = 6/5 r = 7/6 r = 8/7 r = 9/8

Figure 2.15 Some Lissajous curves for the rational fraction ω1/ω2.

r = π/4 r = e/42/2r = 3/2r =

Figure 2.16 Some two-dimensional harmonic curves for incommensurable ω1 and ω2.

Example 132 � Motion of a Simple Pendulum The Equation of motion of a simple
pendulum , shown in Figure 2.17, is

ml2θ̈ + mg sin θ = 0 (2.204)

By a simple pendulum, we mean a point mass m is attached to the end of a massless
bar with length l that is pin joined to the wall. The pendulum is swinging in a uniform
gravitational field g = −gk̂. The equation of motion can be simplified to

θ̈ + g

l
sin θ = 0 (2.205)
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l

θ m

x

z

Figure 2.17 A simple pendulum.

Multiplying the equation by θ̇ and integrating yield

1

2
θ̇2 = −

∫
g

l
sin θ dθ = g

l
cos θ + C1 (2.206)

Assuming the initial conditions

θ(0) = θ0 θ̇ (0) = 0 (2.207)

we find
C1 = −g

l
cos θ0 (2.208)

and therefore,
θ̇2 = 2

g

l
(cos θ − cos θ0) (2.209)

This indicates that, to determine the motion of the pendulum, we need to calculate the
equation

t =
√

l

g

∫ θ0

0

dθ√
2 (cos θ − cos θ0)

(2.210)

To calculate the integral, we change the variable from θ to ϕ such that

sin
θ

2
= k sin ϕ (2.211)

k = sin
θ0

2
(2.212)

Then we have

dθ = 2k cos ϕ√
1 − k2 sin2 ϕ

dϕ (2.213)

When θ = 0, ϕ = 0, and when θ = θ0, ϕ = π/2. Using the new variable, we also
have

1√
2 (cos θ − cos θ0)

= 1

2k cos ϕ
(2.214)
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and therefore the integral (2.210) reduces to the complete elliptic integral of the first
kind, F(π/2, k), with modulus k and amplitude π/2:√

g

l
t =

∫ π/2

0

dϕ√
1 − k2 sin2 ϕ

= F
(π

2
, k

)
(2.215)

The time t from the lowest position of the pendulum to any position θ < θ0 or ϕ < π/2
can be found by √

g

l
t =

∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

= F(ϕ, k) (2.216)

where F(ϕ, k) is the elliptic integral of the first kind with modulus k and amplitude
ϕ. The time for any interval angle from ϕ = ϕ1 at t = t1 to ϕ = ϕ2 at t = t2 is then
given by √

g

l
(t2 − t1) = F(ϕ2, k) − F(ϕ1, k) (2.217)

If k = sin(θ0/2) is very small, then the time of swing between θ = 0 and θ = θ0
reduces to

t = 1

2
π

√
l

g
(2.218)

which shows that the linearized period T of the pendulum is

T0 = 2π

√
l

g
(2.219)

Figure 2.18 illustrates Equation (2.216) for different k = sin(θ0/2). At low values of
k the period of oscillation is proportional to the angle θ0. However, the period grows
faster when θ0 is higher.

g
t

l

0.2

k = sin (θ/2) /sin (θ0/2)
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Figure 2.18 Period of oscillation of a simple pendulum for different initial release angle.



148 Fundamentals of Dynamics

Figure 2.19 shows the period of oscillation T /T0 for different initial angles θ0.
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Figure 2.19 Period of oscillation T/T0 of a simple pendulum as a function of initial angle θ0.

2.3.3 � Elliptic Functions

If 0 ≤ k ≤ 1 and 0 < ϕ ≤ π/2, then the elliptic integral of the first kind is defined as

u = F(x, k) =
∫ x

0

dy√(
1 − y2

) (
1 − k2y2

) x ∈ [−1, 1] (2.220)

or

F(ϕ, k) =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

ϕ ∈ [−1, 1] (2.221)

x = sin ϕ (2.222)

If x = 1 or ϕ = π/2, these definite integrals are called complete elliptic integrals of
the first kind and denoted by K (k):

K(k) =
∫ 1

0

dy√(
1 − y2

) (
1 − k2y2

) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(2.223)

The elliptic integral of the second kind is defined by

E(x, k) =
∫ x

0

√(
1 − k2y2

)(
1 − y2

) dy x ∈ [−1, 1] (2.224)
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or

E(ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 θdθ ϕ ∈ [−1, 1] (2.225)

x = sin ϕ (2.226)

If x = 1 or ϕ = π/2, these integrals are called complete elliptic integrals of the second
kind and denoted by E (k):

E(k) =
∫ 1

0

√
1 − k2y2

1 − y2
dy =

∫ π/2

0

√
1 − k2 sin2 θ dθ (2.227)

The elliptic integral of the third kind is defined by

�(x, k, n) =
∫ x

0

dy(
1 + n2y2

)√(
1 − y2

) (
1 − k2y2

) x ∈ [−1, 1] (2.228)

or

�(ϕ, k, n) =
∫ ϕ

0

dθ(
1 + n2 sin2 θ

)√
1 − k2 sin2 θ

ϕ ∈ [−1, 1] (2.229)

x = sin ϕ (2.230)

If x = 1 or ϕ = π/2, these integrals are called complete elliptic integrals of the third
kind and denoted by � (k, n):

� (k, n) =
∫ 1

0

dy(
1 + n2y2

)√(
1 − y2

) (
1 − k2y2

)
=

∫ π/2

0

dθ(
1 + n2 sin2 θ

)√
1 − k2 sin2 θ

(2.231)

Employing the inverse of the elliptic integral (2.220), we define the following
Jacobi elliptic function:

sn(u, k) = sin ϕ = x (2.232)

cn(u, k) = cos ϕ =
√

1 − x2 (2.233)

dn(u, k) =
√

1 − k2 sin2 ϕ =
√

1 − k2x2 (2.234)

When a dynamic problem reduces to an elliptic integral, the problem is considered
solved. The behavior of elliptic integrals is well-defined.

The theory of elliptic functions was independently developed by Abel (1802–1829)
and Jacobi (1804–1851) in the nineteenth century. Although elliptic functions only
enable us to solve a relatively small class of equations of the form ẍ = F(x), some
important problems, such as pendulum and torque-free rigid-body motion, belong to
this class.
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Proof : The elliptic functions are inverses of the elliptic integrals. There are two standard
forms of these functions, known as Jacobi elliptic functions and Weierstrass elliptic
functions. Jacobi elliptic functions appear as solutions to differential equations of the
form

d2x

dt2
= a0 + a1x + a2x

2 + a3x
3 (2.235)

and Weierstrass elliptic functions appear as solutions to differential equations of the
form

d2x

dt2
= a0 + a1x + a2x

2 (2.236)

There are many cases in which F = F(x) in the equation of motion

mv
dv

dx
= F(x) (2.237)

is a polynomial or can be expanded as a polynomial,

F(x) = a0 + a1x + a2x
2 + a3x

3 + · · · (2.238)

Consider the motion of a particle with mass m = 1 and with the equation of motion of
the form

d2x

dt2
= F(x) = a0 + a1x + a2x

2 + a3x
3 (2.239)

which describes the motion of a particle moving under a force function expanded up to
third order in displacement x. The solution of this type of equation can be expressed
in terms of Jacobi elliptic functions.

Multiplying (2.239) by ẋ leads to the first-order differential equation

1

2
ẋ2 −

(
a0x + a1

2
x2 + a2

3
x3 + a3

4
x4

)
= E1 (2.240)

where
E1 = 1

2
ẋ2

0 −
(
a0x0 + a1

2
x2

0 + a2

3
x3

0 + a3

4
x4

0

)
(2.241)

where E1 is a constant of motion. We may write Equation (2.240) in the form

ẋ2 = b0 + b1x + b2x
2 + b3x

3 + b4x
4 (2.242)

or
ẋ2 = b4 (x − α) (x − β) (x − γ ) (x − δ) (2.243)

Legendre (1752–1833) could transform Equation (2.243) to

ẏ2 = (
1 − y2) (1 − k2y2) (2.244)

where

y2 = (β − δ) (x − α)

(α − δ) (x − β)
(2.245)

k2 = (β − γ ) (α − δ)

(α − δ) (β − δ)
(2.246)
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The solution of Equation (2.244) is∫
dt =

∫
dy√(

1 − y2
) (

1 − k2y2
) (2.247)

Assuming k2 < 1, Legendre transformed the integral

F(x, k) =
∫ x

0

dy√(
1 − y2

) (
1 − k2y2

) − 1 � x � 1 (2.248)

to

F(ϕ, k) =
∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

x = sin ϕ (2.249)

which is called the elliptic integral of the first kind.
The inverse function of the first kind of elliptic integral,

u = F(x, k) = F(sin ϕ, k) =
∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

(2.250)

is called the Jacobi elliptic function x = x(u, k) and is shown by sn(u, k):

x = sn(u, k) = sin ϕ (2.251)

So,

sn−1(u, k) =
∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

=
∫ x

0

dy√(
1 − y2

) (
1 − k2y2

) (2.252)

The angular variable ϕ is called the amplitude of u and is denoted by am(u):

ϕ = am(u) = sin−1 [sn(u, k)] (2.253)

If x = 1 or ϕ = π/2, the definite integrals (2.248) and (2.249) are called complete
elliptic integrals and are denoted by

K(k) =
∫ 1

0

dy√(
1 − y2

) (
1 − k2y2

) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(2.254)

Two other Jacobi elliptic functions are defined by

cn(u, k) = cos ϕ =
√

1 − x2 (2.255)

and
dn(u, k) =

√
1 − k2x2 =

√
1 − k2sn2(u, k) (2.256)

which are the inverse functions of the following integrals respectively:

u =
∫ cn(u,k)

1

dy√(
1 − y2

) (
q2 − k2y2

) (2.257)

u =
∫ dn(u,k)

1

dy√(
1 − y2

) (
y2 − q2

) (2.258)
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So, the Jacobi elliptic functions are related by the identities

sn2(u, k) + cn2(u, k) = 1 (2.259)

dn2(u, k) + k2 sn2(u, k) = 1 (2.260)

dn2(u, k) − k2 cn2(u, k) = 1 − k2 (2.261)

and their derivatives are related by the identities

d

du
sn(u, k) = cn(u, k)dn(u, k) (2.262)

d

du
cn(u, k) = −sn(u, k)dn(u, k) (2.263)

d

du
dn(u, k) = −k2 sn(u, k)cn(u, k) (2.264)

�

Example 133 Why 0 ≤ k ≤ 1? Consider the equation of motion of a pendulum,

ml2θ̈ + mgl sin θ = 0 (2.265)

which can be reduced to a first-order equation using the energy integral of motion
K + V = E:

1
2 ml2θ̇2 + mg (1 − cos θ) = E (2.266)

The energy required to raise the pendulum from the lowest position at θ = 0 to the
highest position at θ = π is 2mgl . So, we may write the energy of the system as

E = k2 (2mgl) k > 0 (2.267)

where the value of k can be calculated by the initial conditions:

k =
√

E0

2mgl
= 1

2

√
1

gl

(
2g + l2θ̇2

0 − 2g cos θ0
)

(2.268)

The condition 0 ≤ k ≤ 1 is equivalent to the oscillatory motion of the pendulum.

Example 134 � Hypergeometric Functions We can expand the integrand of K (k)

by a binomial series:

1√
1 − k2 sin2(θ)

= 1 + 1

2
k2 sin2 θ − 3

8
k4 sin4 θ + · · ·

=
∞∑

n=0

(2n − 1)!!

(2n)!!
(2.269)
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The double factorials are defined as

(2n)!! = 2nn! = 2 × 4 × 6 × · · · × (2n) (2.270)

(2n − 1)!! = (2n − 1)!

2nn!
= 1 × 3 × 5 × · · · × (2n − 1) (2.271)

For any closed interval [0, k2
max], k2

max < 1, the series is uniformly convergent and may
be integrated term by term:

K (k) = π

2

[
1 +

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2

k2n

]
(2.272)

Similarly, we find

E (k) = π

2

[
1 −

∞∑
n=0

(
(2n − 1)!!

(2n)!!

)2
k2n

2n − 1

]
(2.273)

These series are called hypergeometric functions .

Example 135 � Limiting Values of Elliptic Integral Using the series expansions or
from the defining integrals of elliptic integrals, we can show that

lim
k→0

K (k) = π

2
lim
k→0

E (k) = π

2
(2.274)

lim
k→1

K (k) = ∞ lim
k→1

E (k) = 1 (2.275)

Example 136 � Period of Elliptic Functions Complete elliptic functions are peri-
odic. Let

K =
∫ π/2

0

dθ√
1 − k2 sin2 θ

(2.276)

Then the period of sn(u, k) is 4K , the period of cn(u, k) is 4K , and the period of
dn(u, k) is 2K :

sn(u, 4K) = snu cn(u, 4K) = cnu dn(u, 2K) = dnu (2.277)

Example 137 Circular and Hyperbolic Integrals Consider an integral of the form

y =
∫

dx√
f (x)

(2.278)

where f (x) is a second-degree polynomial. It can always be possible to reduce f (x)

by multiplication by a positive constant either to the form

f (x) = a + 2bx + x2 (2.279)
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or to the form
f (x) = a + 2bx − x2 (2.280)

where a and b are real constants. The function f (x) is assumed to be positive between
the limits of integration. Using a change of variable from x to z,

x = p + z (2.281)

the integrals become

y1 =
∫

dz√(
a + 2bp + p2

) + 2 (b + p) z + z2
(2.282)

or
y2 =

∫
dz√(

a + 2bp − p2
) + 2 (b − p) z − z2

(2.283)

By choosing p = −b or p = b, we eliminate the linear term. In the case of y1, where
p = −b, we have a + 2bp + p2 = a − b2. Then, depending on the value of a − b2,
we have three categories:

1. If a − b2 > 0, then with

u = z√
a − b2

(2.284)

we have

y1 =
∫

du√
1 + u2

(2.285)

2. If a − b2 < 0, then with

u = z√
b2 − a

(2.286)

we have

y1 =
∫

du√
u2 − 1

(2.287)

3. If a − b2 = 0, then

y1 =
∫

dz

z
= ln z + C (2.288)

In the case of y2, where p = b, we have a + 2bp − p2 = a + b2 > 0. Then, we
have a fourth category:

4. Using

u = z√
a + b2

(2.289)

we have

y2 =
∫

du√
1 − u2

(2.290)
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The integrals obtained above are hyperbolic and circular integrals. They define the
inverses of hyperbolic and circular functions:∫ w

0

du√
1 + u2

= sinh−1 w (2.291)∫ w

0

du√
u2 − 1

= cosh−1 w (2.292)

∫ w

0

du√
1 − u2

= sin−1 w (2.293)∫ 1

w

du√
1 − u2

= cos−1 w (2.294)

This is because ∫ 1

0

du√
1 − u2

= π

2
(2.295)

and we have

cos−1 w = π

2
− sin−1 w (2.296)

The definite integral (2.295) is called the complete circular integral.

Example 138 � Arc Length of an Ellipse The parametric equations of an ellipse
are

x = a cos θ y = b sin θ (2.297)

The differential of the arc length ds is

ds2 = dx 2 + dy2 = (
a2 sin2 θ + b2 cos2 θ

)
dθ2

= (
a2 − (

a2 − b2) cos2 θ
)

dθ2 (2.298)

Because of
a2 − b2 = a2e2 (2.299)

where e is the eccentricity of the ellipse, we have

ds = a
√

1 − e2 cos2 θ dθ (2.300)

If we define ϕ = π/2 − θ , then

ds = a

√
1 − e2 sin2 ϕ dϕ (2.301)

and therefore the perimeter P of the ellipse is

P = 4a

∫ π/2

0

√
1 − e2 sin2 ϕ dϕ = 4aE (e) (2.302)
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The perimeter of an ellipse is a complete elliptic integral of the second kind. It is
a reason that the terminology “elliptic” has been used to describe elliptic integrals.

2.3.4 Force Is a Function of Velocity, F = F(v)

The equation of motion in this case is

m
dv

dt
= F(v) (2.303)

and can be integrated by separation of variables:

m

∫ v

v0

dv

F(v)
=

∫ t

t0

dt (2.304)

The result of this integral is a time-dependent velocity function v = v(t) and can be
integrated as ∫ x

x0

dx =
∫ v

v0

v(t) dt (2.305)

to provide the position x as a function of time, x = x(t).

Example 139 Projectile in Air Consider a projectile with mass m that is thrown
with an initial velocity v0 from the origin of the coordinate frame. The air provides
a resistance force −cv proportional to the instantaneous velocity v. The free-body
diagram , a diagram that shows the isolated body with all the external forces acting
upon it, is shown in Figure 2.20.

mg

x

z

G

m
cv

Figure 2.20 Free-body diagram of a projectile in air.

Assuming a flat ground with a uniform gravitational attraction g, the equation of
motion of the projectile is
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m
dv
dt

= −mgk̂ − cv (2.306)

g = −gk̂ (2.307)

g = 9.80665 m/s2 ≈ 9.81 m/s2 (2.308)

To solve the equation of motion (2.306), we may use v = dr/dt and integrate the
equation to get

v = −gtk̂ − c

m
r + v0 (2.309)

Multiplying Equation (2.309) by e−ct/m, we have

d

dt

(
rect/m

) = v0e
ct/m − gtect/mk̂ (2.310)

and therefore,

rect/m = m

c
v0e

ct/m + m

c
gect/m

(m

c
− t

)
k̂ − m

c
v0 − m2

c2
gk̂ (2.311)

We have found the constant of integration such that r = 0 at t = 0. The position vector
of the projectile can be simplified to

r = m

c
v0

(
1 − e−ct/m

) + m2

c2
g
(

1 − e−ct/m − c

m
t
)

k̂ (2.312)

and therefore the velocity vector of the projectile is

v = dr
dt

= v0e
−ct/m − m

c
g
(
1 − e−ct/m

)
k̂ (2.313)

Equation (2.312) is the solution of the problem. Having r = r (t), we are able to
determine every kinematic information of the projectile.

At a time t = tH , the projectile is at the maximum height, at which v · k̂ = 0, and
therefore the height time tH is the solution of(

v0 · k̂
)

e−ctH /m = m

c
g
(
1 − e−ctH /m

)
(2.314)

that is,

tH = m

c
ln

(
1 + c

m

1

g
v0 · k̂

)
(2.315)

The maximum height of the projectile is H = zM = r · k̂ at t = tH :

H = zM = r · k̂ = m

c

(
v0 · k̂ − gtH

)
= m

c

[
v0 · k̂ − m

c
g ln

(
1 + c

m

1

g
v0 · k̂

)]
(2.316)

The range of the projectile is R = |r| when r · k̂ = 0 at the range time t = tR:(
1 − e−ct/m

) (
v0 · k̂

)
+ m

c
g
(

1 − e−ct/m − c

m
t
)

= 0 (2.317)
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The time at which the projectile hits the ground is the solution of a transcendental
equation: (

v0 · k̂ + m

c
g
) (

1 − e−ctR/m
) − gtR = 0 (2.318)

At t = tR , r · k̂ = 0, and therefore R = r · ı̂:
R = r · ı̂ = m

c

(
1 − e−ctR/m

) (
v0 · ı̂

)
(2.319)

If the projectile is thrown in the (x, z)-plane with speed v0 at an angle θ with
respect to the x-axis, the initial velocity is

v0 = v0

cos θ

0
sin θ

 (2.320)

Substituting v0 in kinematic equations of the projectile, we find

r =


−m

c
v0

(
e−ct/m − 1

)
cos θ

0

−m2

c2
g
(
e−ct/m + c

m
t − 1

)
− m

c
v0

(
e−ct/m − 1

)
sin θ

 (2.321)

v =

 v0e
−ct/m cos θ

0

v0e
−ct/m sin θ − m

c
g
(
1 − e−ct/m

)
 (2.322)

Equation (2.321) is the projectile’s path of motion using t as a parameter. We can
theoretically find the projectile’s path of motion in the (x, z)-plane by eliminating t

between the x- and z-components of r. Figure 2.21 illustrates the path of motion of a
projectile for different values of the air friction coefficient c.

θ = 30 [deg]

m = 1 [kg]

v0 = 10 [m/s]

c = 0

c = 0.01

c = 0.1

0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10
x

z

c = 5 c = 0.5c = 1c = 2

Figure 2.21 The path of motion of a projectile for different values of air friction coefficient c.



2.3 Special Solutions 159

The path would be parabolic if there is no air and c = 0. To find the path in the
no-air condition, we expand r in a time series

r =


(

tv0 + 1

2

c

m
t2v0

)
cos θ + O

(
t
( c

m
t
)2

)
0

tv0 sin θ − t2

(
1

2
g + 1

2

c

m
v0 sin θ

)
+ O

(
t
( c

m
t
)2

)
 (2.323)

and simplify the equations by c → 0 to get

r =
 v0t cos θ

0
v0t sin θ − 1

2gt2

 (2.324)

Eliminating t between x and z provides the path of motion:

z = −1

2
g

x2

v2
0 cos2 θ

+ x tan θ (2.325)

Example 140 � Limit Velocity of a Projectile in Air Let us use dv/dt = a and
differentiate the equation of motion of a projectile in air (2.306) to find

m
da
dt

= −ca (2.326)

This equation can be integrated by separation of variables as

m

∫ a

a0

da
a

= −c

∫ t

0
dt (2.327)

a = a0e
−ct/m (2.328)

where a0 is a constant vector. Equation (2.328) indicates that the acceleration vector of
the projectile a is always parallel to a constant vector a0 with an exponential decreasing
magnitude. So, a → 0 as t → ∞, and therefore dv/dt → 0 which yields

lim
t−−−→∞ v = −mg

c
k̂ (2.329)

The velocity vl = − (mg/c) k̂ is called the limit velocity . There is no limit velocity in
the no-air condition.

If the initial velocity vector v0 is in the (z, x)-plane, the projectile remains in this
plane because the applied forces have no component out of this plane. We may show
the position vector of the projectile as

r = xı̂ + zk̂ (2.330)

The x-component of r can be found by the dot product of (2.309) and ı̂:

x = r · ı̂ = m

c
(v0 − v) · ı̂ (2.331)
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Because v → − (mg/c) k̂ as t → ∞, we have

xM = lim
t→∞ x = m

c
v0 · ı̂ (2.332)

which indicates there is a limiting horizontal range.

Example 141 � Kinematic Characteristics of a Projectile in Air Consider a pro-
jectile that is thrown in the xz-plane with speed v0 at an angle θ with respect to the
x-axis. The initial velocity of the projectile is given by Equation (2.320):

v = v0 cos θ ı̂ + v0 sin θ k̂ (2.333)

The height time tH and the maximum height of the projectile H are given in
Equations (2.315) and (2.316), respectively, which after substituting for v0 are

tH = m

c
ln

(
1 + cv0

mg
sin θ

)
(2.334)

H = −m2

c2
g

(
ln

(
1 + cv0

mg
sin θ

)
− cv0 sin θ

)
(2.335)

and H and tH may be combined as

H = −m

c
g (tH − mv0 sin θ) (2.336)

Figure 2.22 illustrates the behavior of tH and H for different values of the air friction
coefficients c. In the no-air condition,

tH = 1

g
v0 sin θ (2.337)

H = 1

2g
v2

0 sin2 θ (2.338)

where H is maximum when c is minimum and θ = 90 deg.
The range time tR is the solution of(

v0 sin θ + m

c
g
) (

1 − e−ctR/m
) − gtR = 0 (2.339)

The solution is not achievable by elementary mathematical functions. However, it is
possible to solve the equation numerically and plot the result to have a visual sense of
the solution. The range of the projectile is given as

R = r · ı̂ = m

c

(
1 − e−ctR/m

)
v0 cos θ (2.340)
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θ = 30 [deg]

m = 1 [kg]

v0 = 10 [m/s]

c

tH

1.2

1

0.8

0.6

0.4

0.5

0.45

0.35

0.25

0.4

0.3

0.2

2 4 6 8 10

H

H

tH

Figure 2.22 The height time tH and the maximum height H of a projectile in air.

Figure 2.23 illustrates the range time tR and the range of the projectile R as a
function of c. In the no-air condition, tR and R reduce to

tR = 2

g
v0 sin θ (2.341)

R = 1

g
v2

0 sin 2θ (2.342)

θ = 30 [deg]

m = 1 [kg]

v0 = 10 [m/s]

c

tR

R

8

1

0.9

0.8

0.7

0 2 4 6 8 10

7

6

5

4

3

2

1

R

tR

Figure 2.23 The range time tR and the range R of a projectile in air.

The optimal angle is the shooting angle that maximizes the range R. Figure 2.24
depicts the value of optimal angle for different air friction coefficients c. At the no-air
condition, θ = 45 deg is optimal; however, the optimal angle decreases by increasing c.
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θ[deg]

m = 1 [kg]

v0 = 10 [m/s]

c

46

44

42

40

38

36

34

32

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 2.24 The optimal angle θ to maximize the range R.

To determine the optimal angle to maximize the range R approximately, let us
expand Equations (2.339) and (2.340) as

−g +
(

c

m
− 1

2

c2

m2
tR

)(
v0 sin θ + 1

c
gm

)
+ O(t2

R) = 0 (2.343)

and
R = v0tR cos θ + O

(
t2
R

)
(2.344)

respectively, and solve (2.343) for tR:

tR = 2mv0
sin θ

gm + cv0 sin θ
(2.345)

So, the range R is approximately equal to

R = mv2
0

sin 2θ

gm + cv0 sin θ
(2.346)

Taking the derivative

d

dθ
R = cmv3

0 sin 3θ + 4gm2v2
0 cos 2θ − 3cmv3

0 sin θ

c2v2
0 + 2g2m2 − c2v2

0 cos 2θ + 4cgmv0 sin θ
(2.347)

shows that the maximum range happens if the projectile is shot at an angle θ that is
the root of

−3cv0 sin θ + 4gm cos 2θ + cv0 sin 3θ = 0 (2.348)

Figure 2.25 illustrates the required shooting angle θ to maximize the range R for
different values of the air friction coefficient c, based on Equation (2.348). By increasing
the air resistance c, we must decrease θ to achieve a maximum range.
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θ[deg]

0 2

25

30

35

40

45

4 6 8 10

m = 1 [kg]

v0 = 10 [m/s]

c

Figure 2.25 The approximate optimal angle θ to maximize the range R.

Expanding Equations (2.339) and (2.340) to a higher degree provides a better
approximation.

Example 142 � Air Resistance with vn Let z denote the upward distance from a
point at which a particle P with mass m = 1 is projected upward with speed v:

v = dz

dt
(2.349)

There is a resistance force proportional to vn. If the ground is assumed flat with a
uniform gravitational attraction, then the equation of motion of the point is

dv

dt
= −g − kvn (2.350)

To calculate v(t), we may integrate from

dv

−g − kvn
= dt (2.351)

and to calculate the height z, we can rewrite the equation of motion as

v
dv

dz
= −g − kvn (2.352)

and integrate from
v dv

−g − kvn
= dz (2.353)

If the initial conditions are

z(0) = 0 v(0) = v0 (2.354)
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and n = 1, then we have∫ v

v0

dv

−g − kv
= t (2.355)

v = −g

k
+ g

k

(
1 + k

g
v0e

−kt

)
(2.356)

and

z =
∫ v

v0

v dv

−g − kv
= −v − v0

k
+ g

k2
ln

g + kv

g + kv0

= − g

k2

(
ln

g + kv0

g + kv0e−kt
− k

g
v0

(
1 − e−kt

))
(2.357)

If n = 2, then ∫ v

v0

dv

−g − kv2
= t (2.358)

v = −
√

g

k
tan

(√
gkt − tan−1

√
k

g
v0

)
(2.359)

z =
∫ v

v0

v dv

−g − kv
=

√
1

k

(
e−2kz − g

k

)
(2.360)

Example 143 Force Proportional to Velocity Assume that the applied force F on a
particle is proportional to v,

F = kv (2.361)

where k is a constant. Therefore, the equation of motion

F = ma = kv (2.362)

simplifies to
d2r

dt2 = k

m

dr
dt

(2.363)

Integrating (2.363) shows that

dr
dt

− k

m
r = c1 (2.364)

where c1 is a constant vector. This is a first-order differential equation with the solution

r = c2e
(k/m)t − m

k
c1 (2.365)

where c2 is another constant vector. The path of motion (2.365) shows that, when the
applied force is proportional to velocity, the particle will move in a straight line.
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2.4 SPATIAL AND TEMPORAL INTEGRALS

Integration of the equation of motion is not possible in the general case; however, there
are two general integrals of motion: time and space integrals. The space integral of
motion generates the principle of work and energy, and the time integral of motion
generates the principle of impulse and momentum.

2.4.1 Spatial Integral: Work and Energy

The Spatial integral of the Newton equation of motion,∫ 2

1

GF · dr = m

∫ 2

1

Ga · dr (2.366)

reduces to the principle of work and energy ,

1W2 = K2 − K1 (2.367)

where K is the kinetic energy ,
K = 1

2m Gv2 (2.368)

and 1W2 is the work done by the force during the displacement r2 − r1:

1W2 =
∫ 2

1

GF · dr (2.369)

If there is a scalar potential field function V = V (x, y, z) such that

F = −∇V = −dV

dr
= −

(
∂V

∂x
ı̂ + ∂V

∂y
̂ + ∂V

∂z
k̂

)
(2.370)

then the principle of work and energy (2.367) simplifies to the principle of conservation
of energy :

K1 + V1 = K2 + V2 (2.371)

Proof : We can simplify the right-hand side of the spatial integral (2.366) by a change
of variable: ∫ r2

r1

GF · dr = m

∫ r2

r1

Ga · dr = m

∫ t2

t1

dv
dt

· v dt

= m

∫ v2

v1

v · dv = 1

2
m

(
v2

2 − v2
1

)
(2.372)

The kinetic energy of a point P with mass m that is at a position pointed by Gr and
having a velocity Gv is defined by (2.368), and the work done by the applied force GF
on m in going from point r1 to r2 is defined by (2.369). Hence the spatial integral of
the equation of motion (2.366) reduces to the principle of work and energy (2.367),

1W2 = K2 − K1 (2.373)

which says that the work 1W2 done by the applied force GF on m during the displace-
ment r2 − r1 is equal to the difference of the kinetic energy of m.
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If the force F is the gradient of a potential function V,

F = −∇V (2.374)

then F · dr in Equation (2.369) is an exact differential, and hence∫ 2

1

GF · dr =
∫ 2

1
dV = − (V2 − V1) (2.375)

E = K1 + V1 = K2 + V2 (2.376)

In this case the work done by the force is independent of the path of motion between
r1 and r2 and depends only upon the value of the potential V at the start and end points
of the path. The function V is called the potential energy , Equation (2.371) is called
the principle of conservation of energy , and the force F = −∇V is called a potential
or a conservative force. The kinetic plus potential energy of the dynamic system is
called the mechanical energy of the system and is shown by E = K + V , where E is
a constant of motion if all of the applied forces are conservative.

A force F is conservative only if it is the gradient of a stationary scalar function.
The components of a conservative force will only be functions of space coordinates:

F = Fx (x, y, z) ı̂ + Fy (x, y, z) ̂ + Fz (x, y, z) k̂ (2.377)

�

Example 144 Motion on a Planar Curve If the mechanical energy E of a particle is
constant, then Ė = 0 would give the equation of motion:

E = K(x, ẋ, t) + V (x) = const (2.378)

Ė = ∂K

∂x
ẋ + ∂K

∂ẋ
ẍ + ∂K

∂t
+ ∂V

∂x
= 0 (2.379)

Consider a point mass m that slides frictionless on a given curve in the vertical
plane (x, z), as is shown in Figure 2.26:

z = f (x) (2.380)

The kinetic and potential energies of m are

K = 1

2
mv2 = 1

2
m

(
ẋ2 + ż2) = 1

2
mẋ2

(
1 +

(
df

dx

)2
)

(2.381)

V = mgz = mgf (2.382)

The mechanical energy of m is constant,

E = K + V = 1

2
mẋ2

(
1 +

(
df

dx

)2
)

+ mgf = const (2.383)
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z=f(x)

g

f(x)

x

Figure 2.26 A point mass m that slides frictionless on a given curve in the vertical plane (x, z).

and therefore its equation of motion is

Ė = mẋẍ

(
1 +

(
df

dx

)2
)

+ mẋ3 df

dx

d2f

dx 2
+ mgẋ

df

dx
= 0 (2.384)

or, after simplification,

ẍ

(
1 +

(
df

dx

)2
)

+ ẋ2 df

dx

d2f

dx 2
+ g

df

dx
= 0 (2.385)

As an example, let us try a slope

z = kx (2.386)

Then
df

dx
= k

d2f

dx 2
= 0 (2.387)

and therefore the equation of motion is

ẍ = −g
k

1 + k2
(2.388)

It is the equation of a free fall under a reduced gravitational acceleration −kg/(1 + k2).

Example 145 A Falling Object on a Spring An object with mass m falls from a height
h on a linear spring with stiffness k, as is shown in Figure 2.27. We can determine the
maximum compression of the spring using the work–energy principle.

The gravity force mg and the spring force −kx are the acting forces on m. If xM

is the maximum compression of the spring, then K2 = K1 = 0 and we have

1W2 = mg(h + xM) −
∫ xM

0
kx dx = 0 (2.389)

xM = mg

k
+

√(mg

k

)2 + 2mgh

k
(2.390)
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h

m

k
x

Figure 2.27 A falling object on a spring.

If we put m on the spring, it will deflect statically to

x0 = mg

k
(2.391)

So we may compare xM to x0 and write xM as

xM = x0

(
1 +

√
1 + 2h

x0

)
(2.392)

Consider

h = 1 m m = 1 kg k = 1000 N/m (2.393)

Then if g = 9.81 m/s2, we have

x0 = mg

k
= 9.81

1000
= 0.00981 m = 9.81 mm (2.394)

xM = x0

(
1 +

√
1 + 2h

x0

)
= 0.15022 m = 150.22 mm (2.395)

However, if this experiment is performed on the moon surface, then g = 1.6 m/s2, and
we have

x0 = mg

k
= 1.6

1000
= 0.0016 m = 1.6 mm (2.396)

xM = x0

(
1 +

√
1 + 2h

x0

)
= 0.058191 m = 58.191 mm (2.397)
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It is theoretically possible to measure g based on such an experiment:

g = 2hk

m
[
(xM/x0 − 1)2 − 1

] (2.398)

The mass of the spring and friction are the main sources of error.

Example 146 Variable Potential Energy Figure 2.28 illustrates a uniform rope with
mass m and length l lying on a frictionless table with height H . As soon as a short
length of the rope hangs over, the rope starts falling.

H

x

Figure 2.28 A uniform rope with mass m and length l lying on a frictionless table.

To determine the velocity of the rope when its tail leaves the table, we use the
energy conservation principle. All particles of the rope are moving together with veloc-
ity v, so the kinetic energy of the rope is

K = 1
2 mv 2 (2.399)

However, the potential energy of the rope belongs to the hanging length x:

V = −m

l
gx

x

2
(2.400)

Therefore, the energy conservation applies in the form

E = K + V = 1

2
mv2 − 1

2

m

l
gx 2 = 0 (2.401)

which provides the speed of the rope as a function of x:

v =
√

g

l
x 0 ≤ x ≤ l (2.402)

The speed of the rope when x = l is

v0 =
√

gl x = l (2.403)

and is independent of the rope’s length density.
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In the case H > l, the rope will have a free fall for a distance h = H − l and its
head will touch the ground at speed v1, which can be found from the work–energy
principle:

0W1 = K2 − K1 (2.404)

mgh = 1
2mv2

1 − 1
2mv2

0 (2.405)

v1 =
√

v2
0 + 2gh h = H − l (2.406)

In the case H < l, the rope’s head will touch the ground before its tail leaves the
table. If h = l − H , then the rope’s head will touch the ground at speed v2:

v2 =
√

g

l
h h = l − H (2.407)

Example 147 Work of a Planar Force on a Planar Curve Consider a planar force F,

F = 2xyı̂ + 3x2̂ N (2.408)

that moves a mass m on a planar curve

y = x2 (2.409)

from (0, 0) to (3, 1) m.
Using

dy = 2x dx (2.410)

we can calculate the work done by the force:

1W2 =
∫ P2

P1

GF · dr =
∫ (3,1)

(0,0)

(
2xy dx + 3x2 dy

)
=

∫ 3

0

(
2x3 dx + 6x3 dx

) =
∫ 3

0
8x3 dx = 162 Nm (2.411)

Example 148 Work in a Nonpotential Force Field Consider a force field F,

F = 2xyı̂ + 3x3̂ + zk̂ N (2.412)

The work done by the force when it moves from P1(0, 0, 0) to P2(1, 3, 5) m on a line

x = t

y = �y

�x
(x − x1) = 3t (2.413)

z = �z

�x
(x − x1) = 5t
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is

1W2 =
∫ P2

P1

GF · dr =
∫ P2

P1

GF · dr
dt

dt

=
∫ P2

P1

2xy

3x3

z

 ·
dx

dy

dz

 =
∫ 1

0

2xy

3x3

z

 ·
 dt

3 dt
5 dt


=

∫ 1

0

(
5z + 2xy + 9x3) dt

=
∫ 1

0

(
25t + 6t2 + 9t3) dt = 16.75 Nm (2.414)

Let us change the path from a straight line to a curve,

x = t y = 3t2 z = 5t3 (2.415)

and calculate the work 1W2 again:

1W2 =
∫ P2

P1

GF · dr =
∫ 1

0

2xy
3x3

z

 ·
 dt

6t dt
15t2 dt


=

∫ 1

0

(
18tx3 + 15t2z + 2xy

)
dt

=
∫ 1

0

(
75t5 + 18t4 + 6t3) dt = 17.6 Nm (2.416)

Because 1W2 depends on the path between P1 and P2, the force field (2.412) is not a
potential field.

Example 149 Work in a Potential Force Field Consider a force field F,

F = 2xyı̂ + x2̂ + 2zk̂ N (2.417)

The work done by the force when it moves from P1(0, 0, 0) to P2(1, 3, 5) m on a line

x = t y = 3t z = 5t (2.418)

is

1W2 =
∫ P2

P1

GF · dr =
∫ 1

0

(
10z + 2xy + 3x2) dt

=
∫ 1

0

(
50t + 6t2 + 3t2) dt = 28 Nm (2.419)

We may change the path from a straight line to a curve,

x = t y = 3t2 z = 5t3 (2.420)
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and calculate the work 1W2 again:

1W2 =
∫ P2

P1

GF · dr =
∫ 1

0

2xy

x2

2z

 ·

 dt

6 t dt

15t2 dt


=

∫ 1

0
2
(
3tx 2 + 15t2z + xy

)
dt

= 2
∫ 1

0

(
75t5 + 6t3) dt = 28 Nm (2.421)

Because 1W2 is independent of the path from P1 to P2, the force field (2.417) might
be a potential field. To check, we may calculate the curl of the field:

∇ × F =
∂/∂x

∂/∂y

∂/∂z

 ×
2xy

x2

2z

 =
0

0
0

 (2.422)

So, the force field is a potential.

Example 150 Moving Electric Charge in an Electromagnetic Field To move an
electric charge e with velocity v in a magnetic field H, we need to provide a force FH ,

FH = e

c
(v × H) (2.423)

where c is the speed of light. A force FE will be applied on e when it is in an electric
field E:

FE = eE (2.424)

Hence, the total force on an electric charge e that is moving with velocity v in an
electromagnetic field E and H is

F = eE + e

c
(v × H) (2.425)

If the charge moves an incremental distance dr in time dt , then the work dW done by
the force is

dW = F · dr = F · dr
dt

dt = F · v dt

=
(
eE + e

c
(v × H)

)
· v dt = eE · v dt (2.426)

which shows that the work done by the electromagnetic field is only due to the electric
field. We can calculate the rate of work as

P = dW

dt
= eE · v (2.427)

to determine the required power to move e at velocity v.
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Example 151 Central-Force Motion Consider two particles with masses m1 and m2

that interact according to Newton’s law of gravitation. The equation of motion of the
mass m1 with respect to m2 is

m1
d2r

dt2
= −G

m1m2

r3
r (2.428)

The vector product L = r × dr/dt is an integral of this motion.
To show this, we cross multiply r by the equation of motion,

r × m1
d2r

dt2
= −G

m1m2

r3
r × r (2.429)

and find

r × d2r

dt2
= 0 (2.430)

because r × r = 0. Therefore,

d

dt

(
r × dr

dt

)
= r × d2r

dt2
+ dr

dt
× dr

dt
= 0 (2.431)

which reduces to
r × dr

dt
= L (2.432)

where L is a constant vector.
During the time interval dt , the position vector r sweeps an area dA,

dA

dt
= 1

2

∣∣∣∣r × dr
dt

∣∣∣∣ = 1

2
|L| (2.433)

so the magnitude of the integral of motion L is twice the rate of the swept area by the
position vector. Therefore, the position vector r will sweep equal areas in every time
interval independent of the initial position for measurement.

Example 152 Curl of a Potential Force Is Zero: ∇ × F = 0 If V (x, y, z) is a
potential energy function with continuous first and second partial derivatives in a given
region, then

− ∂2V

∂y ∂x
= Fx

∂y
= Fy

∂x

− ∂2V

∂z ∂y
= Fy

∂z
= Fz

∂y
(2.434)

− ∂2V

∂x ∂z
= Fz

∂x
= Fx

∂z

To have a function V (x, y, z) such that

F = Fx (x, y, z) ı̂ + Fy (x, y, z) ̂ + Fz (x, y, z) k̂ (2.435)
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we must have
Fx

∂y
− Fy

∂x
= 0

Fy

∂z
− Fz

∂y
= 0

Fz

∂x
− Fx

∂z
= 0 (2.436)

These are both necessary and sufficient conditions for the existence of the function
V (x, y, z). These conditions may be equivalently expressed by a vector equation:

curlF = ∇ × F = 0 (2.437)

Example 153 Tests for a Conservative Force There are four equivalent tests to
determine if a force F is conservative.

1. The force is the gradient of a potential function:

F = −∇V (2.438)

2. The curl of the force is zero:

curlF = ∇ × F = 0 (2.439)

3. The work of the force on every closed path is zero:

1W1 =
∫ P1

P1

GF · dr =
∮

GF · dr = 0 (2.440)

4. The work of the force between two points is not path dependent:

1W2 =
∫ 2

1

GF · dr =
∫ 2

1
dV = − (V2 − V1) (2.441)

Example 154 Kinetic Energy of a System of Particles Consider n particles with
masses mi , i = 1, 2, 3, . . . , n, that are moving with velocities vi = ṙi . The kinetic
energy of these particles is

K = 1

2

n∑
i=1

mivi · vi = 1

2

n∑
i=1

miv
2
i (2.442)

However, the position vector ri of the mi can be expressed by adding r′
i to the position

vector of the mass center rC :

ri = rC + r′
i

n∑
i=1

r′
i = 0 (2.443)

Therefore, the kinetic energy of the system is

K = 1

2

n∑
i=1

mi

(
ṙC + ṙ′

i

) · (ṙC + ṙ′
i

)
= 1

2

n∑
i=1

mi (ṙC · ṙC) + 1

2

n∑
i=1

mi

(
ṙC · ṙ′

i

)
(2.444)
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The first term is the kinetic energy of an equivalent mass m = ∑n
i=1 mi at the mass

center, and the second term is the kinetic energy of particles in their relative motion
about the mass center.

Example 155 Work on a System of Particles Consider n particles mi , i = 1, 2, 3,

. . . , n. The force acting on each particle mi is the external force Fi plus the resultant
of the internal force

∑n
j=1 fij from the particles mj , j = 1, 2, 3, . . . , n.

When the particles mi have a displacement dri , the work done on it by the external
force is

dW i = Fi · dri (2.445)

Employing the motion equation of the particles mi ,

mi r̈i = Fi +
n∑

j=1

fij (2.446)

we can determine the differential work done on the system as

dW =
n∑

i=1

mi r̈i · dri −
n∑

i=1

n∑
j=1

fij · dri (2.447)

We can simplify this equation and develop the work–energy principle of a system of
particles. Using the equation

dri = ṙi dt (2.448)

we rewrite the first term as the differential of kinetic energy:

d

dt

(
1

2

n∑
i=1

mi ṙ2
i

)
= dK (2.449)

The second term of (2.447) can be written as

n∑
i=1

n∑
j=1

fij · dri = 1

2

n∑
i=1

n∑
j=1

fij · (dri − drj

)
= 1

2

n∑
i=1

n∑
j=1

fij · drij (2.450)

drij = dri − drj (2.451)

Assuming that the internal forces are potential, this is the internal potential energy of
the system and we may show it by dV i :

dV i = 1

2

n∑
i=1

n∑
j=1

fij · drij (2.452)
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Therefore,
dW = dK + dV i (2.453)

and if the external forces are also conservative, then

dW = −dVe (2.454)

∇Ve = −F (2.455)

where Ve is the external potential energy.
Using these results, we may write Equation (2.447) as

dT + dV e + dV i = 0 (2.456)

or
T + Ve + Vi = const (2.457)

This is the law of conservation of energy for the system of particles.
The differential of the internal potential of a rigid body is zero,

dV i = 0 (2.458)

because the particles are relatively fixed. Therefore, the principle of conservation of
energy for a rigid body is similar to that of a particle (2.371):

K1 + V1 = K2 + V2 (2.459)

2.4.2 Temporal Integral: Impulse and Momentum

The temporal integral of the Newton equation of motion∫ 2

1

GF dt = m

∫ 2

1

Ga dt (2.460)

reduces to the principle of impulse and momentum

1I2 = p2 − p1 (2.461)

where p is called the momentum ,
p = 1

2m Gv (2.462)

and 1I2 is the impulse of the force during the time interval t2 − t1:

1I2 =
∫ 2

1

GF dt (2.463)

If there is no external force
F = 0 (2.464)

then the principle of impulse and momentum (2.461) simplifies to the principle of
conservation of momentum:

p1 = p2 (2.465)
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In the case of Euler equation of motion (2.59), we will have the principle of angular
impulse and moment of momentum ,

1H2 = L2 − L1 (2.466)

and the principle of conservation of moment of momentum ,

L1 = L2 (2.467)

Proof : We can simplify the right-hand side of the temporal integral (2.460) by a change
of variable: ∫ t2

t1

GF dt = m

∫ t2

t1

Ga dt = m

∫ t2

t1

dv
dt

dt

= m

∫ v2

v1

dv = 1

2
m(v2 − v1) (2.468)

The momentum of a point P with mass m at a position pointed to by Gr and having
a velocity Gv is defined by (2.462), and the impulse of the applied force GF on m

from time t1 to t2 is defined by (2.463). Hence the temporal integral of the equation of
motion (2.460) reduces to the principle of impulse and momentum (2.461),

1I2 = p2 − p1 (2.469)

which says that the impulse 1I2 of the applied force GF on m during the time interval
t2 − t1 is equal to the difference of the momentum of m.

The temporal integral of the moment equation (2.460),∫ t2

t1

Gr × GF dt =
∫ t2

t1

(
r × d

dt
p
)

dt (2.470)

provides the principle of angular impulse and moment of momentum. The left-hand
side is the time integral of moment M of a force F and is shown by the angular
impulse H: ∫ t2

t1

Gr × GF dt =
∫ t2

t1

GM dt = 1H2 (2.471)

The right-hand side of (2.470) is the moment of impulse I and is shown by the angular
momentum L:∫ t2

t1

(
r × d

dt
p
)

dt =
∫ t2

t1

d

dt
(r × p) dt =

∫ L2

L1

dL = L2 − L1 (2.472)

�

Example 156 Rectilinear Elastic Collision Consider two particles with masses m1

and m2 that are moving on the same axis with speeds v1 and v2 < v1, as is shown in
Figure 2.29(a). The faster particle hits the slower one, and because of collision, their
speed will change to v′

1 and v′
2 >v′

1, as is shown in Figure 2.29(b).
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(a)

m1 m2v1

(b)

v2
m1 m2v′1 v′2

Figure 2.29 Velocity of two particles will change because of collision.

If there is no external force on the particles, the internal force F during the collision
would be the only force that affects their motion. The equations of motion of the
particles are

m1ẍ1 = F (2.473)

m2ẍ2 = −F (2.474)

Adding these equations yields
m1ẍ1 + m2ẍ2 = 0 (2.475)

which shows that the total momentum of the particles is conserved:

m1v1 + m2v2 = p (2.476)

Therefore, p remains the same before and after the collision:

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (2.477)

If the force F is a function of only the relative distance of the particles,

F = F(x) (2.478)

x = x1 − x2 (2.479)

then there exists a potential energy function V = V (x). The spatial integral of
Equation (2.475) in this case indicates that the energy of the particles is conserved
too:

K + V = E (2.480)

Let us consider the potential energy function to be zero when the particles are far from
each other. So, V is zero before and after the collision, and therefore, the kinetic energy
of the particles is conserved:

1
2m1v

2
1 + 1

2m2v
2
2 = 1

2m1v
′2
1 + 1

2m2v
′2
2 (2.481)

Collision of this type, in which there is no loss in kinetic energy, is called the elastic
collision. It is applied when the particles are hard, such as billiard ball impact.

To determine the velocity of the particles after impact, we may write the momentum
and energy conservation equations as

m1v
′
1 − m1v1 = m2v2 − m2v

′
2 (2.482)

m1v
′2
1 − m1v

2
1 = m2v

2
2 − m2v

′2
2 (2.483)

and find
v′

2 − v′
1 = v1 − v2 (2.484)
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This equation along with (2.482) can be used to determine the final velocities in terms
of the initial velocities:

v′
1 = m1 − m2

m1 + m2
v1 + 2m2

m1 + m2
v2 (2.485)

v′
2 = 2m1

m1 + m2
v1 − m1 − m2

m1 + m2
v2 (2.486)

The conditions v2 = 0 and m1 = m2 may be viewed as special applied cases:

1. Special case v2 = 0. When v2 = 0, the final velocities (2.485) and (2.486)
simplify to

v′
1 = m1 − m2

m1 + m2
v1 (2.487)

v′
2 = 2m1

m1 + m2
v1 (2.488)

We may use these equations for an acceptable estimate in different applications. In
most applications with v2 = 0, we are interested in the final speed of the stationary
particle v′

2. To have a simpler equation, let us define a mass ratio

ε = m1

m2
(2.489)

and write Equation (2.488) as

v′
2 = 2ε

ε + 1
v1 (2.490)

As an example consider a football player who kicks a stationary ball, as is shown
in Figure 2.30. The weight of the ball at the start of the game should not be more than
0.45 kg or less than 0.41 kg. It must be 69 cm ≈ 27 in. to 71 cm ≈ 28 in. in circumfer-
ence. A soccer ball of mass 0.43 kg may leave the foot of the very good kicker with
an initial speed of 40 m/s. If we assume that the mass of the player is 85 kg and each
leg is 10% of the total mass of the body, then

ε = m1

m2
= 0.10 × 85

0.43
= 19.767 (2.491)

Therefore, the player must kick the ball with at least v1 ≈ 21 m/s:

v1 = ε + 1

2ε
v′

2 = 1 + 19.767

2 × 19.767
× 40 = 21.012 m/s (2.492)

There are some sources of error. Kicking a soccer ball is not an elastic collision, energy
is not conserved during the kicking, and a leg cannot be assumed as a particle.

As a better example of elastic collision, we examine the billiard game. There are 15
balls and 1 cue ball in billiard. The cue ball is used to hit the balls into the six pockets
around the billiard table. On average, the balls are 2.25 in. ≈ 571.5 mm in diameter and
all the balls weigh 5.5 oz ≈ 0.16 kg except for the cue, which weighs 6 oz ≈ 0.17 kg.
First we hit the cue ball with the cue stick, which has a mass of about 20 oz ≈ 0.6 kg.
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m1

m2

Figure 2.30 A football player kicks a ball.

If the speed of the cue stick reaches 10 m/s, right before the hit, the cue ball will move
with v′

2 ≈ 15 m/s:

v′
2 = 2ε

ε + 1
v1 = 15.385 m/s (2.493)

ε = m1

m2
= 20

6
= 3.3333 (2.494)

The cue ball may shoot a billiard ball with a maximum speed v′
2′ ≈ 16 m/s; if it collides

with a ball instantly,

v′
2 = 2ε

ε + 1
v1 = 16.364 m/s (2.495)

ε = m1

m2
= 6

5
= 1.2 (2.496)

2. Special case m1 = m2. If m1 = m2, then the final velocities (2.485) and (2.486)
reduce to

v′
1 = v2 (2.497)

v′
2 = v1 (2.498)

and the particles trade their speeds.

To examine the effect of the mass ratio in particle collision, let us use ε and write
Equations (2.485) and (2.486) as

v′
1 = ε − 1

ε + 1
v1 + 2

ε + 1
v2 (2.499)

v′
2 = 2ε

ε + 1
v1 − ε − 1

ε + 1
v2 (2.500)
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If ε → 0 and we hit a very massive particle m2 with a very light particle m1, then

v′
1 = lim

ε→0

(
ε − 1

ε + 1
v1 + 2

ε + 1
v2

)
= −v1 + 2v2 (2.501)

v′
2 = lim

ε→0

(
2ε

ε + 1
v1 − ε − 1

ε + 1
v2

)
= v2 (2.502)

The heavy particle m2 will not change its speed, while the light particle m1 will rebound
with its initial speed minus double of the speed of m2. In the case of v2 = 0, the heavy
particle will not move, and the light particle will rebound with its initial speed. It
happens when we kick a ball and hit a wall.

If ε → ∞ and we hit a very light particle m2 with a very massive particle m1,
then

v′
1 = lim

ε→∞

(
ε − 1

ε + 1
v1 + 2

ε + 1
v2

)
= v1 (2.503)

v′
2 = lim

ε→∞

(
2ε

ε + 1
v1 − ε − 1

ε + 1
v2

)
= 2v1 − v2 (2.504)

The heavy particle m1 will not change its speed, while the light particle m2 will move
with double the speed of m1 minus its own speed. In the case v2 = 0, the heavy particle
continues its motion uniformly, and the light particle will gain double the speed of the
heavy particle. It happens when we hit a ball with our car.

Example 157 Rectilinear Inelastic Collision In reality, there is always some loss of
energy in a collision in the form of heat. This is because the internal force F during
the collision is a function of the relative distance and velocity of the particles:

F = F(x, ẋ) (2.505)

x = x1 − x2 (2.506)

ẋ = ẋ1 − ẋ2 (2.507)

So, there is no potential energy function V and the energy of the particles is not
conserved. Therefore,

1
2m1v

2
1 + 1

2m2v
2
2 �= 1

2m1v
′2
1 + 1

2m2v
′2
2 (2.508)

However, if there is no external force, we still may add the equation of motion of the
particles,

m1ẍ1 = F (2.509)

m2ẍ2 = −F (2.510)

and show that the momentum of the particles is conserved,

m1v1 + m2v2 = m1v
′
1 + m2v

′
2 (2.511)
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Collision of this type, in which the kinetic energy is not conserved, is called
inelastic collision. To analyze inelastic collisions, we define a restitution coefficient e

by
v′

2 − v′
1 = e (v1 − v2) (2.512)

0 ≤ e ≤ 1 (2.513)

This equation along with the momentum equation (2.511) can be used to determine the
final velocities in terms of the initial velocities:

v′
1 = m1 − em2

m1 + m2
v1 + m2 (1 + e)

m1 + m2
v2 (2.514)

v′
2 = m1 (1 + e)

m1 + m2
v1 − em1 − m2

m1 + m2
v2 (2.515)

The case e = 1 indicates an elastic collision and simplifies Equations (2.514) and
(2.515) to (2.485) and (2.486). The case e = 0 is called the plastic collision for which
we have

v′
1 = v′

2 = m1

m1 + m2
v1 + m2

m1 + m2
v2 (2.516)

In a plastic collision, m1 and m2 will stick together and move with the same speed.

Example 158 Bouncing Ball Consider a ball falls from a height h0 and hits the
ground with restitution coefficient e. It hits the ground with velocity v0 = √

2gh0 at
time t0 = √

2h0/g. The rebound velocity of the ball would be v1 = ev0, which makes
the ball to rise to a height h1 = e2h0 at time t1 = et0. Then, for a second time, it will
fall and bounce again, this time to a lesser height h2 = e2h1 at time t2 = et0. This fall
and bounce will continually happen and never stop.

The total distance traveled by the ball is

x = h0 + 2h1 + 2h2 + · · · = −h0 + 2h0
(
1 + e2 + e4 + · · ·) (2.517)

and the time taken is

t = t0 + 2t1 + 2t2 + · · · = −t0 + 2t0
(
1 + e + e2 + · · ·) (2.518)

Recalling that the sum Sn of the first n terms of a geometric series

Sn = a + ar + ar2 + ar3 + ar4 + · · · + arn−1 (r �= 1) (2.519)

is given by

Sn = a
1 − rn

1 − r
(r �= 1) (2.520)

lim
n→∞ Sn = a

1 − r
(r < 1) (2.521)
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we find the total distance x and time t as

x = −h0 + 2h0
1

1 − e2
= h0

1 + e2

1 − e2
(2.522)

t = −t0 + 2t0
1

1 − e
= t0

1 + e

1 − e
(2.523)

As an example, assume

h0 = 1 m e = 0.8 g = 9.81 m/s2 (2.524)

Then the ball comes to rest after an infinite number of bounces, when it travels a
distance x at time t :

x = h0
1 + e2

1 − e2
= 1 + 0.82

1 − 0.82
= 4.5556 m (2.525)

t = t0
1 + e

1 − e
=

√
2h0

g

1 + e

1 − e
= 4.0637 s (2.526)

Example 159 Rocket Motion The principle of impulse and momentum is the best
method to derive the equation of motion of a variable-mass object such as a rockets.

Consider a rocket with mass m that is moving in free space at velocity v under no
external force, as is shown in Figure 2.31. During the time interval dt , a positive mass
dm is ejected from the rocket with a velocity −vm with respect to the rocket in the
B-frame or the absolute velocity v − vm in the G-frame. After dm is left, the rocket
has a mass m − dm and a velocity v + dv. Therefore, the initial and final momenta in
the global coordinate frame are

p1 = mv (2.527)

p2 = (m − dm) (v + dv) + dm (v − vm) (2.528)

vdmvm

BG

m(t)FF

X

x

Y
y

Figure 2.31 A variable mass rocket.
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Because there is no external force or the impulse of the external force is zero
during dt , we must have

p1 = p2 (2.529)

and therefore,
mdv = dm vm (2.530)

This equation may be used to determine the trust of the rocket F that is equal to the
mass rate of fuel consumption ṁ times the ejection velocity of the burnt gas vm:

F = ma = ṁ vm (2.531)

We may assume an average density ρ for the exhaust gas and substitute ṁ with ρAvm

to have
F = ma = ρAv2

m (2.532)

Example 160 Final Velocity of a Rocket The dynamics of a variable-mass object
such as a rocket obeys Equation (2.530). If the initial mass and velocity of the rocket
are m0 and v0, and also the relative velocity vm of the ejecting mass dm is assumed
to be constant, then we may integrate Equation (2.530) to determine the instantaneous
velocity v of the rocket by having its mass m:∫ v

v0

dv = vm

∫ m

m0

dm

m
(2.533)

v = v0 + vm ln
m0

m
(2.534)

Having the final mass of the rocket as mf = m0 − mf u when there remains no more
fuel, the final velocity of the rocket would be

vf = v0 + vm ln
m0

mf

= v0 + vm ln
m0

m0 − mf u

= v0 + vm ln
1

1 − f
(2.535)

f = mf u

m0
(2.536)

If the rocket starts from rest, its final velocity vf = vm ln(m0/mf ) can be higher than
the exhaust velocity vm if m0/mf > e (= 2.718 3). To maximize the final velocity,
we should maximize the exhaust velocity vm and the ratio f = mf u/m0. Practically,
f = 0.99 is a desirable goal, at which the speed change �v = vf − v0 will be

�vMax = vf − v0 = vm ln
1

1 − 0.99
= 4.6052vm (2.537)

Assuming vm = 10,000 m/s we may have a rocket with maximum speed

�vMax = vf − v0 = 4.6052vm = 46,052 m/s (2.538)
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Theoretically, f = 1 is the maximum value of f at which the speed change �v =
vf − v0 approaches infinity.

The minimum mass of a rocket mf is a function of the size of the rocket and
structural material.

Example 161 � Multistage Rocket To minimize the final mass of a rocket, mf , we
may make the rocket multistage. So, we may release the useless stage after burning its
fuel. This technique increases the final velocity of the rocket, which is limited by the
ratio m0/mf .

To clarify the advantage of having a multistage rocket, let us consider a two-stage
rocket that goes on a straight line with the following mass parameters:

m0 = m1 + m2 total initial mass of the rocket
m1 = ma + mb mass of the first stage
m2 = mc + md mass of the second stage
ma mass of fuel in the first stage
mb mass of the first stage shell
mc mass of fuel in the second stage
md mass of the second stage shell

When the fuel of the first stage finishes, the rocket is at the first final velocity v1:

v1 = v0 + vm ln
m0

m2 + mb

= v0 + vm ln
1

m2/m0 + mb/m0
(2.539)

At this moment, the first stage will be released to drop the mass mb, and the second
stage ignites. Assuming the same ejection velocity vm, we reach the final velocity v2

after burning the fuel in the second stage:

v2 = v1 + vm ln
m2

md

(2.540)

Substituting (2.539) in (2.540) provides the final velocity of the rocket:

v2 = v0 + vm ln
m0m2

md (m2 + mb)
= v0 + vm ln

m0 (mc + md)

md (mc + md + mb)

= v0 + vm ln
mc/m0 + md/m0

(md/m0) (mc/m0 + md/m0 + mb/m0)
(2.541)

We can make the ratio m0m2/[md(m2 + mb)] greater than m0/(m0 − ma − mc).

Example 162 � Daytime of a Shrinking Earth Assume that the radius of Earth,
R, is decreasing by a linear function of time t . This will increase the angular speed of
Earth and, hence shortening the length of a day:

R = R0 (1 − kt) (2.542)
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There is no external moment on Earth and therefore the angular momentum of Earth,
L = LK̂ , remains constant. The angular momentum of a spherical Earth is

L0 = I0ω0 = 2
3mR2

0ω0 (2.543)

at t = 0 and
L = Iω = 2

3mR2
0 (1 − kt)2 ω (2.544)

at any other time t > 0, where I = 2
3mR2 is Earth’s mass moment of inertia. Because

L = L0, we have
ω = ω0

(1 − kt)2
(2.545)

If k is very small, this equation simplifies to

ω ≈ ω0 (1 + 2kt) (2.546)

The angular speed of such a shrinking Earth will be increasing with a constant rate:

dω

dt
≈ 2kω0 (2.547)

As an example, let us assume that the radius of Earth is shortening by a rate of

R0k = 1 m/day (2.548)

Then, knowing Earth’s information,

R0 ≈ 6.3677 × 106 m (2.549)

ω0 ≈ 2π

(
1 + 1

366

)
rad/day = 6.300352481 rad/day (2.550)

k = 1

R0
d−1 ≈ 1.570425742 × 10−7day−1 (2.551)

we can calculate the angular velocity and its rate of change:

dω

dt
≈ 2kω0 = 2

(
1.570425742 × 10−7) 6.300352481

= 1.9788471442279 × 10−6 rad/day2 (2.552)

ω ≈ ω0 + dω

dt
t

= 6.300354460 + 1.9788471442279 × 10−6t rad/day (2.553)

The angular velocity will increase by �ω = ω − ω0 each day,

�ω = ω − ω0 = 1.9788471442279 × 10−6 rad/day (2.554)

and hence each day will be shorter by about 0.027s:

�ω
24 × 3600

ω0
= 2.7137 × 10−2 s (2.555)
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Example 163 � Motion of a Particle with (dr/dt) · [
(d2r/dt2) × (d3r/dt3)

] = 0
Consider a particle where its motion is under the condition

dr
dt

·
(

d2r

dt2 × d3r

dt3

)
= 0 (2.556)

Because we can interchange the dot and cross products in a scalar triple product, the
jerk vector d3r/dt3 must be in the plane of velocity dr/dt , and acceleration d2r/dt2.
Therefore,

d3r

dt3
= c1

d2r

dt2
+ c2

dr
dt

(2.557)

where c1 and c2 are constant scalars. Integrating (2.557) yields

d2r

dt2
= c1

dr
dt

+ c2r + c3 (2.558)

where c3 is a constant vector. Solution of this equation gives

r = c3e
λ1t + c4e

λ2t − 1

c2
c3 (2.559)

where c3 and c4 are two constant vectors and λ1, λ2 are solutions of the characteristic
equation

s2 − c1s − c2 = 0 (2.560)

Solution (2.559) indicates that the motion of a particle under condition (2.556) is a
planar motion.

Example 164 � Oblique Collision Consider two particles with masses m1 and
m2 that are moving in the same plane with velocities v1 and v2, as is shown in
Figure 2.32(a). If the particles collide, their velocities will change to v′

1 and v′
2, as

is shown in Figure 2.32(b).

(a)

m1
v1

(b)

v2

m2

m1

v′1

v′2
m2

θ1

θ2

θ′1

θ′2

Impact line

Tangent line

x

y
y

x

Figure 2.32 Velocity vector of two particles will change because of oblique collision.
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At the instant of collision, we define a collision coordinate frame with the x-axis to
be tangent to the particles and the y-axis to be the line of centers. The impact happens
on the centerline. Assume the velocity vectors of the particles are given before impact.
We must be able to determine their velocity vectors after impact by employing the
temporal integral of their motions.

If there is no external force on the particles, the internal force F during the collision
would be the only force that affects their motion. The equations of motion of the
particles are

m1v̇1 = F (2.561)

m2v̇2 = −F (2.562)

Adding these equations,
m1v̇1 + m2v̇2 = 0 (2.563)

shows that the total momentum of the particles is conserved:

m1v1 + m2v2 = p (2.564)

Therefore, p remains the same before and after the collision. Let us decompose the
conservation of momentum in the collision coordinate frame:

m1v1 cos θ1 + m2v2 cos θ2 = m1v
′
1 cos θ ′

1 + m2v
′
2 cos θ ′

2 (2.565)

m1v1 sin θ1 + m2v2 sin θ2 = m1v
′
1 sin θ ′

1 + m2v
′
2 sin θ ′

2 (2.566)

The particles do not collide on the x-axis, so their individual momentum is con-
served on the tangent line. It means that Equation (2.565) is a summation of two
equations:

v1 cos θ1 = v′
1 cos θ ′

1 (2.567)

v2 cos θ2 = v′
2 cos θ ′

2 (2.568)

Another equation for the restitution coefficient e is based on the impact line:

v′
2 sin θ ′

2 − v′
1 sin θ ′

1 = e (v1 sin θ1 − v2 sin θ2) (2.569)

Equations (2.566)–(2.569) are the four equations to be solved for the four unknown
parameters after the collision.

2.5 � APPLICATION OF DYNAMICS

We learn dynamics to achieve four goals:

1. Model dynamic phenomena
2. Determine the equations of motion
3. Determine the behavior of dynamic phenomena
4. Adjust the parameters such that a phenomenon happens in a desired manner
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2.5.1 � Modeling

Modeling is the way to observe a dynamic phenomenon. Modeling is a compromising
job. It must be as simple as possible to be able to develop the equations of motion,
and it must be as complete as possible to include the effective parameters.

Example 165 � Ocean Tides Assume that Earth is a sphere, its surface is completely
covered by water, and there is no other celestial body except Earth and the moon.
Figure 2.33 illustrates the positions of Earth E and the moon M in a global coordinate
frame G. We consider the attraction of both Earth and the moon on a small mass m

placed on the surface of Earth. The position vectors of E, m, and M in G are denoted
by rE , rm, and rM . The position vectors of m and E from the moon are d and dE ,
while the position of m is shown by r from Earth’s center.

Moon

Earth

rm

m

mM

mE

X

Y

Z

r

rE

rM dE

d

G

Figure 2.33 The positions of Earth E and the moon M in a global coordinate frame G to
examine the effect of their attraction on a small mass m on the durface of Earth.

The equation of motion of m is

mr̈m = −G
mmE

r2
ûr − G

mmM

d2
ûd (2.570)

and the equation of motion of Earth due to the attraction of the moon is

mE d̈E = −G
mMmE

d2
E

ûdE
(2.571)

Subtracting these equations determines the acceleration of m with respect to Earth’s
center:

r̈ = r̈m − d̈E = −G
mE

r2
ûr − G

mM

d2
ûd + G

mM

d2
E

ûdE

= −G
mE

r2
ûr − GmM

(
ûd

d2
− ûdE

d2
E

)
(2.572)
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The first term of (2.572) is the acceleration of m because of Earth and is directed to
Earth’s center for every point on Earth’s surface. The second term is the acceleration
due to the difference in the moon’s attraction force at Earth’s center and at the surface
of Earth. The direction of ûdE

is always on the Earth–moon centerline however, the
direction of ûd depends on the position of m on Earth. The second term is called the
tidal acceleration, which generates the ocean tides.

To visualize the tidal force on different points on Earth, we look at Earth from
a polar view as shown in Figure 2.34. The local x-axis is the moon–Earth centerline
indicated by the unit vector ûdE . The tidal force FT on the small mass m on the surface
of Earth is

FT = −GmmM

(
ûd

d2
− ûdE

d2
E

)
(2.573)

Moon

Earth

mM

mE

X

Y
G

x

A

θ

B

y

C

D

B

udur

udE

Figure 2.34 Earth–moon model from a polar axis view.

Point A in the figure is the farthest point on Earth from the moon at which ûd is in the
same direction as ûdE

. At point A, we have d > dE , and therefore FT is in the dE- or
x-direction; however, at point B, we have d < dE , and therefore FT is in the −dE- or
−x-direction. Defining a polar coordinate (r, θ) in a local frame B at Earth’s center,
we may define

ûdE
= ı̂ (2.574)

ûr = cos θ ı̂ + sin θ ̂ (2.575)

dûd = dEûdE
+ rûr = (dE + r cos θ) ı̂ + r sin θ ̂ (2.576)

d2 = d2
E + r2 + 2rdE cos θ (2.577)
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to calculate the tidal force:

FT = −GmmM

(
ûd

d2
− ûdE

d2
E

)
= −GmmM

[(
dE + r cos θ

d3
− 1

d2
E

)
ı̂ + r sin θ

d3
̂

]
(2.578)

Let us use the data

mM ≈ 7.349 × 1022 kg

dE ≈ 384,400 km

mE ≈ 5.9736 × 1024 kg

r ≈ 6371 km

G ≈ 6.67259 × 10−11 m3kg−1s−2

m = 1 kg (2.579)

to evaluate the components of the tidal force FT = Fxı̂ + Fŷ for 0 ≤ θ ≤ 360 deg,
as are shown in Figure 2.35. The y-component of FT is always toward the center of
Earth with zero value at points A and B and maximum values at points C and D.
The x-component of FT is always outward from the center of Earth with zero value at
points C and D and maximum values at points A and B. These components must be
added to

−G
mE

r2
ûr = −9.820087746

(
cos θ ı̂ + sin θ ̂

)
(2.580)

to determine the net force on m. Figure 2.36 illustrates the distribution of tidal force
around Earth. An exaggerated model of the level of the oceans is shown in Figure 2.37

θ[deg]

Fx Fy

FT [N]
A BC D A

Figure 2.35 The components of the tidal force FT = Fx ı̂ + Fŷ .
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Fx[N]

Fy[N]

FT

AB

C

D

B

Figure 2.36 Distribution of tidal forces around Earth.

Moon

Earth
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X

Y
G

x

FT
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B
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D

BudE

Ocean

Sphere

Figure 2.37 An exaggerated model of the level of the oceans because of the tidal effect of the
moon.

The Earth’s mean radius is determined as the average distance from the physical
center to the surface. Figure 2.38 illustrates the maximum, mean, and minimum dis-
tances of the moon from Earth. When the moon is at apogee, it is about 11% farther
from Earth than it is at perigee.
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MoonEarth

Perigee: 363300 km

Mean: 384400 km

Apogee: 405500 km

Figure 2.38 In-scale distances of moon from Earth.

The tidal interaction on Earth caused by the moon transfers kinetic energy from
Earth to the moon. It slows the Earth’s rotation and raises the moon’s orbit, currently
at a rate of about 3.8 cm per year.

To make a better model of tides, we should add the effect of the sun. When the
sun, moon, and Earth are aligned, the gravitational forces of the sun and moon will be
combined, causing very high and very low tides. Such a tide, called the spring tide, is
not related to the season. It happens when the moon is full or new. When the sun and
moon are not aligned, the gravitational forces cancel each other out, and the tides are
not as high or as low as spring tides. This weak tide is called the neap tide. We also
need to consider the rotation and oblateness of Earth, the nonzero angle between Earth’s
polar axis and the orbital plane of the moon, and variations in the moon–Earth distance.

Example 166 Book-stacking Problem Let us model the book-stacking problem and
determine how far x the edge of a book can be overhung when stacking books on a table.

Consider a set of n similar books of length l. To balance the first book on a
table, we need to adjust the mass center of of the book somewhere over the table.
The maximum overhang happens when the mass center is just over the table’s edge,
x = l/2, such as shown in Figure 2.39(a). Now let slide a second book below the first
one. To maximize the overhang of two books, the mass center of the stack of two

xx

(a) (b)

Figure 2.39 The book-stacking problem.
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books should be at the edge of the table while the mass center of the first should be
directly over the edge of the second. The mass center of the stack of two books is at
the midpoint of the books’ overlap, so x = (l + l/2) /2 = 3l/4. Sliding the third book
under the two and adjusting the mass center of the stack of the three books at the edge
of the table yield x = (l + l/2 + l/3) /2 = 11l/6. By following the same procedure,
we find x of n books to be

x = 1

2

(
1 + 1

2
+ 1

3
+ · · · + 1

n

)
l (2.581)

The coefficient of l is called the harmonic number series. There is no limit for the
harmonic series, so theoretically, we can move the top book as far as we wish, because

lim
m→∞

m∑
n=1

1

n
= ∞ (2.582)

The coefficient would be more than 1 with only four books, and the top book is
overhanging farther than the edge of the table:

1

2

(
1 + 1

2
+ 1

3
+ 1

4

)
= 25

24
= 1.0417 (2.583)

With 10 books we will have x = 1.4645l, with 100 books we will have x = 2.5937l,
and with 1000 books we will have x = 3.7427l. Figure 2.39(b) illustrates the solution
for n = 20.

Example 167 � The n-Body Problem The n-body problem states: Consider n point
masses m1,m2, . . . , mn in a three-dimensional Euclidean space. Suppose that the force
of attraction experienced between each pair of particles is Newtonian. If the initial posi-
tions and velocities are specified for every particle at some present time t0, determine
the position of each particle at every future (or past) moment of time. The equations of
motion for n bodies using G for the universal constant of gravitation and Xi to indicate
the position vector of the point mass mi are

miẌi = −G
∑2

j=1 mimj

Xi − Xj

Xij

i = 1, 2, 3, . . . , n (2.584)

Xij = Xi − Xj (2.585)

For n = 2 this is called the two-body problem , or the Kepler problem. Johann Bernoulli
first gave the complete solution of the Kepler problem in 1710. The two-body problem
has proven to be the only easy and solvable one among the n-body problems. The
problems for n = 2 and n> 2 differ not only qualitatively but also quantitatively.

Example 168 � Motion of a Charged Particle in a Magnetic Field To move an
electric charge e with velocity v in a magnetic field H and an electric field E, we need



2.5 � Application of Dynamics 195

to provide a force
F = eE + e

c
(v × H) (2.586)

where c is the speed of light. When E = 0, the particle is moving in a magnetic field
and the required force simplifies to

F = e

c
(v × H) (2.587)

Such a force is called the Lorentz force. The force is perpendicular to v and hence the
magnetic force does no work on the particle:

W =
∫

F · dr =
∫

F · v dt = e

c

∫
(v × H) · v dt = 0 (2.588)

Having W = 0 is equivalent to having a constant kinetic energy. The equation of motion
of the particle is then

ma = e

c
(v × H) (2.589)

Let us assume a uniform magnetic field in the x-direction and substitute for a, v,
and H by

v = ẋ ı̂ + ẏ̂ + żk̂ (2.590)

a = ẍ ı̂ + ÿ̂ + z̈k̂ (2.591)

H = Hk̂ (2.592)

to get

m

ẍ

ÿ

z̈

 = e

c

ẋ

ẏ

ż

 ×
 0

0
H

 =
 Hẏ

−Hẋ

0

 (2.593)

The third equation,

z̈ = 0 (2.594)

can be integrated to find the z-component of motion of the particle:

z = ż0t + z0 (2.595)

So, The z-component has a uniform motion at a constant speed. To solve the first and
second equations

ẍ = kẏ (2.596)

ÿ = −kẋ (2.597)

k = eH

mc
(2.598)

we take a time derivative and get
...
x = kÿ = −k2ẋ (2.599)
...
y = −kẍ = −k2ẏ (2.600)
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The solutions of these equations are

x − x0 = A cos kt + B sin kt

y − y0 = C cos kt + D sin kt

However, because x and y must satisfy Equations (2.596) and (2.597) at all times, we
have

−A = D B = C (2.601)

and therefore the components of the position vectors of the particle are

x − x0 = A cos kt + B sin kt (2.602)

y − y0 = B cos kt − A sin kt (2.603)

z − z0 = ż0t (2.604)

Assuming ẋ0 = 0, we find the constants A and B as

B = 0 A = −1

k
ẏ0 (2.605)

and therefore

x − x0 = −1

k
ẏ0 sin kt (2.606)

y − y0 = −1

k
ẏ0 cos kt (2.607)

z − z0 = ẋ0t (2.608)

These are the parametric equations of a circular helix with an axis parallel to the z-axis,
radius R, and pitch 2π/ẏ0, as is shown in Figure 2.40:

R = 1

k
ẏ0 = mc

eH
ẏ0 (2.609)

The radius would be larger for larger mass m or higher initial lateral speed ẏ0.

X

Z

G

r

0
2π

y
.

.

k

v0

H

Y

z0

Figure 2.40 Circular helix path of motion of a charged particle in a uniform magnetic field.
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The magnetic force on the particle is always perpendicular to its lateral velocity
and makes the particle turn on a circular path while moving with a constant speed
along the magnetic field. This mechanism will capture charged particles and keep them
in the field.

This is the base model used to explain the Van Allen belt around Earth because of
Earth’s magnetic field and also a magnetic bottle that keeps hot plasma surrounded.

2.5.2 � Equations of Motion

Determination of the equations of motion is the most important part of dynamics. Most
dynamic problems will end up with a finite set of differential equations along with a set
of initial conditions. Having the equations of motion converts a dynamic problem into
a mathematical problem. There are few methods to develop the equations of motion
of a dynamic phenomenon. The Newton–Euler method is based on an external force
and change of momentum. The Lagrange method is based on energy and generalized
coordinates. The Hamilton method is based on the Lagrangian, Legendre transforma-
tion, and generalized momentum. Although conceptually different, these methods are
mathematically equivalent. All three well-developed methods will result in the same
equations of motion or equations that may be converted into each other.

Besides the Newton–Euler, Lagrangian, and Hamilton methods, there are other
methods of dynamics that generate the equations of motion but follow different con-
cepts. The Gauss principle of minimum constraint of motion, D’Alembert’s method
of virtual work, and Appell’s method of generalized acceleration and force are a few
examples.

Example 169 A Body Sliding on an Inclined Plane Consider a body of mass m1
sliding without friction on the inclined surface of a wedge with mass m2. The wedge
can slide on a horizontal frictionless surface as is shown in Figure 2.41.

x

y

m1

m2

θ

m1g

N1

m2g

N1

N2

H
H

Figure 2.41 A body of mass m1 sliding without friction down an inclined wedge of mass m2.

The reaction force N1 from m2 to m1 and the reaction force N2 from the horizontal
surface to m2 are given as

N1 = N1 sin θ ı̂ + N1 cos θ ̂ (2.610)

N2 = N2̂ (2.611)
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Now we can write the equations of motion of m1 and m2:

m1ẍ1 = N1 sin θ (2.612)

m1ÿ1 = N1 cos θ − m1g (2.613)

m2ẍ2 = −N1 sin θ (2.614)

m2ÿ2 = N2 − N1 cos θ − m1g (2.615)

Adding the first and third equations and integrating over time provide the conservation
of momentum on the x-axis:

m1ẋ1 + m2ẋ2 = C1 (2.616)

The vertical position of m2 is constant and hence ÿ2 = 0:

N2 = N1 sin θ + m1g (2.617)

Let us assume that the initial position of m2 and m1 is such that the edge H and
m1 are on the y-axis. So, if m1 is at x1 and m2 is at x2, then m1 must be at y1 =
H − (x1 − x2) tan θ , and therefore

ẏ1 = − (ẋ1 − ẋ2) tan θ (2.618)

ÿ1 = − (ẍ1 − ẍ2) tan θ (2.619)

Substituting for ẍ1 and ẍ2 in (2.619) yields

ÿ1 = −
(

N1 sin θ

m1
− −N1 sin θ

m2

)
tan θ (2.620)

and employing (2.613) provides

N1 = m1g
cos θ

1 + (m1/m2) sin2 θ
(2.621)

So, the acceleration of the wedge and vertical acceleration of m1 are

ẍ2 = −m1

m2

sin θ cos θ

1 + (m1/m2) sin2 θ
g (2.622)

ÿ1 = −
(

1 − cos2 θ

1 + (m1/m2) sin2 θ

)
g (2.623)

Example 170 � Projectile and Variable Gravitational Acceleration When a pro-
jectile is always close to the ground, it is reasonable to write its equation of motion as

m
dv
dt

= mg (2.624)

g = −gk̂ (2.625)

g0 = 9.80665 m/s2 ≈ 9.81 m/s2 (2.626)

This is the situation of the flat-ground and no-air conditions examined in Example 126.
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Because the gravitational attraction varies with distance from the center of Earth,
the gravitational acceleration at a height z is

g = −g0
R2

0

(R0 + z)2 k̂ (2.627)

if g0 = −g0k̂ at the surface of Earth,

R0 = 6,371,230 m (2.628)

The equation of motion of a projectile, where its height is high enough to change the
value of g is

m
dv
dt

= −mg0
R2

0

(R0 + z)2
k̂ (2.629)

If such a projectile is moving in air with a resistance proportional to the square of
its velocity v2, then its equation of motion would be

m
dv
dt

= −mg0
R2

0

(R0 + z)2
k̂ − cv2 (2.630)

Now assume that the projectile is a rocket that generates a trust F,

F = −ṁ vm (2.631)

where ṁ is the mass rate of burning fuel and vm is the velocity of the escaping burnt
fuel with respect to the rocket. The equation of motion for the projectile rocket in air is

m
dv
dt

= −ṁ vm − mg0
R2

0

(R0 + z)2
k̂ − cv2 (2.632)

The Earth is not flat, so we should rewrite the equation of motion for a curved
ground. If Earth is assumed to be a sphere and vm is on the same axis as v,

vm = −vm

v
|v| vm > 0 (2.633)

then the projectile will have a planar motion, say in the (x, z)-plane:

m
dv
dt

= ṁ vm

v
|v| − mg0R

2
0

(R0 + z)2 k̂ − cv2 v
|v| (2.634)

m
(
ẍı̂ + z̈k̂

)
= ṁvm

ẋı̂ + żk̂√
ẋ2 + ż2

− mg0R
2
0

(R0 + z)2
k̂

−c
√

ẋ2 + ż2
(
ẋı̂ + żk̂

)
(2.635)

The equation of motion of such a projectile may be written in polar coordinates (ρ, θ).
The gravity of the spherical Earth is

g = −g0
R2

0

ρ2
ûρ (2.636)



200 Fundamentals of Dynamics

and therefore the equation of motion of the projectile is

m
(
ρ̈ − ρθ̇2) ûρ + m

(
2ρ̇θ̇ + ρθ̈

)
ûθ

= ṁvm

ρ̇ûρ + ρθ̇ ûθ√
ρ̇2 + ρ2θ̇2

− mg0
R2

0

ρ2
ûρ − c

√
ρ̇2 + ρ2θ̇2

(
ρ̇ûρ + ρθ̇ ûθ

)
(2.637)

2.5.3 � Dynamic Behavior and Methods of Solution

A dynamic problem is composed of a dynamic phenomenon and its equations of motion
based on a proper model. Mathematical tools along with an understanding and obser-
vations are used to solve the dynamic problem and determine its dynamic behavior.
Today there are three basic methods to solve equations of motion: analytic, numerical ,
and approximate solutions. The method of transformation in real or complex domains
can be used to change the coordinates and transform the equation of motion to a simpler
form for application of one of the three methods.

Analytic solutions are the best, but they are limited to equations with available
closed-form solutions. An analytic solution is the best way to determine every aspect
of the behavior of a dynamic phenomenon. Furthermore, the analytic solution is the
most challenging method that employs every possible mathematical tools. Many of
the mathematical theorems and methods were discovered and invented when scientists
tried to solve a dynamic problem analytically.

Approximate solutions, such as series solutions or perturbation methods , are
employed when there is no analytic solution for the equations of motion but we need
an equation to analyze the relative effect of the involved parameters. Most of the time,
approximate methods provide the second best solutions.

Numerical methods are generally employed when we need to predict the behavior
of a given dynamic system starting from an initial condition. They are the only choice
when no analytic solution exists, and approximate methods are too complicated.

Example 171 Analytic Solution of First-Order Linear Equations All first-order
dynamic systems are in the form

ẋ + f1 (t) x = f2 (t) (2.638)

The first-order equation is a total differential

∂f

∂x
dx + ∂f

∂t
dt = 0 (2.639)

if it is a derivative of a function f (x, t).

f (x, t) = c (2.640)

Multiplying the equation by

g (t) = exp
∫

f1 (t) dt (2.641)
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will transform it into

ẋg (t) + xf1 (t) g (t) = d

dt
(xg (t)) = f2 (t) g (t) (2.642)

which is always solvable:

x = 1

g (t)

∫
f2 (t) g (t) dt (2.643)

As an example, consider the dynamics of radioactive matter in a live creature. The
molecules of the matter x decompose into smaller molecules and it is natural to assume
that the rate of decomposition ẋ is proportional to the number of present radioactive
molecules x. Furthermore, there would be growth because of food, water, air, and sun:

dx

dt
= −k1x + k2x = (k2 − k1) x (2.644)

The solution of the equation would be

x = Ce(k2−k1)t (2.645)

At the steady-state condition, k1 = k2, and the level of the number of molecules remains
constant, C = x0. To determine the age of a fossil, we may measure x, evaluate the
level of C = x0 in a similar live species, and set k2 = 0 to find t :

t = − 1

k1
ln

x

x0
(2.646)

Example 172 � No Position in the Equation of Motion If there is no position
variable r in the equation of motion explicitly, the equation has the form

f (r̈, ṙ, t) = 0 (2.647)

In this case we may introduce a new dependent variable p:

p = ṙ ṗ = r̈ (2.648)

This substitution transforms Equation (2.647) into a first-order equation:

f (ṗ, p, t) = 0 (2.649)

If we find a solution for (2.649), we can replace p = dr/dt in the solution and solve
another first-order equation for the position r = r(t). Therefore, if there is no position
variable in the equation of motion, we may solve two first-order differential equations
instead of one second-order equation.

As an example, consider a particle with m = 1 that is under a time-decaying and
velocity-dependent force with the equation of motion

ẍ = −ẋ + e−t (2.650)
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We may transform the equation to

dp

dt
+ p = e−t (2.651)

and find the solution:

p = e−t

∫
e−t etdt = (t + C1) e−t (2.652)

Assume general initial conditions as

x(0) = x0 ẋ(0) = p(0) = ẋ0 = p0 (2.653)

Then
C1 = p0 (2.654)

and we have

p = (t + p0) e−t (2.655)

Substituting back into ẋ,
dx

dt
= (t + p0) e−t (2.656)

provides the solution

x = −(1 + ẋ0 + t)e−t + C2 (2.657)

C2 = 1 + ẋ0 + x0 (2.658)

Example 173 � No Time in the Equation of Motion If there is no time t in the
equation of motion explicitly, the equation has the form

f (r̈, ṙ, r) = 0 (2.659)

In this case we may introduce a new dependent variable p,

p = ṙ ṗ = r̈ (2.660)

and express r̈ with respect to r:

r̈ = ṗ = dp
dr

dr
dt

= ṗ
dp
dr

(2.661)

This substitution transforms the equation of motion into a first-order equation:

f

(
p

dp
dr

, p, r
)

= 0 (2.662)

If we find a solution for (2.662), we can replace p = dr/dt in the solution and solve
another first-order equation for the position r = r(t). Therefore, if there is no time in
the equation of motion, we may solve two first-order differential equations instead of
one second-order equation.
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As an example, consider a falling bungee jumper with

z (0) = z0 = 0

ż (0) = ż0 = 0 (2.663)

who is under the force of gravity and an elastic rope with stiffness k and a free length l:

z̈ =
{

g z < l

g − k

m
(z − l) z > l

(2.664)

We use ż = p and transform the equation to

p
dp

dz
=

{
g z < l

g − k

m
(z − l) z > l

(2.665)

and find the solution:

p =


√
2gz + C1 z < l

1

m

√
2gm2z + C2m2 − kmz2 + 2klmz z > l

(2.666)

Using the initial condition ż0 = p(0) = 0 and compatibility of the solutions at z = l,
we find

C1 = 0 C2 = −kl2

m
(2.667)

and therefore,

p =


√
2gz z < l

1

m

√
−kl2m + 2klmz + 2gm2z − kmz2 z > l

(2.668)

Substituting back to ż = p provides the solution

t =


√

2z

g
+ C3 z < l√

m

k
tan−1

(
gm + kl − kz

−k

√
− k

k (z − l)2 − 2mgz

)
+ C4 z > l

(2.669)

Because z (0) = 0, we have
C3 = 0 (2.670)

and because of compatibility of the solutions at z = l, we have

C4 = −
√

2l

g
+

√
m

k
tan−1

(√
mg

2kl

)
(2.671)

Let us examine the dynamic of the jumper for the following data:

m = 100 kg k = 200 N/m l = 10 m (2.672)
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At z = l we will have

t = 1.428 s (2.673)

After this time elapsed, the solution switches to the case z > l that ends when ż =
0. Solving Equation (2.668) for the maximum stretch of the elastic rope zM shows
that

zM = 25.9575 m (2.674)

Figure 2.42 illustrates the time history of the falling height of the jumper from z = 0
to z = zM . The maximum stretch of the elastic rope could be more easily found from
the conservation of energy equation:

mgzM = 1
2k (zM − l)2 (2.675)

zM = 1

k

(
gm + kl +

√
gm (gm + 2kl)

)
= 25.958 m (2.676)
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Figure 2.42 Time history of the falling height of a bungee jumper from z = 0 to z = zM .

Example 174 � Kinematics of a Dragging Point Mass A point mass P is attached to
a moving car C at the origin with an extensible cable. The car is moving on the y-axis
at a constant speed v and drags P that was initially at (l, 0). Figure 2.43 illustrates the
positions of P and C when P is at (x, y).

The equation of the path of P is the solution of a first-order differential equation

dy

dx
= −

√
l2 − x2

x
(2.677)
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l
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Figure 2.43 The path of motion of a dragged point P by a moving car C.

Using the separation of variables and the initial conditions of P and C, we find

y = l ln

(
l + √

l2 − x2

x

)
−

√
l2 − x2 (2.678)

So the position, velocity, and acceleration vectors of P are

rP = xı̂ + ŷ vP = ẋı̂ + ẏ̂ aP = ẍı̂ + ÿ̂ (2.679)

where y is calculated based on (2.678) and the coordinates x and y are related to the
position of the car C by

x2 + (y − vt)2 = l2 (2.680)

Substituting (2.678) in (2.680) provides the time t as a function of the x-component to
complete the kinematics of the moving point:

t = 1

v

(
y +

√
l2 − x2

)
= l

v
ln

l + √
l2 − x2

x
(2.681)

Using Equation (2.681), we are able to determine x at a time t , and find the y-component
from (2.678). Taking the derivative of (2.681) provides ẋ as a function of x,

ẋ = −vx

l2

√
l2 − x2 (2.682)

and (2.677) provides ẏ,

ẏ = −
√

l2 − x2

x
ẋ = v

l2

(
l2 − x2) (2.683)
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To determine the acceleration, we may take a derivative from (2.683) and (2.677) to
find

ẍ = 2x2 − l2

l2
√

l2 − x2
vẋ = 2x2 − l2

l4
v2x (2.684)

ÿ = −2xv

l2
ẋ = 2

√
l2 − x2

l4
v2x2 (2.685)

Figure 2.44 depicts the time history of the x- and y-components of the rP , and
Figure 2.45 shows the components of the velocity vector vP . The components of the
acceleration vector aP are shown in Figure 2.46. If the mass of point P is m, then the

l = 1 [m]

v = 10 [m/s]

t
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y

Figure 2.44 Components of position vector rP versus time.
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Figure 2.45 The components of velocity vector vP versus time.
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Figure 2.46 Components of acceleration vector aP versus time.

required force F to move P on the path will be

F = maP = m
(
ẍı̂ + ÿ̂

)
(2.686)

Figure 2.47 illustrates the surface of revolution of (2.678) about the x-axis. This
surface is called a pseudosphere because it has a constant negative curvature as
opposed to a sphere with a constant positive curvature. It is also the mathematical
shape of a Lobachevsky space on which the sum of the angles of any triangle is less
than 180 deg.

G

x

l

z

y

Figure 2.47 The surface of revolution of the motion path of a dragged point.
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Example 175 � Antiaircraft Rocket An aircraft C is moving on the y-axis with a
constant speed vC . When C is at the origin, a rocket R with speed vR = ṡ is fired from
(a, 0) to hit the aircraft. The velocity vector of R is always toward the aircraft and
therefore the tangent to the path of the rocket must be

dy

dx
= −vCt − y

x
(2.687)

Figure 2.48 illustrates the velocity vectors of the aircraft C and the rocket R at a time t .

C

Ry

vCt

G

a

x
r

vC

vR

x

y

Figure 2.48 The velocity vector of the antiaircraft rocket R is always toward the aircraft C.

To determine the path of R, we should eliminate x, y, or t from (2.687), so we
take a time derivative of (2.687):

dt

dx
= − x

vC

d2y

dx 2
(2.688)

Let us eliminate ṡ = vR from dt/dx :

dt

dx
= dt

ds

ds

dx
= − 1

vR

√
1 +

(
dy

dx

)2

(2.689)

where the negative sign appears because x decreases when t increases. Combining
(2.688) and (2.689) provides the differential equation of the path:

x
d2y

dx 2 = k

√
1 +

(
dy

dx

)2

k = vC

vR

(2.690)

We may use y′ = p and y′′ = p′ to transform the equation to

x
dp

dx
= k

√
1 + p2 (2.691)
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and find the solution

ln
(
p +

√
1 + p2

)
= ln

(x

a

)k

(2.692)

Solving for p yields

2p = 2
dy

dx
=

(x

a

)k

−
(a

x

)k

(2.693)

and integrating determines the path of motion of the rocket:

y = x

2

(
(x/a)k

k + 1
+ (a/x)k

k − 1

)
− ak

k2 − 1
(2.694)

The constant of the integral comes from the initial condition y(a) = 0. Substituting
(2.693) and (2.694) in (2.687), we can find t as a function of x:

t = kx

2vC

(
(x/a)k

k + 1
− (a/x)k

k − 1

)
− ak

vC

(
k2 − 1

) (2.695)

Figure 2.49 depicts the coordinates of the rocket as functions of time for the following
data:

k = 0.5 a = 1 vC = 1 (2.696)

a = 1 

k = 0.5

vC = 1

0.1

1

0.8

0.6

0.4

0.2

0 0.2 0.3 0.4 0.5 0.6
t

x

y

Figure 2.49 Components of position vector of the rocket versus time.

To determine the time t0 at which the rocket hits the aircraft, we need to solve
(2.695) for x = 0. However, it is not possible to determine t0 = limx→0 t in a general
case. The rocket can reach the aircraft for any 0 < k < 1, and it is possible to evaluate
t0 for any proper value of k. As an example, we may set k = 0.5 and evaluate t0:

t0 = lim
x→0

t = 0.6666666667
a

vC

(2.697)



210 Fundamentals of Dynamics

Example 176 � Series Solution for Two-Body Problem Consider two point masses
m1 and m2 as are shown in Figure 2.50 at positions X1 and X2 that attract each other
by a Newtonian gravitational force. If the space is assumed Euclidean and there is no
other mass in the space, the equations of motion of m1 and m2 are

Ẍ1 = −G2
X1 − X2

|X1 − X2|3
Ẍ2 = −G1

X2 − X1

|X2 − X1|3
(2.698)

Gi = Gmi i = 1, 2 (2.699)

G = 6.67259 × 10−11 m3kg−1s−2 (2.700)

The two-body problem, similar to other initial-value problems in dynamics, is to deter-
mine X1 (t) and X2 (t) by having the conditions of X1 (t0), X2 (t0), Ẋ1 (t0), and Ẋ2 (t0)

at time t0.

G

X

Z

m1

m2

Y

X1

X2

x12

Figure 2.50 Two bodies in Euclidean space.

Subtracting Equations (2.698), we get the fundamental equation of the two-body
problem in terms of relative position vector x:

ẍ + µ
x

|x|3 = 0 x = X2 − X1 (2.701)

µ = G1 + G2 (2.702)

To solve (2.701), let us search for a series solution in the form

x (t) = x0 + ẋ0 (t − t0) + ẍ0
(t − t0)

2

2!
+ ...

x 0
(t − t0)

3

3!
+ · · · (2.703)

x0 = x (t0) ẋ0 = ẋ (t0) (2.704)

Because Equation (2.701) is singular only at x = 0, the series (2.703) converges for all
nonzero x. To determine the series (2.703), we need to show that the coefficients x(n)

0
can be determined for any desired number of n.
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Defining a new parameter ε

ε = µ

|x|3 (2.705)

we can rewrite Equation (2.701) as

ẍ1 + εx = 0 (2.706)

Recalling the time derivative of the absolute value of a vector,

d

dt
|x| = x·ẋ

|x| (2.707)

and introducing a parameter λ, we find the time derivative of (2.705):

ε̇ = −3µ
x·ẋ
|x|5 = −3ε

x·ẋ
|x|2 = −3ελ (2.708)

λ = x·ẋ
|x|2 (2.709)

The time derivative of λ introduces another parameter ψ :

λ̇ = ẋ·ẋ + x·ẍ
|x|2 − 2

(x·ẋ)2

|x|4 = ẋ·ẋ
|x|2 − ε − 2λ2

= ψ − ε − 2λ2 (2.710)

The time derivative of ψ is a function of only ε, λ, and ψ :

ψ̇ = 2
ẋ·ẍ
|x|2 − 2

(x·ẋ) (ẋ · ẋ)

|x|4 = −2ελ − 2λψ

= −2λ (ε + ψ) (2.711)

The parameters ε, λ, and ψ are called fundamental invariants . They are independent
of the coordinate system and form a closed set of time derivatives:

ε̇ = −3ελ λ̇ = ψ − ε − 2λ2 ψ̇ = −2λ (ε + ψ) (2.712)

Equation (2.712) guarantees the existence of coefficients of the series solution (2.703).
The first eight derivatives of x are

dx
dt

= ẋ (2.713)

d2x

dt2
= −εx (2.714)

d3x

dt3
= 3ελx − εẋ (2.715)

d4x

dt4
= (−15ελ2 + 3εψ − 2ε2) x + 6ελẋ (2.716)
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d5x

dt5
= (

105ελ3 − 45ελψ + 30ε2λ
)

x

+ (−45ελ2 + 9εψ − 8ε2) ẋ (2.717)

d6x

dt6
= ε

[
λ2 (−945λ2 − 420ε + 630ψ

) + 66εψ − 22ε2 − 45ψ2] x

+ ελ
(
420λ2 + 150ε − 180ψ

)
ẋ (2.718)

d7x

dt7 = ελ
[
λ2 (10395λ2 + 6300ε − 9450ψ

)]
x

+ ελ
(−2268εψ + 756ε2 + 1575ψ2) x

+ ε
[
λ2 (−4725λ2 − 2520ε + 3150ψ

)]
ẋ

+ ε
(+396εψ − 172ε2 − 225ψ2) ẋ (2.719)

d8x

dt8
= ε

[
λ2 (−135135λ4 + 155925λ2ψ − 103950ελ2)] x

+ ε
[
λ2 (−20160ε2 + 60480εψ − 42525ψ2)] x

+ ε
(
ψ2 [1575ψ − 3618ε) + ε2 (2628ψ − 584ε)

]
x

+ ελ
(
62370λ4 + 44100ελ2 − 56700λ2ψ

)
ẋ

+ ελ
(−15876εψ + 9450ψ2 + 6552ε2) ẋ (2.720)

Substituting the derivatives of x into (2.703) and rearranging yield

x (t) = P (t) x (t0) + Q (t) ẋ0 (t0) = f (x0, ẋ0, t) (2.721)

where

P (t) =
∞∑
i=0

Pi (t − t0)
i Q (t) =

∞∑
i=0

Qi (t − t0)
i (2.722)

The functions P and Q that are power series of ε, λ, and ψ are called Lagrangian
coefficients. The first six terms of P and Q are

P0 = 1 (2.723)

P1 = 0 (2.724)

P2 = − 1
2ε0 (2.725)

P3 = 1
2ε0λ0 (2.726)

P4 = − 1
12ε2

0 − 5
8ε0λ

2
0 + 1

8ε0ψ0 (2.727)

P5 = 1
4ε2

0λ0 + 7
8ε0λ

3
0 − 3

8ε0λ0ψ0 (2.728)

P6 = − 11
360ε3

0 + (− 7
12λ2

0 + 11
120ψ0)ε

2
0

+ (− 1
16ψ2

0 + 7
8λ2

0ψ0 − 21
16λ4

0)ε0 (2.729)
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Q0 = 0 (2.730)

Q1 = 1 (2.731)

Q2 = 0 (2.732)

Q3 = − 1
6ε0 (2.733)

Q4 = 1
4ε0λ0 (2.734)

Q5 = − 1
15ε2

0 − 3
8ε0λ

2
0 + 3

40ε0ψ0 (2.735)

Q6 = 5/24ε2
0λ0 + ( 7

12λ3
0 − 1

4λ0ψ0)ε0 (2.736)

The series solution of the two-body problem is developed by Lagrange
(1736–1813). Although this series theoretically converges for all t , it will not provide
a suitable approximate solution except for a limited interval of time.

Key to solving the two-body problem, including Lagrange’s method, is that the
problem can be reduced to one second-order equation.

Example 177 � Series Solution for Three-Body Problem Consider three point
masses m1, m2, and m3 as are shown in Figure 2.51. Their position vectors with
respect to their mass center C are X1, X2, and X3. They attract each other by the
Newtonian gravitational force. If the space is assumed Euclidean and there is no other
mass in the space, the equations of motion of m1, m2, and m3 are

Ẍ1 = −G2
X1 − X2

|X21|3
− G3

X1 − X3

|X31|3

Ẍ2 = −G3
X2 − X3

|X32|3
− G1

X2 − X1

|X12|3
(2.737)

Ẍ3 = −G1
X3 − X1

|X13|3
− G2

X3 − X2

|X23|3

C
m1

m2

X1

X2

x2 X3

m3

x1

x3

Figure 2.51 Position vectors for three-body problem.
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where
Xij = Xj − Xi (2.738)

Gi = Gmi (2.739)

G = 6.67259 × 10−11 m3kg−1s−2 (2.740)

Using the mass center as the origin implies that

G1X1 + G2X2 + G3X3 = 0 (2.741)

The equations of motion of three bodies have their most symmetric form when
expressed in terms of relative position vectors x1, x2, x3:

x1 = X3 − X2

x2 = X1 − X3 (2.742)

x3 = X2 − X1

Now the kinematic constraint (2.741) reduces to

x1 + x2 + x3 = 0 (2.743)

and the absolute position vectors in terms of the relative positions are

mX1 = m3x2 − m2x3

mX2 = m1x3 − m3x1 (2.744)

mX3 = m2x1 − m1x2

where
m = m1 + m2 + m3.

Substituting Equations (2.744) in (2.737), we get symmetric forms of the equations
of motion:

ẍ1 = −Gm
x1

|x1|3
+ G1

(
x1

|x1|3
+ x2

|x2|3
+ x3

|x3|3
)

ẍ2 = −Gm
x2

|x2|3
+ G2

(
x1

|x1|3
+ x2

|x2|3
+ x3

|x3|3
)

(2.745)

ẍ3 = −Gm
x3

|x3|3
+ G3

(
x1

|x1|3
+ x2

|x2|3
+ x3

|x3|3
)

We are looking for a series solution for Equations (2.745) in the form

xi (t) = xi0 + ẋi0 (t − t0) + ẍi0

(t − t0)
2

2!
+ ...

x i0

(t − t0)
3

3!
+ · · · (2.746)

xi0 = xi (t0) ẋi0 = ẋi (t0) i = 1, 2, 3 (2.747)

For simplicity let us define µ = Gm along with the first set of parameters

µ = Gm (2.748)
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ε1 = 1

|x1|3
ε2 = 1

|x2|3
ε3 = 1

|x3|3
(2.749)

to rewrite Equations (2.745) as

ẍ1 = −µε1x1 + G1 (ε1x1 + ε2x2 + ε3x3)

ẍ2 = −µε2x2 + G2 (ε1x1 + ε2x2 + ε3x3) (2.750)

ẍ3 = −µε3x3 + G3 (ε1x1 + ε2x2 + ε3x3)

We also define the following three sets of parameters,

a111 = x1 · x1

|x1|2
= 1 a112 = x1 · x1

|x2|2
a113 = x1 · x1

|x3|2

a121 = x1 · x2

|x1|2
a122 = x1 · x2

|x2|2
a123 = x1 · x2

|x3|2

a131 = x1 · x3

|x1|2
a132 = x1 · x3

|x2|2
a133 = x1 · x3

|x3|2

a221 = x2 · x2

|x1|2
a222 = x2 · x2

|x2|2
= 1 a223 = x2 · x2

|x3|2

a231 = x2 · x3

|x1|2
a232 = x2 · x3

|x2|2
a233 = x2 · x3

|x3|2

a331 = x3 · x3

|x1|2
a332 = x3 · x3

|x2|2
a333 = x3 · x3

|x3|2
= 1

(2.751)

b111 = ẋ1 · x1

|x1|2
b112 = ẋ1 · x1

|x2|2
b113 = ẋ1 · x1

|x3|2

b121 = ẋ1 · x2

|x1|2
b122 = ẋ1 · x2

|x2|2
b123 = ẋ1 · x2

|x3|2

b131 = ẋ1 · x3

|x1|2
b132 = ẋ1 · x3

|x2|2
b133 = ẋ1 · x3

|x3|2

b211 = ẋ2 · x1

|x1|2
b212 = ẋ2 · x1

|x2|2
b213 = ẋ2 · x1

|x3|2

b221 = ẋ2 · x2

|x1|2
b222 = ẋ2 · x2

|x2|2
b223 = ẋ2 · x2

|x3|2

b231 = ẋ2 · x3

|x1|2
b232 = ẋ2 · x3

|x2|2
b233 = ẋ2 · x3

|x3|2

b311 = ẋ3 · x1

|x1|2
b312 = ẋ3 · x1

|x2|2
b313 = ẋ3 · x1

|x3|2

b321 = ẋ3 · x2

|x1|2
b322 = ẋ3 · x2

|x2|2
b323 = ẋ3 · x2

|x3|2

b331 = ẋ3 · x3

|x1|2
b332 = ẋ3 · x3

|x2|2
b333 = ẋ3 · x3

|x3|2

(2.752)
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c111 = ẋ1 · ẋ1

|x1|2
c112 = ẋ1 · ẋ1

|x2|2
c113 = ẋ1 · ẋ1

|x3|2

c121 = ẋ1 · ẋ2

|x1|2
c122 = ẋ1 · ẋ2

|x2|2
c123 = ẋ1 · ẋ2

|x3|2

c131 = ẋ1 · ẋ3

|x1|2
c132 = ẋ1 · ẋ3

|x2|2
c133 = ẋ1 · ẋ3

|x3|2

c221 = ẋ2 · ẋ2

|x1|2
c222 = ẋ2 · ẋ2

|x2|2
c223 = ẋ2 · ẋ2

|x3|2

c231 = ẋ2 · ẋ3

|x1|2
c232 = ẋ2 · ẋ3

|x2|2
c233 = ẋ2 · ẋ3

|x3|2

c331 = ẋ3 · ẋ3

|x1|2
c332 = ẋ3 · ẋ3

|x2|2
c333 = ẋ3 · ẋ3

|x3|2

(2.753)

The time derivatives of the ε-set are

ε̇1 = −3b111ε1 ε̇2 = −3b222ε2 ε̇3 = −3b333ε3 (2.754)

and the time derivatives of the a-set, b-set, and c-set are

ȧ111 = 0

ȧ112 = −2b222a112 + 2b112 (2.755)

ȧ113 = −2b333a113 + 2b113

ȧ121 = −2b111a121 + b121 + b211

ȧ122 = −2b222a122 + b122 + b212 (2.756)

ȧ123 = −2b333a123 + b123 + b213

ȧ131 = −2b111a131 + b131 + b311

ȧ132 = −2b222a132 + b132 + b312 (2.757)

ȧ133 = −2b333a133 + b133 + b313

ȧ221 = −2b111a221 + 2b221

ȧ222 = 0 (2.758)

ȧ223 = −2b333a233 + 2b223

ȧ231 = −2b111a231 + b231 + b321

ȧ232 = −2b222a232 + b232 + b322 (2.759)

ȧ233 = −2b333a233 + b233 + b323
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ȧ331 = −2b111a331 + 2b331

ȧ332 = −2b222a332 + 2b332 (2.760)

ȧ333 = 0

ḃ111 = −2b2
111 + c111 − µε1 + G1 (ε1 + ε2a211 + ε3a311)

ḃ112 = −2b222b112 + c112 − µε1a112 + G1 (ε1a112 + ε2a212 + ε3a312) (2.761)

ḃ113 = −2b333b113 + c113 − µε1a113 + G1 (ε1a113 + ε2a213 + ε3a313)

ḃ121 = −2b111b121 + c121 − µε1a121 + G1 (ε1a121 + ε2a221 + ε3a321)

ḃ122 = −2b222b122 + c122 − µε1a122 + G1 (ε1a122 + ε2 + ε3a322) (2.762)

ḃ123 = −2b333b123 + c123 − µε1a123 + G1 (ε1a123 + ε2a223 + ε3a323)

ḃ131 = −2b111b131 + c131 − µε1a131 + G1 (ε1a131 + ε2a231 + ε3a331)

ḃ132 = −2b222b132 + c132 − µε1a132 + G1 (ε1a132 + ε2a232 + ε3a332) (2.763)

ḃ133 = −2b333b133 + c133 − µε1a133 + G1 (ε1a133 + ε2a233 + ε3)

ḃ211 = −2b111b211 + c211 − µε2a211 + G2 (ε1 + ε2a211 + ε3a311)

ḃ212 = −2b222b212 + c212 − µε2a212 + G2 (ε1a112 + ε2a212 + ε3a312) (2.764)

ḃ133 = −2b333b213 + c213 − µε2a213 + G2 (ε1a113 + ε2a213 + ε3a313)

ḃ221 = −2b111b221 + c221 − µε2a221 + G2 (ε1a121 + ε2a221 + ε3a321)

ḃ222 = −2b2
222 + c222 − µε2 + G2 (ε1a122 + ε2 + ε3a322) (2.765)

ḃ223 = −2b333b223 + c223 − µε2a223 + G2 (ε1a123 + ε2a223 + ε3a323)

ḃ231 = −2b111b231 + c231 − µε2a231 + G2 (ε1a131 + ε2a231 + ε3a331)

ḃ232 = −2b222b232 + c232 − µε2a232 + G2 (ε1a132 + ε2a232 + ε3a332) (2.766)

ḃ233 = −2b333b233 + c233 − µε2a233 + G2 (ε1a133 + ε2a233 + ε3)

ḃ311 = −2b111b311 + c311 − µε3a311 + G3 (ε1 + ε2a211 + ε3a311)

ḃ312 = −2b222b312 + c312 − µε3a312 + G3 (ε1a112 + ε2a212 + ε3a312) (2.767)

ḃ313 = −2b333b313 + c313 − µε3a313 + G3 (ε1a113 + ε2a213 + ε3a313)
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ḃ321 = −2b111b321 + c321 − µε3a321 + G3 (ε1a121 + ε2a221 + ε3a321)

ḃ322 = −2b222b322 + c322 − µε3a322 + G3 (ε1a122 + ε2 + ε3a322) (2.768)

ḃ323 = −2b333b323 + c323 − µε3a323 + G3 (ε1a123 + ε2a223 + ε3a323)

ḃ331 = −2b111b331 + c331 − µε3a331 + G3 (ε1a131 + ε2a231 + ε3a331)

ḃ332 = −2b222b332 + c332 − µε3a332 + G3 (ε1a132 + ε2a232 + ε3a332) (2.769)

ḃ333 = −2b333b333 + c333 − µε3 + G3 (ε1a133 + ε2a233 + ε3)

ċ111 = −2b111c111 − 2µε1b111 + 2G1 (ε1b111 + ε2b121 + ε3b131)

ċ112 = −2b222c112 − 2µε1b112 + 2G1 (ε1b112 + ε2b122 + ε3b132) (2.770)

ċ113 = −2b333c113 − 2µε1b113 + 2G1 (ε1b113 + ε2b123 + ε3b133)

ċ121 = −2b111c121 − µ (ε1b111 + ε2b121) + G1 (ε1b211 + ε2b221 + ε3b231)

+ G2 (ε1b111 + ε2b121 + ε3b131)

ċ122 = −2b222c122 − µ (ε1b212 + ε2b122) + G1 (ε1b212 + ε2b222 + ε3b232)

+ G2 (ε1b112 + ε2b122 + ε3b132) (2.771)

ċ123 = −2b333c123 − µ (ε1b213 + ε2b123) + G1 (ε1b213 + ε2b223 + ε3b233)

+ G2 (ε1b113 + ε2b123 + ε3b133)

ċ131 = −2b111c131 − µ (ε1b311 + ε3b131) + G1 (ε1b311 + ε2b321 + ε3b331)

+ G3 (ε1b111 + ε2b121 + ε3b131)

ċ132 = −2b222c132 − µ (ε1b312 + ε3b132) + G1 (ε1b312 + ε2b322 + ε3b332)

+ G3 (ε1b112 + ε2b122 + ε3b132) (2.772)

ċ133 = −2b333c133 − µ (ε1b313 + ε3b133) + G1 (ε1b313 + ε2b323 + ε3b333)

+ G3 (ε1b113 + ε2b123 + ε3b133)

ċ221 = −2b111c221 − 2µε2b221 + 2G2 (ε1b211 + ε2b221 + ε3b231)

ċ222 = −2b222c222 − 2µε2b222 + 2G2 (ε1b212 + ε2b222 + ε3b232) (2.773)

ċ223 = −2b333c223 − 2µε2b223 + 2G2 (ε1b213 + ε2b223 + ε3b233)
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ċ231 = −2b111c231 − µ (ε1b321 + ε2b231) + G2 (ε1b311 + ε2b321 + ε3b331)

+ G3 (ε1b211 + ε2b221 + ε3b231)

ċ232 = −2b222c232 − µ (ε1b322 + ε2b232) + G2 (ε1b312 + ε2b322 + ε3b332)

+ G3 (ε1b212 + ε2b222 + ε3b232) (2.774)

ċ233 = −2b333c233 − µ (ε1b323 + ε2b233) + G2 (ε1b313 + ε2b323 + ε3b333)

+ G3 (ε1b213 + ε2b223 + ε3b233)

ċ331 = −2b111c331 − 2µε3b331 + 2G3 (ε1b311 + ε2b321 + ε3b331)

ċ332 = −2b222c332 − 2µε3b332 + 2G3 (ε1b312 + ε2b322 + ε3b332) (2.775)

ċ333 = −2b333c333 − 2µε3b333 + 2G3 (ε1b313 + ε2b323 + ε3b333)

The concise forms of these equations are presented in Example 36. We have defined
84 fundamental parameters and showed that their time evolutions are independent
of the selected coordinate system, making a closed set under the operation of time
differentiation. Therefore, employing Equations (2.748)–(2.775) we are able to find the
coefficients of series (2.746) to develop the series solution for the three-body problem.
The first four coefficients of the series are derived below:

dxi

dt
= ẋi (2.776)

d2xi

dt2 = −µεixi + Gi

3∑
j=1

εj xj (2.777)

d3xi

dt3 = µεi (3biiixi − ẋi ) − Gi

3∑
j=1

εj

(
3bjjj xj − ẋj

)
(2.778)

d4xi

dt4 = −3µbiiiεi (3biiixi − ẋi ) + µεiZi − Gi

3∑
j=1

Sj (2.779)

where

Zi =
[

3biii ẋi + 3xi

(
−2b2

iii + ciii − µεiaiii + Gi

3∑
k=1

εkakii

)

+ µεi ẋi − Gi

3∑
k=1

εkxk

]
(2.780)

Sj = −3bjjj ε
2
i

(
3bjjj xj − ẋj

)
Zj (2.781)

The complexity of the coefficients grows rapidly, indicating that the use of the series
solution is not very practical.
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2.5.4 � Parameter Adjustment

Adjustment of the parameters in a dynamic problem to control the behavior of the phe-
nomenon such that a desired behavior appears is the most important task in dynamics.

Example 178 � Antiprojectile Gun A projectile is fired with initial speed v1 at
angle θ1 in the (x, z)-plane to hit a target at R1:

R1 =


0
0

v2
1

g
sin 2θ1

 (2.782)

The position vector and the path of the projectile are

r =
 v1t cos θ1

0
v1t sin θ1 − 1

2 gt2

 (2.783)

z = −1

2
g

x2

v2
0 cos2 θ

+ x tan θ (2.784)

This projectile can hit any point under the projectile umbrella,

z = v2
0

2g
− g

2v2
0

(
x2 + y2) (2.785)

If the target is at the same level as the shooting point, then the projectile will reach the
target at time t1:

t1 = 2
v1

g
sin θ1 (2.786)

At time tp < t1, the projectile is at rp:

rp =
 v1tp cos θ1

0
v1tp sin θ1 − 1

2 gt2
p

 (2.787)

Assume that there is an antiprojectile gun at

r0 =
x0

y0

z0

 (2.788)

that can shoot a bullet with an initial speed v0, that is, n times faster than the projectile’s
initial speed:

v0 = nv1 0 < n n ∈ R (2.789)

The antiprojectile gun can reach any point (x, y, z) under its bullet umbrella:

z = z0 + v2
0

2g
− g

2v2
0

[
(x − x0)

2 + (y − y0)
2] (2.790)
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The bullet can hit the projectile if the bullet umbrella covers the target and hence
overlaps the projectile umbrella, as is shown in Figure 2.52.

−10
0
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30 −10

0
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20
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y

Bullet
umbrella

Projectile
umbrella

Figure 2.52 Overlap of bullet and target umbrellas.

If the antiprojectile bullet shoots at time t = tp when the projectile is at (2.787), the
bullet must hit the projectile within a time tp < t < 2v1 sin θ1/g. The path of motion
of the bullet is similar to the path of the projectile with a time lag, a displacement in
the origin, and a rotation with respect to the coordinate frame. The time lag is tp and
the displacement is r0. The angular position of the base of the antiprojectile is

α0 = π + tan−1 y0

x0
(2.791)

however, the angle of the osculating plane of the bullet can make an arbitrary angle α

with respect to the x-axis. Therefore, the path of motion of the bullet is given as

rb =


x0 + (

t − tp
)
v0 cos θ0 cos α

y0 + (
t − tp

)
v0 cos θ0 sin α

z0 + (
t − tp

)
v0 sin θ0 − 1

2g
(
t − tp

)2

 t > tp (2.792)

The bullet can hit the projectile if its four coordinates x, y, z, t are the same as the
projectile’s. Equating (2.792) and (2.783) provides three equations that must be solved
for the unknown parameters α, v0, th, θ0,

x0 + (
th − tp

)
v0 cos θ0 cos α = v1th cos θ1 (2.793)

y0 + (
th − tp

)
v0 cos θ0 sin α = 0 (2.794)

z0 + (
th − tp

)
v0 sin θ0 − 1

2g
(
th − tp

)2 = v1th sin θ1 − 1
2 gt2

h (2.795)

where th is the time of impact, tp < th < 2v1 sin θ1/g.
We usually like to hit the projectile as soon as possible. So, we set the antiprojectile

gun to its maximum speed. Assume that the maximum value of v0 is

v0 = 2v1 (2.796)

and solve the equations for α, th, θ0.
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We may find sin α and cos α from Equations (2.793) and (2.794),

2v1
(
th − tp

)
sin α = − y0

cos θ0
(2.797)

2v1
(
th − tp

)
cos α = −x0 + v1th cos θ1

cos θ0
(2.798)

and calculate α as a function of th:

α = tan−1
(

y0

x0 − v1th cos θ1

)
(2.799)

Having sin α from (2.797), we can calculate cos α as

cos α =
√

1 − sin2 α = 1

2

√√√√4 − y2
0

v2
1

(
th − tp

)2
cos2 θ0

(2.800)

substitute it in (2.798), and find

−x0 + v1th cos θ1

2v1
(
th − tp

)
cos θ0

= 1

2

√√√√4 − y2
0

v2
1

(
th − tp

)2
cos2 θ0

(2.801)

Eliminating θ1 between (2.801) and (2.795) gives a transcendental equation to calculate
the impact time th:

z0 +
√

4
(
th − tp

)2
v2

1 − y2
0 − (−x0 + v1th cos θ1)

2

= v1th sin θ1 + 1
2 gtp

(
tp − 2th

)
(2.802)

Calculating th from (2.802), we can find α from (2.799) and θ0 from (2.801).
As an example consider a problem with the following data:

g = 9.81 m/s2

v1 = 10 m/s v0 = 20 m/s (2.803)

θ1 = π/6 rad

x0 = 10 m y0 = 11 m z0 = 0 m

The projectile will reach the target at time t1:

t1 = 2
v1

g
sin θ1 = 2 × 10

9.81
sin

π

6
= 1.019367992 s (2.804)

Let us assume that the antiprojectile is fired at a time tp:

tp = 0.1 s (2.805)

Equation (2.802) provides

th = 0.7013308212 s (2.806)
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and Equations (2.799) and (2.801) give

θ0 = 0.2407653799 rad ≈ 13.795 deg (2.807)

α = −1.9136 rad ≈ −109.64 deg (2.808)

Figure 2.53 illustrates the projectile and the antiprojectile gun that can hit the projectile
at th when both are at the following position:

x = 6.073703078

y = 0 (2.809)

z = 1.094056669

Y
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2
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Anti-
projectile

Impact
point

Figure 2.53 Projectile and antiprojectile gun that can hit the projectile at th.

KEY SYMBOLS

0 zero vector
a, ẍ, a, v̇, r̈ acceleration
a, b, c, p, q vectors, constant vectors
A area
A,B points
A,B, C constant parameters
b = ż bong
B,B1, B2 body, body coordinate frames
ci weight factors of vector addition
c crackle, constant vector
C space curve, mass center
d distance
dr infinitesimal displacement
ds arc length element
Gdo position vector of B in G
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[D2z] second-derivative matrix
e restitution coefficient
E mechanical energy
E(k) complete elliptic integral of the second kind
E(ϕ, k) elliptic integral of the second kind
E electric field
f = f (r) scalar field function
f0 isovalue
f (x, y, z) equation of a surface
f (x, y, z) = f0 isosurface of the scalar field f (r) for f0

F(ϕ, k) elliptic integral of the first kind
F force
g, g gravitational acceleration
G, G(OXYZ ) global coordinate frame,gravitational constant
Gi = Gmi equivalent mass
G gorz
H height
H magnetic field, sharang
ı̂, ̂ , k̂ unit vectors of a Cartesian coordinate frame
Î , Ĵ , K̂ unit vectors of a global Cartesian system G

I impulse
j,ȧ, v̈,

...
r jerk

k scalar coefficient
K kinetic energy
K(k) complete elliptic integral of the first kind
l a line
L, L moment of momentum
m mass
M maximum
M, M moment
MQ moment about point Q

Ml moment about line l

n number of particles
n perpendicular vector to a surface z = g (x, y)

N reaction force, setorg
O origin of a triad, origin of a coordinate frame
(Ouvw) orthogonal coordinate frame
p momentum
P point, particle, perimeter
Q point
q, p parameters, variables
q = ḃ jeeq
r = |r| length of r
r position vector
R radius, range
s arc length
s = dj/dt snap, jounce
S surface
S snatch
t time
T period
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T = [τ1, τ2] set in which a vector function is defined
T tug
u dimensionless x

u, v,w components a vector r in (Ouvw)

u Darboux vector
u = q̇ sooz
ûr a unit vector on r
û1, û2, û3 unit vectors along the axes q1, q2, q3, components of ûr

ûr , ûθ , ûϕ unit vectors of a spherical coordinate system
ût , ûn, ûb unit vectors of natural coordinate frame
ûu, ûv, ûw unit vectors of (Ouvw)

û‖, û⊥ parallel and perpendicular unit vectors of l

v speed
v, ẋ, v,ṙ velocity
v (r) velocity field
V volume
w dimensionless z

W work
x, y, z axes of an orthogonal Cartesian coordinate frame
x0, y0, z0 coordinates of an interested point P

x, y vector functions, relative position vectors
X,Y,Z global coordinate axes
X absolute position vectors
Y yank
z = þ̇ larz
Z, S short notation symbol
Z zoor

Greek
α angle between two vectors, angle between r and l

α, β, γ directional cosines of a line
α1, α2, α3 directional cosines of r and ûr

ε strain
ε, λ, ψ Lagrange parameters of series solutions
ε, a, b, c Jazar parameters of series solutions
θ angle, angular coordinate, angular parameter
κ curvature
κ = κûn curvature vector
µ = G1 + G2 equivalen mass in two-body problem
ρ curvature radius, density
σ stress tensor, normal stress[
σij (r)

]
stress field

τ curvature torsion, shear stress
ϕ = ϕ (r) scalar field function
ω,ω angular velocity
�(ϕ, k, n) elliptic integral of the third kind
�(k, n) complete elliptic integral of the third kind

Symbol
· inner product of two vectors
× outer product of two vectors
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∇ gradient operator
∇f (r) gradient of f
∇ × f = curl f curl of f
∇ · f = div f divergence of f
∇2f Laplacian of f

∇f = grad f gradient of f

∞ infinity
‖ parallel
⊥ perpendicular
þ= ċ pop
cn(u, k) Jacobi elliptic function
sn(u, k) Jacobi elliptic function
dn(u, k) Jacobi elliptic function
Ş shake

EXERCISES
1. Upward Shot in Air Assume we shoot a particle with mass m upward with initial velocity

v0. Air exerts a drag force −mkv, where k > 0 is a scalar.

(a) Determine the maximum height achieved by the particle.

(b) Determine the time to reach the maximum height.

(c) Calculate the terminal velocity of the particle.

2. Free Fall in Air A particle with mass m falls along the −z-axis in air and exerts a
resistance force kmv2, where k > 0 is a scalar. Show that the velocity of m is

v =
(

1 − 2

e2kv∞t + 1

)
v∞

3. First Guldin Theorem The area of a surface generated by the revolution of a plane
curve about an axis lying in the plane of this curve and not cutting the curve is equal to
the product of the length of the curve and the length of the path described by the mass
center of the curve. This is the first theorem of Guldin (1577–1643).

(a) Use the Guldin theorem to determine the mass center of the semicircle arc of
Figure 2.54 (a).

(b) Use the result of part (a) to determine the surface area of the object that is made by
the revolution of the semicircle arc of Figure 2.54(b) about the Y -axis.

R
X

Y

G X

Y

G
Ra

(a) (b)

Figure 2.54 A semicircle arc.
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4. Motion along a Vertical Curve A particle m slides on a curve C with equation z = f (x)

in the (x, z)-plane. If m is at (x0, z0) when t = 0, show that the required time t to be at a
point (x, z) is

t =
∫ x

x0

√
1 + f ′2 (x)

2g (f (x0) − f (x))
dx f ′ = df

dx

5. Second Guldin Theorem The volume of a solid generated by the revolution of a plane
region about an axis lying in the plane of this region and not cutting the region is equal
to the product of the area of the region and the length of the path described by the mass
center of the region. This is the second theorem of Guldin (1577–1643).

(a) Use the Guldin theorem to determine the mass center of the semicircle area of
Figure 2.55(a).

(b) Use the result of part (a) to determine the volume of the solid object that is made by
the revolution of the semicircle area of Figure 2.55(b) about the Y -axis.

R
X

Y

G X

Y

G
Ra

(a) (b)

Figure 2.55 A semicircle area.
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(a) (b)

Figure 2.56 A particle C with mass m is attracted by two particles at A and B.

6. Attraction of Two Point Masses

(a) Determine the gravitational force on particle C with mass m that is attracted by two
particles A and B with mass M . The particles are shown in Figure 2.56(a).

(b) Let us assume that the mass of the particle at A is kM , k > 0. Determine the gravita-
tional force on particle C with mass m that is attracted by particles A and B, as shown
in Figure 2.56(b).
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7. Attraction of a Uniform Bar

(a) Determine the gravitational force on particle C with mass m that is symmetrically
attracted by a uniform bar with mass M , as shown in Figure 2.57(a).

(b) Determine the gravitational force on particle C with mass m that is asymmetrically
attracted by a uniform bar with mass M , as shown in Figure 2.57(b).

X

G

Y

aOa

r
M

m

(a) (b)

X

G

Y

aOb

r
M

m

Figure 2.57 A particle C with mass m is attracted by a uniform bar with mass M .

8. Attraction of a Uniform Disc

(a) Determine the attraction force on a particle with mass m at a distance r on the axis of
symmetry of a disc with mass M , as shown in Figure 2.58(a).

(b) � Determine the attraction force on a particle with mass m at a distance r from a
uniform disc and far from the axis of symmetry of a disc with mass M , as shown in
Figure 2.58(b).

X
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O

r
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m
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(a) (b)

a

Figure 2.58 Attraction of a particle with mass m by a uniform disc with mass M .

9. Force for a Given Motion

(a) Prove that if the force on a moving particle is always along the tangent to the trajectory,
then the trajectory is a straight line.

(b) Prove that if the trajectory of a moving particle is such that

ṙ · (r̈ × ...
r ) = 0

then r = r (t) is a planar curve.

(c) Prove that the path of motion of a particle moving under the gravitational attraction is
a conic section.
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10. � Attraction of a Spherical Shell Determine the gravitational potential of a spherical
shell with inner radius R1 and outer radius R2 for (a) inside the shell and (b) outside the
shell. (c) Determine the external attraction of a solid sphere by R2 → 0.

11. Attraction of a Sphere Consider a uniform sphere with radius R and mass M , as shown
in Figure 2.59. Determine the gravitational attraction force of M on a particle m at a
distance a from the center of M .

G

m

R

X

Y

Z

a

Figure 2.59 Attraction of a uniform sphere with radius R and mass M on a particle with
mass m.

12. Escape from the Moon A bullet with mass m is fired upward from the surface of
the moon with initial speed v0. Show that the bullet cannot escape from the moon if
v2

0 < 2MG/R, where M is the mass of the moon and R is the radius of the moon.

13. Angular Momentum of a Particle A particle P with mass m is moving such that its
position vector has the components x = aθ3, y = 2aθ , z = 0, where θ = θ (t). Determine
the angular momentum of the particle about the point B (0, a, 0).

14. Integrals of a Spherical Pendulum A spherical pendulum with mass m and length l is
shown in Figure 2.60. The angles ϕ and θ may be used to describe the coordinates of the
system.

(a) Show that the angular momentum of the pendulum about the Z-axis is conserved.

(b) Determine the mechanical energy E = K + V of the pendulum.

(c) Use the energy and angular momentum equations to determine ϕ̇ and θ̇ .

m

l

X
Y

Z

θ

G

ϕ

Figure 2.60 A spherical pendulum.
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15. Cartesian-to-Cylindrical System A force F = 10ı̂ + 9̂ − 5k̂ is acting on a point P at
r = 3ı̂ + ̂ − k̂. Express F in (a) cylindrical and (b) spherical coordinate systems.

16. Total Moment of Momentum The total moment of momentum L of a system of particles
is the sum of all the individual moments of momentum Show that

dL
dt

=
n∑

i=1

ri × Fi +
n∑

i=1

n∑
j=1

ri × Fij

=
n∑

i=1

ri × Fi + 0 =
n∑

i=1

Mi = M

17. A Moving Load on a Barge A load m = 2000 kg is on the smooth deck of a barge of
mass M = 8000 kg. The load is pulled with a constant velocity of 0.1 m/s toward a winch,
as shown in Figure 2.61. Initially both the barge and the load are at rest with respect to
the water.

(a) Determine the speed of the barge and the load with respect to the shore.

(b) What is the position of the barge after 10 s?

(c) � Is it possible to move the load and give a velocity to the barge so it moves on water
with constant velocity?

y

x

M B

A

m

Figure 2.61 A moving load on a barge.

18. A Fuel Consumption Equation A rocket has an initial mass m0. After it fires, the mass
of the rocket would be

m = 1
2m0

(
1 + e−kt

)
where k is a constant. If the velocity of the rocket is v = 100 t2 m/s in a straight line, what
would be the thrust force after 1 s?

19. A Falling Chain A chain with length density ρ = m/l and a mass center at C is hung
at rest as shown in Figure 2.62 (a). We release the attachment at point B, as shown in
Figure 2.62(b).

(a) Determine the equation of motion using x as the variable.

(b) Determine the tension of the chain at A as a function of x.
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A B

B x

(a) (b)

C
C

g

A

Figure 2.62 A hanging chain.

20. Newton Equation in Coordinate System Determine the Newton equations of motion of
a particle of mass m in

(a) a cylindrical coordinate system and

(b) a spherical coordinate system.

(c) Assume the particle m is free to slide from r = R, z = 0 on a smooth helical wire
with cylindrical equation r = R, z = cθ . If the gravitational acceleration is g = gk̂.
Determine the force F that the wire exerts on m.

21. Nonstraight Path and Travel Time A particle of mass m has an initial velocity v = v0 ı̂

and is moving on a frictionless surface as shown in Figure 2.63.

(a) Prove that the particle in Figure 2.63(a) will travel the distance l faster than the particle
in part (b).

(b) Show the effect of the function y = f (x) on the total time t to travel the distance l if
h is kept constant.

(c) � Is there an optimal function y = f (x) to minimize t?

x

y

g
v0m

G

y = f (x)

x

y

v0m

(a)

(b)

l

h

Figure 2.63 A particle will move faster if there is a frictionless dip on its path.
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22. Derivative of Kinetic Energy Consider a particle with mass m that under a force F is
moving with velocity v. Show that

(a)
dK

dt
= F · v (b)

d (mK)

dt
= F · p

23. Double Pendulum

(a) Using a free-body diagram and the Newton method, determine the equations of motion
of the double pendulum shown in Figure 2.64.

(b) Determine the kinetic energy of the pendulum.

x

y

m
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θ
g

o

M
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T2
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ϕ

Figure 2.64 A double pendulum.

24. Conservative Force Check Determine whether each of the following force fields F is
conservative and determine the potential of the field relative to the origin for those forces
that are conservative:

(a) F = ey ı̂ + (
z + xey

)
̂ + (1 + y) k̂

(b) F =
(
y/

√
x2 + y2

)
ı̂ +

(
x/

√
x2 + y2

)
̂

(c) F = (
y/

(
x2 + y2)) ı̂ + (

x/
(
x2 + y2)) ̂

(d) F = 2xy3z4 ı̂ + 3x2y2z4̂ + 4x2y3z3k̂

25. A Particle in a Cone A particle of mass m slides without friction inside an upside-down
conical shell of semivertical angle α, as shown in Figure 2.65.

(a) Use cylindrical coordinates and the Euler equation M = (d/dt)L, to determine the
equations of motion of the particle.

(b) Show that it is possible for the particle to move such that it is at a constant R with
the cone axis.

(c) Determine the angular speed of the particle for a uniform motion of part (b).

y

m

x

g

o

α

mg

N

Figure 2.65 A particle of mass m slides inside a conical shell.
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26. � Elliptic Integrals

(a) Show that ∫ α2

α1

√
1 − k2 sin2 θ dθ = E (k, α2) − E (k, α1)

(b) Using c2 cos θ dθ = cos ϕ dϕ, transform the following integral into the standard form:∫ α

0

√
1 − c2 sin2 θ dθ c2 > 1

(c) Transform the following integral into an elliptic integral:∫ α

0

dθ√
cos 2θ

27. A Particle on a Curved Surface Draw FBD of the particle in Figures 2.66 (a) and
(b) for a = cR, c < 1, and determine their equation of motion. The spring is linear and
applies a tangential force on m.

(a) (b)

y

x

y

x

m

k

θ
R

a

m
k

θ 

gg

Figure 2.66 A particle on a curved surface.

28. Work on a Curved Path A particle of mass m is moving on a circular path given by

GrP = cos θ Î + sin θ Ĵ + 4 K̂

Calculate the work done by a force GF when the particle moves from θ = 0 to θ = π/2:

(a) GF = z2 − y2

(x + y)2 Î + y2 − x2

(x + y)2 Ĵ + x2 − y2

(x + z)2 K̂

(b) GF = z2 − y2

(x + y)2 Î + 2y

x + y
Ĵ + x2 − y2

(x + z)2 K̂

29. Moment of Momentum Determine the moment of momentum of m in Figure 2.67. The
mass m is attached to a massless rod with length l. The rod is pivoted to a rotating vertical
bar that is turning with angular speed ω.

(a) Determine the moment of momentum of the system.

(b) If m = 2 kg, l = 1.2 m, and ω = 10 rpm when θ = 30 deg, determine ω when θ =
45 deg.

(c) Draw a graph to show ω versus θ .
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X
h

Y

Z

G

m

lθω

Figure 2.67 A mass m is attached to a massless rod which is turning with angular speed ω.

30. Impact and Motion Figure 2.68 illustrates a carriage with mass M that has an oblique
surface. The carriage can move frictionless on the ground. We drop a small ball of mass
m on the surface when the carriage is at rest.

(a) Assume the ball falls from a height h above the impact point on the oblique surface.
Determine the velocity of M as a function of θ if the restitution coefficient is e.

(b) Is there any optimal value for θ to provide a maximum speed of M?

(c) � Assume h> > l and the first ball hits at the top point of the surface. If we drop
balls every t1 seconds, then what would be the maximum speed of M when the final
ball hits the carriage? How many balls will hit the carriage?

(d) � Assume h and l are comparable and the first ball hits at the top point of the surface.
If we drop balls every t1 seconds, then what would be the maximum speed of M when
the final ball hits the carriage? How many balls will hit the carriage?

h

θg

m

M

θ

l

Figure 2.68 A carriage with mass M and an oblique surface can be moved by the impact of
dropping balls.

31. Impact on a Rotating Plate Figure 2.69 illustrates a rotating plate with a constant angular
velocity ω. A series of equal particles of mass m are released from a height h above the
center of rotation. Ignore the thickness of the table and assume e = 1.
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(a) Determine x at which m hits the x-axis if θ = 0 at t = 0.

(b) Determine x at which the second m hits the x-axis if it is released when the first m

hits the table and θ = 0 at t = 0.

(c) Determine x at which the second m hits the x-axis if it is released when the first m

hits the x-axis and θ = 0 at t = 0.

(d) Assume ω = 0.1 rad/s, h = 1 m and determine the values of xi, i = 1, 2, . . . , 10, for
the first 10 masses if we release mi+1 when mi hits the table.

(e) Assume ω = 0.1 rad/s, h = 1 m and determine the values of xi, i = 1, 2, . . . , 10, for
the first 10 masses if we release mi+1 when mi hits the x-axis.

h

θ = ωt

g

m

l

x

y

Figure 2.69 Falling particles on a rotating plate.

32. Offset Impact on a Rotating Plate Substitute Figure 2.70 with Figure 2.69 and solve
Exercise 32 again.

h g

m

l

x

y

a

θ = ωt

Figure 2.70 Offset falling particles on a rotating plate.

33. Falling Particle on a Semicircle A particle m is falling from a height h on a semicircle
solid object with radius R as shown in Figure 2.71. Assume e = 1.

(a) Determine a for a given value of m, h, R, l.

(b) Determine a to maximize l.

(c) Determine the central angle of the impact point on the semicircle for lMax. Is the angle
45 deg?

(d) Determine H when l = lMax.

(e) Determine a to have H = h.
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l
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Figure 2.71 Falling particle on a semi-circle.

34. Impact of a Particle in a Circle A particle m is fired with initial velocity v0 from the
intersection of a circle with radius R and the x-axis. Assume e = 1 and determine the
coordinates of the third impact point of the particle with a wall in Figures 2.72(a) and (b).

m

R
x

y

θ

m

R
x

y

θ

(a) (b)

Figure 2.72 Impact of a particle in a semicircle and a circle.

35. A Rolling Disc and Projectile Consider the uniform disc of mass m and radius r in
Figure 2.73. The disc will begins falling from point (−l, h). Assume R = ch, c < h.

(a) Determine the point at which the disc hits the ground if the disc is in a pure roll while
it is moving on the ground.

(b) What is the angular velocity of the disc when it leaves the ground.

(c) Determine the point at which the disc hits the ground if the disc slides on the ground.

x

y

x2 + y2 − R2 = 0

h

m

l

Figure 2.73 A rolling disc acts as a projectile.
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36. Projectile Impact In Figure 2.74 the particle B is released from rest at time t = 0. The
particle A is thrown after t = 1s with velocity cv, where v is the velocity of B at t = 1 s.

(a) Determine α such that A hits B if c = 5 and l = 100 m.

(b) Is there a limit of c for a constant l and α to have an impact?

(c) What is the relationship of c and α for a constant l to have an impact?

B

x

G

A

cv

l

α 

g

Figure 2.74 A projectile impact to hit a falling particle.

37. Falling on a Spring A solid mass m falls on a spring as shown in Figure 2.75(a) or
with a spring as shown Figure 2.75(b). The spring exerts a stiffness force Fs . Determine
the maximum compression xMax of the springs if:

(a) e = 0 and Fs = kx

(b) e = 0 and Fs = kx3

(c) e = 1 and Fs = kx3

k
x

m

h

g

kx

m/2

h

g

(a) (b)

m/2

Figure 2.75 A solid mass m falls on or with a spring.
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38. Motion in a Fluid When a heavy body B of density ρB and volume V is immersed in
a fluid of density ρF , the weight W of the body would be

W = (ρB − ρF ) Vg

(a) Show that we may define the gravitational acceleration as g′ = g (1 − ρF /ρB).

(b) Derive the equation of the path of a projectile in the fluid.

(c) � Assume ρF = ρe−z and derive the equation of the path of a projectile in the fluid.

39. Hammer Impact in a Circle As is illustrated in Figure 2.76, a hammer with a head
of mass m2 is released from a horizontal position and hits a particle of mass m1 sitting
motionless at the bottom of a circular cage.

(a) Determine the height h that m1 achieves for a restitution factor e. Examine the answer
for extreme real values of e = 0 and e = 1.

(b) Assume 0 < e < 1 and determine the position where m1 hits the circle after separation.

(c) Assume e = 1.2 and determine the position where m1 hits m2 for the second time.
Ignore the size of the head.

m1

R
x

y

m2
g

Figure 2.76 Hammer impact in a circle.

40. Free Fall on Earth from a Great Distance If a particle of mass m is released from rest
at a distance r from the center of Earth, then its equation of motion is

m
d2r

dt2 = −G
mM

r2

where G is the gravitational constant, R is the radius of Earth, and M is the mass of Earth.

(a) Show that m hits the surface of Earth with velocity v = √
2gR when it is released

from r = ∞.

(b) � Determine the velocity of impact if m is released from r = R + h, h << R.
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41. A Sliding Bid on a Turning Bar Figure 2.77 illustrates a bar in the horizontal position
at rest. There is a bid on the bar which can slide on the bar with no friction.

(a) Assume the bar is massless and has a constant angular velocity θ̇ . When the bar is
horizontal, m is at u = a. Determine the position u of the bid m when the bar passes
θ = 90 deg.

(b) Assume the bar is massless and release the bar from the horizontal position. Determine
the position u of the bid m when the bar passes θ = 90 deg.

(c) Determine the maximum value of u for 0 < θ < 360 deg in part (b).

x

y

m

θ
g

o

l

a

u

Figure 2.77 A sliding bid on a turning bar.

42. Force as a Function of Velocity Consider a particle that is moving according to the
equation of motion

mẍ = −C1 − C2ẋ
2 = −C1 − C2v

2

and show that

xMax = m

2C2
ln

(
1 + C2

C1
v2

0

)
43. Projectile in Air Consider a projectile in air with a resistance force proportional to v2

on a flat ground. Show that the equtions to determine the path of motion are

mẍ = −cẋ2

√
1 + ẏ2

ẋ2
mÿ = −cẋẏ

√
1 + ẏ2

ẋ2
− mg

44. Vertical Projectile in a Fluid A particle is projected vertically upward with an initial
velocity v0 in a medium with a resistance force F = cv2. Determine z = z (t) from t = 0
to the final time t = tf when the particle gets back to z = 0.

45. Change of Variable If the applied force on a particle is

F = f (x) ẋn + g (x) ẋ2

show that the equation of motion becomes linear by ẋ2−n = y.

46. Projectile Motion Two particles are projected from the same point with equal velocities.
If t and t ′ are the times taken to reach the other common point of their path and T and T ′
are the times to the highest point, show that tT + t ′T ′ is independent of the directions of
projectiles.





Part II

Geometric Kinematics

Kinematics , the English version of the French word ciné matique from the Greek
κı́νηµα (“movement”), is a branch of science that studies geometry in motion. By
motion we mean any type of displacement, which includes changes in position and
orientation. Therefore, displacement , and its successive derivatives with respect to
time, velocity, acceleration, and jerk , all combine into kinematics. In kinematics, we
do not pay attention to what causes the motion.

Geometric kinematics explains how the position vectors are calculated and how
they are expressed in different coordinate frames. The orthogonality condition

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂

and the kinematic or geometric transformation

Gr = GRB
Br

are the keys of geometric kinematics.





3

Coordinate Systems

The principal unit vectors of the Cartesian coordinate system are independent of posi-
tion; however, in a general coordinate system, vectors are position dependent and will
be defined at the interested position. Using the Cartesian coordinate system G(x , y, z )

as a base, we can transform the position, velocity, and acceleration of a moving particle
to other coordinate systems Q(q1 , q2 , q3 ). The coordinate orthogonality condition in
Cartesian or other orthogonal coordinate systems,

r = (r · ı̂)ı̂ + (r · ̂ )̂ + (r · k̂)k̂ (3.1)

= (r · û1)û1 + (r · û2)û2 + (r · û3)û3 (3.2)

is the main tool for coordinate system transformation. The kinematic information of a
particle may be expressed in any coordinate system.

3.1 CARTESIAN COORDINATE SYSTEM

To set up a Cartesian coordinate system, we use three sets of parallel and mutually
perpendicular planes. One plane of each set is assigned as the principal or zero plane.
The intersection of each pair of the zero planes makes an axis, and the three intersecting
axes make an orthogonal triad G. Each axis is perpendicular to a plane that carries the
name of the axis. So, the x-axis is perpendicular to the x-plane that is the (y, z )-plane.
Similarly, y- and z-axes indicate the y- and z-planes.

The position of a point in space is indicated by three intersecting planes each one
parallel to one of the principal planes. The point P in Figure 3.1 is at the intersection
of three planes, one parallel to (y, z ) at a distance x = 4, one parallel to (z , x) at a
distance y = 5, and one parallel to (x , y) at a distance z = 3. We show the coordinates
of P by P(x, y, z) = P(4, 5, 3).

The position, velocity, and acceleration vectors of a moving point P in a Cartesian
coordinate frame G(x , y, z ) are

Gr = xı̂ + ŷ + zk̂ (3.3)

Gv =
Gd

dt
Gr (t) = ẋı̂ + ẏ̂ + żk̂ (3.4)

Ga =
Gd

dt
Gv (t) = ẍ ı̂ + ÿ̂ + z̈k̂ (3.5)

243
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x

y

z

6
5
4
3
2
1

P

1 2 3 4 5 6 6
5

4
3

1
2

G

Figure 3.1 Cartesian coordinate system.

Proof : The Cartesian coordinate is the only system that has three invariant unit vectors(
ı̂, ̂ , k̂

)
. An invariant vector is a free vector that has a constant length and a constant

direction. Applying the unit vector definition (1.200) on the Cartesian expression of a
position vector r,

Gr = xı̂ + ŷ + zk̂ (3.6)

and noting that the unit vectors ı̂, ̂ , and k̂ have constant length and direction, we find

ûx = ∂r/∂x

|∂r/∂x| = ı̂

1
= ı̂ (3.7)

ûy = ∂r/∂y
|∂r/∂y| = ̂

1
= ̂ (3.8)

ûz = ∂r/∂z

|∂r/∂z| = k̂

1
= k̂ (3.9)

Therefore, any derivative of the position vector (3.6) can be found by taking the
derivative of its components. Showing the time derivative of components x , y, z by
an overdot, dx/dt = ẋ, dy/dt = ẏ, dz/dt = ż, we can find the velocity, acceleration,
and jerk of a moving point by

Gv =
Gd

dt
Gr (t) = ẋı̂ + ẏ̂ + żk̂ (3.10)

Ga =
Gd

dt
Gv (t) = ẍı̂ + ÿ̂ + z̈k̂ (3.11)

Gj =
Gd

dt
Ga (t) = ...

x ı̂ + ...
y ̂ + ...

z k̂ (3.12)

�
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Example 179 Cartesian Kinematic Vectors Consider a point that moves with the
position vector r,

r = ae−t2
sin ωt ı̂ + tan−1

(
1

t3

)
̂ + t cosh ωt k̂ (3.13)

where a and ω are constants. The velocity, acceleration, and jerk of the point are

v = d

dt
r = ae−t2

(ω cos ωt − 2t sin ωt) ı̂ − 3
t2

t6 + 1
̂

+ (cosh ωt + ωt sinh ωt) k̂ (3.14)

a = d

dt
v = −ae−t2 (

2 sin ωt − 4t2 sin ωt + ω2 sin ωt + 4ωt cos ωt
)

ı̂

+ 6
t
(
2t6 − 1

)(
t6 + 1

)2
̂ + (

2ω sinh ωt + ω2t cosh ωt
)
k̂ (3.15)

j = ae−t2 ((
6ω2t − 8t3 + 12t

)
sin ωt − (

ω3 − 12ωt2 + 6ω
)

cos ωt
)
ı̂

− 6
10t12 − 25t6 + 1(

t6 + 1
)3

̂ + (
3ω2 cosh ωt + ω3t sinh ωt

)
k̂ (3.16)

Example 180 A Planar Spiral Motion A point P is moving on a curve with the
following parametric equations:

x = a
(
1 − e−t

)
sin

(
bt2)

y = a
(
1 − e−t

)
cos

(
bt2) (3.17)

z = 0

Remembering that x = a − a sin (bt), y = a − a cos (bt) indicates a uniform circular
motion with angular velocity ω = b and radius R = a about the center C (a, a), we may
say that Equation (3.17) indicates a circular path about C (a, a) with a shrinking radius
R = a(1 − e−t ) and an increasing angular velocity ω = bt . Figures 3.2 illustrates the

G
y

x

Figure 3.2 The path of the spiral motion in the (x , y)-plane.
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path of motion in the (x , y)-plane for

a = 1 b = 2 (3.18)

The velocity and acceleration components of the point are

ẋ = ae−t sin
(
bt2) + 2abt

(
1 − e−t

)
cos

(
bt2) (3.19)

ẏ = ae−t cos
(
bt2) − 2abt

(
1 − e−t

)
sin

(
bt2) (3.20)

ẍ = 2ab
[
1 − (1 − 2t) e−t

]
cos bt2

+ a
[
4b2t2 (e−t − 1

) − e−t
]

sin bt2 (3.21)

ÿ = a
[
4b2t2 (e−t − 1

) − e−t
]

cos bt2

− 2ab
[
1 − (1 − 2t) e−t

]
sin bt2 (3.22)

Figures 3.3–3.5 depict the velocity, acceleration, and jerk of the motion. The final
destination C(x, y) = C(1, 1) is the equilibrium point at which the point approaches
asymptotically and stays there because the velocity and acceleration curves are
approaching zero while P approaches the equilibrium point.

1.5 y

0.5

−0.5

−1

0
1 2 3 4 5 6

t

1

· x·

Figure 3.3 Velocity components of moving point P on the spiral motion.

t

x

y

..

..

Figure 3.4 Acceleration components of moving point P on the spiral motion.
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t

x
...

...
y

Figure 3.5 Jerk components of moving point P on the spiral motion.

Example 181 Hypertrochoid When a circle is rolling on a straight line, any point of
the circle moves on a cycloid path. If the radius of the rolling circle on the x-axis is
b and a point P is attached to the circle at a distance c, then the parametric equations
of the path of P are

x = bt − c sin t y = b − c cos t (3.23)

The curve that is traced by P is called ordinary cycloid if c = b, prolate cycloid if
c >b, and curtate cycloid if c < b. Figure 3.6 illustrates a rolling circle with radius
b = 1 and three cycloids for c = 0.4, c = 1, and c = 1.6.

2

x

1 2 3 4 5 6 87

−1

3

0

Figure 3.6 A rolling circle with radius b = 1 and three cycloids for c = 1, c = 0.4, and c = 1.6.

The trochoid is the circular equivalence of the cycloid for which the moving circle
rolls on another fixed circle. When the moving circle rolls around inside the fixed circle,
the path of the points of the rolling circle is called the hypotrochoid , and when the
moving circle rolls around outside the circle, the path of the points of the rolling circle
is called the epitrochoid . Consider a fixed circle with radius a, a rolling circle with
radius b, and a fixed arm extending from the center of the rolling circle with length c.
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The parametric equations of the path of the tip point of the arm are

x = (a − b) cos t + c cos

(
a − b

b
t

)
(3.24)

y = (a − b) sin t − c sin

(
a − b

b
t

)
(3.25)

Figure 3.7 illustrates a rolling circle with radius b = 1 inside a fixed circle with radius
a = 2 and four trochoids for c = 0, c = 0.4, c = 1, and c = 1.6.

3−3

2

0−1−2

−1

−2

1 2

Figure 3.7 A rolling circle with radius b = 1 inside a fixed circle with radius a = 2 and four
trochoids for c = 0, c = 0.4, c = 1, and c = 1.6.

The velocity and acceleration components of the point are

ẋ = −a − b

b

[
c sin

(
a − b

b
t

)
+ b sin t

]
(3.26)

ẏ = −a − b

b

[
c cos

(
a − b

b
t

)
− b cos t

]
(3.27)

ẍ = −a − b

b2

[
b2 cos t + c (a − b) cos

(
a − b

b
t

)]
(3.28)

ÿ = −a − b

b2

[
b2 sin t − c (a − b) sin

(
a − b

b
t

)]
(3.29)

In the case

a = 2b = 2c (3.30)

the equations simplify to

x = b cos t y = 0 (3.31)
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which show that a point on the periphery of the rolling circle has a harmonic rectilinear
motion. Such a motion may be used to design a device with a required pure harmonic
motion. Figure 3.8 illustrates the idea.

0

Figure 3.8 A rolling circle with radius b inside a fixed circle with radius a = 2b provides a
rectilinear harmonic motion.

Example 182 Ferris Wheel A Ferris wheel is made up of an upright wheel with
passenger gondolas attached to the rim and hanging under gravity. A Ferris wheel is
also known as an observation wheel and a big wheel. Figure 3.9 illustrates a Ferris
wheel that has a rim with radius a and hanging gondolas with length b. The parametric
equations of the path of a nonswinging passenger are

x = a cos θ y = a sin θ − b (3.32)

which show a passenger will move on a circle with a center at C(0, −b):

x2 + (y + b)2 = a2 (3.33)

x

y

a

b

Figure 3.9 A Ferris wheel that has a rim with radius a and hanging gondolas with length b.
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If we assume the passenger as a point mass at its mass center, its path of motion
would be circular with an angular velocity θ̇ . The passenger as a rigid body will not
have any angular velocity about its mass center.

3.2 CYLINDRICAL COORDINATE SYSTEM

In a cylindrical coordinate system, the coordinate of a point is at the intersection of
two planes and a cylinder, as shown in Figure 3.10. The coordinates of cylindrical and
Cartesian coordinate systems are related by

x = ρ cos θ y = ρ sin θ z = z (3.34)

or inversely by
ρ2 = x2 + y2 θ = tan−1 y

x
z = z (3.35)

The position, velocity, and acceleration of a moving point in a cylindrical coordinate
system are

r = ρûρ + żûz (3.36)

v = ρ̇ûρ + ρθ̇ ûθ + żûz (3.37)

a = (
ρ̈ − ρθ̇2) ûρ + (

2ρ̇θ̇ + ρθ̈
)
ûθ + z̈ûz (3.38)

Proof : Starting with a Cartesian position vector

r = xı̂ + ŷ + zk̂ (3.39)
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ûρ

ûθ

2

1

ûz

Figure 3.10 Cylindrical coordinate system.
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we substitute the Cartesian–cylindrical relations (3.34) to find the Cartesian position
vector with cylindrical components

r = ρ cos θ ı̂ + ρ sin θ ̂ + z k̂ =
 ρ cos θ

ρ sin θ

z

 (3.40)

Employing the definition of unit vectors in (1.200) we find the unit vectors of the
cylindrical system expressed in the Cartesian system,

ûρ = ∂r/∂ρ
|∂r/∂ρ| = cos θ ı̂ + sin θ ̂

1
= cos θ ı̂ + sin θ ̂ =

 cos θ

sin θ

0

 (3.41)

ûθ = ∂r/∂θ

|∂r/∂θ | = −ρ sin θ ı̂ + ρ cos θ ̂

ρ
= − sin θ ı̂ + cos θ ̂ =

 − sin θ

cos θ

0

 (3.42)

ûz = ∂r/∂z

|∂r/∂z| = k̂

1
= k̂ =

 0
0
1

 (3.43)

Using the coordinate orthogonality condition (3.2) we can transform the position vector
from a Cartesian expression to a cylindrical expression,

r = (r · ûρ)ûρ + (r · ûθ )ûθ + (r · ûz)ûz

= ρûρ + zk̂ (3.44)

where

r · ûρ =
 ρ cos θ

ρ sin θ

z

 ·
 cos θ

sin θ

0

 = ρ (3.45)

r · ûθ =
 ρ cos θ

ρ sin θ

z

 ·
 − sin θ

cos θ

0

 = 0 (3.46)

r · ûz =
 ρ cos θ

ρ sin θ

z

 ·
 0

0
1

 = z (3.47)

To find the velocity vector v = dr/dt , we take a derivative from the Cartesian
expression of the position vector (3.40),

v = (
ρ̇ cos θ − ρθ̇ sin θ

)
ı̂ + (

ρ̇ sin θ + ρθ̇ cos θ
)
̂ + żk̂

=
 ρ̇ cos θ − ρθ̇ sin θ

ρ̇ sin θ + ρθ̇ cos θ

ż

 (3.48)
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and employ the coordinate orthogonality condition (3.2) to find the velocity vector in
a cylindrical system,

v = (v · ûρ)ûρ + (v · ûθ )ûθ + (v · ûz)ûz

= ρ̇ûρ + ρθ̇ ûθ + żk̂ (3.49)

where

v · ûρ =
 ρ̇ cos θ − ρθ̇ sin θ

ρ̇ sin θ + ρθ̇ cos θ

ż

 ·
 cos θ

sin θ

0

 = ρ̇ (3.50)

v · ûθ =
 ρ̇ cos θ − ρθ̇ sin θ

ρ̇ sin θ + ρθ̇ cos θ

ż

 ·
 − sin θ

cos θ

0

 = ρθ̇ (3.51)

v · ûz =
 ρ̇ cos θ − ρθ̇ sin θ

ρ̇ sin θ + ρθ̇ cos θ

ż

 ·
 0

0
1

 = ż (3.52)

To find the acceleration vector a = dv/dt , we may take a derivative from the
Cartesian expression of the velocity vector (3.48),

a =


(
ρ̈ − ρθ̇2

)
cos θ − (

ρθ̈ + 2ρ̇θ̇
)

sin θ(
ρ̈ − ρθ̇2

)
sin θ + (

ρθ̈ + 2ρ̇θ̇
)

cos θ

z̈

 (3.53)

and employ the coordinate orthogonality condition (3.2) to find the acceleration vector
in a cylindrical system,

a = (a · ûρ)ûρ + (a · ûθ )ûθ + (a · k̂)k̂

= (
ρ̈ − ρθ̇2) ûρ + (

ρθ̈ + 2ρ̇θ̇
)
ûθ + z̈k̂ (3.54)

where

a · ûρ =


(
ρ̈ − ρθ̇2

)
cos θ − (

ρθ̈ + 2ρ̇θ̇
)

sin θ(
ρ̈ − ρθ̇2

)
sin θ + (

ρθ̈ + 2ρ̇θ̇
)

cos θ

z̈

 ·
 cos θ

sin θ

0


= ρ̈ − ρθ̇2 (3.55)

a · ûθ =


(
ρ̈ − ρθ̇2

)
cos θ − (

ρθ̈ + 2ρ̇θ̇
)

sin θ(
ρ̈ − ρθ̇2

)
sin θ + (

ρθ̈ + 2ρ̇θ̇
)

cos θ

z̈

 ·
− sin θ

cos θ

0


= ρθ̈ + 2ρ̇θ̇ (3.56)

a · k̂ =


(
ρ̈ − ρθ̇2

)
cos θ − (

ρθ̈ + 2ρ̇θ̇
)

sin θ(
ρ̈ − ρθ̇2

)
sin θ + (

ρθ̈ + 2ρ̇θ̇
)

cos θ

z̈

 ·
 0

0
1


= z̈ (3.57)
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Taking a derivative from (3.53) and using the coordinate orthogonality condition,
we can also find the jerk vector j in the cylindrical coordinate system:

j = (j · ûρ)ûρ + (j · ûθ )ûθ + (j · k̂)k̂

= (...
ρ − 3ρ̇θ̇2 − 3ρθ̇ θ̈

)
ûρ + (

ρ
...
θ + 3ρ̈θ̇ + 3ρ̇θ̈ − ρθ̇3) ûθ + ...

z k̂ (3.58)

�

Example 183 Orthogonality of the Cylindrical Coordinate System The cylindri-
cal coordinate system with unit vectors ûρ , ûθ , and k̂ is an orthogonal right-handed
coordinate system because

ûρ · ûθ = 0 ûθ · k̂ = 0 k̂ · ûρ = 0 (3.59)

and
ûρ × ûθ = k̂ ûθ × k̂ = ûρ k̂ × ûρ = ûθ (3.60)

Example 184 Alternative Method for Cylindrical Kinematics An alternative and
more practical method to find the kinematic vectors is to find the position vector in a
cylindrical coordinate using the orthogonal coordinate condition

r = ρûρ + zk̂ (3.61)

and take the derivative from this equation,

v = ρ̇ûρ + ρ
d

dt
ûρ + żk̂ + z

d

dt
k̂ (3.62)

a = ρ̈ûρ + 2ρ̇
d

dt
ûρ + ρ

d2

dt2
ûρ + z̈k̂ + 2ż

d

dt
k̂ + z

d2

dt2
k̂ (3.63)

To simplify these equations, we need to find the derivative of the unit vectors. As
derived in Equations (3.41)–(3.43), the Cartesian expressions of the unit vectors ûρ ,
ûθ , ûz with components in a cylindrical system are

ûρ = cos θ ı̂ + sin θ ̂ =
 cos θ

sin θ

0

 (3.64)

ûθ = − sin θ ı̂ + cos θ ̂ =
 − sin θ

cos θ

0

 (3.65)

ûz = k̂ =
 0

0
1

 (3.66)
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Taking derivatives shows that

d

dt
ûρ = −θ̇ sin θ ı̂ + θ̇ cos θ ̂ =

 −θ̇ sin θ

θ̇ cos θ

0

 (3.67)

d

dt
ûθ = −θ̇ cos θ ı̂ − θ̇ sin θ ̂ =

−θ̇ cos θ

−θ̇ sin θ

0

 (3.68)

d

dt
ûz =

 0
0
0

 (3.69)

Now, employing the orthogonality condition (3.2), we find the time derivatives of the
unit vectors ûρ , ûθ , ûz in a cylindrical system:

d

dt
ûρ =

(
d

dt
ûρ · ûρ

)
ûρ +

(
d

dt
ûρ · ûθ

)
ûθ +

(
d

dt
ûρ · ûz

)
ûz = θ̇ ûθ (3.70)

d

dt
ûθ =

(
d

dt
ûθ · ûρ

)
ûρ +

(
d

dt
ûθ · ûθ

)
ûθ +

(
d

dt
ûθ · ûz

)
ûz = −θ̇ ûρ (3.71)

d

dt
ûz =

(
d

dt
ûz · ûρ

)
ûρ +

(
d

dt
ûz · ûθ

)
ûθ +

(
d

dt
ûz · ûz

)
ûz = 0 (3.72)

The time derivatives of unit vectors make a closed set, which is enough to find the
derivatives of the position vector r in a cylindrical system as many times as we wish.
So, the velocity, acceleration, and jerk vectors would be

v = d

dt
r = d

dt

(
ρûρ + zk̂

)
= ρ̇ûρ + ρ

d

dt
ûρ + żk̂ + z

d

dt
k̂

= ρ̇ûρ + ρθ̇ ûθ + żk̂ (3.73)

a = d

dt
v = d

dt

(
ρ̇ûρ + ρθ̇ ûθ + żk̂

)
= ρ̈ûρ + ρ̇

d

dt
ûρ + ρ̇θ̇ ûθ + ρθ̈ ûθ + ρθ̇

d

dt
ûθ + z̈k̂ + ż

d

dt
k̂

= ρ̈ûρ + ρ̇θ̇ ûθ + ρ̇θ̇ ûθ + ρθ̈ ûθ − ρθ̇2ûρ + z̈k̂

= (
ρ̈ − ρθ̇2) ûρ + (

ρθ̈ + 2ρ̇θ̇
)
ûθ + z̈k̂ (3.74)

j = d

dt
a = d

dt

((
ρ̈ − ρθ̇2) ûρ + (

ρθ̈ + 2ρ̇θ̇
)
ûθ + z̈k̂

)
= (...

ρ − ρ̇θ̇2 − 2ρθ̇ θ̈
)
ûρ + (

ρ̈ − ρθ̇2) θ̇ ûθ

+ (
ρ̇θ̈ + ρ

...
θ + 2ρ̈θ̇ + 2ρ̇θ̈

)
ûθ − (

ρθ̈ + 2ρ̇θ̇
)
θ̇ ûρ + ...

z k̂

= (...
ρ − 3ρ̇θ̇2 − 3ρθ̇ θ̈

)
ûρ + (

ρ
...
θ + 3ρ̈θ̇ + 3ρ̇θ̈ − ρθ̇3) ûθ + ...

z k̂ (3.75)

These equations are compatible with Equations (3.49) and (3.54).
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Example 185 A Constant-Length Vector and Its Derivative Are Perpendicular If the
beginning point of a unit vector is fixed, the only path of motion for its tip point is
turning on a unit circle. Therefore, the derivative of the unit vector would be a tangent
vector to the unit circle in the direction of motion of the tip point. The length of the
derivative is equal to the instantaneous angular velocity of the unit vector. These facts
are true for any unit vector and derivative with respect to any parameter.

As an example, consider Figure 3.11, which illustrates the intersection of the cylin-
drical coordinate system with the (x , y)-plane. In a cylindrical coordinate system, we
have the unit vectors ûρ , ûθ , and ûz = k̂ as

ûρ =
 cos θ

sin θ

0

 ûθ =
 − sin θ

cos θ

0

 ûz =
 0

0
1

 (3.76)

x x

ûρ

y y

1 1

ûρ

ûθ

θ
.

θ
.

duρ / dt ˆduθ / dt
ˆ

Figure 3.11 Illustration of the unit vectors ûρ , ûθ and their time derivatives.

Their derivatives are

dûρ

dt
=

 −θ̇ sin θ

θ̇ cos θ

0

 dûθ

dt
=

−θ̇ cos θ

−θ̇ sin θ

0

 dûz

dt
=

 0
0
0

 (3.77)

and are perpendicular to their associated vectors:

ûρ · d

dt
ûρ =

 cos θ

sin θ

0

 ·
 −θ̇ sin θ

θ̇ cos θ

0

 = 0 (3.78)

ûθ · d

dt
ûθ =

 − sin θ

cos θ

0

 ·
−θ̇ cos θ

−θ̇ sin θ

0

 = 0 (3.79)

ûz · d

dt
ûz =

 0
0
1

 ·
 0

0
0

 = 0 (3.80)
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Because ûρ and ûθ are turning together with the same angular velocity, the lengths
of (d/dt)ûρ and (d/dt)ûθ must be equal and show the rate of rotation of ûρ and ûθ :∣∣∣∣ d

dt
ûρ

∣∣∣∣ =
∣∣∣∣ d

dt
ûθ

∣∣∣∣ = θ̇ (3.81)

To show that the perpendicularity of a constant-length vector and its derivative is
general, we take the derivative from r2 = r · r:

d

dt

(
r2) = d

dt
(r · r) (3.82)

The left-hand side is a scalar and therefore

0 = 2r · d

dt
r (3.83)

which shows that r and (d/dt)r are perpendicular.

Example 186 Matrix Transformation Using Equations (3.41)–(3.43) we may arrange
the unit vector transformation in a matrix equation: ûρ

ûθ

ûz

 =
 cos θ sin θ 0

− sin θ cos θ 0
0 0 1

 ı̂

̂

̂

 (3.84)

Therefore, we may determine the Cartesian unit vectors in the cylindrical system by a
matrix inversion:  ı̂

̂

̂

 =
 cos θ sin θ 0

− sin θ cos θ 0
0 0 1

−1  ûρ

ûθ

ûz


=

 ûρ cos θ − ûθ sin θ

ûθ cos θ + ûρ sin θ

ûz

 (3.85)

The position vector in the two systems may be transformed from cylindrical,

r = ρûρ + zk̂ =
 ρ

0
z

 (3.86)

to Cartesian by  cos θ sin θ 0
− sin θ cos θ 0

0 0 1

−1  ρ

0
z

 =
 ρ cos θ

ρ sin θ

z

 =
 x

y

z

 (3.87)
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Example 187 � Gradient in Cylindrical Coordinate System The gradient is an
operator to find the directional derivative of a scalar space function f = f (x, y, z):

grad = ∇ = ∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂ (3.88)

The gradient operator in a cylindrical coordinate system can be found by employing
the orthogonality coordinate condition.

Using the chain rule, we find

∇ =



∂

∂x

∂

∂y

∂

∂z


=



∂

∂ρ

∂ρ

∂x
+ ∂

∂θ

∂θ

∂x
+ ∂

∂z

∂z

∂x

∂

∂ρ

∂ρ

∂y
+ ∂

∂θ

∂θ

∂y
+ ∂

∂z

∂z

∂y

∂

∂ρ

∂ρ

∂z
+ ∂

∂θ

∂θ

∂z
+ ∂

∂z

∂z

∂z


(3.89)

Using the Cartesian and cylindrical relations

ρ =
√

x2 + y2 θ = tan−1 y

x
z = z

x = ρ cos θ y = ρ sin θ z = z (3.90)

we have

∇ =



∂

∂x
∂

∂y
∂

∂z

 =


cos θ

∂

∂ρ
− 1

ρ
sin θ

∂

∂θ

sin θ
∂

∂ρ
+ 1

ρ
cos θ

∂

∂θ
∂

∂z

 (3.91)

Employing the orthogonality condition, we transform ∇ from Cartesian to cylindrical:

∇ = (∇ · ûρ)ûρ + (∇ · ûθ )ûθ + (∇ · ûz)ûz

= ∂

∂ρ
ûρ + 1

ρ

∂

∂θ
ûθ + ∂

∂z
ûz (3.92)

The unit vectors are given in Equations (3.41)–(3.43).
It is also possible to substitute the unit vector expressions ı̂

̂

̂

 =
 ûρ cos θ − ûθ sin θ

ûθ cos θ + ûρ sin θ

ûz

 (3.93)
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into (3.91) and determine the gradient operator in a cylindrical system:

∇ = ∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂ =


∂

∂x
∂

∂y
∂

∂z

 ·
 ı̂

̂

̂



=


ûρ cos θ − ûθ sin θ

ûθ cos θ + ûρ sin θ

ûz

 ·


cos θ

∂

∂ρ
− 1

ρ
sin θ

∂

∂θ

sin θ
∂

∂ρ
+ 1

ρ
cos θ

∂

∂θ
∂

∂z


= ∂

∂ρ
ûρ + 1

ρ

∂

∂θ
ûθ + ∂

∂z
ûz (3.94)

Example 188 Gradient of a Cylindrical Field The gradient of the field

V = ρ3z cos θ (3.95)

is

∇V = ∂V

∂ρ
ûρ + 1

ρ

∂V

∂θ
ûθ + ∂V

∂z
ûz

= 3zρ2 cos θûρ − zρ2 sin θûθ + ρ3 cos θûz (3.96)

Example 189 Motion on a Cardioid Consider a point P that is moving on a 3D
cardioid

r = k (1 + cos θ) ûρ + θûθ + zûz (3.97)

where k is a constant and Figure 3.12 shows the cardioid for k = 1. The velocity and
acceleration of P on the cardioid path are

v = dr
dt

= −θ̇ sin θûρ + (1 + cos θ)
d

dt
ûρ + θ̇ ûθ + θ

d

dt
ûθ + żûz

= −θ̇ sin θûρ + (1 + cos θ) θ̇ ûθ + θ̇ ûθ − θ θ̇ ûρ + żûz

= − (sin θ + θ) θ̇ ûρ + (2 + cos θ) θ̇ ûθ + żûz (3.98)

a = dv
dt

= − (cos θ + 1) θ̇2ûρ − (sin θ + θ) θ̈ ûρ − (sin θ + θ) θ̇2ûθ

− (sin θ) θ̇2ûθ + (2 + cos θ) θ̈ ûθ − (2 + cos θ) θ̇2ûρ + z̈ûz

= −((sin θ + θ) θ̈ + (3 + 2 cos θ) θ̇2)ûρ

− ((sin θ) θ̇2 − (2 + cos θ) θ̈)ûθ + z̈ûz (3.99)
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1
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Figure 3.12 A 3D cardioid.

If the point is moving on a planar cardioid with a constant speed v, as is shown
in Figure 3.13, then

ρ = 1 + cos θ (3.100)

and its position, velocity, and acceleration would be

r = ρûρ = (1 + cos θ) ûρ (3.101)

v = ρ̇ûρ + ρθ̇ ûθ = −θ̇ sin θûρ + (1 + cos θ) θ̇ ûθ (3.102)

a = (
ρ̈ − ρθ̇2) ûρ + (

ρθ̈ + 2ρ̇θ̇
)
ûθ

= − (
θ̈ sin θ + θ̇ cos θ

)
ûρ + (

(1 + cos θ) θ̈ − 2θ̇2 sin θ
)
ûθ (3.103)

1

0.5

−0.5

−1

0.5 1.51

θ

2

ρ

Figure 3.13 A plane cardioid.
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However,

v =
√

ρ̇2 + ρ2θ̇2 =
√

2ρθ̇ (3.104)

and therefore,
θ̇ = v√

2ρ
(3.105)

θ̈ = − vρ̇

2ρ
√

2ρ
= v2 sin θ

4ρ2
(3.106)

which provides

v = − v√
2ρ

sin θûρ +
√

ρ

2
vûθ (3.107)

a = −3

4
vûρ − 3

4

sin θ

ρ
v2ûθ (3.108)

Example 190 Spiral Motions The spiral is a curve that has a periodic rotation with a
variable radius. A spiral has an open path and continues to drift outward to infinity or
inward to a fixed point as the angle of rotation increases. A spiral is better expressed
in cylindrical coordinates as

ρ = f (θ) (3.109)

where f (θ) is a monotonically increasing or decreasing function. The simplest spiral
is the Archimedes spiral ,

ρ = aθ (3.110)

which indicates a moving point on a radial line at a constant speed while the line is
turning about the origin at a constant angular velocity. If the radial speed of the point
is not constant, then the equation of the spiral has the general form

ρ = aθn (3.111)

where n = 1
2 indicates the Fermat spiral , n = −1 indicates the hyperbolic spiral , and

n = − 1
2 indicates the lituus .

A moving point P on a spiral has the following kinematics:

r = aθn ûρ (3.112)

v = anθn−1θ̇ ûρ + aθnθ̇ ûθ (3.113)

a = aθn−2 {nθθ̈ + [
n(n − 1) − θ2] θ̇2} ûρ

+ aθn−1 (θ θ̈ + 2nθ̇2) ûθ (3.114)

When the radial component ρ changes exponentially with θ , the curve is called
the logarithmic spiral :

ρ = c eaθ (3.115)
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Example 191 � Parabolic Cylindrical Coordinate System The parabolic cylindrical
coordinate system (u,v,z ) relates to the Cartesian system by

x = 1
2

(
u2 − v2

)
y = uv z = z (3.116)

Figure 3.14 illustrates the intersection of the system with the (x,y)-plane.

X

Y

v = 0.2

v = 0.5

v = 0.8v = 1v = 1.2

u = 0.2

u = 0.5

u = 0.8 u = 1 u = 1.2

G

ûv
ûu

Pr

1

0.8

0.6

0.4

0.2

−1.5 −1 −0.5 0.5 1 1.5−0.2

−0.4

−0.6

−0.8

−1

0

Figure 3.14 Parabolic cylindrical coordinate system.

To find the kinematics of a moving point P in the system, we start with a Cartesian
position vector

r = xı̂ + ŷ + zk̂ =
 1

2

(
u2 − v2

)
uv

z

 (3.117)

and employ the definition (1.200) to determine the Cartesian expression of the unit
vectors of the parabolic cylindrical system:

ûu = ∂r/∂u

|∂r/∂u| = u ı̂ + v ̂√
2

=


u√
2

v√
2

0

 (3.118)

ûv = ∂r/∂v

|∂r/∂v| = −v ı̂ + u ̂√
2

=


−v√

2
u√
2

0

 (3.119)

ûz = ∂r/∂z

|∂r/∂z| = k̂ =
 0

0
1

 (3.120)
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Using the coordinate orthogonality condition (3.2) we can transform the position vector
from a Cartesian to a cylindrical expression:

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûz)ûz

=
√

2

4
u
(
u2 + v2) ûu +

√
2

4
v
(
u2 + v2) ûv + zûz (3.121)

To find the velocity vector v = dr/dt , we take a derivative from the Cartesian expres-
sion of the position vector (3.117),

v = (uu̇ − vv̇) ı̂ + (uv̇ + vu̇) ̂ + żk̂ =
uu̇ − vv̇

uv̇ + vu̇

ż

 (3.122)

and employ the coordinate orthogonality condition (3.2),

v = (v · ûu)ûu + (v · ûv)ûv + (v · ûz)ûz

=
√

2

2
u̇
(
u2 + v2) ûu +

√
2

2
v̇
(
u2 + v2) ûv + żûz (3.123)

To find the acceleration vector a = dv/dt , we may take a derivative from the Cartesian
expression of the velocity vector (3.122),

a =
 uü + u̇2 − vv̈ − v̇2

uv̈ + vü + 2v̇u̇

z̈

 (3.124)

and employ the coordinate orthogonality condition (3.2) again,

a = (a · ûu)ûu + (a · ûv)ûv + (a · ûz)ûz

=
√

2

2

(
ü
(
u2 + v2) + uu̇2 − uv̇2 + 2vv̇u̇

)
ûu

+
√

2

2

(
v̈
(
u2 + v2) + 2uv̇u̇ + v

(
v̇2 − u̇2)) ûv + z̈k̂ (3.125)

Another derivative of (3.124) is given as

j =
 3u̇ü − 3v̇v̈ + u

...
u − v

...
v

3u̇v̈ + 3v̇ü + u
...
v + v

...
u...

z

 (3.126)

and using the coordinate orthogonality condition (3.2) provides the jerk vector in a
parabolic cylindrical system:

j = (a · ûu)ûu + (a · ûv)ûv + (a · ûz)ûz

=
√

2

2
(
...
u
(
u2 + v2) + 3ü (uu̇ + vv̇) − 3v̈ (uv̇ − vu̇))ûu

+
√

2

2
(
...
v
(
u2 + v2) + 3v̈ (uu̇ + vv̇) + 3ü (uv̇ − vu̇))ûv + ...

z ûz (3.127)
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3.3 SPHERICAL COORDINATE SYSTEM

In a spherical coordinate system, the coordinate of a point is at the intersection of a
plane, a cone, and a sphere, as shown in Figure 3.15. The coordinates of the spherical
and Cartesian coordinate systems are related by

x = r sin ϕ cos θ y = r sin ϕ sin θ z = r cos ϕ (3.128)

or inversely by

r =
√

x2 + y2 + z2 ϕ = tan−1

√
x2 + y2

z
θ = tan−1 y

x
(3.129)

The position, velocity, and acceleration of a moving point in a spherical coordinate
system are

r = rûr (3.130)

v = ṙ ûr + rϕ̇ ûϕ + rθ̇ sin ϕ ûθ (3.131)

a = (
r̈ − rϕ̇2 − rθ̇2 sin2 ϕ

)
ûr + (

rϕ̈ + 2ṙ ϕ̇ − rθ̇2 sin ϕ cos ϕ
)
ûϕ

+ [(
rθ̈ + 2ṙ θ̇

)
sin ϕ + 2rθ̇ ϕ̇ cos ϕ

]
ûθ (3.132)

Proof : Starting with a Cartesian position vector

r = xı̂ + ŷ + zk̂ (3.133)

and substituting the Cartesian–spherical relations (3.128), we find the Cartesian expres-
sion of the position vector with spherical components:

r =
 r sin ϕ cos θ

r sin ϕ sin θ

r cos ϕ

 (3.134)

x

z

G

ûϕ

r

θ

ϕ

20° 40° 60°
80°340°

320° 80°

60°

40°

20°

P

ûθ

ûr

r

Figure 3.15 Spherical coordinate system.



264 Coordinate Systems

The unit vectors of the spherical system expressed in a Cartesian system can be calcu-
lated by employing the definitions of unit vectors (1.200):

ûr = ∂r/∂r

|∂r/∂r| =
 sin ϕ cos θ

sin ϕ sin θ

cos ϕ

 (3.135)

ûϕ = ∂r/∂ϕ

|∂r/∂ϕ| =
 cos ϕ cos θ

cos ϕ sin θ

− sin ϕ

 (3.136)

ûθ = ∂r/∂θ

|∂r/∂θ | =
 − sin θ

cos θ

0

 (3.137)

To calculate the derivative kinematic vectors, we determine the derivative of the
unit vectors (3.133)–(3.135) and take the derivative of the position vector (1.200):

dûr

dt
=

 ϕ̇ cos θ cos ϕ − θ̇ sin θ sin ϕ

θ̇ cos θ sin ϕ + ϕ̇ cos ϕ sin θ

−ϕ̇ sin ϕ

 (3.138)

dûϕ

dt
=

−ϕ̇ cos θ sin ϕ − θ̇ sin θ cos ϕ

θ̇ cos θ cos ϕ − ϕ̇ sin ϕ sin θ

−ϕ̇ cos ϕ

 (3.139)

dûθ

dt
=

−θ̇ cos θ

−θ̇ sin θ

0

 (3.140)

Employing the coordinate orthogonality condition (3.2), we find the derivatives of the
unit vectors ûr , ûϕ , and ûθ in a spherical system:

dûr

dt
=

(
dûr

dt
· û r

)
û r +

(
dûr

dt
· ûθ

)
ûθ +

(
dûr

dt
· ûϕ

)
ûϕ

= ϕ̇ ûϕ + θ̇ sin ϕ ûθ (3.141)

dûϕ

dt
=

(
dûϕ

dt
· û r

)
û r +

(
dûϕ

dt
· ûθ

)
ûθ +

(
dûϕ

dt
· ûϕ

)
ûϕ

= −ϕ̇ û r + θ̇ cos ϕ ûθ (3.142)

dûθ

dt
=

(
dûθ

dt
· û r

)
û r +

(
dûθ

dt
· ûθ

)
ûθ +

(
dûθ

dt
· ûϕ

)
ûϕ

= −θ̇ sin ϕ û r − θ̇ cos ϕ ûϕ (3.143)

The closed set of the time derivatives of the unit vectors is enough to find the multi-
ple derivatives of the position vector r in a spherical system. The velocity, acceleration,
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and jerk vectors would be

r = (r · ûr )ûr + (r · ûϕ)ûϕ + (r · ûθ )ûθ = r ûr (3.144)

v = d

dt
r = d

dt
(rûr ) = ṙ ûr + r

dûr

dt

= ṙ ûr + rϕ̇ ûϕ + rθ̇ sin ϕ ûθ (3.145)

a = d

dt
v = d

dt

(
ṙ ûr + rϕ̇ ûϕ + rθ̇ sin ϕ ûθ

)
= r̈ ûr + ṙ

dûr

dt
+ ṙ ϕ̇ ûϕ + rϕ̈ ûϕ + rϕ̇

dûϕ

dt
+ ṙ θ̇ sin ϕ ûθ

+ rθ̈ sin ϕ ûθ + rθ̇ ϕ̇ cos ϕ ûθ + rθ̇ sin ϕ
dûθ

dt

= (
r̈ − rϕ̇2 − rθ̇2 sin2 ϕ

)
ûr + (

rϕ̈ + 2ṙ ϕ̇ − rθ̇2 sin ϕ cos ϕ
)
ûϕ

+ [(
rθ̈ + 2ṙ θ̇

)
sin ϕ + 2rθ̇ ϕ̇ cos ϕ

]
ûθ (3.146)

j = d

dt
a

= [...
r − 3ṙ ϕ̇2 − 3rϕ̇ϕ̈ − 3

2 rθ̇2ϕ̇ sin 2ϕ − 3
(
rθ̇ θ̈ + ṙ θ̇2

)
sin2 ϕ

]
ûr

+ [
r
(...
ϕ − ϕ̇3) + 3 (ṙϕ̈ + r̈ ϕ̇)

]
ûϕ

+ [− 3
2 θ̇

(
rθ̈ + ṙ θ̇

)
sin 2ϕ − 3rϕ̇θ̇2 cos2 ϕ

]
ûϕ

+ {
r
(...
θ − θ̇3) + 3

[
ṙ θ̈ + θ̇ (r̈ − rϕ̇2)

]}
sin ϕ ûθ

+ 3
[
rθ̈ ϕ̇ + θ̇ (rϕ̈ + ṙ ϕ̇)

]
cos ϕ ûθ (3.147)

�

Example 192 Orthogonality of Spherical Coordinate System A spherical coordinate
frame with unit vectors êr , êθ , and êϕ makes an orthogonal right-handed coordinate
system because

êr · êϕ = 0 êϕ · êθ = 0 êθ · êr = 0 (3.148)

êr × êϕ = êθ êϕ × êθ = êr êθ × êr = êϕ (3.149)

Example 193 Alternative Method for Spherical Kinematics An alternative method
to find the kinematic vectors is to use the Cartesian expression of the position and unit
vectors with components in a spherical coordinate and employ the orthogonality con-
dition (3.2). Substituting the Cartesian expression of the position vector with spherical
components (3.134) and the unit vectors (3.133)–(3.137) in (3.2), we can transform r
from a Cartesian to a spherical expression,

r = (r · ûr )ûr + (r · ûϕ)ûϕ + (r · ûθ )ûθ = rûr (3.150)
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where

r · ûr =
 r sin ϕ cos θ

r sin ϕ sin θ

r cos ϕ

 ·
 sin ϕ cos θ

sin ϕ sin θ

cos ϕ

 = r (3.151)

r · ûθ =
 r sin ϕ cos θ

r sin ϕ sin θ

r cos ϕ

 ·
 − sin θ

cos θ

0

 = 0 (3.152)

r · ûϕ =
 r sin ϕ cos θ

r sin ϕ sin θ

r cos ϕ

 ·
 cos ϕ cos θ

cos ϕ sin θ

− sin ϕ

 = 0 (3.153)

To find the velocity vector v = dr/dt , we take a derivative from the position vector
(3.134),

v =
 ṙ cos θ sin ϕ + rϕ̇ cos θ cos ϕ − rθ̇ sin θ sin ϕ

ṙ sin θ sin ϕ + rϕ̇ cos θ sin ϕ + rθ̇ sin θ cos ϕ

ṙ cos ϕ − rϕ̇ sin ϕ

 (3.154)

Employing the coordinate orthogonality condition (3.2), we find the velocity vector in
a spherical system:

v = (v · ûr )ûr + (v · ûθ )ûθ + (v · ûϕ)ûϕ

= ṙ ûr + rθ̇ sin ϕ ûθ + rϕ̇ûϕ (3.155)

To find the acceleration vector a = dv/dt , we may take a derivative from the
Cartesian expression of the velocity vector (3.154),

a =



(
r̈ − rθ̇2 − rϕ̇2

)
cos θ sin ϕ + (rϕ̈ + 2ṙ ϕ̇) cos θ cos ϕ

− (
rθ̈ + 2ṙ θ̇

)
sin θ sin ϕ − 2rθ̇ ϕ̇ cos ϕ sin θ(

r̈ − rθ̇2 − rϕ̇2
)

sin θ sin ϕ + (rϕ̈ + 2ṙ ϕ̇) cos ϕ sin θ

+ (
rθ̈ + 2ṙ θ̇

)
cos θ sin ϕ + 2rθ̇ ϕ̇ cos θ cos ϕ(

r̈ − rϕ̇2
)

cos ϕ − (rϕ̈ + 2ṙ ϕ̇) sin ϕ

 (3.156)

and use the orthogonality condition (3.2),

a = (a · ûr )ûr + (a · ûθ )ûθ + (a · ûϕ)ûϕ

= (
r̈ − rϕ̇2 − rθ̇2 sin2 ϕ

)
ûr + [(

rθ̈ + 2ṙ θ̇
)

sin ϕ + 2rθ̇ ϕ̇ cos ϕ
]
ûθ

+ (
rϕ̈ + 2ṙ ϕ̇ − rθ̇2 sin ϕ cos ϕ

)
ûϕ (3.157)

Example 194 � Gradient in Spherical Coordinate System The orthogonality coor-
dinate condition (3.2) enables us to find the gradient operator

grad = ∇ = ∂

∂x
ı̂ + ∂

∂y
̂ + ∂

∂z
k̂ (3.158)

in a spherical coordinate system.



3.3 Spherical Coordinate System 267

Using the chain rule, we find

∇ =



∂

∂x
∂

∂y
∂

∂z

 =



∂

∂r

∂r

∂x
+ ∂

∂ϕ

∂ϕ

∂x
+ ∂

∂θ

∂θ

∂x
∂

∂r

∂r

∂y
+ ∂

∂ϕ

∂ϕ

∂y
+ ∂

∂θ

∂θ

∂y
∂

∂r

∂r

∂z
+ ∂

∂ϕ

∂ϕ

∂z
+ ∂

∂θ

∂θ

∂z

 (3.159)

Having the Cartesian and cylindrical coordinate relations

r =
√

x2 + y2 + z2 ϕ = tan−1

√
x2 + y2

z
θ = tan−1 y

x

x = r sin ϕ cos θ y = r sin ϕ sin θ z = r cos ϕ (3.160)

we have

∇f =



∂

∂x
∂

∂y
∂

∂z

 =


sin ϕ cos θ

∂

∂r
+ cos θ cos ϕ

∂

∂ϕ
− 1

r

sin θ

sin ϕ

∂

∂θ

sin ϕ sin θ
∂

∂r
+ cos ϕ sin θ

∂

∂ϕ
+ 1

r

cos θ

sin ϕ

∂

∂θ

cos ϕ
∂

∂r
− sin ϕ

∂

∂ϕ

 (3.161)

Using the orthogonality condition, we have

∇ = (∇ · ûρ)ûρ + (∇ · ûϕ)ûϕ + (∇ · ûθ )ûθ

= ∂

∂r
ûr + 1

r

∂

∂ϕ
ûϕ + 1

r sin ϕ

∂

∂θ
ûθ (3.162)

Example 195 Gradient of a Spherical Field The gradient of the field

V = r3 cos θ

sin2 ϕ
(3.163)

is

∇V = ∂

∂r
ûr + 1

r

∂

∂ϕ
ûϕ + 1

r sin ϕ

∂

∂θ
ûθ

= 3r2 cos θ

sin2 ϕ
ûr − 2r2 cos θ

cos ϕ

sin3 ϕ
ûϕ − r2 sin θ

sin3 ϕ
ûθ (3.164)

Example 196 � Elliptic–Hyperbolic Cylindrical Coordinate System The eilliptic–
hyperbolic coordinate system (u, v , z ) relates to the Cartesian system by

x = a cosh u cos v y = a sinh u sin v z = z (3.165)
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Figure 3.16 Elliptic–hyperbolic cylindrical coordinate system.

Figure 3.16 illustrates the intersection of the system with the (x , y)-plane for
a = 1. The Cartesian expression of the position vector r with eilliptic–hyperbolic
components is

r = xı̂ + ŷ + zk̂ =
 a cosh u cos v

a sinh u sin v

z

 (3.166)

To determine the kinematics of a moving point, we calculate the unit vectors of
eilliptic–hyperbolic systems expressed in the Cartesian system:

ûu = ∂r/∂u

|∂r/∂u| = 1√
cosh2 u − cos2 v

 cos v sinh u

sin v cosh u

0

 (3.167)

ûv = ∂r/∂v

|∂r/∂v| =
√

2√
cosh2 u − cos2 v

− sin v cosh u

cos v sinh u

0

 (3.168)

ûz = ∂r/∂z

|∂r/∂z| =
 0

0
1

 (3.169)

Employing the coordinate orthogonality condition (3.2), we find the derivatives of
the unit vectors ûu, ûv , and ûz in the eilliptic–hyperbolic system:

dûu

dt
=

(
dûu

dt
· û u

)
û u +

(
dûu

dt
· ûv

)
ûv +

(
dûu

dt
· ûz

)
ûz

= cosh u sinh u v̇ − cos v sin v u̇

cosh2 u − cos2 v
ûv (3.170)
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dûv

dt
=

(
dûz

dt
· û u

)
û u +

(
dûz

dt
· ûv

)
ûv +

(
dûz

dt
· ûz

)
ûz

= −cosh u sinh u v̇ − cos v sin v u̇

cosh2 u − cos2 v
û u (3.171)

dûz

dt
=

(
dûv

dt
· û u

)
û u +

(
dûv

dt
· ûv

)
ûv +

(
dûv

dt
· ûz

)
ûz = 0 (3.172)

This closed set of time derivatives of the unit vectors is enough to find the multiple
derivatives of the position vector r in a spherical system. The velocity and acceleration
vectors would be

r = (r · ûu)ûu + (r · ûv)ûv + (r · ûz)ûz

= a cosh u sinh u√
cosh2 u − cos2 v

ûu − a cos v sin v√
cosh2 u − cos2 v

ûv + zûz (3.173)

v = d

dt
r = a

√
cosh2 u − cos2 v u̇ ûu

+ a
√

cosh2 u − cos2 v v̇ ûv + ż ûz (3.174)

a = d

dt
v = aü

√
cosh2 u − cos2 v ûu

+ a

(
u̇2 − v̇2

)
cosh u sinh u + 2u̇v̇ cos v sin v√

cosh2 u − cos2 v
ûu

+ av̈
√

cosh2 u − cos2 v ûv

− a

(
u̇2 − v̇2

)
cos v sin v + 2u̇v̇ cosh u sinh u√

cosh2 u − cos2 v
ûv + z̈ ûz (3.175)

3.4 � NONORTHOGONAL COORDINATE FRAMES

There are applications in which we may prefer to interpret a dynamic problem in
a nonorthogonal coordinate system. A nonorthogonal or oblique coordinate frame is
made when the three scaled and straight axes OA, OB, OC of a triad OABC are
nonorthogonal and non-coplanar.

3.4.1 � Reciprocal Base Vectors

Consider a nonorthogonal triad OABC to be used as a coordinate frame. Defining three
unit vectors b̂1, b̂2, and b̂3 along the axes OA, OB, OC , respectively, we can express
any vector r by a unique linear combination of the three unit vectors b̂1, b̂2, and b̂3 as

r = r1b̂1 + r2b̂2 + r3b̂3 (3.176)
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Figure 3.17 Expression of a vector r along the three axes of a nonorthogonal triad OABC .

where

r1 = r · b̂2 × b̂3

b̂1 · b̂2 × b̂3

=
[
rb̂2b̂3

]
[
b̂1b̂2b̂3

] (3.177)

r2 = r · b̂3 × b̂1

b̂1 · b̂2 × b̂3

=
[
rb̂3b̂1

]
[
b̂1b̂2b̂3

] (3.178)

r3 = r · b̂1 × b̂2

b̂1 · b̂2 × b̂3

=
[
rb̂1b̂2

]
[
b̂1b̂2b̂3

] (3.179)

The scalars r1, r2, and r3 are the components of r along OA, OB , and OC , as shown in
Figure 3.17. To determine r1, we draw a line from point P , parallel to b̂1, to intersect
the (b̂2, b̂3)-plane and measure the length of the line segment. The scalars r2 and r3
are calculated similarly.

For every nonorthogonal coordinate triad OABC with unit vectors b̂1, b̂2, and b̂3,
there exists a set of reciprocal base vectors b�

1 , b�
2 , b�

3 that are perpendicular to the

planes
(
b̂2, b̂3

)
,
(
b̂3, b̂1

)
,
(
b̂1, b̂2

)
and represent the planes respectively:

b�
1 = b̂2 × b̂3

b̂1 · b̂2 × b̂3

= b̂2 × b̂3[
b̂1b̂2b̂3

] (3.180)

b�
2 = b̂3 × b̂1

b̂1 · b̂2 × b̂3

= b̂3 × b̂1[
b̂1b̂2b̂3

] (3.181)

b�
3 = b̂1 × b̂2

b̂1 · b̂2 × b̂3

= b̂1 × b̂2[
b̂1b̂2b̂3

] (3.182)
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Using the reciprocal base vectors b�
1 , b�

2 , b�
3 , we may determine the components r1,

r2, and r3 as
r1 = r · b�

1 (3.183)

r2 = r · b�
2 (3.184)

r3 = r · b�
3 (3.185)

and show the vector r as

r =
(

r · b�
1

)
b̂1 +

(
r · b�

2

)
b̂2 +

(
r · b�

3

)
b̂3 (3.186)

The inner product of the principal unit vectors b̂i and reciprocal base vectors b�
i is

b̂i · b�
j = δij (3.187)

where δij is the Kronecker delta (1.125). Equation (3.187) is called the reciprocality
condition .

The reciprocal vectors may also be called the reverse vectors .

Proof : Let us express the vector r and unit vectors b̂1, b̂2, b̂3 in a Cartesian coordinate
frame as

r = xı̂ + ŷ + zk̂ (3.188)

b̂1 = b11 ı̂ + b12̂ + b13k̂ (3.189)

b̂2 = b21 ı̂ + b22̂ + b23k̂ (3.190)

b̂3 = b31 ı̂ + b32̂ + b33k̂ (3.191)

Substituting (3.189)–(3.191) into (3.176) and comparing with (3.188) provide a set of
equations  x

y

z

 =
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 r1

r2

r3

 (3.192)

that can be solved for the components r1, r2, and r3: r1

r2

r3

 =
 b11 b12 b13

b21 b22 b23

b31 b32 b33

−1  x

y

z

 (3.193)

We may express the solutions by vector–scalar triple products:

r1 = r · b̂2 × b̂3

b̂1 · b̂2 × b̂3

=
[
rb̂2b̂3

]
[
b̂1b̂2b̂3

] = r · b̂2 × b̂3

b̂1 · b̂2 × b̂3

(3.194)



272 Coordinate Systems

r2 = r · b̂3 × b̂1

b̂1 · b̂2 × b̂3

=
[
rb̂3b̂1

]
[
b̂1b̂2b̂3

] = r · b̂3 × b̂1

b̂1 · b̂2 × b̂3

(3.195)

r3 = r · b̂1 × b̂2

b̂1 · b̂2 × b̂3

=
[
rb̂1b̂2

]
[
b̂1b̂2b̂3

] = r · b̂1 × b̂2

b̂1 · b̂2 × b̂3

(3.196)

The set of equations (3.193) are solvable if

b̂1 · b̂2 × b̂3 �= 0 (3.197)

which means b̂1, b̂2, b̂3 are not coplanar.
Substituting the components r1, r2, r3 in (3.176), we may define three reciprocal

vectors b�
1 , b�

2 , b�
3 to write r in a decomposed expression similar to the orthogonality

condition (3.2):
r = r1b̂1 + r2b̂2 + r3b̂3

=
(

r · b�
1

)
b̂1 +

(
r · b�

2

)
b̂2 +

(
r · b�

3

)
b̂3 (3.198)

where
b�

1 =
(
b̂2 × b̂3

)
÷

(
b̂1 · b̂2 × b̂3

)
b�

2 =
(
b̂3 × b̂1

)
÷

(
b̂1 · b̂2 × b̂3

)
(3.199)

b�
3 =

(
b̂1 × b̂2

)
÷

(
b̂1 · b̂2 × b̂3

)
and

r1 = r · b�
1 r2 = r · b�

2 r3 = r · b�
3 . (3.200)

Using Equations (3.199), we may show that the inner product of principal unit
vectors b̂i and reciprocal base vectors b�

i are unity:

b̂1 · b�
1 = b̂1 · b̂2 × b̂3

b̂1 · b̂2 × b̂3

= 1

b̂2 · b�
2 = b̂2 · b̂3 × b̂1

b̂1 · b̂2 × b̂3

= 1 (3.201)

b̂3 · b�
3 = b̂3 · b̂1 × b̂2

b̂1 · b̂2 × b̂3

= 1

However, because b̂i and b�
i are not orthogonal, the b�

i are not necessarily unit vectors.
Furthermore, because the reciprocal base vectors b�

1 , b�
2 , b�

3 respectively represent
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the planes
(
b̂2, b̂3

)
,
(
b̂3, b̂1

)
,
(
b̂1, b̂2

)
, we have

b̂1 · b�
2 = b̂2 · b�

3 = b̂3 · b�
1 = 0

b̂1 · b�
3 = b̂2 · b�

1 = b̂3 · b�
2 = 0 (3.202)

Using the Kronecker delta δij , we can show Equations (3.201) and (3.202) by a single
equation:

b̂i · b�
j = δij (3.203)

�

Example 197 � Position Vector of a Point and Reciprocal Base Vectors Consider
a point P at

r = 5ı̂ + 6̂ + 4k̂ (3.204)

We would like to express r in a nonorthogonal coordinate frame

r = r1b̂1 + r2b̂2 + r3b̂3 (3.205)

with b̂1, b̂2, b̂3 as unit vectors:

b̂1 =
 0.97334

−0.17194
−0.15198

 b̂2 =
−0.64219

0.7662
−0.02352

 b̂3 =
 0

0
1

 (3.206)

To calculate r1, r2, and r3, we use Equation (3.181) to find the reciprocal base vectors
of the nonorthogonal frame:

b�
1 = b̂2 × b̂3

b̂1 · b̂2 × b̂3

= 1

0.63535

 0.7662
0.64219

0

 =
 1.2059

1.0108
0

 (3.207)

b�
2 = b̂3 × b̂1

b̂1 · b̂2 × b̂3

= 1

0.63535

 0.17194
0.97334

0

 =
 0.27062

1.532
0

 (3.208)

b�
3 = b̂1 × b̂2

b̂1 · b̂2 × b̂3

= 1

0.63535

 0.12049
0.12049
0.63535

 =
 0.18964

0.18964
1.0

 (3.209)

So, the components r1, r2, and r3 are

r1 = r · b�
1 = 12.094

r2 = r · b�
2 = 10.545 (3.210)

r3 = r · b�
3 = 6.086
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Example 198 � A Vector in a Nonorthogonal Coordinate Frame Consider the
nonorthogonal coordinate frame OABC and the point P in Figure 3.18. Assume that the
Cartesian expression of its position vector r and the unit vectors of the nonorthogonal
triad OABC are

r = 5ı̂ + 6̂ + 4k̂ (3.211)

b̂1 = 0.766ı̂ + 0.642̂

b̂2 = 0.174ı̂ + 0.985̂ (3.212)

b̂3 = 0.183ı̂ + 0.183̂ + 0.965k̂

To show the expression of r in the nonorthogonal coordinate frame,

r = r1b̂1 + r2b̂2 + r3b̂3 (3.213)

we need to calculate r1, r2, and r3:

r1 =
[
rb̂2b̂3

]
[
b̂1b̂2b̂3

] r2 =
[
rb̂3b̂1

]
[
b̂1b̂2b̂3

] r3 =
[
rb̂1b̂2

]
[
b̂1b̂2b̂3

] (3.214)

r · b̂2 × b̂3 =
 5

6
4

 ·
 0.174

0.985
0

 ×
 0.183

0.183
0.965

 = 3.1515 (3.215)

r · b̂3 × b̂1 =
 5

6
4

 ·
 0.183

0.183
0.965

 ×
 0.766

0.642
0

 = 1.2467 (3.216)
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Figure 3.18 A position vector in a nonorthogonal coordinate frame.
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r · b̂1 × b̂2 =
 5

6
4

 ·
 0.766

0.642
0

 ×
 0.174

0.985
0

 = 2.5712 (3.217)

b̂1 · b̂2 × b̂3 =
 0.766

0.642
0

 ·
 0.174

0.985
0

 ×
 0.183

0.183
0.965

 = 0.6203 (3.218)

r1 = 3.1515

0.6203
= 5.08

r2 = 1.2467

0.6203
= 2.01 (3.219)

r3 = 2.5712

0.6203
= 4.14

Therefore, the nonorthogonal expression of r is

r = 5.08b̂1 + 2.01b̂2 + 4.14b̂3 (3.220)

We may also use the reciprocal base vectors of the OABC triad,

b�
1 = b̂2 × b̂3

b̂1 · b̂2 × b̂3

=
 1.5331

−0.27082
−0.23938


b�

2 = b̂3 × b̂1

b̂1 · b̂2 × b̂3

=
−0.99924

1.1922
−0.0366

 (3.221)

b�
3 = b̂1 × b̂2

b̂1 · b̂2 × b̂3

=
 0

0
1.0368


to calculate the components r1, r2, and r3:

r1 = r · b�
1 =

 5
6
4

 ·
 1.5331

−0.27082
−0.23938

 = 5.08

r2 = r · b�
2 =

 5
6
4

 ·
−0.99924

1.1922
−0.0366

 = 2.01 (3.222)

r3 = r · b�
3 =

 5
6
4

 ·
 0

0
1.0368

 = 4.14
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Example 199 � Scalar Triple Product of b�
i Let us use Equations (3.181) to

calculate the scalar triple product of b�
i :

b�
1 · b�

2 × b�
3 = b̂2 × b̂3

b̂1 · b̂2 × b̂3

· b̂3 × b̂1

b̂1 · b̂2 × b̂3

× b̂1 × b̂2

b̂1 · b̂2 × b̂3

=
(
b̂2 × b̂3

)
·
(
b̂3 × b̂1

)
×

(
b̂1 × b̂2

)
(
b̂1 · b̂2 × b̂3

)3

=
(
b̂2 × b̂3

)
· b̂1

(
b̂3 × b̂1 · b̂2

)
(
b̂1 · b̂2 × b̂3

)3

=
(
b̂1 · b̂2 × b̂3

)
·
(
b̂1 · b̂2 × b̂3

)
(
b̂1 · b̂2 × b̂3

)3

= 1(
b̂1 · b̂2 × b̂3

) (3.223)

So, the scalar triple product of
[
b̂1b̂2b̂3

]
and

[
b�

1 b�
2 b�

3

]
is the inverse of each other.

Because
[
b̂1b̂2b̂3

]
is equal to the volume of the parallelepiped made by the vectors

b̂1, b̂2, b̂3,
V =

[
b̂1b̂2b̂3

]
(3.224)

and
[
b�

1 b�
2 b�

3

]
is equal to the volume of the parallelepiped made by the reciprocal

base vectors b�
1 , b�

2 , b�
3 ,

V � =
[
b�

1 b�
2 b�

3

]
(3.225)

we have
V V � = 1 (3.226)

Example 200 � Short Notation for Principal and Reciprocal Vectors The principal
unit vectors and reciprocal base vectors may be shown by using index notation,

b̂i =
(

b�
j × b�

k

)
V (3.227)

b�
i = b̂j × b̂k

V
(3.228)

where the indices i, j, k follow a cyclic permutation of 1, 2, 3 .
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Example 201 � Geometric Interpretation of Reciprocal Base Vectors Consider an
oblique coordinate system such that

b̂3 = k̂ (3.229)

Such a coordinate system is nonorthogonal only in planes perpendicular to k̂ and
therefore expresses a two-dimensional oblique space because

b̂1 · k̂ = 0 b̂2 · k̂ = 0 (3.230)

Figure 3.19 illustrates a two-dimensional oblique coordinate system with unit vectors
b̂1 and b̂2. The volume of the parallelepiped made by the vectors b̂1, b̂2, k̂ is

V =
[
b̂1b̂2b̂3

]
= b̂1 · b̂2 × k̂ = b̂1 × b̂2 · k̂ = b̂1 × b̂2 = sin θ (3.231)

where θ is the angle between b̂1 and b̂2. The reciprocal base vectors of the system are

b�
1 = b̂2 × k̂

b̂1 · b̂2 × k̂
= b̂2 × k̂

V
= b̂2 × k̂

sin θ
(3.232)

b�
2 = k̂ × b̂1

b̂1 · b̂2 × k̂
= k̂ × b̂1

V
= k̂ × b̂1

sin θ
(3.233)

b�
3 = b̂1 × b̂2

b̂1 · b̂2 × k̂
= b̂1 × b̂2

V
= k̂ (3.234)
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Figure 3.19 Geometric interpretation of reciprocal base vectors in a two-dimensional space.
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So, b�
1 is a vector in the

(
b̂1, b̂2

)
-plane and perpendicular to b̂2, and similarly, b�

2 is

a vector in the
(
b̂1, b̂2

)
-plane and perpendicular to b̂1. The scalars r1V and r2V are

projections of r on axes b�
1 and b�

2 , respectively.

3.4.2 � Reciprocal Coordinate Frame

When a triad OABC with principal unit vectors b̂1, b̂2, b̂3 is nonorthogonal, the recip-
rocal base vectors b�

1 , b�
2 , b�

3 are also nonorthogonal. The axes on b�
1 , b�

2 , b�
3 define

a new coordinate frame OA�B�C� called the reciprocal coordinate frame R, while
the original triad OABC is called the principal coordinate frame P .

The coordinate frames b̂1, b̂2, b̂3 and b�
1 , b�

2 , b�
3 are reciprocal to each other. A

vector r in the principal and reciprocal frames P and R are expressed as

P r = r1b̂1 + r2b̂2 + r3b̂3 (3.235)
Rr = r

�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.236)

where

r1 = r · b�
1 r2 = r · b�

2 r3 = r · b�
3 (3.237)

r
�
1 = r · b̂1 r

�
2 = r · b̂2 r

�
3 = r · b̂3 (3.238)

b�
1 = b̂2 × b̂3[

b̂1b̂2b̂3

] b�
2 = b̂3 × b̂1[

b̂1b̂2b̂3

] b�
3 = b̂1 × b̂2[

b̂1b̂2b̂3

] (3.239)

b̂1 = b�
2 × b�

3[
b�

1 b�
2 b�

3

] b̂2 = b�
3 × b�

1[
b�

1 b�
2 b�

3

] b̂3 = b�
1 × b�

2[
b�

1 b�
2 b�

3

] (3.240)

The scalars r1, r2, r3 are called the covariant components of r, and the scalars
r
�
1 ,r

�
2 ,r

�
3 are called the contravariant components of r.

Figure 3.20 illustrates the covariant and contravariant components of a two-
dimensional vector r. The expression of a vector r can be transformed from the
principal to reciprocal frames and vice versa by introducing the transformation
matrices RRP and P RR :

Rr = RRP
P r = [

gij

] P r (3.241) r
�
1

r
�
2

r
�
3

 =
 b̂1 · b̂1 b̂1 · b̂2 b̂1 · b̂3

b̂2 · b̂1 b̂2 · b̂2 b̂2 · b̂3

b̂3 · b̂1 b̂3 · b̂2 b̂3 · b̂3

 r1

r2

r3

 (3.242)

P r = P RR
Rr =

[
g

�
ij

]
Rr (3.243) r1

r2

r3

 =
 b�

1 · b�
1 b�

1 · b�
2 b�

1 · b�
3

b�
2 · b�

1 b�
2 · b�

2 b�
2 · b�

3
b�

3 · b�
1 b�

3 · b�
2 b�

3 · b�
3

 r�
1

r
�
2

r
�
3

 (3.244)
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Figure 3.20 Contravariant and covariant components of a two-dimentional vector r.

So, the components ri and r
�
i are related by

ri =
3∑

j=1

g
�
ij r

�
j (3.245)

r
�
i =

3∑
j=1

gij rj (3.246)

where
gij = gji = b̂i · b̂j (3.247)

g
�
ij = g

�
j i = b�

i · b�
j (3.248)

b̂i · b�
j = b�

i · b̂j = δij (3.249)

The coefficients gij , i, j = 1, 2, 3, are called the covariant metric quantities that make
a metric tensor for the principal coordinate frame. The coefficients g

�
ij , i, j = 1, 2, 3,

are similarly called the contravariant metric quantities and make a metric tensor for
the reciprocal coordinate frame.

Proof : We can use the definition of reciprocal base vectors (3.199) to calculate the
reciprocal vectors to b�

1 , b�
2 , b�

3 from b̂1, b̂2, b̂3. The reciprocal vector to b�
1 is b̂1

because
b�

2 × b�
3

b�
1 · b�

2 × b�
3

=
(

b̂3 × b̂1

b̂1 · b̂2 × b̂3

× b̂1 × b̂2

b̂1 · b̂2 × b̂3

)(
b̂1 · b̂2 × b̂3

)

=
(
b̂3 × b̂1

)
×

(
b̂1 × b̂2

)
b̂1 · b̂2 × b̂3

= b̂1 (3.250)
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Similarly, the reciprocal vectors to b�
2 and b�

3 are b̂2 and b̂3, respectively:

b�
3 × b�

1

b�
1 · b�

2 × b�
3

= b̂2 (3.251)

b�
1 × b�

2

b�
1 · b�

2 × b�
3

= b̂3 (3.252)

Expressing a vector r and the vectors b�
1 , b�

2 , b�
3 in a Cartesian coordinate frame,

r = xı̂ + ŷ + zk̂ (3.253)

b�
1 = b

�
11 ı̂ + b

�
12̂ + b

�
13k̂

b�
2 = b

�
21 ı̂ + b

�
22̂ + b

�
23k̂ (3.254)

b�
3 = b

�
31 ı̂ + b

�
32̂ + b

�
33k̂

and using Equation (3.236) provide a set of equations that can be solved for the recip-
rocal components r

�
1 , r

�
2 , and r

�
3 : r

�
1

r
�
2

r
�
3

 =

 b
�
11 b

�
12 b

�
13

b
�
21 b

�
22 b

�
23

b
�
31 b

�
32 b

�
33


−1  x

y

z

 (3.255)

We may express the solutions by vector–scalar triple products:

r
�
1 = r · b�

2 × b�
3

b�
1 · b�

2 × b�
3

=
[
rb�

2 b�
3

]
[
b�

1 b�
2 b�

3

] = r · b̂1

r
�
2 = r · b�

3 × b�
1

b�
1 · b�

2 × b�
3

=
[
rb�

3 b�
1

]
[
b�

1 b�
2 b�

3

] = r · b̂2 (3.256)

r
�
3 = r · b�

1 × b�
2

b�
1 · b�

2 × b�
3

=
[
rb�

1 b�
2

]
[
b�

1 b�
2 b�

3

] = r · b̂3

Therefore, the reciprocal expression of a vector r in the reciprocal frame OA�B�C�

is given by (3.236). We may write Equations (3.235) and (3.236) as

P r = r1b̂1 + r2b̂2 + r3b̂3

=
(

r · b�
1

)
b̂1 +

(
r · b�

2

)
b̂2 +

(
r · b�

3

)
b̂3 (3.257)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3

=
(

r · b̂1

)
b�

1 +
(

r · b̂2

)
b�

2 +
(

r · b̂3

)
b�

3 (3.258)
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Employing Equation (3.257), we may show that

r�
i = r · b̂i =

3∑
j=1

(
r · b�

j

)
b̂j · b̂i =

3∑
j=1

(
b̂i · b̂j

)
rj (3.259)

and determine the transformation matrix RRP to map the coordinates of a point from a
principal frame P to a reciprocal frame R:

Rr = RRP
P r (3.260)

RRP =
 b̂1 · b̂1 b̂1 · b̂2 b̂1 · b̂3

b̂2 · b̂1 b̂2 · b̂2 b̂2 · b̂3

b̂3 · b̂1 b̂3 · b̂2 b̂3 · b̂3

 (3.261)

Similarly, we may use Equation (3.258) to find

ri = r · b�
i =

3∑
j=1

(
r · b̂j

)
b�

j · b�
i =

3∑
j=1

(
b�

i · b�
j

)
r
�
j (3.262)

and determine the transformation matrix P RR to map the coordinates of a point from
the reciprocal frame R to the principal frame P :

P r = P RR
Rr (3.263)

P RR =
 b�

1 · b�
1 b�

1 · b�
2 b�

1 · b�
3

b�
2 · b�

1 b�
2 · b�

2 b�
2 · b�

3
b�

3 · b�
1 b�

3 · b�
2 b�

3 · b�
3

 (3.264)

Introducing the notations (3.247) and (3.248) along with (3.203), we realize that
the transformation matrices RRP and P RR are equal to the covariant and contravariant
matrices, respectively:

RRP = [
gij

] =
 g11 g12 g13

g21 g22 g23

g31 g32 g33

 (3.265)

P RR =
[
g

�
ij

]
=

 g
�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33

 (3.266)

Using the transformation matrices RRP and P RR , we can relate the principal and recip-
rocal components:

ri =
3∑

j=1

g
�
ij r

�
j r

�
i =

3∑
j=1

gij rj (3.267)

The transformation matrix P RR must be the inverse of RRP :

P RR
−1 = RRP (3.268)
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Therefore, we have  g�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33


−1

=

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 (3.269)

 g11 g12 g13

g21 g22 g23

g31 g32 g33


−1

=

 g
�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33

 (3.270)

�

Example 202 Cartesian Coordinate Frame Is Reciprocal to Itself The reciprocal
coordinate frame of an orthogonal frame, such as a Cartesian,

b̂1 = ı̂ b̂2 = ̂ b̂3 = k̂ (3.271)

is an orthogonal coordinate frame that is coaxial to the original one:

b�
1 = b̂2 × b̂3

b̂1 · b̂2 × b̂3

= ̂ × k̂

ı̂ · ̂ × k̂
= ı̂� = ı̂

b�
2 = b̂3 × b̂1

b̂1 · b̂2 × b̂3

= k̂ × ı̂

ı̂ · ̂ × k̂
= ̂� = ̂ (3.272)

b�
3 = b̂1 × b̂2

b̂1 · b̂2 × b̂3

= ı̂ × ̂

ı̂ · ̂ × k̂
= k̂� = k̂

Therefore, when the coordinate frame is orthogonal, the covariant and contravariant
metric coefficients are equal:

[
gij

] =
[
g

�
ij

]
=

 ı̂ · ı̂ ı̂ · ̂ ı̂ · k̂
̂ · ı̂ ̂ · ̂ ̂ · k̂
k̂ · ı̂ k̂ · ̂ k̂ · k̂

 = [I] (3.273)

Example 203 � Expression of Two Vectors in a Nonorthogonal Frame Consider
two vectors r1, r2,

r1 = 2ı̂ + 3̂ + 4k̂ r2 = 8ı̂ + 6̂ + 3k̂ (3.274)

in a nonorthogonal frame with its Cartesian expression of the principal unit vectors:

b̂1 =
 0.97334

−0.17194
−0.15198

 b̂2 =
−0.64219

0.7662
−0.02352

 b̂3 =
 0

0
1

 (3.275)
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Using Equation (3.239), we calculate the Cartesian expression of the reciprocal base
vectors as

b�
1 =

 1.2059
1.0108

0

 b�
2 =

 0.27062
1.532

0

 b�
3 =

 0.18964
0.18964

1

 (3.276)

to determine the principal and reciprocal components:

r11 = r1 · b�
1 = 5.4442

r12 = r1 · b�
2 = 5.1372 (3.277)

r13 = r1 · b�
3 = 4.9482

r21 = r2 · b�
1 = 15.712

r22 = r2 · b�
2 = 11.357 (3.278)

r23 = r2 · b�
3 = 5.655

r�
11 = r1 · b̂1 = 0.82294

r
�
12 = r1 · b̂2 = 0.92014 (3.279)

r
�
13 = r1 · b̂3 = 4

r�
11 = r2 · b̂1 = 6.299 1

r
�
12 = r2 · b̂2 = −0.610 88 (3.280)

r
�
13 = r2 · b̂3 = 3

The expression of vectors r1, r2 in the nonorthogonal coordinate frame b̂1, b̂2, b̂3 and
its reciprocal frame b�

1 , b�
2 , b�

3 would be

P r1 = r11b̂1 + r12b̂2 + r13b̂3

= 5.4442b̂1 + 5.1372b̂2 + 4.9482b̂3 (3.281)

Rr1 = r
�
11b�

1 + r
�
12b�

2 + r
�
13b�

3

= 0.82294b�
1 + 0.92014b�

2 + 4b�
3 (3.282)

and
P r2 = r21b̂1 + r22b̂2 + r23b̂3

= 15.712b̂1 + 11.357b̂2 + 5.655b̂3 (3.283)

Rr2 = r
�
21b�

1 + r
�
22b�

2 + r
�
23b�

3

= 6.299 1b�
1 − 0.610 88b�

2 + 3b�
3 (3.284)
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Example 204 Length of a Vector in Nonorthogonal Coordinate Frame Consider a
vector r in a principal nonorthogonal coordinate frame P with unit vectors b̂1, b̂2, b̂3:

b̂1 =
 0.97334

−0.17194
−0.15198

 b̂2 =
−0.64219

0.7662
−0.02352

 b̂3 =
 0

0
1

 (3.285)

The Cartesian and principal expressions of the vector are

Gr = 2ı̂ + 3̂ + 4k̂ (3.286)
P r = 5.4442b̂1 + 5.1372b̂2 + 4.9482b̂3 (3.287)

The length of r is

r =
√

Gr· Gr =
√∣∣Gr

∣∣ ∣∣Gr
∣∣ =

√√√√√
∣∣∣∣∣∣
2
3
4

∣∣∣∣∣∣
∣∣∣∣∣∣
2
3
4

∣∣∣∣∣∣ = 5.3852 (3.288)

however, because the unit vectors of the nonorthogonal frame are not orthogonal,

r �=
√∣∣P r

∣∣ ∣∣P r
∣∣ (3.289)

Using the nonorthogonal expression of r, the length of the vector must be calculated by

r2 =
3∑

i=1

3∑
j=1

rirj gij = r2
1 + r2

2 + r2
3

+ 2r1r2

(
b̂1 · b̂2

)
+ 2r2r3

(
b̂2 · b̂3

)
+ 2r3r1

(
b̂3 · b̂1

)
(3.290)

Therefore, the length r using the nonorthogonal components of P r would be

r = 5.3852 (3.291)

Example 205 Transformation between Principal and Reciprocal Frames Consider
a vector

P r = r1b̂1 + r2b̂2 + r3b̂3

= 5.4442b̂1 + 5.1372b̂2 + 4.9482b̂3 (3.292)

in a nonorthogonal frame with the Cartesian expression of the principal unit vectors as

b̂1 =
 0.97334

−0.17194
−0.15198

 b̂2 =
−0.64219

0.7662
−0.02352

 b̂3 =
 0

0
1

 (3.293)
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To express r in the reciprocal frame, we determine the transformation matrix RRP :

RRP = [
gij

] =
[
b̂i · b̂j

]
=

 g11 g12 g13

g21 g22 g23

g31 g32 g33

 (3.294)

=
 1 −0.75324 −0.15198

−0.75324 1 −0.02352
−0.15198 −0.02352 1

 (3.295)

Therefore, the reciprocal expression of r is

Rr = RRP
P r r

�
1

r
�
2

r
�
3

 = RRP

 5.4442
5.1372
4.9481

 =
 0.82263

0.92003
4

 (3.296)

The reverse transformation PRR can be found by inverting RRP :

PRR = RRP
−1 =

 2.4764 1.8752 0.42046
1.8752 2.4205 0.34192
0.42046 0.34192 1.0719

 (3.297)

Employing PRR , we are able to determine the length of the reciprocal base vectors b�
i :

PRR =

b�
1 · b�

1 b�
1 · b�

2 b�
1 · b�

3

b�
2 · b�

1 b�
2 · b�

2 b�
2 · b�

3

b�
3 · b�

1 b�
3 · b�

2 b�
3 · b�

3

 (3.298)

∣∣∣b�
1

∣∣∣ =
√

b�
1 · b�

1 =
√

2.4764 = 1.5737∣∣∣b�
2

∣∣∣ =
√

b�
2 · b�

2 =
√

2.4205 = 1.5558 (3.299)∣∣∣b�
3

∣∣∣ =
√

b�
3 · b�

3 =
√

1.0719 = 1.0353

3.4.3 � Inner and Outer Vector Product

In a nonorthogonal coordinate frame b̂1, b̂2, b̂3 and its reciprocal frame b�
1 , b�

2 , b�
3 ,

the inner and outer products of a vector r,

P r = r1b̂1 + r2b̂2 + r3b̂3 (3.300)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.301)
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and themselves are

P r · P r = P r
T [

gij

] P r =
3∑

j=1

3∑
i=1

rirj gij (3.302)

Rr · Rr = RrT
[
g

�
ij

]
Rr =

3∑
j=1

3∑
i=1

r
�
i r

�
j g

�
ij (3.303)

P r ·R r = P r ·R r =
3∑

i=1

rir
�
i (3.304)

P r × P r = 0 (3.305)

Rr × Rr = 0 (3.306)

P r × Rr = P r ×
[
g

�
ij

]
Rr (3.307)

When two vectors P r1 and P r2 are in the principal frame,

P r1 = p1b̂1 + p2b̂2 + p3b̂3 (3.308)

P r2 = q1b̂1 + q2b̂2 + q3b̂3 (3.309)

the inner product of the vectors is

P r1 · P r2 =
3∑

j=1

3∑
i=1

piqjgij (3.310)

= p1q1g11 + p2q2g22 + p2q3g23 + (p1q2 + p2q1) g12

+ (p1q3 + p3q1) g13 + (p3q2 + p3q3) g33 (3.311)

and their outer product is

P r1 × P r2 =
∣∣∣∣∣∣
b̂2 × b̂3 b̂3 × b̂1 b̂1 × b̂2

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ (3.312)

Proof : The position vector of a point in the nonorthogonal coordinate frame b̂1, b̂2, b̂3

can be shown in either the principal or reciprocal coordinate frame:

P r = r1b̂1 + r2b̂2 + r3b̂3 (3.313)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.314)
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Employing
∣∣b̂i

∣∣ = 1, the inner product of P r and itself is

P r · P r =
(
r1b̂1 + r2b̂2 + r3b̂3

)
·
(
r1b̂1 + r2b̂2 + r3b̂3

)
= r1r1

(
b̂1 · b̂1

)
+ r1r2

(
b̂1 · b̂2

)
+ r1r3

(
b̂1 · b̂3

)
+ r2r1

(
b̂2 · b̂1

)
+ r2r2

(
b̂2 · b̂2

)
+ r2r3

(
b̂2 · b̂3

)
+ r3r1

(
b̂3 · b̂1

)
+ r3r2

(
b̂3 · b̂2

)
+ r3r3

(
b̂3 · b̂3

)
= P r

T [
gij

] P r =
3∑

j=1

3∑
i=1

rirj gij = r2
1 + r2

2 + r2
3

+ 2r1r2

(
b̂1 · b̂2

)
+ 2r2r3

(
b̂2 · b̂3

)
+ 2r3r1

(
b̂3 · b̂1

)
(3.315)

and with the same method, we have

Rr · Rr = RrT
[
g

�
ij

]
Rr =

3∑
j=1

3∑
i=1

r
�
i r

�
j g

�
ij

= r
�2
1

(
b�

1 · b�
1

)
+ r

�2
2

(
b�

2 · b�
2

)
+ r

�2
3

(
b�

3 · b�
3

)
+ 2r

�
1 r

�
2

(
b�

1 · b�
2

)
+ 2r

�
2 r

�
3

(
b�

2 · b�
3

)
+ 2r

�
3 r

�
1

(
b�

3 · b�
1

)
(3.316)

Using Equations (3.243) and (3.302), the inner product of P r and Rr is

P r · Rr = P r · P RR
Rr = P r ·

[
g

�
ij

]
Rr = P r

T [
gij

] [
g�

ij

]
Rr

= P r
T

[I] Rr =r1r
�
1 + r2r

�
2 + r3r

�
3 = Rr · P r (3.317)

So, if two vectors P r1 and P r2 are both in the principal coordinate frame,

P r1 = p1b̂1 + p2b̂2 + p3b̂3 (3.318)
P r2 = q1b̂1 + q2b̂2 + q3b̂3 (3.319)

then their inner product would be

P r1 · P r2 = P r1
T [

gij

] Pr2 (3.320)

which is equal to (3.310).
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Because of Equations (3.180)–(3.182), the outer product of P r and itself is zero:

P r × P r =
(
r1b̂1 + r2b̂2 + r3b̂3

)
×

(
r1b̂1 + r2b̂2 + r3b̂3

)
= r1r1

(
b̂1 × b̂1

)
+ r1r2

(
b̂1 × b̂2

)
+ r1r3

(
b̂1 × b̂3

)
+ r2r1

(
b̂2 × b̂1

)
+ r2r2

(
b̂2 × b̂2

)
+ r2r3

(
b̂2 × b̂3

)
+ r3r1

(
b̂3 × b̂1

)
+ r3r2

(
b̂3 × b̂2

)
+ r3r3

(
b̂3 × b̂3

)
= r1r2b�

3 − r1r3b�
2 − r2r1b�

3 + r2r3b�
1 + r3r1b�

2 − r3r2b�
1

= 0 (3.321)

Using the same method we can show that

Rr × Rr = 0 (3.322)

Therefore,
b̂1 × b̂1 = 0 b̂2 × b̂2 = 0 b̂3 × b̂3 = 0 (3.323)

b�
1 × b�

1 = 0 b�
2 × b�

2 = 0 b�
3 × b�

3 = 0 (3.324)

Employing these results, we can expand the outer product of two vectors P r1 and P r2

and show Equation (3.312):

P r1 × P r2 =
(
p1b̂1 + p2b̂2 + p3b̂3

)
×

(
q1b̂1 + q2b̂2 + q3b̂3

)
= p1q1

(
b̂1 × b̂1

)
+ p1q2

(
b̂1 × b̂2

)
+ p1q3

(
b̂1 × b̂3

)
+ p2q1

(
b̂2 × b̂1

)
+ p2q2

(
b̂2 × b̂2

)
+ p2q3

(
b̂2 × b̂3

)
+ p3q1

(
b̂3 × b̂1

)
+ p3q2

(
b̂3 × b̂2

)
+ p3q3

(
b̂3 × b̂3

)
=

∣∣∣∣∣∣
b̂2 × b̂3 b̂3 × b̂1 b̂1 × b̂2

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ (3.325)

Substituting b̂i × b̂j from the definition of the reciprocal vectors (3.180)–(3.182),
we may also show that

P r1 × P r2 =
[
b̂1b̂2b̂3

] ∣∣∣∣∣∣∣
b�

1 b�
2 b�

3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ = V

∣∣∣∣∣∣∣
b�

1 b�
2 b�

3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ (3.326)
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Rr1 × Rr2 =
[
b�

1 b�
2 b�

3

] ∣∣∣∣∣∣∣∣
b̂1 b̂2 b̂3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣∣∣
= 1

V

∣∣∣∣∣∣∣∣
b̂1 b̂2 b̂3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣∣∣ (3.327)

To determine the outer product of two vectors in the principal and reciprocal frames,
we should transform one vector to the other frame:

P r × Rr = P r × P RR
Rr = P r ×

[
g

�
ij

]
Rr (3.328)

�

Example 206 � Inner Product in the Plane The inner product definition of two
vectors r1 and r2 in the same coordinate frame is coordinate free:

r1 · r2 = r2 · r1 = r1r2 cos (r1, r2) (3.329)

If the vectors r1 and r2 are orthogonal, then cos (r1, r2) = 0 and the inner product is
zero, r1 · r2 = 0. The inner product may also be defined by the projection principle

r1 · r2 = r1r
′
2 = r ′

1r2 (3.330)

where r ′
1 and r ′

2 are projections of r1 and r2 on each other, as are shown in Figure 3.21.

r1

r2

r1'

r2'

Figure 3.21 Geometric interpretation of the inner product.

Example 207 � Inner and Outer Product of Two Vectors Consider two vectors
r1, r2 in a nonorthogonal frame

r1 = 2ı̂ + 3̂ + 4k̂ (3.331)

= 5.4442b̂1 + 5.1372b̂2 + 4.9482b̂3 (3.332)

= 0.82294b�
1 + 0.92014b�

2 + 4b�
3 (3.333)
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r2 = 8ı̂ + 6̂ + 3k̂ (3.334)

= 15.712b̂1 + 11.357b̂2 + 5.655b̂3 (3.335)

= 6.299 1b�
1 − 0.610 88b�

2 + 3b�
3 (3.336)

with the following unit and reciprocal base vectors:

b̂1 =
 0.97334

−0.17194
−0.15198

 b̂2 =
−0.64219

0.7662
−0.02352

 b̂3 =
 0

0
1

 (3.337)

b�
1 =

 1.2059
1.0108

0

 b�
2 =

 0.27062
1.532

0

 b�
3 =

 0.18964
0.18964

1

 (3.338)

The inner product of r1and r2 can be calculated as

r1 · r2 = p1q
�
1 + p2q

�
2 + p3q

�
3

=
 5.4442

5.1372
4.9482

 ·
 6.299 1

−0.610 88
3

 = 46 (3.339)

and the outer product of r1 and r2 as

r1 × r2 =
[
b̂1b̂2b̂3

] ∣∣∣∣∣∣∣
b�

1 b�
2 b�

3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
0.97334 −0.17194 −0.15198

−0.64219 0.7662 −0.02352
0 0 1

∣∣∣∣∣∣
∣∣∣∣∣∣∣

b�
1 b�

2 b�
3

5.4442 5.1372 4.9482
15.712 11.357 5.655

∣∣∣∣∣∣∣
= −17.247b�

1 + 29.836b�
2 − 11.999b�

3 (3.340)

Example 208 � Examination of Equation (3.327) To show that Equation (3.327) is
applied, we begin with the nonorthogonal expressions of r1 and r2:

r1 = p1b̂1 + p2b̂2 + p3b̂3 = p
�
1 b�

1 + p
�
2 b�

2 + p
�
3 b�

3 (3.341)

r2 = q1b̂1 + q2b̂2 + q3b̂3 = q
�
1 b�

1 + q
�
2 b�

2 + q
�
3 b�

3 (3.342)
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Using Equations (3.240) will show that the outer product of the vectors is

r1 × r2 =
(
p

�
1 b�

1 + p
�
2 b�

2 + p
�
3 b�

3

)
×

(
q

�
1 b�

1 + q
�
2 b�

2 + q
�
3 b�

3

)
= p

�
1 q

�
1

(
b�

1 × b�
1

)
+ p

�
1 q

�
2

(
b�

1 × b�
2

)
+ p

�
1 q

�
3

(
b�

1 × b�
3

)
+p

�
2 q

�
1

(
b�

2 × b�
1

)
+ p

�
2 q

�
2

(
b�

2 × b�
2

)
+ p

�
2 q

�
3

(
b�

2 × b�
3

)
+p

�
3 q

�
1

(
b�

3 × b�
1

)
+ p

�
3 q

�
2

(
b�

3 × b�
2

)
+ p

�
3 q

�
3

(
b�

3 × b�
3

)
=

[
b�

1 b�
2 b�

3

] (
p

�
2 q

�
3 − p

�
3 q

�
2

)
b̂1

+
[
b�

1 b�
2 b�

3

] (
p

�
3 q

�
1 − p

�
1 q

�
3

)
b̂2

+
[
b�

1 b�
2 b�

3

] (
p

�
1 q

�
2 − p

�
2 q

�
1

)
b̂3

=
[
b�

1 b�
2 b�

3

] ∣∣∣∣∣∣
b̂1 b̂2 b̂3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣ = 1

V

∣∣∣∣∣∣
b̂1 b̂2 b̂3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣ (3.343)

Example 209 � Inner and Outer Product of Two Vectors Consider the Cartesian
position vector of two points P and Q at p and q,

Gp = 2ı̂ + 2̂ + 2k̂ Gq = −ı̂ − ̂ + 4k̂ (3.344)

and the unit base vectors of an oblique coordinate frame,

b̂1 = ı̂ b̂2 =
√

2

2

(
ı̂ + ̂

)
b̂3 =

√
3

3

(
ı̂ + ̂ + k̂

)
(3.345)

We can determine the transformation matrix PRG between the oblique and Cartesian
frames:  b̂1

b̂2

b̂3

 =
 1 0 0√

2/2
√

2/2 0√
3/3

√
3/3

√
3/3

 ı̂

̂

k̂

 (3.346)

PRG =
 1 0 0√

2/2
√

2/2 0√
3/3

√
3/3

√
3/3

 (3.347)

 ı̂

̂

k̂

 =
 1 0 0

−1
√

2 0
0 −√

2
√

3

 b̂1

b̂2

b̂3

 (3.348)

GRP = PRG
−1 =

 1 0 0
−1

√
2 0

0 −√
2

√
3

 (3.349)
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Therefore, p and q in the principal frame are

P p = 2
(
b̂1

)
+ 2

(
−b̂1 +

√
2b̂2

)
+ 2

(
−

√
2b̂2 +

√
3b̂3

)
= 2

√
3b̂3 (3.350)

P q = −b̂1 −
(
−b̂1 +

√
2b̂2

)
+ 4

(
−

√
2b̂2 +

√
3b̂3

)
= −5

√
2b̂2 + 4

√
3b̂3 (3.351)

Using the oblique unit vectors, we are able to determine the metric matrix that is the
transformation matrix between the principal and reciprocal frames:

RRP = [
gij

] =
[
b̂i · b̂j

]
=

 1 0.70711 0.57735
0.70711 1 0.81650
0.57735 0.81650 1

 (3.352)

So, the reciprocal expression of p and q are

Rp = [
gij

] P p = [
gij

] 0
0

2
√

3

 = 2b�
1 + 2.8284b�

2 + 3.4641b�
3 (3.353)

Rq = [
gij

]
P q = [

gij

]  0
−5

√
2

4
√

3

 = −b�
1 − 1.4142b�

2 + 1.1547b�
3 (3.354)

The inner and outer products of p and q are

P p · P q =
3∑

j=1

3∑
i=1

piqjgij = 4 (3.355)

P p × P q =
[
b̂1b̂2b̂3

] ∣∣∣∣∣∣∣
b�

1 b�
2 b�

2

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣
= 0.40825

∣∣∣∣∣∣∣
b�

1 b�
2 b�

2

0 0 2
√

3

0 −5
√

2 4
√

3

∣∣∣∣∣∣∣ = 10b�
1 (3.356)

Example 210 � Angle between Two Vectors We can use the inner product of two
vectors and determine the angle between them. Consider two vectors P r1 and P r2 :

P r1 = p1b̂1 + p2b̂2 + p3b̂3 (3.357)
P r2 = q1b̂1 + q2b̂2 + q3b̂3 (3.358)
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The cosine of the angle between P r1 and P r2 is

cos (r1, r2) = r1 · r2

|r1| · |r2|

=
∑3

j=1

∑3
i=1 piqjgij√∑3

j=1

∑3
i=1 pipjgij

√∑3
j=1

∑3
i=1 qiqjgij

(3.359)

As an example, let us determine the angle between P r1 and P r2 ,

P r1 = 2
√

3b̂3 (3.360)
P r2 = −5

√
2b̂2 + 4

√
3b̂3 (3.361)

in a curvilinear coordinate system with the following base vectors:

b̂1 = ı̂ b̂2 =
√

2

2

(
ı̂ + ̂

)
b̂3 =

√
3

3

(
ı̂ + ̂ + k̂

)
(3.362)

We should first calculate the
[
gij

]
-matrix,

[
gij

] = RRP =
[
b̂i · b̂j

]
=

 1 0.70711 0.57735
0.70711 1 0.81650
0.57735 0.81650 1

 (3.363)

and determine the required inner products P r1 · P r2 , P r1 · P r1 , and P r2 · P r2 :

P r1 · P r2 = P r1
T [

gij

] P r2 =
 0

0
2
√

3

T [
gij

] 0
−5

√
2

4
√

3

 = 4 (3.364)

|r1| =
√

P r1 · P r1 =
√

P r1
T [

gij

]
P r1 =

√√√√√ 0
0

2
√

3

T [
gij

] 0
0

2
√

3


=

√
12 = 3.4641 (3.365)

|r2| =
√

P r2 · P r2 =
√

P r2
T [

gij

]
P r2 =

√√√√√ 0
−5

√
2

4
√

3

T [
gij

]  0
−5

√
2

4
√

3


=

√
18 = 4.2426 (3.366)

Therefore, the angle between P r1 and P r2 is

θ = arccos (r1, r2) = arccos
r1 · r2

|r1| · |r2| = arccos
4

3.4641 × 4.2426

= arccos 0.272 17 = 1.2951 rad = 74.204 deg (3.367)
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Example 211 � Scalar Triple Product in Oblique Coordinates If s, p, q are three
vectors in an oblique coordinate frame P ,

s = s1b̂1 + s2b̂2 + s3b̂3 (3.368)

p = p1b̂1 + p2b̂2 + p3b̂3 (3.369)

q = q1b̂1 + q2b̂2 + q3b̂3 (3.370)

then their scalar triple product
[
spq

]
is

s · p × q =
(
s1b̂1 + s2b̂2 + s3b̂3

)
·
∣∣∣∣∣∣
b̂2 × b̂3 b̂3 × b̂1 b̂1 × b̂2

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ (3.371)

The scalar triple product of the principal unit vectors is a scalar:[
b̂1b̂2b̂3

]
= V (3.372)

So, we may show the scalar triple product
[
spq

]
in a simpler way:

s · p × q = V

∣∣∣∣∣∣
s1 s2 s3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ (3.373)

If the vectors s, p, q are expressed in the reciprocal coordinate frame,

Rs = s
�
1 b�

1 + s
�
2 b�

2 + s
�
3 b�

3 (3.374)

Rp = p
�
1 b�

1 + p
�
2 b�

2 + p
�
3 b�

3 (3.375)

Rq = q
�
1 b�

1 + q
�
2 b�

2 + q
�
3 b�

3 (3.376)

then

Rs · Rp × Rq = 1

V

∣∣∣∣∣∣∣
s
�
1 s

�
2 s

�
3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣∣ (3.377)

If the coordinate frame is an orthogonal Cartesian frame, V = 1, then

V = ı̂ · ̂ × k̂ =
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣ = 1 (3.378)

and the scalar triple product of three vectors x, y, z in a Cartesian frame reduces to

x · y × z =
∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3

z1 z2 z3

∣∣∣∣∣∣ (3.379)
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As an example, consider three vectors s, p, q,

s = 2
√

3b̂3

p = −5
√

2b̂2 + 4
√

3b̂3 (3.380)

q = b̂1 −
√

2b̂2 +
√

3b̂3

in a curvilinear coordinate system with the base vectors

b̂1 = ı̂ b̂2 =
√

2

2

(
ı̂ + ̂

)
b̂3 =

√
3

3

(
ı̂ + ̂ + k̂

)
(3.381)

The scalar triple product of the base vectors is

V =
[
b̂1b̂2b̂3

]
=

∣∣∣∣∣∣∣∣∣∣

1 0 0√
2

2

√
2

2
0

√
3

3

√
3

3

√
3

3

∣∣∣∣∣∣∣∣∣∣
= 0.40825 (3.382)

So, the scalar triple product
[
spq

]
would be

[
spq

] = s · p × q = V

∣∣∣∣∣∣
s1 s2 s3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣
= 0.40825

∣∣∣∣∣∣∣
0 0 2

√
3

0 −5
√

2 4
√

3

1 −√
2

√
3

∣∣∣∣∣∣∣ = 10 (3.383)

Example 212 � Gram Determinant Consider three vectors s, p, q in an oblique
coordinate frame,

s = s1b̂1 + s2b̂2 + s3b̂3 (3.384)

p = p1b̂1 + p2b̂2 + p3b̂3 (3.385)

q = q1b̂1 + q2b̂2 + q3b̂3 (3.386)

The square of their scalar triple product,

(s · p × q)2 =
∣∣∣∣∣∣

s · s s · p s · q
p · s p · p p · q
q · s q · p q · q

∣∣∣∣∣∣ (3.387)

is called the Gram determinant . To show this, we may substitute

si = s · b�
i pi = p · b�

i qi = q · b�
i (3.388)
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in their scalar triple product (3.373),

[
spq

] = V

∣∣∣∣∣∣
s1 s2 s3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ =
[
b̂1b̂2b̂3

] ∣∣∣∣∣∣
s · b�

1 s · b�
2 s · b�

3
p · b�

1 p · b�
2 p · b�

3
q · b�

1 q · b�
2 q · b�

3

∣∣∣∣∣∣
= 1[

b�
1 b�

2 b�
3

]
∣∣∣∣∣∣

s · b�
1 s · b�

2 s · b�
3

p · b�
1 p · b�

2 p · b�
3

q · b�
1 q · b�

2 q · b�
3

∣∣∣∣∣∣ (3.389)

to find

[
spq

] [
b�

1 b�
2 b�

3

]
=

∣∣∣∣∣∣
s · b�

1 s · b�
2 s · b�

3
p · b�

1 p · b�
2 p · b�

3
q · b�

1 q · b�
2 q · b�

3

∣∣∣∣∣∣ (3.390)

Replacing the reciprocal base vectors b�
1 , b�

2 , b�
3 with arbitrary vectors u, v, w

provides

[
spq

]
[uvw] =

∣∣∣∣∣∣
s · u s · v s · w
p · u p · v p · w
q · u q · v q · w

∣∣∣∣∣∣ (3.391)

In the case u = s, v = p, and w = q, we derive the Gram determinant (3.387).

Example 213 � Bragg’s Condition in an Atomic Lattice Nonorthogonal coordinate
frames have applications in dynamic phenomena such as wave propagation in materials
with periodic structures. Crystalline or rolled metals may approximately have periodic
structures in a nonorthogonal coordinate frame.

Consider an ideal crystal that has the structure shown in Figure 3.22. We may set
Cartesian and nonorthogonal coordinate frames at one of the atoms in the lattice. Using
the unit vectors b̂1, b̂2, and b̂3, we show the position of each atom by a vector r,

r = r1b̂1 + r2b̂2 + r3b̂3 (3.392)

where r1, r2, r3 are integers. The vectors b̂1, b̂2, b̂3 are called the crystal primitive
translation vectors, and their axes are called the crystal axes. The reciprocal base
vectors b�

1 , b�
2 , b�

3 define a reciprocal lattice.
When a very short wavelength electromagnetic radiation, such as an X-ray, collides

with a crystal, it is partially absorbed, scattered, and transmitted. Some of the scattered
radiation is reflected from the periodically spaced layers of atoms. If the reflected rays
satisfy Bragg’s condition

2d1 cos α = mλ m = 1, 2, 3, . . . (3.393)

then they are all in phase and hence make an intense reflected beam. In Bragg’s
condition (3.393), d1 is the distance between two adjacent layers, α is the angle between
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the incoming ray and perpendicular line to the layer, and λ is the wavelength of the
electromagnetic radiation.

Using Bragg’s condition, the distance d between two neighbor layers of the atomic
lattice is

d = r1√
1
/
r2

1 + 1
/
r2

2 + 1
/
r2

3

(3.394)

To prove Bragg’s condition, we can use Figure 3.22 and show that 2d1 cos α is
the extra distance that a reflected ray from a neighbor layer will move. To have two
reflected rays from two adjacent layers in phase, the extra distance must be equal to
an integer m times the wavelength λ, as shown in Equation (3.393).

In an ideal lattice, there are several sets of planes from which rays may reflect. Two
other sets of planes with distances d2 and d3 are shown in Figure 3.22. The location
of the planes and their distances may be represented by the nonorthogonal coordinate
frame unit vectors:

r1 = r1b̂1 r2 = r2b̂2 r3 = r3b̂3 (3.395)

Defining two vectors on the sides of a lattice triangular cell as

c1 = r3 − r2 = r3b̂3 − r2b̂2 (3.396)

c3 = r1 − r2 = r1b̂1 − r2b̂2 (3.397)

we can determine the unit-normal vector n̂ to the layer plane:

c1 × c3 = (r3 − r2) × (r1 − r2) =
∣∣∣∣∣∣
b̂1 b̂2 b̂3

0 −r2 r3

r1 −r2 0

∣∣∣∣∣∣
= r1r2r3

(
b̂1

r1
+ b̂2

r2
+ b̂3

r3

)
(3.398)

X

Y

G

b1

d1

b2 r

α α

d2 d3

Figure 3.22 An ideal 2D crystal lattice and Bragg diffration.
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n̂ = b̂1 + b̂2 + b̂3√
1
/
r2

1 + 1
/
r2

2 + 1
/
r2

3

(3.399)

The normal distance between two layers would then be

d = r1 · n̂ = r2 · n̂ = r3 · n̂ = r1b̂1 · n̂ = r2b̂2 · n̂ = r3b̂3 · n̂

= r1√
1
/
r2

1 + 1
/
r2

2 + 1
/
r2

3

(3.400)

The base vectors b̂1, b̂2, b̂3 and the normal vector n̂ are illustrated in Figure 3.23.

X

G

Z

B

C

b1

Y

b2

b3

n

Figure 3.23 The oblique coordinate frame b̂1, b̂2, b̂3 and the normal vector n̂ to the lattice
layers.

3.4.4 � Kinematics in Oblique Coordinate Frames

The position vector r = r(t) of a moving point in a nonorthogonal coordinate frame
with principal unit vectors b̂1, b̂2, b̂3 and reciprocal base vectors b�

1 , b�
2 , b�

3 may have
variable components

P r = r1(t)b̂1 + r2(t)b̂2 + r3(t)b̂3

Rr = r
�
1 (t)b�

1 + r
�
2 (t)b�

2 + r
�
3 (t)b�

3

(3.401)
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The velocity and acceleration of the point are

P v = d

dt
P r = ṙ1b̂1 + ṙ2b̂2 + ṙ3b̂3 (3.402)

Rv = d

dt
Rr = ṙ

�
1 b�

1 + ṙ
�
2 b�

2 + ṙ
�
3 b�

3 (3.403)

Pa = d

dt
P v = r̈1b̂1 + r̈2b̂2 + r̈3b̂3 (3.404)

Ra = d

dt
Rv = r̈

�
1 b�

1 + r̈
�
2 b�

2 + r̈
�
3 b�

3 (3.405)

Proof : The principal unit vectors b̂1, b̂2, b̂3, as shown in Figure 3.17, have constant
length and direction. Furthermore Equation (3.239) indicates that the reciprocal base
vectors b�

1 , b�
2 , b�

3 are also constant. So the derivative of a variable vector in the
nonorthogonal coordinate frame can be found by taking the derivative of its components
regardless of its expression in the principal or reciprocal frames. �

Example 214 � Velocity and Acceleration in an Oblique Frame Consider an
oblique coordinate frame with the unit base vectors

b̂1 = ı̂ b̂2 =
√

2

2

(
ı̂ + ̂

)
b̂3 =

√
3

3

(
ı̂ + ̂ + k̂

)
(3.406)

A point with position vector r is moving in the frame,

Gr = 2 sin t ı̂ + 2et ̂ + 2t2 k̂ (3.407)

The principal unit vectors of the oblique frame can be used to determine the transfor-
mation matrix between the oblique and Cartesian frames: b̂1

b̂2

b̂3

 =
 1 0 0√

2/2
√

2/2 0√
3/3

√
3/3

√
3/3

 ı̂

̂

k̂

 (3.408)

 ı̂

̂

k̂

 =
 1 0 0

−1
√

2 0
0 −√

2
√

3

 b̂1

b̂2

b̂3

 (3.409)

Therefore, r in the principal frame is

P r = 2 sin t
(
b̂1

)
+ 2et

(
−b̂1 +

√
2b̂2

)
+ 2t2

(
−

√
2b̂2 +

√
3b̂3

)
= (

2 sin t − 2et
)
b̂1 + (

1 − 2t2)√
2b̂2 + 2

√
3t2b̂3 (3.410)

Using the oblique unit vectors, we determine the metric matrix to transform P p to the
reciprocal frame:

RRP = [
gij

] =
[
b̂i · b̂j

]
=

 1 0.70711 0.57735
0.70711 1 0.81650
0.57735 0.81650 1

 (3.411)
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Rr = [
gij

]
P r = [

gij

]  2 sin t − 2et(
1 − 2t2

)√
2

2
√

3t2

 (3.412)

= (
2 sin t − 2et − 1.003 7 × 10−5t2 + 1

)
b�

1

+ (
1.414 2 sin t − 1.414 2et + 1.184 4 × 10−5t2 + 1.4142

)
b�

2

+ (
1.1547 sin t − 1.1547et + 1.1547t2 + 1.1547

)
b�

3

The velocity and acceleration of the point are

P v = d

dt
P r = (

2 cos t − 2et
)
b̂1 − 4

√
2t b̂2 + 4

√
3t b̂3 (3.413)

Rv = d

dt
Rr = (

2 cos t − 2.007 4 × 10−5t − 2et
)

b�
1

+
(

2.3688 × 10−5t +
√

2 cos t −
√

2et
)

b�
2

+ (
2.3094t + 1.1547 cos t − 1.1547et

)
b�

3 (3.414)

Pa = d

dt
P v = (−2et − 2 sin t

)
b̂1 − 4

√
2b̂2 + 4

√
3b̂3

Ra = d

dt
Rv = (−2et − 2 sin t − 2.0074 × 10−5) b�

1

+
(

2.368 8 × 10−5 −
√

2 sin t −
√

2et
)

b�
2

+ (
2.3094 − 1.154 7 sin t − 1.1547et

)
b�

3 (3.415)

3.5 � CURVILINEAR COORDINATE SYSTEM

When a flat coordinate system is not orthogonal, we call it a nonorthogonal or oblique
coordinate system , and when the coordinate system is not flat, we call it curvilinear .
Figure 3.24 illustrates a nonorthogonal curvilinear coordinate frame Q(q1, q2, q3) in
which the unit vectors ûi , i = 1, 2, 3, of the coordinate frame are nonorthogonal and are
along nonflat coordinate curves qi, i = 1, 2, 3. The orthogonal curvilinear coordinate
systems have much more potential for application in dynamics.

Any curvilinear coordinate system Q(q1, q2, q3) can be introduced by three
equations that relate the new coordinates q1, q2, q3 to Cartesian coordinates x, y, z:

x = f1 (q1, q2, q3) = x1 (q1, q2, q3)

y = f2 (q1, q2, q3) = x2 (q1, q2, q3) (3.416)

z = f3 (q1, q2, q3) = x3 (q1, q2, q3)
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O

G

X

Y
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q3

u1

u2

u3

Figure 3.24 A nonorthogonal curvilinear coordinate frame Q (q1, q2, q3).

We assume that Equations (3.416) have a unique set of inverse functions to calculate
the new Cartesian coordinates:

q1 = q1 (x, y, z) = q1 (x1, x2, x3z)

q2 = q2 (x, y, z) = q2 (x1, x2, x3z) (3.417)

q3 = q3 (x, y, z) = q3 (x1, x2, x3z)

Furthermore, to simplify the equation’s appearance, we employ the Einstein summation
convention introduced in Example 33. Based on the Einstein summation convention,
without showing a summation symbol, we sum over every index that is repeated twice
in every term of an equation.

3.5.1 � Principal and Reciprocal Base Vectors

Having the Cartesian description of a position vector r,

r = xı̂ + ŷ + zk̂ = x1 ı̂ + x2̂ + x3k̂ (3.418)

we determine the principal unit vectors ûi of the curvilinear coordinate Q-system, by

ûi = �rqi∣∣�rqi

∣∣ = ∂r/∂qi

|∂r/∂qi | = 1

bi

bi (3.419)

where bi is the principal base vector of the coordinate system Q (q1, q2, q3):

bi = ∂r
∂qi

= biûi = ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (3.420)

bi = |bi | =
√(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

(3.421)

The scalar bi is called the space scale factor of Q (q1, q2, q3). The principal unit
vector ûi is along the partial derivative ∂r/∂qi , which indicates a coordinate curve
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q3 curve

q1 curve q2 curve

Q

u1

u2

u3

q2 surface

O

q1 surface

q3 surface

Figure 3.25 The principal unit vector ûi indicates the coordinate curve qi .

qi , as illustrated in Figure 3.25. The principal unit and base vectors ûi and bi make an
oblique coordinate frame at any point P of the space.

For every curvilinear coordinate system Q (q1, q2, q3), we can also define the
reciprocal base vectors b�

i and reciprocal unit vectors û
�
i :

b�
i = ∇qi = ∂qi

∂x
ı̂ + ∂qi

∂y
̂ + ∂qi

∂z
k̂ (3.422)

û
�
i = ∇qi

|∇qi | = 1

b
�
i

b�
i (3.423)

b
�
i =

∣∣∣b�
i

∣∣∣ =
√(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

(3.424)

Because ∇qi is a perpendicular vector to surface qi = c, the reciprocal vectors
û�

1 , û
�
2 , û

�
3 and b�

1 , b�
2 , b�

3 are perpendicular to the coordinate surfaces q1, q2, and
q3, respectively, and therefore,

bi · b�
j = δij (3.425)

At any point P of the space, the reciprocal unit and base vectors û
�
i and b�

i make
an oblique coordinate frame that is reciprocal to the principal frame of ûi and bi .
Figure 3.26 illustrates a principal coordinate frame and its reciprocal coordinate frame.

Any vector r may be expressed in Cartesian coordinates as well as principal and
reciprocal coordinate frames using the unit or base vectors of each coordinate system,

r = xı̂ + ŷ + zk̂ (3.426)

P r = r1b1 + r2b2 + r3b3 (3.427)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.428)
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b3b3
b2

b1

Figure 3.26 A principal coordinate frame and its reciprocal coordinate frame at a point O of
space along with the curvilinear coordinate system Q.

where

r1 = r · b2 × b3

V

r2 = r · b3 × b1

V
(3.429)

r3 = r · b1 × b2

V

V = b1 · b2 × b3 = [b1b2b3] (3.430)

r
�
1 = r · b�

2 × b�
3[

b�
1 b�

2 b�
3

]
r
�
2 = r · b�

3 × b�
1[

b�
1 b�

2 b�
3

] (3.431)

r�
3 = r · b�

1 × b�
2[

b�
1 b�

2 b�
3

]
Proof : The transformation (3.417) defines a set of coordinate surfaces and coordinate
curves. The coordinate surfaces are defined by the equations

q1 (x, y, z) = c1

q2 (x, y, z) = c2 (3.432)

q3 (x, y, z) = c3
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where c1, c2, c3 are constants. These surfaces intersect at the coordinate curves qi with
position vector ri ,

r1 = r1 (q1, c2, c3)

r2 = r2 (c1, q2, c3) (3.433)

r3 = r3 (c1, c2, q3)

where r is the Cartesian expression of the position vector with Q-components,

r = xı̂ + ŷ + zk̂

= x1 (q1, q2, q3) ı̂ + x2 (q1, q2, q3) ̂ + x3 (q1, q2, q3) k̂ (3.434)

At any point (q1, q2, q3) of the Q-space, we may define two sets of vectors and make
two triads to define kinematic vectors. The first set contains tangent vectors to the
coordinate curves (3.433) that are found by taking partial derivatives of the position
vector (3.420):

bi = ∂r
∂qi

= biûi = ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (3.435)

The triad made up of the principal base vectors b1, b2, b3 is called the principal frame.
The unit vectors ûi of the principal frame are aligned with the principal base vectors:

ûi = 1

bi

bi (3.436)

bi = |bi | =
√(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

(3.437)

The second set of contains normal vectors to the coordinate surfaces (3.432) that
are found by taking the gradient of the surfaces:

b�
i = ∇qi = ∂qi

∂x
ı̂ + ∂qi

∂y
̂ + ∂qi

∂z
k̂ (3.438)

The triad made up of the reciprocal base vectors b�
1 , b�

2 , b�
3 is called the reciprocal

frame. The reciprocalunit vectors û
�
i of the frame are aligned with the reciprocal base

vectors:

û�
i = 1

b
�
i

b�
i (3.439)

b
�
i =

∣∣∣b�
i

∣∣∣ =
√(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

(3.440)

Consider a base vector b�
1 that is normal to (q2, q3)-plane. The base vectors b2 and

b3 are tangent to the coordinate curves q2 and q3 and hence are in the (q2, q3)-plane,
and therefore,

bi · b�
j = b�

j · bi = δij (3.441)
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Substituting the Cartesian expression of bi ,

b1 = b11 ı̂ + b12̂ + b13k̂

b2 = b21 ı̂ + b22̂ + b23k̂ (3.442)

b3 = b31 ı̂ + b32̂ + b33k̂

in (3.427) and comparing with (3.426) generate

 x

y

z

 =

 b11 b12 b13

b21 b22 b23

b31 b32 b33


 r1

r2

r3

 (3.443)

and solving for ri provides

r1 = r · b2 × b3

b1 · b2 × b3
= r · b2 × b3

[b1b2b3]
= r · b2 × b3

V

r2 = r · b3 × b1

b1 · b2 × b3
= r · b3 × b1

[b1b2b3]
= r · b3 × b1

V
(3.444)

r3 = r · b1 × b2

b1 · b2 × b3
= r · b1 × b2

[b1b2b3]
= r · b1 × b2

V

V = b1 · b2 × b3 = [b1b2b3] (3.445)

Therefore,

P r = [rb2b3]

[b1b2b3]
b1 + [rb3b1]

[b1b2b3]
b2 + [rb1b2]

[b1b2b3]
b3 (3.446)

Substituting the Cartesian expression of b�
i ,

b�
1 = b

�
11ı̂ + b

�
12̂ + b

�
13k̂

b�
2 = b

�
21ı̂ + b

�
22̂ + b

�
23k̂ (3.447)

b�
3 = b

�
31ı̂ + b

�
32̂ + b

�
33k̂

in (3.428) and comparing with (3.426) give

 x

y

z

 =

 b�
11 b

�
12 b

�
13

b
�
21 b

�
22 b

�
23

b
�
31 b

�
32 b

�
33


 r�

1

r
�
2

r
�
3

 (3.448)
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and solving for r
�
i yields

r
�
1 = r · b�

2 × b�
3

b�
1 · b�

2 × b�
3

= r · b�
2 × b�

3[
b�

1 b�
2 b�

3

]
r
�
2 = r · b�

3 × b�
1

b�
1 · b�

2 × b�
3

= r · b�
3 × b�

1[
b�

1 b�
2 b�

3

] (3.449)

r�
3 = r · b�

1 × b�
2

b�
1 · b�

2 × b�
3

= r · b�
1 × b�

2[
b�

1 b�
2 b�

3

]
Therefore,

Rr =
[
rb�

2 b�
3

]
[
b�

1 b�
2 b�

3

]b�
1 +

[
rb�

3 b�
1

]
[
b�

1 b�
2 b�

3

]b�
2 +

[
rb�

1 b�
2

]
[
b�

1 b�
2 b�

3

]b�
3 (3.450)

�

Example 215 � Base Vectors of Spherical Coordinate System Consider a
Q-coordinate system with the following relations:

x = q1 sin q2 cos q3 = r sin ϕ cos θ

y = q1 sin q2 sin q3 = r sin ϕ sin θ (3.451)

z = q1 cos q2 = r cos ϕ

q1 = r =
√

x2 + y2 + z2

q2 = ϕ = tan−1

√
x2 + y2

z
(3.452)

q3 = θ = tan−1 y

x

The principal base vectors of the Q-system are

b1 = ∂r
∂q1

=
 sin q2 cos q3

sin q2 sin q3

cos q2

 (3.453)

b2 = ∂r
∂q2

=
 q1 cos q2 cos q3

q1 cos q2 sin q3

−q1 sin q2

 (3.454)

b3 = ∂r
∂q3

=
 −q1 sin q2 sin q3

q1 sin q2 cos q3

0

 (3.455)
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and the reciprocal base vectors of the Q-system are

b�
1 = ∇q1 = 1√

x2 + y2 + z2

 x

y

z

 (3.456)

b�
2 = ∇q2 = 1(

x2 + y2 + z2
)√

x2 + y2

 xz

yz

− (
x2 + y2

)
 (3.457)

b�
3 = ∇q3 = 1

x2 + y2

−y

x

0

 (3.458)

The base vectors bi and b�
i are in the Cartesian coordinate system. To check

Equation (3.441), we may transform either the components of bi to the Q-system or
the components of b�

i to the Cartesian system. In either case, condition (3.441) would
be correct. Substituting Equations (3.451) into (3.456)–(3.458) we can determine the
reciprocal base vectors b�

i with components in the Q-system:

b�
1 =

 sin q2 cos q3

sin q2 sin q3

cos q2

 = b1 (3.459)

b�
2 = 1

q1

 cos q2 cos q3

cos q2 sin q3

− sin q2

 = 1

q2
1

b2 (3.460)

b�
3 = 1

q1 sin q2

 − sin q3

cos q3

0

 = 1

q2
1 sin2 q2

b3 (3.461)

and therefore,

bi · b�
j = b�

j · bi = δij (3.462)

To express a vector r in the Q-system, we need to determine the cross products
b2 × b3, b3 × b1, b1 × b2 and the scalar triple product V = [b1b2b3]:

V = b1 · b2 × b3 = [b1b2b3] = q2
1 sin q2 (3.463)

b2 × b3 = q2
1

 cos q3 sin2 q2

sin2 q2 sin q3
1
2 sin 2q2

 (3.464)

b3 × b1 = q1

 cos q2 cos q3 sin q2

cos q2 sin q2 sin q3

− sin2 q2

 (3.465)
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b1 × b2 =
 −q1 sin q3

q1 cos q3

0

 (3.466)

Therefore,

r1 = r · b2 × b3

V
= q1

r2 = r · b3 × b1

V
= 0 (3.467)

r3 = r · b1 × b2

V
= 0

and

P r = q1b1 (3.468)

To express r in the R-coordinate frame, we have to determine r
�
i :[

b�
1 b�

2 b�
3

]
= b�

1 · b�
2 × b�

3 = 1

q2
1 sin q2

(3.469)

b�
2 × b�

3 = 1

q2
1


cos q3

sin q3

cos q2

sin q2

 (3.470)

b�
3 × b�

1 = 1

q1

 cos q3 cot q2

sin q3 cot q2

−1

 (3.471)

b�
1 × b�

2 = 1

q1

 − sin q3

cos q3

0

 (3.472)

Therefore,

r�
1 = r · b�

2 × b�
3[

b�
1 b�

2 b�
3

] = q1

r
�
2 = r · b�

3 × b�
1[

b�
1 b�

2 b�
3

] = 0 (3.473)

r
�
3 = r · b�

1 × b�
2[

b�
1 b�

2 b�
3

] = 0
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and
Rr = q1b�

1 (3.474)

Example 216 � Alternative Proof for bi · b�
j = δij Substituting (3.416) in r = xı̂ +

ŷ + zk̂ and taking a derivative show that

dr = dx ı̂ + dy ̂ + dz k̂ = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3

= b1dq1 + b2dq2 + b3dq3 (3.475)

where

∂r
∂qi

= ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (3.476)

The infinitesimal vector dr is the diagonal of the parallelepiped with sides dx , dy, dz
or with sides (∂r/∂q1)dq1, (∂r/∂q2)dq2, (∂r/∂q3)dq3. Knowing that

dq i = ∂qi

∂x
dx + ∂qi

∂y
dy + ∂qi

∂z
dz (3.477)

and using (3.475) enable us to write

dq1 = ∇q1 · dr

= ∇q1 ·
(

∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3

)

=
(

∇q1 · ∂r
∂q1

)
dq1 +

(
∇q1 · ∂r

∂q2

)
dq2 +

(
∇q1 · ∂r

∂q3

)
dq3

=
(

b�
1 · b1

)
dq1 +

(
b�

1 · b2

)
dq2 +

(
b�

1 · b3

)
dq3 (3.478)

and show the correctness of (3.425).

Example 217 � Curvilinear Coordinate Frames Are Local We define the principal
coordinate frame Q (q1, q2, q3) and its base vectors by the set of vectors b1, b2, b3 that
are tangent to and pointing in the positive directions of the coordinate curves q1, q2, q3.
Figure 3.27 illustrates a point P along with the principal coordinate frame when it
moves on a coordinate curve q1.

In general, the base vectors b1, b2, b3 are neither orthogonal nor of unit length. The
base vectors remain constant only in Cartesian coordinates or in flat oblique coordinate
systems. The coordinate curves of curvilinear coordinate systems are not flat and hence
the base vectors of the associated frame change locally.
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q3 curve

q1 curve q2 curve

Q

b3

b1

b2

b3

b1

b2

Q

Figure 3.27 The principal coordinate frame when a point P moves on a curve q1.

Because the direction of the base vectors b1, b2, b3 varies from point to point, the
coordinate system Q is called local.

Example 218 � � Reciprocal Coordinates Associated with the system of reciprocal
frames b�

1 , b�
2 , b�

3 , there is a new set of coordinate curves q
�
1 , q

�
2 , q

�
3 at any point

of space such that q
�
i is tangent to b�

i . We may call the new coordinate system the

reciprocal system and show it as Q�
(
q

�
1 , q

�
2 , q

�
3

)
. There must be a set of reversible

relationships between q
�
1 , q

�
2 , q

�
3 and Cartesian coordinates:

x = x1

(
q

�
1 , q

�
2 , q

�
3

)
y = x2

(
q

�
1 , q

�
2 , q

�
3

)
(3.479)

z = x3

(
q

�
1 , q

�
2 , q

�
3

)
q

�
1 = q

�
1 (x, y, z) = q

�
1 (x1, x2, x3)

q
�
2 = q

�
2 (x, y, z) = q

�
2 (x1, x2, x3) (3.480)

q
�
3 = q

�
3 (x, y, z) = q

�
3 (x1, x2, x3)

x = f1 (q1, q2, q3) = x1 (q1, q2, q3)

y = f2 (q1, q2, q3) = x2 (q1, q2, q3) (3.481)

z = f3 (q1, q2, q3) = x3 (q1, q2, q3)

We assume that Equations (3.416) have a unique set of inverse functions to calculate
the new Cartesian coordinates:

q1 = q1 (x, y, z) = q1 (x1, x2, x3)

q2 = q2 (x, y, z) = q2 (x1, x2, x3) (3.482)

q3 = q3 (x, y, z) = q3 (x1, x2, x3)
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A position vector r may be defined in Cartesian, principal, or reciprocal
coordinates as

r = xı̂ + ŷ + zk̂ (3.483)
P r = r1b1 + r2b2 + r3b3 (3.484)
Rr = r

�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.485)

Similar to

bi = ∂r
∂qi

= ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (3.486)

bi = |bi | =
√(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

(3.487)

we must have

b�
i = ∂r

∂q
�
i

= ∂x

∂q
�
i

ı̂ + ∂y

∂q
�
i

̂ + ∂z

∂q
�
i

k̂ (3.488)

b�
i =

∣∣∣b�
i

∣∣∣ =

√√√√(
∂x

∂q
�
i

)2

+
(

∂y

∂q
�
i

)2

+
(

∂z

∂q
�
i

)2

. (3.489)

However, we have

b�
i = ∇qi = ∂qi

∂x
ı̂ + ∂qi

∂y
̂ + ∂qi

∂z
k̂ (3.490)

b�
i =

∣∣∣b�
i

∣∣∣ =
√(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

(3.491)

and therefore,

∇qi = ∂r

∂q
�
i

(3.492)

∂qi

∂x
= ∂x

∂q
�
i

∂qi

∂y
= ∂y

∂q
�
i

∂qi

∂z
= ∂z

∂q
�
i

(3.493)

Any meaningful physical quantity that is expressible in a principal coordinate Q

will have an expression in the reciprocal coordinate Q�.

3.5.2 � Principal–Reciprocal Transformation

The principal and reciprocal base vectors make two sets of triads at any point of space
and define the principal P - and reciprocal R-coordinate frames. The principal and
reciprocal base vectors bi and b�

i can be expressed as a linear combination of each
other:

bi =
[
g

�
ij

]
b�

j (3.494)

b�
i = [

gij

]
bj (3.495)
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The matrices [gij ] and
[
g

�
ij

]
are metric matrices of principal and reciprocal coordinate

frames where their elements are

gij = gji = bi · bj = ∂r
∂qi

· ∂r
∂qj

= ∂xk

∂qi

∂xk

∂qj

(3.496)

g
�
ij = g

�
j i = b�

i · b�
j = ∇qi · ∇qj = ∂qk

∂xi

∂qk

∂xj

(3.497)

where
gik g

�
jk = δij (3.498)

The base vectors bi and b�
i are reciprocal to each other and can be found from

b�
1 = b2 × b3

V

b�
2 = b3 × b1

V
(3.499)

b�
3 = b1 × b2

V

b1 = V
(

b�
2 × b�

3

)
b2 = V

(
b�

3 × b�
1

)
(3.500)

b3 = V
(

b�
1 × b�

2

)
V = [b1b2b3] = 1[

b�
1 b�

2 b�
3

] (3.501)

Using these equations, the principal and reciprocal components of a vector r are

ri = r · b�
i (3.502)

r�
i = r · bi (3.503)

and hence the principal and reciprocal components of r would be

P r =
(

r · b�
1

)
b1 +

(
r · b�

2

)
b2 +

(
r · b�

3

)
b3 (3.504)

Rr = (r · b1) b�
1 + (r · b2) b�

2 + (r · b3) b�
3 (3.505)

The vectors bi and b�
i are also called tangent and normal base vectors , respectively.

Proof : Let us substitute P r from (3.504) in the definition of r
�
i , (3.503)

r
�
i = r · bi =

(
r · b�

j

)
bj · bi = (

bi · bj

)
rj (3.506)
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and determine the transformation matrix RRP to map the coordinates of a point from
the principal frame P to the reciprocal frame R:

Rr = RRP
P r (3.507)

RRP =
b1 · b1 b1 · b2 b1 · b3

b2 · b1 b2 · b2 b2 · b3

b3 · b1 b3 · b2 b3 · b3

 (3.508)

Similarly, we may substitute Rr from (3.505) in the definition of ri , (3.502)

ri = r · b�
i = (

r · bj

)
b�

j · b�
i =

(
b�

i · b�
j

)
r
�
j (3.509)

and determine the transformation matrix P RR to map the coordinates of a point from
the reciprocal frame R to the principal frame P :

P r = P RR
Rr (3.510)

P RR =
 b�

1 · b�
1 b�

1 · b�
2 b�

1 · b�
3

b�
2 · b�

1 b�
2 · b�

2 b�
2 · b�

3
b�

3 · b�
1 b�

3 · b�
2 b�

3 · b�
3

 (3.511)

The base vector bj is in the principal frame, and hence

b�
i = RRP bi = [

gij

]
bj = gij bj (3.512)

Similarly, we have
bi = P RR b�

i =
[
g

�
ij

]
b�

j = g
�
ij b�

j (3.513)

Using (3.496) and (3.497) indicates that the transformation matrices RRP and P RR are
equal to the covariant and contravariant metric tensors , respectively:

RRP = [
gij

] =
 g11 g12 g13

g21 g22 g23

g31 g32 g33

 (3.514)

P RR =
[
g

�
ij

]
=

 g
�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33

 (3.515)

The transformation matrices RRP and P RR can relate the principal and reciprocal com-
ponents of a vector r:

ri = g
�
ij r

�
j r

�
i = gij rj (3.516)

It shows that the transformation matrix P RR is the inverse of RRP ,

P RR
−1 = RRP (3.517)



314 Coordinate Systems

and therefore,  g�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33


−1

=
 g11 g12 g13

g21 g22 g23

g31 g32 g33

 (3.518)

 g11 g12 g13

g21 g22 g23

g31 g32 g33

−1

=

 g
�
11 g

�
12 g

�
13

g
�
21 g

�
22 g

�
23

g
�
31 g

�
32 g

�
33

 (3.519)

Because b�
k is perpendicular to the (qi, qj )-plane and bi , bj are tangent to the

coordinate curves qi, qj , the cross product of bi × bj must be proportional to b�
k ,

bi × bj = Aεijkb�
k (3.520)

where A is a constant. Furthermore, b�
i and b�

j are both perpendicular to bk, and

hence the cross product of b�
i × b�

j must be proportional to bk,

b�
i × b�

j = Bεijkbk (3.521)

where B is another constant. To determine A and B, we form the inner product of
(3.520) and (3.521) with εijmbm and εijmb�

m , respectively,

εijmbm · bi × bj = Aεijkεijmbm · b�
k = Aεijkεijmδmk

= Aεijkεijk = 6A (3.522)

εijmb�
m · b�

i × b�
j = Bεijkεijmb�

m · bk = Bεijkεijmδmk

= Bεijkεijk = 6B (3.523)

and therefore,
A = 1

6εijkbk · bi × bj (3.524)

B = 1
6εijkb�

k · b�
i × b�

j (3.525)

Using (3.512) and (3.513), we may substitute the vectors bi and b�
i in terms of each

other and find

A = 1
6εijk g

�
il g

�
jm g

�
kn b�

n · b�
l × b�

m = 1
6εijk εlmn g

�
il g

�
jm g

�
kn B

=
∣∣∣g�

ij

∣∣∣B = det
[
g

�
ij

]
B (3.526)

B = 1
6εijk gil gjm gkn bk · bi × bj = 1

6εijk εlmn gil gjm gkn A

= ∣∣gij

∣∣A = det
[
gij

]
A (3.527)∣∣∣g�

ij

∣∣∣ = 1∣∣gij

∣∣ (3.528)
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where |gij | and
∣∣∣g�

ij

∣∣∣ are determinants of the transformation matrices [gij ] and
[
g

�
ij

]
.

The (i, j)-elements of [gij ] and
[
g

�
ij

]
are

gij = gji = bi · bj = ∂r
∂qi

· ∂r
∂qj

= ∂xk

∂qi

∂xk

∂qj

(3.529)

g
�
ij = g

�
j i = b�

i · b�
j = ∇qi · ∇qj = ∂qk

∂xi

∂qk

∂xj

(3.530)

Substituting for g
�
ij and gij in (3.526) and (3.527) yields

A = 1

6
εijk εlmn

∂xl

∂qi

∂xm

∂qj

∂xn

∂qk

= det

[
∂xi

∂qj

]
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x1

∂q2

∂x1

∂q2
∂x2

∂q1

∂x2

∂q2

∂x2

∂q3
∂x3

∂q1

∂x3

∂q2

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣
= ∂r

∂q1
· ∂r
∂q2

× ∂r
∂q2

= b1 · b2 × b3 = [b1b2b3] = V (3.531)

B = 1

6
εijk εlmn

∂ql

∂xi

∂qm

∂xj

∂qn

∂xk

= det

[
∂qi

∂xj

]
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂q1

∂x1

∂q1

∂x2

∂q1

∂x2
∂q2

∂x1

∂q2

∂x2

∂q2

∂x3
∂q3

∂x1

∂q3

∂x2

∂q3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣
= ∇q1 · ∇q2 × ∇q3 = b�

1 · b�
2 × b�

3 =
[
b�

1 b�
2 b�

3

]
= 1

V
(3.532)

and therefore,

V = J = [b1b2b3] = 1[
b�

1 b�
2 b�

3

] (3.533)

In differential geometry and coordinate transformation, the volume V is called the
Jacobian and is shown by J . Because of that, from now on, we may use J instead of V .

Substituting A and B in (3.520) and (3.521) yields

bi × bj

J
= εijkb�

k (3.534)

J
(

b�
i × b�

j

)
= εijkbk (3.535)

which are equivalent to Equations (3.499) and (3.500).
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The determinant |gij | can be simplified based on determinant calculus:

∣∣gij

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

∑3
k=1

∂xk

∂q1

∂xk

∂q1

∑3
k=1

∂xk

∂q1

∂xk

∂q2

∑3
k=1

∂xk

∂q1

∂xk

∂q3∑3
k=1

∂xk

∂q2

∂xk

∂q1

∑3
k=1

∂xk

∂q2

∂xk

∂q2

∑3
k=1

∂xk

∂q2

∂xk

∂q3∑3
k=1

∂xk

∂q3

∂xk

∂q1

∑3
k=1

∂xk

∂q3

∂xk

∂q2

∑3
k=1

∂xk

∂q3

∂xk

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x1

∂q2

∂x1

∂q2

∂x2

∂q1

∂x2

∂q2

∂x2

∂q3
∂x3

∂q1

∂x3

∂q2

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x1

∂q2

∂x1

∂q2

∂x2

∂q1

∂x2

∂q2

∂x2

∂q3
∂x3

∂q1

∂x3

∂q2

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣
= J 2 (3.536)

In shorthand notation we may show
∣∣gij

∣∣ as∣∣gij

∣∣ =
∣∣∣∣∂xk

∂qi

∂xk

∂qj

∣∣∣∣ =
∣∣∣∣ ∂xi

∂qj

∣∣∣∣ ∣∣∣∣ ∂xi

∂qj

∣∣∣∣ =
∣∣∣∣ ∂xi

∂qj

∣∣∣∣2
= [b1b2b3]2 = J 2 (3.537)

and similarly, we find∣∣∣g�
ij

∣∣∣ =
∣∣∣∣∂qk

∂xi

∂qk

∂xj

∣∣∣∣ =
∣∣∣∣ ∂qi

∂xj

∣∣∣∣ ∣∣∣∣ ∂qi

∂xj

∣∣∣∣ =
∣∣∣∣ ∂qi

∂xj

∣∣∣∣2
=

[
b�

1 b�
2 b�

3

]2 = 1

J 2
(3.538)

�

Example 219 �
∣∣∣g�

ij

∣∣∣ |gij | = 1 Direct multiplication of determinants
∣∣∣g�

ij

∣∣∣ and |gij |
shows that they are inverses of each other:

|gij |
∣∣∣g�

ij

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂q1

∂x1

∂q2

∂x1

∂q2

∂x2

∂q1

∂x2

∂q2

∂x2

∂q3
∂x3

∂q1

∂x3

∂q2

∂x3

∂q3

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

∂q1

∂x1

∂q1

∂x2

∂q1

∂x2
∂q2

∂x1

∂q2

∂x2

∂q2

∂x3
∂q3

∂x1

∂q3

∂x2

∂q3

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑3
j=1

∂x1

∂qj

∂qj

∂x1

∑3
j=1

∂x1

∂qj

∂qj

∂x2

∑3
j=1

∂x1

∂qj

∂qj

∂x3∑3
j=1

∂x2

∂qj

∂qj

∂x1

∑3
j=1

∂x2

∂qj

∂qj

∂x2

∑3
j=1

∂x2

∂qj

∂qj

∂x3∑3
j=1

∂x3

∂qj

∂qj

∂x1

∑3
j=1

∂x3

∂qj

∂qj

∂x2

∑3
j=1

∂x3

∂qj

∂qj

∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣g�
ij

∣∣∣ ∣∣gij

∣∣ =
∣∣∣gijg

�
ij

∣∣∣ = ∣∣δij

∣∣ = 1 (3.539)
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Example 220 � gii = b2
i and g

�
ii = b

�2
i Expansion of the elements gij and g

�
ij for

i = j shows that gii and g
�
ii are equal to the length of the base vectors in the principal

and reciprocal coordinate frames:

gii =
3∑

k=1

∂xk

∂qi

∂xk

∂qi

=
(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

= b2
i (3.540)

g
�
ii =

3∑
k=1

∂qk

∂xi

∂qk

∂xi

=
(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

= b
�2
i (3.541)

If the coordinate system is orthogonal, then

gii = 1

g
�
ii

(3.542)

Example 221 � b�
i = ∑3

j=1(gij /bj )ûj The reciprocal base vectors b�
i can be

expressed in the principal frame with a linear combination of principal base vectors.
For b�

1 , we have

b�
1 =

(
b�

1 · û1

)
û1 +

(
b�

1 · û2

)
û2 +

(
b�

1 · û3

)
û3

= 1

b1

(
b�

1 · b1

)
û1 + 1

b2

(
b�

1 · b2

)
û2 + 1

b3

(
b�

1 · b3

)
û3

= g11

b1
û1 + g12

b2
û2 + g13

b3
û3 (3.543)

and similarly,

b�
2 = g21

b1
û1 + g22

b2
û2 + g23

b3
û3 (3.544)

b�
3 = g31

b1
û1 + g32

b2
û2 + g33

b3
û3 (3.545)

Example 222 � Paraboloidal Coordinates Consider the paraboloidal coordinate sys-
tem Q(u, v,w) defined by the equations

x = uv cos w y = uv sin w z = 1
2

(
u2 − v2

)
(3.546)

or
u2 =

√
x2 + y2 + z2 + z

v2 =
√

x2 + y2 + z2 − z (3.547)

w = tan−1 y

x
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Using Equation (3.420) yields the base vectors bi :

b1 = ∂r
∂u

= v cos wı̂ + v sin ŵ + uk̂

b2 = ∂r
∂v

= u cos wı̂ + u sin ŵ − vk̂ (3.548)

b3 = ∂r
∂w

= −uv sin wı̂ + uv cos ŵ

The metric tensor is an identity matrix that shows the principal coordinate frame is
orthogonal: [

gij

] =
b1 · b1 b1 · b2 b1 · b3

b2 · b1 b2 · b2 b2 · b3

b3 · b1 b3 · b2 b3 · b3

 = I3 (3.549)

The reciprocal base vectors are calculated from Equation (3.422):

b�
1 = ∇q1 = v cos w

u2 + v2
ı̂ + v sin w

u2 + v2
̂ + u

u2 + v2
k̂

b�
2 = ∇q2 = u cos w

u2 + v2
ı̂ + u sin w

u2 + v2
̂ − v

u2 + v2
k̂ (3.550)

b�
3 = ∇q3 = − sin w

uv
ı̂ + cos w

uv
̂

Because the paraboloidal system Q (u, v, w) is orthogonal, the principal and recip-
rocal coordinate frames are coincident and we have

b�
1 = 1

u2 + v2
b1

b�
2 = 1

u2 + v2
b2 (3.551)

b�
3 = 1

u2v2
b3

Example 223 � Metric of Cylindrical and Spherical Coordinates For cylindrical
coordinates, we have

x = ρ cos θ y = ρ sin θ z = z

q1 = ρ q2 = θ q3 = z (3.552)

Its metric matrix is [
gij

] =
 1 0 0

0 ρ2 0
0 0 0

 (3.553)

For spherical coordinates, we have

x = r sin ϕ cos θ y = r sin ϕ sin θ z = r cos ϕ

q1 = r q2 = ϕ q3 = θ (3.554)
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The metric tensor
[
gij

]
has the following components:

[
gij

] =
 1 0 0

0 r2 0
0 0 r2 sin2 ϕ

 (3.555)

Example 224 � Vector Products in Curvilinear Coordinate Systems Any vector r
may be expressed in the principal or reciprocal frames of a curvilinear coordinate:

P r = r1b1 + r2b2 + r3b3 (3.556)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.557)

The inner products of different expressions of a vector r and themselves are

P r · P r = P rT
[
gij

]
P r = rirj gij (3.558)

Rr · Rr = RrT
[
g�

ij

]
Rr = r

�
i r

�
j g

�
ij (3.559)

P r · Rr = P r · Rr = rir
�
i (3.560)

and their outer products are

P r × P r = 0 (3.561)
Rr × Rr = 0 (3.562)

P r × Rr = P r ×
[
g

�
ij

]
Rr (3.563)

Consider three vectors P r1 , P r2 , and P r3 that are in the principal frame:

P r1 = p1b1 + p2b2 + p3b3 (3.564)
P r2 = q1b1 + q2b2 + q3b3 (3.565)
P r3 = s1b1 + s2b2 + s3b3 (3.566)

Then the inner product of the vectors P r1 and P r2 is

P r1 · P r2 = piqjgij

= p1q1g11 + p2q2g22 + p2q3g23 + (p1q2 + p2q1) g12

+ (p1q3 + p3q1) g13 + (p3q2 + p3q3) g33 (3.567)

and the outer product of P r1 and P r2 is

P r1 × P r2 =
∣∣∣∣∣∣
b2 × b3 b3 × b1 b1 × b2

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣ (3.568)
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Substituting bi × bj from the definition of reciprocal vectors, we may also show
that

r1 × r2 = [b1b2b3]

∣∣∣∣∣∣∣
b�

1 b�
2 b�

3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ = J

∣∣∣∣∣∣∣
b�

1 b�
2 b�

3

p1 p2 p3

q1 q2 q3

∣∣∣∣∣∣∣ (3.569)

r1 × r2 =
[
b�

1 b�
2 b�

3

] ∣∣∣∣∣∣∣
b1 b2 b3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣∣ = 1

J

∣∣∣∣∣∣∣
b1 b2 b3

p
�
1 p

�
2 p

�
3

q
�
1 q

�
2 q

�
3

∣∣∣∣∣∣∣ (3.570)

The outer product of two vectors in the principal and reciprocal frames can be
determined by transforming one vector to the other frame:

P r × Rr = P r × PRR
Rr = P r ×

[
g

�
ij

]
Rr (3.571)

The proof of these equations may follow the method of Section 3.4.3.
Furthermore, we can show that

r1 · r2 × r3 = Jpiqj skεijk = 1

J
p�

i q
�
j s

�
k εijk (3.572)

3.5.3 � Curvilinear Geometry

At every point in space, the principal and reciprocal unit and base vectors of a curvi-
linear coordinate system define two coordinate frames P and R. A vector r may be
expressed in these frames by their base vectors:

P r = r1b1 + r2b2 + r3b3 (3.573)

Rr = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.574)

The geometric information in a curvilinear coordinate system Q(q1, q2, q3)

depends on the arc element ds , surface element dA, and volume element dV .
Figure 3.28 illustrates a principal coordinate frame P and indicates three area elements
dA1, dA2, dA3 along with the volume element dV .

The arc element ds can be found by dr · dr:

ds2 = dr · dr = dr2 = gij dq i dqj (3.575)

gij = ∂r
∂qi

· ∂r
∂qj

= bi · bj (3.576)

The surface element dA1 can be found by a scalar triple product:

dA1 = û
�
1 · dr2 × dr3 = û

�
1 · b2 × b3 dq2 dq3

= J û
�
1 · b�

1 dq2 dq3 = Jb
�
1 dq2 dq3 (3.577)
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Similarly, we have

dA2 = Jb
�
2 dq3 dq1 (3.578)

dA3 = Jb
�
3 dq1 dq2 (3.579)

The volume element dV can also be found by a scalar triple product. As is shown in
Figure 3.28, dV is equal to the parallelepiped made by dr1, dr2, dr3:

dV = dr1 · dr2 × dr3 = b1 · b2 × b3 dq1 dq2 dq3

= J dq1 dq2 dq3 (3.580)

J = b1 · b2 × b3 =
√

det
[
gij

] =

√√√√√
∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣ (3.581)

The base vectors are not necessarily orthogonal, but they must be non-coplanar to
reach every point of a three-dimensional space. The base vectors are non-coplanar if
and only if the Jacobian J of the Q (q1, q2, q3)-system is not zero:

J 2 = det
[
gij

] �= 0 (3.582)

Equation (3.582) is called the non-coplanar condition and may also be expressed by
the triple scalar product of the base vectors:

J = b1 · b2 × b3 =
∣∣∣∣ ∂ (x, y, z)

∂ (q1, q2, q3)

∣∣∣∣ �= 0 (3.583)

The nonzero Jacobian is also the necessary and sufficient condition that the set of
equations (3.417) have a unique inverse solution.

O

P

q1

q2

q3

dr1

dA1

dA3

dA2

dr2

dr3

dq2 dq1

dq3

Figure 3.28 A principal coordinate frame P and three area elements dA1, dA2, dA3 along with
the volume element dV .
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In orthogonal coordinate systems, the equations for arc, area, and volume elements
simplify to

dsi = bi dqi (3.584)

dAi = bj bk dqj dqk (3.585)

dV = b1b2b3 dq1 dq2 dq3 (3.586)

and hence,

ds2 = (
bi dq i

)2 = (
b1 dq1

)2 + (
b2 dq2

)2 + (
b3 dq3

)2
(3.587)

Proof : The Cartesian expression of the position vector of a moving point is

r = xı̂ + ŷ + zk̂

= f1 (q1, q2, q3) ı̂ + f2 (q1, q2, q3) ̂ + f3 (q1, q2, q3) k̂ (3.588)

Having r, we may find dr as

dr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3 = ∂r
∂qi

dq i

= b1 dq1 + b2 dq2 + b3 dq3 = bi dq i (3.589)

and calculate the arc element ds = dr = √
dr · dr by

ds2 = dr · dr =
(

∂r
∂qi

· ∂r
∂qj

)
dq i dqj = (

bi · bj

)
dq i dqj

= gij dq i dqj (3.590)

gij = ∂r
∂qi

· ∂r
∂qj

= bi · bj (3.591)

The coefficient gij represents the matrices of the Q-system. If the coordinate system
is orthogonal, then

gij = bi · b�
j = δij (3.592)

The area element dAi is equal to the projection of the cross product of the sides drj

and drk on the normal unit vector û
�
i on dAi :

dA1 = û
�
1 · dr2 × dr3 = û

�
1 · b2 × b3 dq2 dq3

= J û
�
1 · b�

1 dq2 dq3 = Jb
�
1 dq2 dq3 (3.593)

dA2 = Jb
�
2 dq3 dq1 (3.594)

dA3 = Jb
�
3 dq1 dq2 (3.595)
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O

G

X
Y

Z

P

Q

q1

q2

q3

u1

u2

u3

r

Figure 3.29 The volume element dV in the curvilinear coordinate system (q1, q2, q3).

The volume element dV shown in Figure 3.29 is the volume of the curvilinear
parallelepiped by the vectors b1 dq1 , b2 dq2 , b3 dq3 :

dV = dr1 · dr2 × dr3 = ∂r
∂q1

dq1 · ∂r
∂q2

dq2 × ∂r
∂q3

dq3

= b1 · b2 × b3 dq1 dq2 dq3 = [b1b2b3] dq1 dq2 dq3

= J dq1 dq2 dq3 (3.596)
�

Example 225 � Expression of dr in Q by the Orthogonality Condition Because
the arc element ds is a scalar, it is independent of the coordinate system. However, dr
is a vector and therefore is coordinate dependent. The vector dr in Equation (3.589)
is expressed in the Cartesian coordinate system with components in the Q-system. We
may express dr in Q:

dr = (dr · û1)û1 + (dr · û2)û2 + (dr · û3)û3 = (dr · ûj )ûj

= 1

bj

(
dr · bj

)
ûj = dq i

bj

(
bi · bj

)
ûj = gij

bj

dq i ûj (3.597)

Example 226 � Arc Element on a Coordinate Curve The arc length along the
coordinate curve qi is

ds = |bi | dq i =
3∑

i=1

√
bi · bi dq i =

3∑
i=1

√
gii dq i = bi dq i (3.598)
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So, the area element in the coordinate surface (q2, q3) or q1 = const is

dA1 = |b2 × b3| dq2 dq3 =
√

(b2 × b3) · (b2 × b3) dq2 dq3

=
√

(b2 · b2) (b3 · b3) − (b2 · b3) (b2 · b3) dq2 dq3

=
√

g22g33 − g2
23 dq2 dq3 =

√
b2

2b
2
3 − g2

23 dq2 dq3 (3.599)

Similarly, we have

dA2 =
√

b2
3b

2
1 − g2

31 dq3 dq1 (3.600)

dA3 =
√

b2
1b

2
2 − g2

12 dq1 dq2 (3.601)

which can be shown by index notation as

dAi =
√

b2
j b

2
k − g2

jk dqj dqk no summation over j, k (3.602)

where i, j, k is a cyclic permutation of 1, 2, 3.

Example 227 � Arc Element of Cartesian, Cylindrical, and Spherical Coordinates
In the Cartesian coordinate system, we have

b1 = 1 b2 = 1 b3 = 1 (3.603)

and therefore,
ds2 = dx 2 + dy2 + dz 2 (3.604)

For a cylindrical coordinate system, we have

b1 = 1 b2 = ρ b3 = 1 (3.605)

and therefore,
ds2 = dρ2 + (ρ dθ)2 + dz 2 (3.606)

In a spherical coordinate system, we have

b1 = 1 b2 = r sin θ b3 = r (3.607)

and therefore,
ds2 = dr2 + (r sin θ dϕ)2 + (r dθ)2 . (3.608)

Example 228 � Surface Element of a Tetrahedron Consider the tetrahedron of
Figure 3.30 which is bounded by triangular elements of coordinate surfaces. The areas
of these elements are dAi/2. Therefore, the area of the inclined surface dA is

dA n̂ = 1
2 dAi û

�
i (3.609)

where n̂ is a unit-normal vector to dA.
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O

P

q1

q2

q3

dA1

dA3

dA2

dq1

dq3

n

dq2
dA

Figure 3.30 A tetrahedron which is bounded by triangular elements of coordinate surfaces.

3.5.4 � Curvilinear Kinematics

The geometric and kinematic information in curvilinear coordinate systems
Q(q1, q2, q3) depends on the position r, velocity v, and acceleration a as well as
derivative of vectors with respect to the coordinates q1, q2, q3.

The derivative of a reciprocal base vector bi with respect to a coordinate qj is a
vector that can be expressed in principal or reciprocal frames as

P ∂bi

∂qj

= �k
ij bk (3.610)

R ∂bi

∂qj

= �ijk b�
k (3.611)

where �ijk and �k
ij are called the Christoffel symbols of the first and second kind,

respectively:

�ijk = �jik = ∂bi

∂qj

· bk = 1

2

(
∂gjk

∂qi

+ ∂gik

∂qj

− ∂gij

∂qk

)
(3.612)

�k
ij = �k

ji = ∂bi

∂qj

· b�
k (3.613)

Christoffel symbols of the first and second kinds can be transformed to each
other by using the principal–reciprocal transformation matrices RRP = [

gij

]
and P RR =[

g�
ij

]
given in Equations (3.514) and (3.515):

�ijk = gkm�m
ij (3.614)

�k
ij = g

�
km�ijm (3.615)



326 Coordinate Systems

The position vector r, velocity vector v, and acceleration vector a of a moving
point in the orthogonal system Q (q1, q2, q3) are given as

P r = r · b1

b2
1

b1 + r · b2

b2
2

b2 + r · b3

b2
3

b3 (3.616)

P v = q̇1b1 + q̇2b2 + q̇3b3 = q̇ibi (3.617)

v2 = b2
1q̇

2
1 + b2

2q̇
2
2 + b2

3q̇
2
3 = b2

i q̇2
i = gij q̇i q̇j δij (3.618)

Pa = a1b1 + a2b2 + a3b3 = aibi (3.619)

ai = q̈i + �i
jkq̇j q̇k i = 1, 2, 3 (3.620)

The applied force on a moving particle may be expressed in a curvilinear coordinate
system,

P F = F1b1 + F2b2 + F3b3 (3.621)

and therefore, Newton’s equation of motion would be

P F = ma (3.622)

Fi = m
(
q̈i + �i

jkq̇j q̇k

)
(3.623)

Proof : The derivative of a base vector bi with respect to a coordinate qj is a vector:

∂bi

∂qj

= ∂2r
∂qi ∂qj

= ∂2xk

∂qi ∂qj

ı̂k (3.624)

and because the derivatives are assumed to be continuous, we have

∂bi

∂qj

= ∂bj

∂qi

(3.625)

So, the differential of the (i, j)-element of the principal metric gij to qk would be

∂gij

∂qk

= ∂

∂qk

(
bi · bj

) = ∂bi

∂qk

· bj + bi · ∂bj

∂qk

= ∂bk

∂qi

· bj + bi · ∂bk

∂qj

= ∂

∂qi

(
bj · bk

) − bk · ∂bj

∂qi

+ ∂

∂qj

(bi · bk) − bk · ∂bi

∂qj

= ∂gjk

∂qi

+ ∂gik

∂qj

− 2bk · ∂bi

∂qj

(3.626)

and therefore

bk · ∂bi

∂qj

= ∂bi

∂qj

· bk = 1

2

(
∂gjk

∂qi

+ ∂gik

∂qj

− ∂gij

∂qk

)
(3.627)
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Employing the Christoffel symbol of the first kind , �ijk , we may show this equation in
a compact form:

�ijk = ∂bi

∂qj

· bk (3.628)

�ijk = 1

2

(
∂gjk

∂qi

+ ∂gik

∂qj

− ∂gij

∂qk

)
(3.629)

Using condition (3.505), we can express the vector ∂bi/∂qj in the principal coordinate
frame as a linear combination of the reciprocal base vectors b�

i :

R ∂bi

∂qj

=
(

∂bi

∂qj

· b1

)
b�

1 +
(

∂bi

∂qj

· b2

)
b�

2 +
(

∂bi

∂qj

· b3

)
b�

3

= �ij1 b�
1 + �ij2 b�

2 + �ij3 b�
3 = �ijk b�

k (3.630)

We can also express the vector ∂bi/∂qj as a linear combination of the principal base
vectors bi ,

P ∂bi

∂qj

=
(

∂bi

∂qj

· b�
1

)
b1 +

(
∂bi

∂qj

· b�
2

)
b2 +

(
∂bi

∂qj

· b�
3

)
b3

= �1
ij b1 + �2

ij b2 + �3
ij b3 = �k

ij bk (3.631)

and define the Christoffel symbol of the second kind , �k
ij ,

�k
ij = ∂bi

∂qj

· b�
k (3.632)

Therefore, the principal and reciprocal derivatives of a principal base vector bi with
respect to a coordinate qj can be shown by (3.610) or (3.611), in which the coefficients
�ijk and �k

ij are the Christoffel symbols of the first and second kinds, respectively.
The definitions of the Christoffel symbols in (3.628) and (3.632) show that

�ijk = �jik �k
ij = �k

ji (3.633)

The inner product of ∂bi/∂qj from (3.610) by bm shows that

�ijm = ∂bi

∂qj

· bm = �k
ij bk · bm = �k

ij gkm (3.634)

and therefore,
�ijm = gkm �k

ij �k
ij = g

�
km �ijm (3.635)

Using Equation (3.504), we can express a position vector r in principal and recip-
rocal frames associated with a coordinate system Q(q1, q2, q3):

P r = ribi =
(

r · b�
i

)
bi (3.636)

Rr = r
�
i b�

i = (r · bi) b�
i (3.637)
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The velocity vector v in the new coordinate system is found by taking the time deriva-
tive of r and using the chain rule:

P v = dr
dt

= ∂r
∂q1

q̇1 + ∂r
∂q2

q̇2 + ∂r
∂q3

q̇3

= b1q̇1 + b2q̇2 + b3q̇3 = q̇ibi = vibi (3.638)

The reciprocal expression of the velocity vector can be found by a transformation
matrix

Rv = RRP
P v = [

gij

]
P v = [

bi · bj

]
P v (3.639)

or equivalently by expression (3.637),

Rv = (v · bi ) b�
i = v

�
i b�

i = gij vj b�
i = gij q̇j b�

i (3.640)

where
vi = q̇i (3.641)

v
�
i = gijvj = gij q̇j = q̇

�
i (3.642)

Starting from v = bi q̇i we find the acceleration vector a by a time derivative:

Pa = d

dt
(bi q̇i ) = ∂bi

∂qj

q̇j q̇i + bi q̈i = �k
ij bkq̇i q̇j + bi q̈i

= (
q̈i + �i

jkq̇j q̇k

)
bi (3.643)

The reciprocal expression of the acceleration vector would be

Ra = (a · bi) b�
i = a

�
i b�

j = aigij b�
j = (

q̈i + �i
jkq̇j q̇k

)
gimb�

m

= (
q̈igim + �i

jkgimq̇j q̇k

)
b�

m = (
q̈�

m + �jkmq̇j q̇k

)
b�

m (3.644)

and therefore,
ai = q̈i + �i

jkq̇j q̇k a
�
i = (

q̈i + �i
jkq̇j q̇k

)
gim (3.645)

The equation of motion F = ma for a particle i with mass mi in a curvilinear
coordinate system is

Fibi = m
(
q̈i + �i

jkq̇j q̇k

)
bi (3.646)

F
�
i b�

i = m
(
q̈i + �i

jkq̇j q̇k

)
ginb�

n (3.647)

in which Fi indicates the force component in direction bi on particle i.
Elwin Bruno Christoffel (1829–1900) was a German–French mathematician who

improved the theory of differential geometry and mathematical analysis. Christoffel
may also be written as Kristoffel. �

Example 229 � Derivative of Reciprocal Base Vector b�
i Using Equation (3.441),

bi · b�
j = b�

j · bi = δij (3.648)
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and taking a coordinate derivative,

∂

∂qk

(
b�

i · bj

)
= ∂b�

i

∂qk

· bj + b�
i · ∂bj

∂qk

= ∂b�
i

∂qk

· bj + �i
jk = 0 (3.649)

we find
∂b�

i

∂qk

· bj = −�i
jk (3.650)

and therefore,
∂b�

i

∂qk

= −�i
jkb�

j (3.651)

It also shows that
�k

ij = −�i
ik (3.652)

and similarly,
�ijk = −�ikj (3.653)

Example 230 � Natural Coordinate System Consider the trajectory of a particle in
a curvilinear coordinate system that is described by a time-parametric equation:

qi = qi (t) i = 1, 2, 3 (3.654)

The arc length ds of the trajectory is

ds2 = gij dq i dqj (3.655)

Defining dq i/ds = ûti as the unit tangent vector to the trajectory qi provides

gij

dq i

ds

dqj

ds
= gij uti utj = ût · ût = 1 (3.656)

which is the inner product of ûti · ûti and indicates ûti is a unit vector. Differentiating
Equation (3.656) with respect to the arc length s produces

gij

duti

ds
utj + gij uti

dutj

ds
= 0 (3.657)

which simplifies to
gij uti

dutj

ds
= ût · dût

ds
= 0 (3.658)

So, dut/ds is a normal vector to ut . By defining the curvature κ and the normal vector
ûn as

ûn = 1

κ

dût

ds
(3.659)

we may simplify Equation (3.658) to the form

gij uti unj
= ût · ûn = 0 (3.660)

An arc derivative of (3.660) provides

gij

duti

ds
unj

+ gij uti

dunj

ds
= 0 (3.661)
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or

gij ûti

dunj

ds
= −gij unj

duti

ds
= −κgij uni

unj
= −κ (3.662)

We may use Equation (3.656) and write (3.662) as

gij uti

dunj

ds
= −κgij uti utj = −κ (3.663)

or

gij uti

(
dunj

ds
+ κutj

)
= ût ·

(
dûn

ds
+ κût

)
= 0 (3.664)

So, dûn/ds + κût is a normal vector to ût .
Taking an arc derivative of

gij uni
unj

= 1 (3.665)

shows that

gij uni

dunj

ds
= un · dun

ds
= 0 (3.666)

Now, the inner product

ûn ·
(

dûn

ds
+ κût

)
= 0 (3.667)

indicates that the vector dûn/ds + κût is orthogonal to both the tangent unit vector ût

and the normal unit vector ûn. Using this vector, we define the binormal unit vector ûb:

ûb = 1

τ

(
dûn

ds
+ κût

)
(3.668)

where τ is the torsion of the natural coordinate frame ût , ûn, ûb. The arc derivative
of this equation provides

dubi

ds
= εijk

(
utj

dunk

ds
+ dutj

ds
unk

)
= εijk

(
utj

(
τubk

− κutk

) + κunj
unk

)
= τεijkutj ubk

= −τuni
(3.669)

We may summarize Equations (3.659), (3.668), and (3.669) to show the Frenet–Serret
equations in curvilinear coordinates:

dût

ds
= κûn (3.670)

dûn

ds
= τ ûb − κût (3.671)

dûb

ds
= −τ ûn (3.672)
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Example 231 � Velocity and Acceleration in Natural Coordinate Taking arc deri-
vatives of the position vector provides the velocity and acceleration in the natural
coordinate:

v = dr
dt

= dr
ds

ds

dt
= ṡût (3.673)

a = dv
dt

= s̈ût + ṡ
dût

ds

ds

dt
= s̈ût + ṡ2κûn (3.674)

Example 232 � Work in Curvilinear Coordinates The work 2W1 that is done by
a force F on a moving particle with mass m from point P1 to point P2 along a curve
r = r (t),

P r (t) = r1 (t) b1 + r2 (t) b2 + r3 (t) b3 (3.675)

is represented by a summation of the tangential components of the force along the path
and is defined by the integral

2W1 =
∫ P2

P1

F · dr =
∫ P2

P1

Fi dq i =
∫ P2

P1

Fi

dq i

dt
dt =

∫ P2

P1

Fivi dt

= m

∫ P2

P1

(
q̈i + �i

jkq̇j q̇k

)
q̇i dt = m

∫ P2

P1

(
q̈i + �i

jkq̇j q̇k

)
dq (3.676)

If the force F is conservative, the force is derivable from a scalar potential function

V = V (qi) i = 1, 2, 3 (3.677)

such that

F = −∇V (3.678)

Fi = −∂V

∂qi

i = 1, 2, 3 (3.679)

Then

2W1 = m

∫ P2

P1

(
q̈i + �i

jkq̇j q̇k

)
dq = −�V = V (r1) − V (r2) (3.680)

Example 233 � Cartesian Velocity Components Substitution of the Cartesian posi-
tion vector r in the principal velocity equation (3.638) provides the Cartesian expression
of the velocity vector:

P v = dr
dt

= ∂r
∂qj

q̇j = ∂xi

∂qj

q̇j ı̂i = ẋi ı̂i (3.681)
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Therefore, the components of velocity in the Cartesian and Q-system are related by
the Jacobian matrix:

ẋi =
[

∂xi

∂qj

]
q̇j = [J ] q̇j (3.682)

ẋ

ẏ

ż

 =



∂x

∂qi

∂x

∂q2

∂x

∂q3
∂y

∂qi

∂y

∂q2

∂y

∂q3
∂z

∂qi

∂z

∂q2

∂z

∂q3




q̇1

q̇2

q̇3

 (3.683)

As an example, consider the planar polar coordinate system

x = ρ cos θ y = ρ sin θ z = 0 (3.684)

for which we have

[J ] =
[

∂xi

∂qj

]
=


∂x

∂ρ

∂x

∂θ
∂y

∂qi

∂y

∂θ

 =
 cos θ −ρ sin θ

sin θ ρ cos θ

 (3.685)

It provides[
ẋ

ẏ

]
=

[
cos θ −ρ sin θ

sin θ ρ cos θ

] [
ρ̇

θ̇

]
=

[
ρ̇ cos θ − ρθ̇ sin θ

ρ̇ sin θ + ρθ̇ cos θ

]
(3.686)

and therefore, [
ρ̇

θ̇

]
= [J ]−1

[
ẋ

ẏ

]
=

[
cos θ −ρ sin θ

sin θ ρ cos θ

]−1 [
ẋ

ẏ

]

=
 cos θ sin θ

− 1

ρ
sin θ

1

ρ
cos θ

 ẋ

ẏ


=

 ẋ cos θ + ẏ sin θ

−ẋ
1

ρ
sin θ + ẏ

1

ρ
cos θ

 (3.687)

Example 234 � Base Vectors of Elliptic–Hyperbolic Coordinate System The
elliptic–hyperbolic coordinate system (u, v, z) relates to the Cartesian system by

x = f1 (q1, q2, q3) = a cosh u cos v

y = f2 (q1, q2, q3) = a sinh u sin v (3.688)

z = f3 (q1, q2, q3) = z
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The principal base vectors of elliptic–hyperbolic systems expressed in the Cartesian
system are

bu = ∂r
∂u

=
 a cos v sinh u

a sin v cosh u

0

 (3.689)

bv = ∂r
∂v

=
 a cos v sinh u

a sin v cosh u

0

 (3.690)

bz = ∂r
∂z

=
 0

0
1

 (3.691)

The reciprocal base vectors of elliptic–hyperbolic systems expressed in the Cartesian
system are

b�
1 = ∇f1 =

 a cos v sinh u

a sin v cosh u

0

 (3.692)

b�
2 = ∇f2 =

 a sin v cosh u

a cos v sinh u

0

 (3.693)

b�
3 = ∇f3 =

 0
0
1

 (3.694)

Example 235 � Christoffel Symbol Taking the derivative of gij provides

∂

∂qk

gij = ∂bi

∂qk

· bj + bi · ∂bj

∂qk

i, j, k = 1, 2, 3 (3.695)

Interchanging i, j , and k provides two similar equations:

∂

∂qi

gjk = ∂bj

∂qi

· bk + bj · ∂bk

dq i

j, k, i = 1, 2, 3 (3.696)

∂

∂qj

gki = ∂bk

∂qj

· bi + bk · ∂bi

dqj

k, i, j = 1, 2, 3 (3.697)

A combination of these equations using

∂bi

∂qj

= ∂bj

∂qi

(3.698)
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generates the second kind of Christoffel symbol. The Christoffel symbol may also be
called the Christoffel operator:

�i
jk = 1

2

(
∂gij

∂qk

+ ∂gik

∂qj

− ∂gkj

∂qi

)
i, j, k = 1, 2, 3 (3.699)

Example 236 � Equation of Motion in No Force When there is no force on a
particle, its acceleration is zero, and therefore, its equation of motion is

q̈i = −�i
jkq̇j q̇k (3.700)

Example 237 � Why Curvilinear Coordinate? Vector and scalar fields, such as a
gravitational force field or a double-pole magnetic field, can always be expressed in
the orthogonal Cartesian coordinate system; however, sometimes it is much simpler
to express them in a proper curvilinear coordinate system. A field is usually better to
be expressed by a coordinate system using the lines of flow and potential surfaces.
Such a coordinate system may be called a natural coordinate system . The behavior of
a field at a boundary surface, a potential surface, and singularities and its flow lines are
usually defined in the natural coordinate system in a simpler way. The field will have
a much simpler expression in a natural coordinate set, whereas in terms of Cartesian
coordinates it may have a complicated expression.

Example 238 � Principal and Reciprocal Derivatives of a Vector Consider the
principal expression of a vector r:

P r = r1b1 + r2b2 + r3b3 (3.701)
The differential of P r is

Pdr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3 (3.702)

Rdr = ∂r
∂q1

dq1 + ∂r
∂q2

dq2 + ∂r
∂q3

dq3 (3.703)

where
∂r
∂qi

=
3∑

j=1

(
∂rj

∂qi

bj + rj

∂bj

∂qi

)
(3.704)

∂r
∂qi

=
3∑

j=1

(
∂r

�
j

∂qi

b�
j + r

�
j

∂b�
j

∂qi

)
(3.705)

Example 239 � Christoffel Symbol of the Third Kind, �ijk We may determine
the differential of the (i, j)-element of the reciprocal metric g

�
ij to qk and define the
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Christoffel symbol of the third kind, �ijk:

�ijk = 1

2

(
∂g

�
jk

∂qi

+ ∂g
�
ik

∂qj

− ∂g
�
ij

∂qk

)
(3.706)

∂gij

∂qk

= ∂

∂qk

(
b�

i · b�
j

)
= ∂b�

i

∂qk

· b�
j + b�

i · ∂b�
j

∂qk

= ∂b�
k

∂qi

· b�
j + b�

i · ∂b�
k

∂qj

= ∂

∂qi

(
b�

j · b�
k

)
− b�

k · ∂b�
j

∂qi

+ ∂

∂qj

(
b�

i · b�
k

)
− b�

k · ∂b�
i

∂qj

= ∂g
�
jk

∂qi

+ ∂g
�
ik

∂qj

− 2b�
k · ∂b�

i

∂qj

(3.707)

and therefore,

b�
k · ∂b�

i

∂qj

= ∂b�
i

∂qj

· b�
k = 1

2

(
∂g

�
jk

∂qi

+ ∂g
�
ik

∂qj

− ∂g
�
ij

∂qk

)
(3.708)

Employing the Christoffel symbol of the third kind, �ijk, we may show this equation
in a compact form:

b�
k · ∂b�

i

∂qj

= ∂b�
i

∂qj

· b�
k = �ijk (3.709)

3.5.5 � Kinematics in Curvilinear Coordinates

Any position vector r can be expressed in Cartesian as well as principal Pr or reciprocal
Rr coordinate frames using the unit vectors ûi , û

�
i or base vectors bi , b�

i of each
coordinate system:

r = xı̂ + ŷ + zk̂ (3.710)

P r =
3∑

i=1

ribi = r1b1 + r2b2 + r3b3 (3.711)

Rr =
3∑

i=1

r
�
i b�

i = r
�
1 b�

1 + r
�
2 b�

2 + r
�
3 b�

3 (3.712)

where ri is the covariant component of r,

ri = r · b�
i = r · bj × bk[

bibj bk

] i, j, k � 1, 2, 3 (3.712a)

bi = ∂r
∂qi

= biûi = ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (3.713)
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bi = |bi | =
√(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

(3.714)

ûi = �rqi∣∣�rqi

∣∣ = ∂r/∂qi

|∂r/∂qi | = 1

bi

bi (3.715)

and r
�
1 is the contravariant component of r,

r
�
1 = r · bi = r · b�

j × b�
k[

b�
i b�

j b�
k

] i, j, k � 1, 2, 3 (3.716)

b�
i = ∇qi = ∂qi

∂x
ı̂ + ∂qi

∂y
̂ + ∂qi

∂z
k̂ (3.717)

b
�
i =

∣∣∣b�
i

∣∣∣ =
√(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

(3.718)

û�
i = ∇qi

|∇qi | = 1

b
�
i

b�
i (3.719)

The velocity vector v in the Q-system is found by taking a simple time derivative of r
and using the chain rule. The velocity vector v can be expressed in Cartesian as well
as principal P v or reciprocal Rv coordinate frames:

v = ẋı̂ + ẏ̂ + żk̂ (3.720)

P v =
3∑

i=1

vibi = v1b1 + v2b2 + v3b3 (3.721)

Rv =
3∑

i=1

v
�
i b�

i = v
�
1 b�

1 + v
�
2 b�

2 + v
�
3 b�

3 (3.722)

P v =
Pd

dt
P r =

3∑
i=1

q̇i

∂r
∂qi

=
3∑

i=1

q̇ibi ûi =
3∑

i=1

q̇ibi =
3∑

i=1

vibi (3.723)

vi = v · b�
i (3.724)

Rv =
Rd

dt
Rr =

3∑
j=1

3∑
i=1

gij q̇j b�
i =

3∑
j=1

3∑
i=1

gijvj b�
i =

3∑
i=1

v
�
i b�

i (3.725)

v
�
i = v · bi = gijvj = gij q̇j = q̇

�
i (3.726)

The acceleration vector a in the Q-system is found by taking a simple time derivative
of v and using the chain rule. The acceleration vector a can be expressed in Cartesian
as well as principal Pa or reciprocal Ra coordinate frames.
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We may write the components of a as

Pa =
Pd

dt
P v =

3∑
i=1

q̇i

∂v
∂qi

=
3∑

i=1

aibi (3.727)

ai = a · b�
i (3.728)

Ra =
Rd

dt
Rv =

3∑
i=1

a
�
i sb�

i (3.729)

a
�
i = a · bi (3.730)

Proof : We may write the components of a as

ai = a · ûi = dv
dt

· 1

bi

∂r
∂qi

= 1

bi

[
d

dt

(
v · ∂r

∂qi

)
− v · d

dt

(
∂r
∂qi

)]
(3.731)

Differentiation of (3.738) with respect to q̇i gives

∂v
∂q̇i

= biûi = ∂r
∂qi

(3.732)

and moreover

d

dt

(
∂r
∂qi

)
=

3∑
j=1

∂

∂qj

(
∂r
∂qi

)
q̇j =

3∑
j=1

∂

∂qi

(
∂r
∂qj

)
q̇j

= ∂

∂qi

3∑
j=1

∂r
∂qj

q̇j = ∂

∂qi

dr
dt

= ∂v
∂qi

(3.733)

Therefore,

ai = 1

bi

[
d

dt

(
v · ∂r

∂qi

)
− v · ∂v

∂qi

]
= 1

bi

[
d

dt

∂

∂q̇i

(
1

2
v2

)
− ∂

∂q̇i

(
1

2
v2

)]
= 1

mbi

(
d

dt

∂K

∂q̇i

− ∂K

∂q̇i

)
(3.734)

where K is the kinetic energy of the moving particle:

K = 1
2mv2 = 1

2m
(
b2

1q̇
2
1 + b2

2q̇
2
2 + b2

3q̇
2
3

) = 1
2mgij q̇i q̇j (3.735)

Because the arc element ds is a scalar, it is independent of the coordinate system
while dr is a vector and coordinate dependent. The vector dr in Equation (3.589) is
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expressed in the Cartesian coordinate system with components in the Q-system. We
may express dr in Q by using the orthogonality condition (3.2):

dr = (dr · û1)û1 + (dr · û2)û2 + (dr · û3)û3 =
3∑

j=1

(dr · ûj )ûj

=
3∑

j=1

(
dr · bj

bj

)
ûj =

3∑
j=1

3∑
i=1

dqi

bj

(
bi · bj

)
ûj

=
3∑

j=1

3∑
i=1

dqi

bj

(
bibj δij

)
ûj =

3∑
i=1

bi dq i ûi =
3∑

i=1

dq i bi (3.736)

Using the orthogonality condition (3.2) and the definition of unit vectors (3.419), we
transform r to the coordinate system Q (q1, q2, q3):

r = (r · û1)û1 + (r · û2)û2 + (r · û3)û3

= 1

b1
(r · b1) û1 + 1

b2
(r · b2) û2 + 1

b3
(r · b3) û3

= 1

b2
1

(r · b1) b1 + 1

b2
2

(r · b2) b2 + 1

b2
3

(r · b3) b3

=
3∑

i=1

(r · ûi )ûi =
3∑

i=1

1

bi

(r · bi) ûi =
3∑

i=1

1

b2
i

(r · bi) bi (3.737)

The velocity vector v in the new coordinate system is found by taking a time derivative
of r and using the chain rule or by dividing dr in (3.736) by dt :

v = dr
dt

= ∂r
∂q1

q̇1 + ∂r
∂q2

q̇2 + ∂r
∂q3

q̇3

= q̇1b1 + q̇2b2 + q̇3b3 = b1q̇1û1 + b2q̇2û2 + b3q̇3û3

=
3∑

i=1

bi q̇i ûi =
3∑

i=1

q̇ibi (3.738)

The acceleration vector a must satisfy the orthogonality condition (3.2):

a = (a · û1)û1 + (a · û2)û2 + (a · û3)û3 = a1û1 + a2û2 + a3û3 (3.739)

Differentiation of (3.738) with respect to q̇i gives

∂v
∂q̇i

= biûi = ∂r
∂qi

(3.740)
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Starting from v = ∑3
i=1 bi q̇i we have

a = d

dt

3∑
i=1

∂r
∂qi

q̇i =
3∑

i=1

∂2r
∂qi∂qj

q̇i q̇j +
3∑

i=1

∂r
∂qi

q̈i

=
3∑

i=1

∂bi

∂qj

q̇i q̇j +
3∑

i=1

bi q̈i (3.741)

a · bj =
3∑

i=1

1

bi

bi · bj =
3∑

i=1

bi

ai = q̈i + �i
jkq̇j q̇k

When the coordinate system is orthogonal, the principal and reciprocal coordinate
frames coincide, so the covariant and contravariant components of vectors become
equal. Therefore, the kinematic equations become simpler in orthogonal coordinates.
The method of Sections 3.1–3.3 is more straight for deriving the velocity and acceler-
ation vectors in an orthogonal coordinate system. �

Example 240 � Differential Operators in Curvilinear Coordinates The gradient,
divergence, curl, and Laplacian in general rectangular curvilinear coordinates are

gradf = 1

b1

∂f

∂q1
û1 + 1

b2

∂f

∂q2
û2 + 1

b3

∂f

∂q3
û3 (3.742)

divr = ∇ · r

= 1

b1b2b3

(
∂ (b2b3r1)

∂q1
+ ∂ (b3b1r2)

∂q2
+ ∂ (b3b1r2)

∂q3

)
(3.743)

curlr = ∇ × r = 1

b1b2b3

∣∣∣∣∣∣∣∣
b1û1 b2û2 b3û3

∂

∂q1

∂

∂q2

∂

∂q3
r1b1 r2b2 r3b3

∣∣∣∣∣∣∣∣ (3.744)

∇2f = 1

b1b2b3

∂

∂q1

(
b2b3

b1

∂f

∂q1

)
+ 1

b1b2b3

∂

∂q2

(
b3b1

b2

∂f

∂q2

)
+ 1

b1b2b3

∂

∂q3

(
b1b2

b3

∂f

∂q3

)
(3.745)

Example 241 Base Vectors of Spherical Coordinate System Using the definition of
spherical coordinates (3.128),

x = r sin ϕ cos θ y = r sin ϕ sin θ z = r cos ϕ (3.746)

we can find the following base vectors by employing (3.713):

b1 = ûr b2 = r sin θ ûϕ b3 = rûθ (3.747)
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where

b1 =
√(

∂x

∂r

)2

+
(

∂y

∂r

)2

+
(

∂z

∂r

)2

= 1 (3.748)

b2 =
√(

∂x

∂ϕ

)2

+
(

∂y

∂ϕ

)2

+
(

∂z

∂ϕ

)2

= r sin θ (3.749)

b3 =
√(

∂x

∂θ

)2

+
(

∂y

∂θ

)2

+
(

∂z

∂θ

)2

= r (3.750)

The reciprocal base vectors to bi would then be

b�
1 = ûr b�

2 = 1

r sin θ
ûϕ b�

3 = 1

r
ûθ (3.751)

Example 242 � Bispherical Coordinate System Consider the bispherical coordinate
system ϕ, θ , ψ with the following relations:

x = sin ϕ cos ψ

cosh θ − cos ϕ

y = sin ϕ sin ψ

cosh θ − cos ϕ
(3.752)

z = sinh θ

cosh θ − cos ϕ

Defining the position vector r as

r =


sin ϕ cos ψ

cosh θ − cos ϕ
sin ϕ sin ψ

cosh θ − cos ϕ
sinh θ

cosh θ − cos ϕ

 (3.753)

we find the unit vectors of the coordinate system as

ûϕ =
∂r
∂ϕ∣∣∣∣ ∂r
∂ϕ

∣∣∣∣ = − 1

(cosh θ − cos ϕ)2

 cos ψ − cosh θ cos ψ cos ϕ

sin ψ − cosh θ cos ϕ sin ψ

sinh θ sin ϕ

 (3.754)

ûθ =
∂r
∂θ∣∣∣∣ ∂r
∂θ

∣∣∣∣ = − 1

(cosh θ − cos ϕ)2

 sinh θ cos ψ sin ϕ

sinh θ sin ψ sin ϕ

cosh θ cos ϕ − 1

 (3.755)
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ûψ =
∂r
∂ψ∣∣∣∣ ∂r
∂ψ

∣∣∣∣ = 1

cosh θ − cos ϕ

 − sin ψ sin ϕ

cos ψ sin ϕ

0

 (3.756)

The position vector in a bispherical coordinate system is

r = (r · ûϕ)ûϕ + (r · ûθ )ûθ + (r · ûψ )ûψ

= − cosh θ sin ϕ

(cosh θ − cos ϕ)2
ûϕ − sinh θ cos ϕ

(cosh θ − cos ϕ)2
ûθ (3.757)

where

r · ûϕ = − cosh θ sin ϕ

(cosh θ − cos ϕ)2 (3.758)

r · ûθ = − sinh θ cos ϕ

(cosh θ − cos ϕ)2 (3.759)

r · ûψ = 0 (3.760)

Example 243 � Some Orthogonal Coordinate Systems The Bipolar coordinate
system (u, v, z) relates to the Cartesian system by

x = a sinh v

cosh v − cos u
y = a sin u

cosh v − cos u
z = z (3.761)

Figure 3.31 illustrates the intersection of the system with the (x, y)-plane for a = 1.

X

Y

v = 0.2
v = 0.5

u = 0.2

u = 0.5G

P

ûu

v = 0.8
v = 1

u = 0.8

u = 1

u = 1.2

ûv
r

2

1

−1−2

−1

−2

−3 0 1 2 3

Figure 3.31 Bipolar cylindrical coordinate system.

Bipolarcylindrical (u, v,w):

x = a
sinh v

cosh v − cos u
y = a

sin u

cosh v − cos u
z = w (3.762)
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Bispherical (u, v,w):

x = sin u cos w

cosh v − cos u

y = sin u sin w

cosh v − cos u
(3.763)

z = sinh(v)

cosh v − cos u

Cardioidal (u, v, w):

x = uv cos w

(u2 + v2)2

y = uv sin w

(u2 + v2)2
(3.764)

z = 1

2

u2 − v2

(u2 + v2)2

Cardioidcylindrical (u, v, w):

x = 1

2

u2 − v2

(u2 + v2)2
y = uv

(u2 + v2)2
z = w (3.765)

Casscylindrical (u, v, w):

x = a

√
2

2

(√
e2u + 2eu cos v + 1 + √

eu cos v + 1
)

y = a

√
2

2

(√
e2u + 2eu cos v + 1 − √

eu cos v + 1
)

(3.766)

z = w

Confocalellip (u, v, w):

x =
√

a2 − c2

a2 − b2
(a2 − u)(a2 − v)(a2 − w)

y =
√

b2 − a2

b2 − c2
(a2 − u)(a2 − v)(a2 − w) (3.767)

z =
√

c2 − a2

c2 − b2
(a2 − u)(a2 − v)(a2 − w)
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Confocalparab (u, v, w):

x =
√

(a2 − u)(a2 − v)(a2 − w)

b2 − a2

y =
√

(b2 − u)(b2 − v)(b2 − w)

b2 − a2
(3.768)

z = a2 + b2 − u − v − w

2

Conical (u, v,w):

x = uvw

ab

y = u

b

√
(v2 − b2)(b2 − w2)

a2 − b2
(3.769)

z = u

a

√
(a2 − v2)(a2 − w2)

a2 − b2

Ellcylindrical (u, v,w):

x = a cosh u cos v y = a sinh u sin v z = w (3.770)

Ellipsoidal (u, v,w):

x = uvw

ab

y = 1

b

√
(u2 − b2)(v2 − b2)(b2 − w2)

a2 − b2
(3.771)

z = 1

a

√
(u2 − a2)(a2 − v2)(a2 − w2)

a2 − b2

Hypercylindrical (u, v,w):

x =
√√

u2 + v2 + u

y =
√√

u2 + v2 − u (3.772)

z = w
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Invcasscylindrical (u, v, w):

x = a

√
2

2

(
1 +

√
eu cos v + 1

e2u + 2eu cos v + 1

)

y = a

√
2

2

(
1 −

√
eu cos v + 1

e2u + 2eu cos v + 1

)
(3.773)

z = w

Invellcylindrical (u, v,w):

x = a
cosh u cos v

cosh2 u − sin2 v

y = a
sinh u sin v

cosh2 u − sin2 v
(3.774)

z = w

Invoblspheroidal (u, v, w):

x = a
cosh u sin v cos w

cosh2 u − cos2 v

y = a
cosh u sin v sin w

cosh2 u − cos2 v
(3.775)

z = a
sinh u cos v

cosh2 u − cos2 v

Logcylindrical (u, v,w):

x = a

π
ln

(
u2 + v2)

y = 2
a

π
arctan

(u

v

)
(3.776)

z = w

Logcoshcylindrical (u, v,w):

x = a

π
ln

(
cosh2 u − sin2 v

)
y = 2

a

π
arctan

(
tanh u

tan v

)
(3.777)

z = w

Maxwellcylindrical (u, v,w):

x = a

π

(
u + 1 + eu cos v

)
y = a

π

(
u + eu sin v

)
(3.778)

z = w
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Oblatespheroidal (u, v, w):

x = a cosh u sin v cos w

y = a cosh u sin v sin w (3.779)

z = a sinh u cos v

Paraboloidal1 (u, v,w):

x = uv cos w y = uv sin w z = 1
2

(
u2 − v2

)
(3.780)

Paraboloidal2 (u, v,w):

x = 2

√
(u − a)(a − v)(a − w)

a − b

y = 2

√
(u − b)(b − v)(b − w)

a − b
(3.781)

z = u + v + w − a − b

Paracylindrical (u, v,w):

x = 1
2

(
u2 − v2

)
y = uv z = w (3.782)

Rosecylindrical (u, v,w):

x =
√√

u2 + v2 + u√
u2 + v2

y =
√√

u2 + v2 − u√
u2 + v2

(3.783)

z = w

Sixsphere (u, v,w):

x = u

u2 + v2 + w2

y = v

u2 + v2 + w2
(3.784)

z = w

u2 + v2 + w2

Tangentcylindrical (u, v, w):

x = u

u2 + v2
y = v

u2 + v2
z = w (3.785)

Tangentsphere (u, v, w):

x = u

u2 + v2
cos w y = u

u2 + v2
sin w z = v

u2 + v2
(3.786)



346 Coordinate Systems

Toroidal (u, v,w):

x = a
sinh v cos w

cosh v − cos u

y = a
sinh v sin w

cosh v − cos u
(3.787)

z = a
sin u

cosh v − cos u

KEY SYMBOLS

a, b, c constant parameters
a a general vector
a, a, ẍ, v̇ acceleration
A surface area
ABC triad
b̂i unit vectors of a nonorthogonal oblique triad ABC
bi principal base vectors of a nonorthogonal coordinate system
b�

i reciprocal base vectors of a nonorthogonal coordinate system
B body coordinate frame, local coordinate frame
c cos
C center
c relative vector
d distance, distance between two points
f function
F force vector, principal force vector[
gij

]
covariant metric matrix[

g
�
ij

]
contravariant metric matrix

G global coordinate frame, fixed coordinate frame
I = [I] identity matrix
ı̂, ̂ , k̂ local Cartesian coordinate axis unit vectors
Î , Ĵ , K̂ global Cartesian coordinate axis unit vectors
j jerk
J = V Jacobian, volume of base parallelogram of bi , J = [b1b2b3]
K kinetic energy
l length
m mass
n̂ normal unit vector
O> common origin of B and G

p, q, r vectors
P principal
P,Q body points
qi curvilinear coordinate
Q generalized coordinate system, principal coordinate frame
Q� reciprocal coordinate frame
r, ϕ, θ, spherical coordinates
r position vector
ri principal components of r along a principal triad
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r
�
i reciprocal components of r

rij the element of row i and column j of a matrix
R reciprocal, radius,
R transformation matrix between principal and reciprocal frames
s sin, arc length
t time
u, v,w orthogonal coordinate system

non-Cartesian coordinates
u, v, w vectors
û principal unit vector
û� reciprocal unit vector
v velocity vector
V scalar field
V = J volume of base parallelogram of bi

V � volume of base parallelogram of b�
i

W work
x, y, z local coordinate axes, Cartesian coordinates
X,Y,Z global coordinate axes

Greek

α, β, γ rotation angles about global axes
εijk permutation symbol
δij Kronecker delta
ϕ, θ, ψ rotation angles, Euler angles
κ curvature
λ wavelength
ρ, θ, z cylindrical coordinates
τ torsion
� Christoffel symbol
ωx, ωy, ωz angular velocity components
ω angular velocity vector

Symbol

[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
∇, ˜grad gradient
� cyclic interchange

EXERCISES

1. Lamé Equation The direction of scattering X-rays in a crystalline lattice is determined
by x, which is the solution of Lamé equation:

x · a = A x · b = B x · c = C

where a, b, c are the basis vectors of the crystal lattice and A, B, C are scalars. Show that
the solution of the Lame equation is

x = Aa� + Bb� + Cc�

where a�, b�, c� are the reciprocal basis vectors of a, b, c.



348 Coordinate Systems

2. Base Vectors of Spherical Coordinate System Show that the base vectors of a spherical
coordinate system are

b1 = êr b2 = r sin ϕêθ b3 = rêϕ

3. A Length–Length–Angle Coordinate System A coordinate system is defined by the
following coordinate transformations:

x = ηξ cos ϕ

y = ηξ sin ϕ

z = 1
2 (ξ2 − η2)

ξ2 =
√

x2 + y2 + z2 + z

η2 =
√

x2 + y2 + z2 − z

ϕ = tan−1 y

x
.

The base vectors of this coordinate system are

b1 = ∂r
∂ξ

= η cos ϕı̂ + η sin ϕ̂ + ξ k̂

b2 = ∂r
∂η

= ξ cos ϕı̂ + ξ sin ϕ̂ − ηk̂

b3 = ∂r
∂ϕ

= −ηξ sin ϕı̂ + ηξ cos ϕ̂

Complete the kinematic information of this coordinate system and find the position, veloc-
ity, and acceleration vectors of a moving point in this frame.

4. Cylindrical Hyperbolic–Elliptic Coordinate System A cylindrical hyperbolic–elliptic
coordinate system is defined by the following coordinate transformations:

x = a cosh α sin β

y = a sinh α cos β

z = z

where a is a constant. Show that the base vectors of this space are

b1 = ∂r
∂α

= a sinh α sin βı̂ + a cosh α cos β̂

b2 = ∂r
∂β

= a cosh α cos βı̂ − a sinh α sin β̂

b3 = ∂r
∂z

= k̂

and then find the kinematic information of the space.
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5. Jerk on a Space Curve

x = 10
(
1 − e−t

)
sin

(
2t2)

y = 10
(
1 − e−t

)
cos

(
2t2)

z = xy

Determine the velocity, acceleration, and jerk of a particle that moves on the given space
curve and express the path of motion.

6. Constant-Length Vectors Prove that if a is a vector with constant length which is
dependent on a parameter µ, then

a· ∂a
∂µ

= 0

and deduce that the dot product of any unit vector and its time derivative is zero,
ê · dê/dt = 0

7. Unit Vectors of Orthogonal Coordinate Systems Prove that if êi and êi are two unit
vectors of an orthogonal coordinate system, then

êi · dêi

dt
= 0

êi · dêj

dt
= −êj · dêi

dt

8. Square of Arc Lengths Find the square of an element of arc length ds in cylindrical
and spherical coordinate systems.

9. Kinematic Vectors from Jerk Suppose a particle starts moving with the following jerk:

j = ae−t2 [(
6ω2t − 8t3 + 12t

)
sin ωt − (

ω3 − 12ωt2 + 6ω
)

cos ωt
]
ı̂

− 6
10t12 − 25t6 + 1(

t6 + 1
)3 ̂ + (

3ω2 cosh ωt + ω3t sinh ωt
)
k̂

Determine the acceleration, velocity, and position vectors of the particle.
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10. Curtate Cycloid Kinematics Consider a particle that is moving on the following curtate
cycloid as is shown in Figure 3.32:

x = bt − c sin t y = b − c cos t

Assume b = 1 and c = 1.6.

(a) Determine the velocity, acceleration, and jerk components of the point.

(b) Determine the angle between velocity vectors when the point crosses the line y = b.

(c) Determine the angle between acceleration vectors when the point crosses the line y = b.

(d) Determine the angle between jerk vectors when the point crosses the line y = b.

2

x

1 2 3 4 5 6 87

−1

3

0

Figure 3.32 A curtate cycloid with b = 1 and c = 1.6.

11. � Modified Curtate Cycloid Consider a particle that is moving on the following path:

x = bt − c sin t y = b − c cos t

c = b cos ωt

(a) Determine ω such that the point is always between 0 ≤ y ≤ 2b.

(b) Determine the maximum velocity, acceleration, and jerk components of the point for
0 ≤ t ≤ 2π .

(c) Determine the angle between velocity vectors when the point crosses the line y = b.

(d) Determine the angle between acceleration vectors when the point crosses the line
y = b.

(e) Determine the angle between jerk vectors when the point crosses the line y = b.

12. Comparison of Trochoid with Slider-Crank Mechanisms Figure 3.33 illustrates a
trochoid mechanism with the following equations for the path of point A:

x = bt − c sin t y = b − c cos t

which for the case of a = 2b = 2c produces a pure harmonic motion:

x = b cos t y = 0

The figure also illustrates a slider-crank mechanism.

(a) Determine the position of the slider of the slider-crank mechanism as a function of θ2

and compare with the position of the trochoid mechanism.

(b) Is it possible to have a harmonic motion by a slider-crank mechanism?
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0
2

A

B
x

y

a b

xB

M
4

y

x

xB

B

A

b

(a) (b)

Figure 3.33 A trochoid mechanism and a slider-crank mechanism.

13. Cylindrical Coordinate System A point is moving with the following cylindrical char-
acteristics:

ρ = 1 m θ = 30 deg z = 2 m

ρ̇ = 0.1 m/s θ̇ = −3 deg/s ż = 0.2 m/s

ρ̈ = 1 m/s2 θ̈ = 2 deg/s2 z̈ = 0.2 m/s2

Determine the position, velocity, and acceleration of the point in a:

(a) Cylindrical coordinate system

(b) Cartesian coordinate system

(c) Spherical coordinate system

14. � Cylindrical–Spherical System Relationship Assume the position, velocity, and
acceleration of a particle are given in a cylindrical coordinate system. Determine the posi-
tion, velocity, and acceleration of the particle in the spherical system in terms of cylindrical
characteristics.

15. � Reciprocal Base Vectors

(a) Consider a point P at r,
r = ı̂ + 2̂ + 3k̂

and a nonorthogonal coordinate frame with

b̂1 = 1√
2

 1
1
0

 b̂2 = 1

1.452 6

 0.9
0.7

−0.9

 b̂3 = 1

1.01

 0.1
0.1
1


(b) Determine the components ri of r in the nonorthogonal coordinate frame:

r = r1b̂1 + r2b̂2 + r3b̂3

(c) Determine the reciprocal base vectors and the reciprocal components r
�
i of r in the

reciprocal coordinate frame.

(d) Determine the transformation matrices to transform ri to r
�
i and r

�
i to ri .
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16. Covariant and Contravariant Components

(a) Express the scalar product of two vectors in terms of their covariant and contravariant
components.

(b) Find the vector product of two vectors in an oblique coordinate system.

17. Vector Calculation in a Nonorthogonal Coordinate Frame Consider the following
two vectors in a principal nonorthogonal coordinate frame:

P r1 = r11b̂1 + r12b̂2 + r13b̂3

= 5.4442b̂1 + 5.1372b̂2 + 4.9482b̂3

P r2 = r21b̂1 + r22b̂2 + r23b̂3

= 15.712b̂1 + 11.357b̂2 + 5.655b̂3

Determine:

(a) P r1 · P r2

(b) P r1 × P r2

(c) Angle between P r1 and P r2

(d) Length of P r1 and P r2

18. Vector Calculation in a Reciprocal Coordinate Frame Consider the following two
vectors in a reciprocal nonorthogonal coordinate frame:

Rr1 = r
�
11b�

1 + r
�
12b�

2 + r
�
13b�

3

= 0.82294b�
1 + 0.92014b�

2 + 4b�
3

Rr2 = r
�
21b�

1 + r
�
22b�

2 + r
�
23b�

3

= 6.299 1b�
1 − 0.610 88b�

2 + 3b�
3

Determine:

(a) Rr1 · Rr2

(b) Rr1 × Rr2

(c) Angle between Rr1 and Rr2

(d) Length of Rr1 and Rr2

19. Base Vectors of Cylindrical Coordinate System Consider the cylindrical coordinate
system.

(a) Determine the principal base vectors.

(b) Determine the reciprocal base vectors.

(c) Determine the principal–reciprocal transformation matrix.

� In Exercises 20–45, determine:

(a) Velocity and acceleration vectors

(b) Principal and reciprocal base vectors

(c) Reciprocal velocity and acceleration vectors

(d) Principal and reciprocal metric matrices

20. �Bipolar Cylindrical Coordinate System (u, v, z)

x = a sinh v

cosh v − cos u
y = a sin u

cosh v − cos u
z = z
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21. � Bispherical Coordinate System (u, v,w)

x = sin u cos w

cosh v − cos u
y = sin u sin w

cosh v − cos u
z = sinh(v)

cosh v − cos u

22. � Cardioidal Coordinate System (u, v, w)

x = uv cos w

(u2 + v2)2
y = uv sin w

(u2 + v2)2
z = 1

2

u2 − v2

(u2 + v2)2

23. � Cardioidcylindrical Coordinate System (u, v,w)

x = 1

2

u2 − v2

(u2 + v2)2
y = uv

(u2 + v2)2
z = w

24. � Casscylindrical Coordinate System (u, v,w)

x = a

√
2

2

(√
e2u + 2eu cos v + 1 + √

eu cos v + 1
)

y = a

√
2

2

(√
e2u + 2eu cos v + 1 − √

eu cos v + 1
)

z = w

25. � Confocalellip Coordinate System (u, v, w)

x =
√

a2 − c2

a2 − b2
(a2 − u)(a2 − v)(a2 − w)

y =
√

b2 − a2

b2 − c2
(a2 − u)(a2 − v)(a2 − w)

z =
√

c2 − a2

c2 − b2
(a2 − u)(a2 − v)(a2 − w)

26. � Confocalparab Coordinate System (u, v, w)

x =
√

(a2 − u)(a2 − v)(a2 − w)

b2 − a2

y =
√

(b2 − u)(b2 − v)(b2 − w)

b2 − a2

z = a2 + b2 − u − v − w

2

27. � Conical Coordinate System (u, v,w)

x = uvw

ab

y = u

b

√
(v2 − b2)(b2 − w2)

a2 − b2

z = u

a

√
(a2 − v2)(a2 − w2)

a2 − b2
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28. � Ellcylindrical Coordinate System (u, v,w)

x = a cosh u cos v y = a sinh u sin v z = w

29. � Ellipsoidal Coordinate System (u, v, w)

x = uvw

ab

y = 1

b

√
(u2 − b2)(v2 − b2)(b2 − w2)

a2 − b2

z = 1

a

√
(u2 − a2)(a2 − v2)(a2 − w2)

a2 − b2

30. � Hypercylindrical Coordinate System (u, v, w)

x =
√√

u2 + v2 + u y =
√√

u2 + v2 − u z = w

31. � Invcasscylindrical Coordinate System (u, v,w)

x = a

√
2

2

(
1 +

√
eu cos v + 1

e2u + 2eu cos v + 1

)

y = a

√
2

2

(
1 −

√
eu cos v + 1

e2u + 2eu cos v + 1

)
z = w

32. � Invellcylindrical Coordinate System (u, v,w)

x = a
cosh u cos v

cosh2 u − sin2 v

y = a
sinh u sin v

cosh2 u − sin2 v

z = w

33. � Invoblspheroidal Coordinate System (u, v,w)

x = a
cosh u sin v cos w

cosh2 u − cos2 v

y = a
cosh u sin v sin w

cosh2 u − cos2 v

z = a
sinh u cos v

cosh2 u − cos2 v

34. � Logcylindrical Coordinate System (u, v, w)

x = a

π
ln

(
u2 + v2) y = 2

a

π
arctan

(u

v

)
z = w
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35. � Logcoshcylindrical Coordinate System (u, v,w)

x = a

π
ln

(
cosh2 u − sin2 v

)
y = 2

a

π
arctan

(
tanh u

tan v

)
z = w

36. � Maxwellcylindrical Coordinate System (u, v,w)

x = a

π

(
u + 1 + eu cos v

)
y = a

π

(
u + eu sin v

)
z = w

37. � Oblatespheroidal Coordinate System (u, v, w)

x = a cosh u sin v cos w

y = a cosh u sin v sin w

z = a sinh u cos v

38. � Paraboloidal1 Coordinate System (u, v,w)

x = uv cos w y = uv sin w z = 1

2

(
u2 − v2)

39. � Paraboloidal2 Coordinate System (u, v,w)

x = 2

√
(u − a)(a − v)(a − w)

a − b

y = 2

√
(u − b)(b − v)(b − w)

a − b

z = u + v + w − a − b

40. � Paracylindrical Coordinate System (u, v, w)

x = 1

2

(
u2 − v2) y = uv z = w

41. � Rosecylindrical Coordinate System (u, v, w)

x =
√√

u2 + v2 + u√
u2 + v2

y =
√√

u2 + v2 − u√
u2 + v2

z = w

42. � Sixsphere Coordinate System (u, v, w)

x = u

u2 + v2 + w2

y = v

u2 + v2 + w2

z = w

u2 + v2 + w2

43. � Tangentcylindrical Coordinate System (u, v,w)

x = u

u2 + v2
y = v

u2 + v2
z = w
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44. � Tangentsphere Coordinate System (u, v,w)

x = u

u2 + v2
cos w y = u

u2 + v2
sin w z = v

u2 + v2

45. � Toroidal Coordinate System (u, v, w)

x = a
sinh v cos w

cosh v − cos u

y = a
sinh v sin w

cosh v − cos u

z = a
sin u

cosh v − cos u



4

Rotation Kinematics

The only possible motion of a rigid body with a fixed point is rotation about the fixed
point. We represent the rigid body by a body coordinate frame B that rotates in another
coordinate frame G, as shown in Figure 4.1. To determine the orientation of the rigid
body, we perform a rotation analysis based on transformation matrices and determine
the orientation of B in G.

4.1 ROTATION ABOUT GLOBAL CARTESIAN AXES

Consider a body coordinate frame B (Oxyz) that is representing a rigid body B.
The body frame B was originally coincident with a global coordinate frame G (OXYZ).
Point O of the body B is fixed on the ground G and is the origin of both coordinate
frames.

Assume that the rigid body B rotates α degrees about the Z-axis of G. If the
position vector of a body point P is shown by Br and Gr in the B- and G-frames,
respectively, then the coordinates of P in the local and global coordinate frames are
related by

Gr = RZ,α
Br (4.1)

where

Gr =
X

Y

Z

 Br =
x

y

z

 (4.2)

and RZ,α = GRB is the rotation matrix for turning α degrees about the Z-axis:

RZ,α = GRB =
cos α − sin α 0

sin α cos α 0
0 0 1

 (4.3)

where RZ,α = GRB is the transformation matrix that takes the body coordinates and
provides the associated global coordinates. Similarly, rotation β about the Y -axis and
γ about the X-axis of the global frame relate the local and global coordinates of the
body point P by

Gr = RY,β
Br (4.4)

Gr = RX,γ
Br (4.5)
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yP

x

X

Y

z P

G

B

YPXP

ZP

Z

zP

xP

y

Figure 4.1 A globally fixed G-frame and a body B-frame with a fixed common origin at O.

where

RY,β = GRB =
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 (4.6)

RX,γ = GRB =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (4.7)

Proof : Let (ı̂, ̂ , k̂) and (Î , Ĵ , K̂) be the unit vectors along the coordinate axes of
B(Oxyz) and G(OXYZ ), respectively. The rigid body has a globally fixed point at O,
which is the common origin of the orthogonal triads Oxyz and OXYZ. Consider a
point P that is a fixed point in B. The B-expression of the position vector of P is a
constant vector Br:

Br = xı̂ + ŷ + zk̂ (4.8)

Assume that the coordinate frames were initially coincident and then the rigid body
turns α degrees about the global Z-axis. After the rotation, the body frame B (Oxyz)

along with point P and its body position vector Br will move to a new position in G.
The G-expression of the position vector of point P after rotation is

Gr = XÎ + Y Ĵ + ZK̂ (4.9)

Figure 4.2 illustrates a top view of the initial and final positions of point P and its
position vector r from the view of an observer in G (OXYZ).

The orthogonality condition is the connecting link between two orthogonal coor-
dinate frames. Therefore, we may write

X = Î · Br = Î · xı̂ + Î · ŷ + Î · zk̂ (4.10)
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P

P

Y

X

y x

y

X

Y

x

G
B

Figure 4.2 Top view of the initial and final positions of a body point P and its position vector
r from the view of an observer in G(OXYZ).

Y = Ĵ · Br = Ĵ · xı̂ + Ĵ · ŷ + Ĵ · zk̂ (4.11)

Z = K̂ · Br = K̂ · xı̂ + K̂ · ŷ + K̂ · zk̂ (4.12)

or equivalently

Gr = RZ,α
Br (4.13)

X

Y

Z

 =


Î · ı̂ Î · ̂ Î · k̂
Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂
K̂ · ı̂ K̂ · ̂ K̂ · k̂


x

y

z

 (4.14)

The elements of the Z-rotation matrix , RZ,α , are the direction cosines of the axes
of B(Oxyz) with respect to G(OXYZ). Figure 4.2 indicates that

Î · ı̂ = cos α Î · ̂ = − sin α Î · k̂ = 0

Ĵ · ı̂ = sin α Ĵ · ̂ = cos α Ĵ · k̂ = 0 (4.15)

K̂ · ı̂ = 0 K̂ · ̂ = 0 K̂ · k̂ = 1

Combining Equations (4.14) and (4.15) shows that

Gr = RZ,α
BrX

Y

Z

 =
cos α − sin α 0

sin α cos α 0
0 0 1

x

y

z

 (4.16)

The vector Gr in the global coordinate frame is equal to RZ,α times the position
vector in the local coordinate frame Br. Hence, we are able to find the global coordinates
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of a point of a rigid body after rotation about the Z-axis if we have its local coordinates
and the angle of rotation α.

Similarly, rotation β about the Y -axis and rotation γ about the X-axis are respec-
tively described by the Y -rotation matrix RY,β and the X-rotation matrix RX,γ . The
rotation matrices

RZ,α =
cos α − sin α 0

sin α cos α 0
0 0 1

 (4.17)

RY,β =
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 (4.18)

RX,γ =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (4.19)

are called the basic global rotation matrices . All of the basic global rotation matrices
RZ,α, RY,β , and RX,γ transform a B-expression vector to its G-expression. We show
such a rotation matrix by GRB to indicate that this is a transformation matrix from
frame B to G.

We usually refer to the first, second, and third rotations about the axes of the global
coordinate frame by α, β, and γ , respectively, regardless of the axis labels. �

Example 244 Successive Rotation about Global Axes The block shown in Figure 4.3
turns 45 deg about the Z-axis, followed by 45 deg about the X-axis, and then 90 deg
about the Y -axis. To find the final global position of the corner P (1,6,2), first we
multiply RZ,45 by [1, 6, 2]T to get the new global position after the first rotation:

X2

Y2

Z2

 =


cos

π

4
− sin

π

4
0

sin
π

4
cos

π

4
0

0 0 1




1

6

2

 =

−3.5355

4.9497

2

 (4.20)

1

2
6X

Y

Z

P

Figure 4.3 A block and the corner P at its initial position.



4.1 Rotation About Global Cartesian Axes 361

Then we multiply RX,45 by [−3.5355, 4.9497, 2]T to get the position of P after the
second rotation:

X3

Y3

Z3

 =


1 0 0

0 cos
π

4
− sin

π

4

0 sin
π

4
cos

π

4


−3.5355

4.9497
2

 =
−3.5355

2.0858
4.9142

 (4.21)

Finally we multiply RY,90 by [−3.5355, 2.0858, 4.9142]T to get the position of P after
the third rotation:X4

Y4

Z4

 =


cos

π

2
0 sin

π

2
0 1 0

− sin
π

2
0 cos

π

2


−3.5355

2.0858

4.9142

 =

4.914 2

2.085 8

3.535 5

 (4.22)

The orientations of the block are shown in Figure 4.4.

Y

X

Z

P0

P1

P2

P3

Figure 4.4 The block and body point P at its initial position and after first, second, and third
rotations.

Example 245 Invariant Components and Global Rotations Any rotation about the
X-axis will not change the value of the x-component of body point P . Similarly, any
rotation about the Y - and Z-axis will not change the Y - and Z-components of P ,
respectively.

Example 246 Global Rotation, Local Position Consider a point P that is moved
to Gr = [1, 3, 2]T after a 60 deg rotation about the X-axis. Its position in the local



362 Rotation Kinematics

coordinate frame is

Br = R−1
X,60

Gr

x

y

z

 =


cos

π

3
− sin

π

3
0

sin
π

3
cos

π

3
0

0 0 1


−1 1

3

2

 =

 3.0981

0.63397

2

 (4.23)

Example 247 Time-Dependent Global Rotation Assume a rigid body B is continu-
ously turning about the Z-axis of G at a rate of 0.2 rad / s. The transformation matrix
of the body is

GRB =

cos 0.2t − sin 0.2t 0

sin 0.2t cos 0.2t 0

0 0 1

 (4.24)

Applying the rotation on the body B will move any point of B on a circle with radius
R = √

X2 + Y 2 parallel to the (X, Y )-plane:X

Y

Z

 =

cos 0.2t − sin 0.2t 0

sin 0.2t cos 0.2t 0

0 0 1


x

y

z



=

x cos 0.2t − y sin 0.2t

y cos 0.2t + x sin 0.2t

z

 (4.25)

X2 + Y 2 = (x cos 0.2t − 1.0y sin 0.2t)2 + (y cos 0.2t + x sin 0.2t)2

= x2 + y2 = R2 (4.26)

Consider a point P at Br = [1, 0, 0]T. The point will be seen atX

Y

Z

 =

cos 0.2 − sin 0.2 0

sin 0.2 cos 0.2 0

0 0 1


1

0

0

 =

 0.98

0.198

0

 (4.27)

after t = 1 s and atX

Y

Z

 =

cos 0.6 − sin 0.6 0

sin 0.6 cos 0.6 0

0 0 1


1

0

0

 =

0.825

0.564

0

 (4.28)

after t = 3 s.
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4.2 SUCCESSIVE ROTATIONS ABOUT GLOBAL AXES

After a series of sequential rotations R1, R2, R3, . . . , Rn about the global axes, the final
global position of a body point P can be found by

Gr = GRB
Br (4.29)

where

GRB = Rn · · · R3 R2 R1 (4.30)

The vectors Gr and Br indicate the position vectors of the point P in the global and
local coordinate frames, respectively. The matrix GRB , which transforms the local
coordinates to their corresponding global coordinates, is called the global rotation
matrix .

Because matrix multiplications do not commute, the sequence of performing rota-
tions is important and indicates the order of rotations.

Proof : Consider a body frame B that undergoes two sequential rotations R1 and R2

about the global axes. Assume that the body coordinate frame B is initially coinci-
dent with the global coordinate frame G. The rigid body rotates about a global axis,
and the global rotation matrix R1 gives us the new global coordinate Gr1 of the
body point:

Gr1 = R1
Br (4.31)

Before the second rotation the situation is similar to the one before the first rotation. We
put the B-frame aside and assume that a new body coordinate frame B1 is coincident
with the global frame. Therefore, the new body coordinate would be B1r ≡ Gr1. The
second global rotation matrix R2 provides the new global position Gr2 of the body
points B1r:

B1r = R2
B1r (4.32)

Substituting (4.31) into (4.32) shows that

Gr = R2 R1
Br (4.33)

Following the same procedure we can determine the final global position of a body
point after a series of sequential rotations R1, R2, R3, . . . , Rn as (4.30). �

Example 248 Successive Global Rotations Consider a body point P at P (1,2,3).
If the body turns γ = 45 deg about the X-axis, the global coordinates of the point
would be

Gr = RX,γ
Br

 1
−0.707

3.535

 =


1 0 0

0 cos
π

4
− sin

π

4

0 sin
π

4
cos

π

4


1

2
3

 (4.34)
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Now the body turns α = −90 deg about the Z-axis and moves the point P to
Gr = RZ,α

B1r0.707
1

3.535

 =


cos

π

2
− sin

π

2
0

sin
π

2
cos

π

2
0

0 0 1


 1

−0.707
3.535

 (4.35)

The final position of the point P after the two rotations can also be found by applying
successive rotations:

Gr = RZ,α RX,γ
Br = RZ,π/2 RX,π/4

1
2
3

 =
0.707

1
3.535

 (4.36)

Applying the same rotation matrices, we can find the global coordinates of any
other points of the body.

Example 249 Successive Global Rotation Matrix The global rotation matrix after a
rotation RZ,α followed by RY,β and then RX,γ is

GRB = RX,γ RY,βRZ,α

=
 cαcβ −cβsα sβ

cγ sα + cαsβsγ cαcγ − sαsβsγ −cβsγ

sαsγ − cαcγ sβ cαsγ + cγ sαsβ cβcγ

 (4.37)

where
c ≡ cos (4.38)
s ≡ sin (4.39)

Example 250 Successive Global Rotations, Global position Assume that the global
position of a body point P after turning β = 45 deg about the Y -axis and then rotating
γ = 60 deg about the X-axis is located at Gr:

Gr =
0.35

0.5
1.76

 (4.40)

To find the coordinates of P in B, we may find the rotation matrix

GRB = RX,γ RY,β

=


1 0 0

0 cos
π

3
− sin

π

3

0 sin
π

3
cos

π

3




cos
π

4
0 sin

π

4
0 1 0

− sin
π

4
0 cos

π

4


=

 0.70711 0 0.70711
0.61237 0.5 −0.61237

−0.35355 0.866 03 0.35355

 (4.41)
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and then find Br using the matrix inverse:

Br = GR−1
B

Gr

=
 0.70711 0 0.70711

0.61237 0.5 −0.61237
−0.35355 0.866 03 0.35355

−1 0.35
0.5

1.76


=

−0.06858
1.7742

0.56355

 (4.42)

Example 251 Twelve Independent Triple Global Rotations We may transform a body
coordinate frame B from the coincident position with a global frame G to any desired
orientation by three rotations about the global axes provided that no two sequential
rotations are about the same axis.

There are 12 different independent combinations of triple rotations about the
global axes:

1. RX,γ RY,β RZ,α

2. RY,γ RZ,β RX,α

3. RZ,γ RX,β RY,α

4. RZ,γ RY,β RX,α

5. RY,γ RX,β RZ,α

6. RX,γ RZ,β RY,α

7. RX,γ RY,β RX,α

8. RY,γ RZ,β RY,α

9. RZ,γ RX,β RZ,α

10. RX,γ RZ,β RX,α

11. RY,γ RX,β RY,α

12. RZ,γ RY,β RZ,α (4.43)

The expanded form of the 12 global axis triple rotations are presented in Appendix A.

Example 252 Order of Matrix Multiplication and Order of Rotation Changing the
order of rotation matrices is equivalent to changing the order of rotations. Consider
a rigid-body point P at BrP = [1, 2, 3]T. Its global position after a rotation of 45 deg
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about the X-axis and then 45 deg about the Y -axis is at(
GrP

)
1 = RY,45 RX,45

BrP

=
 0.707 0 0.707

0.5 0.707 −0.5
−0.5 0.707 0.5

1
2
3

 =
2.828

0.414
2.414

 (4.44)

If we change the order of rotations and turn the body 45 deg about the Y -axis followed
by 45 deg about the X-axis, then the position of P would be at(

GrP

)
2 = RX,45 RY,45

BrP

=
 0.707 0.5 0.5

0 0.707 −0.707
−0.707 0.5 0.5

1
2
3

 =
 3.207

−0.707
1.793

 (4.45)

The angle between the two final position vectors of P is

θ = cos−1

(
GrP

)
1 · (GrP

)
2∣∣GrP

∣∣
1

∣∣GrP

∣∣
2

= 0.9362 rad ≈ 53.64 deg (4.46)

Example 253 � Repeated Rotation about Global Axes Consider a body frame B

that turns an angle α about the Z-axis. If

α = 2π

n
n ∈ N (4.47)

then we need to repeat the rotation n times to get back to the original configuration.
It may be checked by multiplying RZ,α by itself until an identity matrix is achieved.
In this case any body point will be mapped to the same point in the global frame. To
show this, we may find that

Rm
Z,α =

cos α − sin α 0
sin α cos α 0

0 0 1

m

=


cos

2π

n
− sin

2π

n
0

sin
2π

n
cos

2π

n
0

0 0 1


m

=


cos m

2π

n
− sin m

2π

n
0

sin m
2π

n
cos m

2π

n
0

0 0 1

 (4.48)

and therefore,

Rn
Z,α =


cos n

2π

n
− sin n

2π

n
0

sin n
2π

n
cos n

2π

n
0

0 0 1

 =
1 0 0

0 1 0
0 0 1

 (4.49)

Repeated rotation about any other global axis provides the same result.
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Example 254 � Open Problem Consider a body frame B that turns an angle α

about the Z-axis followed by a rotation γ about the X-axis such that

α = 2π

n1
γ = 2π

n2
{n1, n2} ∈ N (4.50)

It seems that we need to repeat the rotations n = n1 × n2 times to get back to the
original configuration, because we need to multiply GRB = RX,γ RZ,α by itself until
an identity matrix is achieved. In this case any body point will be mapped to the
same point in the global frame. To show this, we may imagine that after n1 times of
combined rotation the configuration with respect to the Z-axis will be the same as the
original configuration. However, the body will get the same configuration with respect
to the X-axis after n2 times of combined rotation. So, the body should get back to its
original configuration after n = n1 × n2 times of combined rotation. However, that is
not true for every n1 and n2 and for every order of rotation.

As an example, we may check that for α = 2π/4 and γ = 2π/3 we have

GRB = RX,γ RZ,α =
 0 −1.0 0

−0.5 0 −0.86603
0.86603 0 −0.5

 (4.51)

and we need 13 times combined rotation to achieve the original configuration:

GR13
B =

 0.99979 −0.01122 −0.01902
0.01086 0.99979 −0.019226
0.019226 0.01902 0.99967

 ≈ I (4.52)

If we change the angles to α = 2π/2 and γ = 2π/3, then we have

GRB = RX,γ RZ,α =
 −0.5 −0.866 0

−0.866 0.5 0
0 0 −1.0

 (4.53)

and we need only two combined rotations to achieve the original configuration:

GR2
B =

1.0 0 0
0 1.0 0
0 0 1.0

 = I (4.54)

However, if n1 = n2 = 4, we only need to apply the combined rotation three times:

GRB = RX,90 RZ,90 =
 0 −1.0 0

0 0 −1.0
1.0 0 0

 (4.55)

GR3
B =

1.0 0 0
0 1.0 0
0 0 1.0

 (4.56)
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The determination of the required number n to repeat a general combined rotation GRB

to get back to the original orientation is an open question:

GRB =
m∏

j=1

RXi,αj
i = 1, 2, 3 (4.57)

αj = 2π

nj

m, nj ∈ N (4.58)

GRn
B = [I ] n = ? (4.59)

Example 255 � Rotation Matrix and Spherical Trigonometry Any plane passing
through the center of a sphere cuts the surface in a circle which is called a
great circle. Any other plane intersecting the sphere but not passing through the
center cuts the surface in a small circle. A spherical triangle is made up when
three great circles intersect. Furthermore, if we are given any three points on the
surface of a sphere, we can join them by great-circle arcs to form a spherical
triangle.

Consider a vector Br in a body coordinate frame B. The tip point of Br will move
on a sphere when the body frame performs multiple rotations. Figure 4.5 depicts a
vector at three positions r1, r2, and r3. The vector r1 indicates the original position of
a body point, r2 indicates the position vector of the body point after a rotation about
the Z-axis, and r3 indicates the position vector of the point after another rotation about
the X-axis. However, these rotations may be about any arbitrary axes. The tip point of
the vectors r1, r2, and r3 make a spherical triangle that lies on a sphere with radius
R = |r1| = |r2| = |r3|.

X

Z

G

340°
320°

20°

1

2

c

a

b

YA

B

C

O

3

60°

40°

80°

20° 40° 60°

Figure 4.5 Positions of a rotated vector at three positions r1, r2, and r3 and the associated
spherical triangle.
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Assume �ABC is a triangle on a sphere of unit radius R = 1. Let us show the
angles of the triangle by α, β, γ and the length of its sides by a,b,c. The arc lengths
a,b,c are respectively equal to the plane angles ∠BOC, ∠AOC, ∠AOB for the unit
sphere. The angle α between the planes OAC and OAB is equal to the angle between
normal vectors to the planes:

cos α = (r1 × r2) · (r1 × r3)

|r1 × r2| |r1 × r3| (4.60)

However, we have

|r1 × r2| = sin c (4.61)

|r1 × r3| = sin b (4.62)

and by using the scalar triple-product equation (1.111) and bac–cab rule (1.103),
we find

cos α = r1 · [r2 × (r1 × r3)]

sin b sin c
= r1 · [r1(r2 · r3) − r3(r2 · r1)]

sin b sin c

= cos a − cos c cos b

sin b sin c
(4.63)

Following the same method, we can show the spherical triangles rule:

cos a = cos b cos c + sin b sin c cos α (4.64)

cos b = cos c cos a + sin c sin a cos β (4.65)

cos c = cos a cos b + sin a sin b cos γ (4.66)

We may also begin with the equation

sin α = (r1 × r2) × (r1 × r3)

|r1 × r2| |r1 × r3| (4.67)

and show that

sin α

sin a
= sin β

sin b
= sin γ

sin c
(4.68)

If the triangle �ABC, as is shown in Figure 4.6, is a right triangle on a sphere,
then the relationship between the lengths a,b,c and the angles γ and α simplifies to
the Napier rules:

sin a = sin b sin α = tan c cot γ (4.69)

sin c = sin b sin γ = tan a cot α (4.70)

cos b = cos a cos c = cos α cos γ (4.71)

cos α = tan c cot b = cos a sin γ (4.72)

cos γ = cos a cos c = cos α cot γ (4.73)
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c
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B
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O
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γ

Figure 4.6 A right angle spherical triangle.

4.3 GLOBAL ROLL–PITCH–YAW ANGLES

The rotations about the X-, Y -, and Z-axis of the global coordinate frame are called
the roll , pitch , and yaw , respectively. The global roll–pitch–yaw rotation matrix is

GRB = RZ,γ RY,β RX,α

=
cβ cγ −cα sγ + cγ sα sβ sα sγ + cα cγ sβ

cβ sγ cα cγ + sα sβ sγ −cγ sα + cα sβ sγ

−sβ cβ sα cα cβ

 (4.74)

Having the roll, pitch, and yaw angles, we can determine the overall
roll–pitch–yaw rotation matrix GRB using Equation (4.74). We are also able to find
the required roll, pitch, and yaw angles if a rotation matrix is given. Assume that a
rotation matrix GRB is given and we show its element at row i and column j by rij .
Setting the given matrix equal to (4.74), we may find the roll angle α by

α = tan−1
(

r32

r33

)
(4.75)

and the pitch angle β by

β = − sin−1 (r31) (4.76)

and the yaw angle γ by

γ = tan−1
(

r21

r11

)
(4.77)

provided that cos β �= 0.

Example 256 Determination of Roll–Pitch–Yaw Angles Assume that we would
like to determine the required roll–pitch–yaw angles to make the x-axis of the body
coordinate B parallel to u while the y-axis remains in the (X, Y )-plane:

u = Î + Ĵ + K̂ (4.78)
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Because the x-axis must be along u, we have

Gı̂ = u
|u| =

√
3

3
Î +

√
3

3
Ĵ +

√
3

3
K̂ (4.79)

and because the y-axis is in the (X, Y )-plane, we have

Ĝ =
(
Î · ̂

)
Î +

(
Ĵ · ̂

)
Ĵ = cos θ Î + sin θĴ (4.80)

The dot product of Gı̂ and Ĝ must be zero; therefore,
√

3/3√
3/3√
3/3

 ·
cos θ

sin θ

0

 = 0 (4.81)

θ = −45 deg (4.82)

Then Gk̂ can be found using the cross product:

Gk̂ = Gı̂ × Ĝ =


√
3/3√
3/3√
3/3

 ×
 √

2/2
−√

2/2
0

 =


√
6/6√
6/6

−√
6/3

 (4.83)

Hence, the transformation matrix GRB is

GRB =
 Î · ı̂ Î · ̂ Î · k̂

Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂
K̂ · ı̂ K̂ · ̂ K̂ · k̂

 =


√
3/3

√
2/2

√
6/6√

3/3 −√
2/2

√
6/6√

3/3 0 −√
6/3

 (4.84)

Now we can determine the required roll–pitch–yaw angles to move the body coordinate
frame B from the coincidence orientation with G:

α = tan−1
(

r32

r33

)
= tan−1

(
0

−√
6/3

)
= 0 (4.85)

β = − sin−1 (r31) = − sin−1
(√

3/3
)

= −0.61548 rad (4.86)

γ = tan−1
(

r21

r11

)
= tan−1

(√
3/3√
3/3

)
= 0.7854 rad (4.87)

As a check we may use α, β, γ and determine the matrix (4.74),

GRB = RZ,γ RY,β RX,α =
0.57735 −0.70711 −0.40825

0.57735 0.70711 −0.40825
0.57735 0 0.8165

 (4.88)

which is equivalent to (4.84.)
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Example 257 Equivalent Roll–Pitch–Yaw Angles Consider a rigid body that turns 45
deg about the Z-axis and then 30 deg about the X-axis. The combined rotation matrix is

GRB = RX,30 RZ,45

=


1 0 0

0 cos
π

6
− sin

π

6

0 sin
π

6
cos

π

6




cos
π

4
− sin

π

4
0

sin
π

4
cos

π

4
0

0 0 1


=

0.70711 −0.70711 0
0.61237 0.61237 −0.5
0.35355 0.35355 0.86603

 (4.89)

We may also move the body to the final orientation by a proper roll–pitch–yaw
rotation. The required roll angle is

α = tan−1 r32

r33
= tan−1 0.353 55

0.866 03
= 0.387 59 rad (4.90)

and the pitch angle β and yaw angle γ are

β = − sin−1 r31 = − sin−1 0.353 55 = −0.361 36 rad (4.91)

γ = tan−1 r21

r11
= tan−1 0.612 37

0.707 11
= 0.713 72 rad (4.92)

We may check that the roll–pitch–yaw combined rotation matrix is the same as (4.89):

GRB = RZ,0.713 72 RY,−0.361 36 RX,0.387 59

=
0.707 11 −0.707 1 −2.253 9 × 10−6

0.612 37 0.612 38 −0.499 99
0.353 55 0.353 55 0.866 03

 (4.93)

Example 258 90 deg Pitch Angle If cos β = 0, we have

β = 90 deg (4.94)

and the roll–pitch–yaw rotation matrix reduces to

GRB = RZ,γ RY,β RX,α

=
 0 sin (α − γ ) cos (α − γ )

0 cos (α − γ ) − sin (α − γ )

−1 0 0

 (4.95)

The angles α and γ are not distinguishable and we have

α − γ = tan−1 r12

r22
(4.96)
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So, the final configuration of the body coordinate frame can be achieved by any com-
bination of α and γ that satisfies Equation (4.96), such as

α = 0 γ = − tan−1 r12

r22
(4.97)

or

γ = 0 α = tan−1 r12

r22
(4.98)

4.4 ROTATION ABOUT LOCAL CARTESIAN AXES

Consider a body coordinate frame B(Oxyz) that is coincident with a global coordinate
frame G(OXYZ). The origin of both frames is fixed at point O. When B rotates ϕ about
the z-axis of its body coordinate frame, as can be seen in the top view of Figure 4.7,
the coordinates of any point P of the rigid body in the local and global coordinate
frames are related by

Br = Rz,ϕ
Gr (4.99)

The vectors Gr and Br are expressions of the position vectors of the point P in the
global and local frames, respectively:

Gr =
X

Y

Z

 Br =
x

y

z

 (4.100)

and Rz,ϕ is the z-rotation matrix

Rz,ϕ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (4.101)

Similarly, rotation θ about the y-axis and rotation ψ about the x-axis are defined
by the y-rotation matrix Ry,θ and the x-rotation matrix Rx,ψ , respectively:

Ry,θ =
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (4.102)

Rx,ψ =
1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (4.103)

Proof : Figure 4.7 illustrates the top view of a body coordinate frame B(Oxyz) that is
rotated ϕ about the z-axis in a global frame G(OXYZ). Using the unit vectors (ı̂, ̂ , k̂)

and (Î , Ĵ , K̂) along the axes of B(Oxyz) and G(OXYZ), respectively, the position vector



374 Rotation Kinematics
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ϕ

Figure 4.7 Position vectors of point P before and after rotation of the local frame about the
z-axis of the local frame.

Br of a point P in B(Oxyz) and the final global position vector Gr of P after the rotation
ϕ are

Br = xı̂ + ŷ + zk̂ (4.104)

Gr = XÎ + Y Ĵ + ZK̂ (4.105)

Assume that the global vector Gr is given; then the components of Br can be found
by using the inner product and orthogonality condition:

x = ı̂ · r = ı̂ · XÎ + ı̂ · Y Ĵ + ı̂ · ZK̂ (4.106)

y = ̂ · r = ̂ · XÎ + ̂ · Y Ĵ + ̂ · ZK̂ (4.107)

z = k̂ · r = k̂ · XÎ + k̂ · Y Ĵ + k̂ · ZK̂ (4.108)

It can be set in a matrix equation:

Br = Rz,ϕ
Gr (4.109)x2

y2

z2

 =
 ı̂ · Î ı̂ · Ĵ ı̂ · K̂

̂ · Î ̂ · Ĵ ̂ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

X2

Y2

Z2

 (4.110)

The elements of the z-rotation matrix Rz,ϕ are the direction cosines of the axes of
B(Oxyz) in G(OXYZ). Figure 4.7 shows that these elements are

ı̂ · Î = cos ϕ ı̂ · Ĵ = sin ϕ ı̂ · K̂ = 0

̂ · Î = − sin ϕ ̂ · Ĵ = cos ϕ ̂ · K̂ = 0

k̂ · Î = 0 k̂ · Ĵ = 0 k̂ · K̂ = 1

(4.111)
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Now Equation (4.110) simplifies tox

y

z

 =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

X

Y

Z

 (4.112)

and we can find the components of Br by multiplying z-rotation matrix Rz,ϕ and
vector Gr.

Equation (4.109) states that after rotation about the z-axis of the local coordinate
frame the expression of the position vector in the local frame is equal to Rz,ϕ times the
position vector in the global frame. Therefore, we are able to determine the coordinates
of any point of a rigid body in the local coordinate frame if we have its coordinates in
the global frame.

Similarly, rotation θ about the y-axis and rotation ψ about the x-axis are described
by the y-rotation matrix Ry,θ and the x-rotation matrix Rx,ψ , respectively. The rotation
matrices

Rz,ϕ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (4.113)

Ry,θ =
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (4.114)

Rx,ψ =
1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (4.115)

are called the basic local rotation matrices and all transform a G-expression vector
to its B-expression. We show such a rotation matrix by BRG to indicate that it is a
transformation matrix from the G to the B coordinate frame.

We usually indicate the first, second, and third rotations about the local axes by ϕ,
θ , and ψ , respectively. �

Example 259 Local Rotation, Local Position Assume that a local coordinate
frame B(Oxyz) has been rotated 60 deg about the z-axis and a point P in the global
coordinate frame G (OXYZ) is at (3,4,2). Then its coordinates in the local coordinate
frame B (Oxyz) are

x

y

z

 =


cos

π

3
sin

π

3
0

− sin
π

3
cos

π

3
0

0 0 1


3

4

2

 =

 4.9641

−0.59808

2

 (4.116)
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Example 260 Local Rotation, Global Position A local coordinate frame B(Oxyz)

has been rotated 60 deg about the z-axis and a point P in the local coordinate frame is
at (3,4,2). Then its position in the global coordinate frame G(OXYZ) is at

X

Y

Z

 =


cos

π

3
sin

π

3
0

− sin
π

3
cos

π

3
0

0 0 1


T 3

4
2

 =
−1.9641

4.5981
2

 (4.117)

Example 261 Time-Dependent Local Rotation Assume a rigid body is continuously
turning about the X-axis at a rate of 0.2 rad / s. The rotation matrix of the body is

BRG =
1 0 0

0 cos 0.2t sin 0.2t

0 − sin 0.2t cos 0.2t

 (4.118)

Consider a point P at Br = [0, 10, 0]T. After t = 1 s, the point will globally be
seen at X

Y

Z

 =
1 0 0

0 cos 0.2 sin 0.2
0 − sin 0.2 cos 0.2

T  0
10
0

 =
 0

9.8
1.986

 (4.119)

Because B is turning about the x-axis, every point of B moves in a circular fashion
on planes perpendicular to the x-axis. To determine the required time t0 to move P a
complete circle, we may solve the following equations for t = t0/4 and determine t0: 0

10
0

 =
1 0 0

0 cos 0.2t sin 0.2t

0 − sin 0.2t cos 0.2t

 0
0

10

 =
 0

10 sin 0.2t

10 cos 0.2t

 (4.120)

10 = 10 sin 0.2t (4.121)

t = π/2

0.2
= 7.854 s (4.122)

t0 = 4t = 31.416 s (4.123)

4.5 SUCCESSIVE ROTATIONS ABOUT LOCAL AXES

Consider a rigid body B with a local coordinate frame B(Oxyz) that does a series of
sequential rotations R1, R2, R3, . . . , Rn about the local axes. Having the final global
position vector Gr of a body point P , we can determine its local position vector
Br by

Br = BRG
Gr (4.124)
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where

BRG = Rn . . . R3R2R1. (4.125)

The matrix BRG is called the local rotation matrix and it maps the global coordinates
of body points to their local coordinates.

Proof : Assume that the body coordinate frame B was initially coincident with the
global coordinate frame G. The rigid body rotates about a local axis, and a local
rotation matrix R1 relates the global coordinates of a body point to the associated local
coordinates:

Br = R1
Gr (4.126)

If we introduce an intermediate space-fixed frame G1 coincident with the new position
of the body coordinate frame, then

G1r ≡ Br (4.127)

and we may give the rigid body a second rotation about a local coordinate axis. Now
another proper local rotation matrix R2 relates the coordinates in the intermediate fixed
frame to the corresponding local coordinates:

Br = R2
G1r (4.128)

Hence, to relate the final coordinates of the point, we must first transform its global
coordinates to the intermediate fixed frame and then transform them to the original
body frame. Substituting (4.126) in (4.128) shows that

Br = R2 R1
Gr (4.129)

Following the same procedure we can determine the final global position of a body
point after a series of sequential rotations R1, R2, R3, . . . , Rn as (4.125).

Rotation about the local coordinate axes is conceptually interesting. This is because
in a sequence of rotations each rotation is about one of the axes of the local coordinate
frame, which has been moved to its new global position during the last rotation. �

Example 262 Successive Local Rotation, Local Position Consider a rigid body with
a local coordinate frame B(Oxyz) that is initially coincident with a global coordinate
frame G(OXYZ). The body rotates ϕ = 30 deg about the z-axis followed by a rotation
θ = 30 deg about the x-axis and then ψ = 30 deg about the y-axis. The global coor-
dinates of a point P are X = 5, Y = 3, Z = 1. Its local position vector isx

y

z

 = BRG

5
3
1

 (4.130)

where

BRG = Ry,30Rx,30Rz,30 =
 0.63 0.65 −0.43

−0.43 0.75 0.50
0.65 −0.125 0.75

 (4.131)
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and therefore, x

y

z

 =
 0.63 0.65 −0.43

−0.43 0.75 0.50
0.65 −0.125 0.75

5
3
1

 =
 4.67

0.6
3.625

 (4.132)

Example 263 Twelve Independent Triple Local Rotations Euler proved a theorem
that stated: Any two independent orthogonal coordinate frames can be transformed
to each other by a sequence of no more than three rotations about the local coordinate
axes provided that no two successive rotations are about the same axis. In general,
there are 12 different independent combinations of triple rotation about the local axes:

1. Rx,ψ Ry,θ Rz,ϕ

2. Ry,ψ Rz,θ Rx,ϕ

3. Rz,ψ Rx,θ Ry,ϕ

4. Rz,ψ Ry,θ Rx,ϕ

5. Ry,ψ Rx,θ Rz,ϕ

6. Rx,ψ Rz,θ Ry,ϕ (4.133)

7. Rx,ψ Ry,θ Rx,ϕ

8. Ry,ψ Rz,θ Ry,ϕ

9. Rz,ψ Rx,θ Rz,ϕ

10. Rx,ψ Rz,θ Rx,ϕ

11. Ry,ψ Rx,θ Ry,ϕ

12. Rz,ψ Ry,θ Rz,ϕ

The expanded forms of the 12 local-axis triple rotations are presented in Appendix B.

Example 264 � Repeated Rotation about Body Axes Consider a body frame B that
turns ϕ about the z-axis. If

ϕ = 2π

n
n ∈ N (4.134)

then we need to repeat the rotation n times to get back to the original configuration.
We can check it by multiplying Rz,ϕ by itself until an identity matrix is achieved. In
this case any global point will be mapped to the same point in the body frame. To
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show this, we may find that

Rm
z,ϕ =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

m

=


cos

2π

n
sin

2π

n
0

− sin
2π

n
cos

2π

n
0

0 0 1


m

=


cos m

2π

n
sin m

2π

n
0

− sin m
2π

n
cos m

2π

n
0

0 0 1

 (4.135)

and therefore

Rn
z,ϕ =


cos n

2π

n
sin n

2π

n
0

− sin n
2π

n
cos n

2π

n
0

0 0 1

 =
1 0 0

0 1 0
0 0 1

 (4.136)

Repeated rotation about any other body axis provides the same result.

Example 265 � Open Problem Consider a body frame B that turns ϕ about the
xi-axis followed by a rotation θ about the xj -axis and ψ about the xk-axis such that

ϕ = 2π

n1
θ = 2π

n2
ψ = 2π

n3
{n1, n2, n3} ∈ N (4.137)

Although it seems that we need to repeat the rotations n = n1 × n2 × n3 times to get
back to the original configuration, it is not true in general. The determination of the
required number n to repeat a general combined rotation BRG to get back to the original
orientation is an open question:

BRG =
m∏

j=1

Rxi,ϕj
i = 1, 2, 3 (4.138)

ϕj = 2π

nj

m, nj ∈ N (4.139)

BRn
G = [I ] n =? (4.140)

4.6 EULER ANGLES

The rotation about the Z-axis of the global coordinate frame is called the precession
angle, the rotation about the x-axis of the local coordinate frame is called the nutation
angle, and the rotation about the z-axis of the local coordinate frame is called the
spin angle. The precession–nutation–spin rotation angles are also called Euler angles .
The kinematics and dynamics of rigid bodies have simpler expression based on
Euler angles.



380 Rotation Kinematics

The Euler angle rotation matrix BRG to transform a position vector from G(OXYZ)
to B (Oxyz),

Br = BRG
Gr (4.141)

is

BRG = Rz,ψRx,θRz,ϕ

=
 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (4.142)

So the Euler angle rotation matrix GRB to transform a position vector from B(Oxyz) to
G(OXYZ),

Gr = GRB
Br (4.143)

is

GRB = BR−1
G = BRT

G = [
Rz,ψRx,θRz,ϕ

]T

=
cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

 (4.144)

Proof : To find the Euler angle rotation matrix BRG for transforming from the global
frame G(OXYZ) to the final body frame B(Oxyz), we employ a body frame B ′(Ox′y′z′)
as shown in Figure 4.8 that before the first rotation coincides with the global frame.
The first rotation ϕ about the Z-axis relates the coordinate systems by

Gr = GRB ′ B ′
r (4.145)

where GRB ′ is given in (4.3). Using matrix inversion, we may find the body position
for a given global position vector:

B ′
r = GR−1

B ′
Gr = B ′

RG
Gr (4.146)

X Y

Z

x'

y'

z'

ϕ

Figure 4.8 First Euler angle.
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x'

y'

z"

x"

y"

z'

θ

Figure 4.9 Second Euler angle.

Therefore, the first rotation is equivalent to a rotation about the local z-axis by looking
for B ′

r:

B ′
r = B ′

RG
Gr (4.147)

B ′
RG = GR−1

B ′ = Rz,ϕ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (4.148)

Now we consider the B ′(Ox′y′z′) frame as a new fixed global frame and introduce
a new body frame B ′′(Ox′′y′′z′′) that before the second rotation is coincident with
B ′(Ox′y′z′). Then, we perform a θ rotation about the x′′-axis as shown in Figure 4.9.
The transformation between B ′(Ox′y′z′) and B ′′(Ox′′y′′z′′) is

B ′′
r = B ′′

RB ′ B ′
r (4.149)

B ′′
RB ′ = Rx,θ =

1 0 0
0 cos θ sin θ

0 − sin θ cos θ

 (4.150)

Finally we consider B ′′(Ox′′y′′z′′) as a new fixed global frame that before the third rota-
tion is coincident with a body frame B(Oxyz). The third rotation ψ about the z′′-axis
is shown in Figure 4.10. The transformation between B ′′(Ox′′y′′z′′) and B(Oxyz) is

Br = BRB ′′ B ′′
r (4.151)

BRB ′′ = Rz,ψ =
 cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

 (4.152)

Having the angles of precession ϕ, nutation θ , and spin ψ , we can calculate the
overall rotation matrix

BRG = Rz,ψRx,θRz,ϕ (4.153)

as given in Equation (4.142).
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Figure 4.10 Third Euler angle.

When an Euler rotation matrix BRG is given, we may calculate the equivalent
precession, nutation, and spin angles from

θ = cos−1 (r33) (4.154)

ϕ = − tan−1
(

r31

r32

)
(4.155)

ψ = tan−1
(

r13

r23

)
(4.156)

provided that sin θ �= 0. In these equations, rij indicates the element of row i and
column j of the precession–nutation–spin rotation matrix (4.142). �

Example 266 Euler Angle Rotation Matrix The Euler or precession–nutation–spin
rotation matrix for ϕ = π/3, θ = π/4, and ψ = π/6 would be found by substituting
ϕ, θ , and ψ in Equation (4.142):

BRG = Rz,π/6Rx,π/4Rz,π/3

=

 0.12683 0.92678 0.35355

−0.78033 −0.12683 0.61237

0.61237 −0.35355 0.70711

 (4.157)

Example 267 Euler Angles of a Local Rotation Matrix The local rotation matrix
after rotating 30 deg about the z-axis, then 30 deg about the x-axis, and then 30 deg
about the y-axis is

BRG = Ry,30Rx,30Rz,30 =

 0.63 0.65 −0.43

−0.43 0.75 0.50

0.65 −0.125 0.75

 (4.158)
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and therefore, the local coordinates of a sample point at X = 5, Y = 30, Z = 10 arex

y

z

 =
 0.63 0.65 −0.43

−0.43 0.75 0.50
0.65 −0.125 0.75

 5
30
10

 =
18.35

25.35
7

 (4.159)

The Euler angles of the corresponding precession–nutation–spin rotation matrix are

θ = cos−1(0.75) = 41.41 deg

ϕ = − tan−1
(

0.65

−0.125

)
= 79.15 deg (4.160)

ψ = tan−1
(−0.43

0.50

)
= −40.7 deg

Hence, Ry,30Rx,30Rz,30 = Rz,ψRx,θRz,ϕ when ϕ = 79.15 deg, θ = 41.41 deg and
ψ = −40.7 deg. In other words, the rigid body moves to the final configuration
by undergoing either three consecutive rotations ϕ = 79.15 deg, θ = 41.41 deg, and
ψ = −40.7 deg about the z, x, and z axes, respectively, or three consecutive rotations
30 deg, 30 deg, and 30 deg about the z, x, and y axes.

Example 268 Relative Rotation Matrix of Two Bodies Consider a body coordinate
frame B1 with a rotation matrix B1RG made by Euler angles ϕ = 30 deg, θ = −45 deg,
ψ = 60 deg and another body frame B2 with a rotation matrix B2RG having
ϕ = 10 deg, θ = 25 deg, ψ = −15 deg.

Using matrix multiplication, we can find a matrix to transform a vector from B2

to B1. To find the relative rotation matrix B1RB2 to map the coordinates of the second
body frame B2 to the first body frame B1, we find the individual rotation matrices first:

B1RG = Rz,60Rx,−45Rz,30

=
 0.127 0.78 −0.612

−0.927 −0.127 −0.354
−0.354 0.612 0.707

 (4.161)

B2RG = Rz,10Rx,25Rz,−15

=
 0.992 −6.33 × 10−2 −0.109

0.103 0.907 0.408
7.34 × 10−2 −0.416 0.906

 (4.162)

The desired rotation matrix B1RB2 can be found by

B1RB2 = B1RG
GRB2 (4.163)

which is equal to
B1RB2 = B1RG

B2RT
G

=
 0.992 0.103 7.34 × 10−2

−6.33 × 10−2 0.907 −0.416
−0.109 0.408 0.906

 (4.164)
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Example 269 Euler Angle Rotation Matrix for Small Angles The Euler rotation
matrix BRG = Rz,ψRx,θRz,ϕ for very small Euler angles ϕ, θ , and ψ is approximated by

BRG =
 1 γ 0

−γ 1 θ

0 −θ 1

 (4.165)

where
γ = ϕ + ψ (4.166)

Therefore, for small angles of rotation, the angles ϕ and ψ are indistinguishable and θ

is not important.
When θ → 0 while ϕ and ψ are finite, the Euler rotation matrix BRG = Rz,ψ

Rx,θRz,ϕ approaches

BRG =
 cϕcψ − sϕsψ cψsϕ + cϕsψ 0
−cϕsψ − cψsϕ −sϕsψ + cϕcψ 0

0 0 1


=

 cos (ϕ + ψ) sin (ϕ + ψ) 0
− sin (ϕ + ψ) cos (ϕ + ψ) 0

0 0 1

 (4.167)

and therefore, the angles ϕ and ψ are indistinguishable. Hence, the Euler angles ϕ,
θ , and ψ in rotation matrix (4.142) are not unique when θ = 0. Because of this, the
Euler rotation matrix is said to be singular at θ = 0.

Example 270 Euler Angle Application in Motion of Rigid Bodies The zxz Euler
angles seem to be natural parameters to express the configuration of rotating rigid
bodies with a fixed point. Euler angles that show the expression of a top are shown in
Figure 4.11 as an example. The rotation of the top about its axis of symmetry is the
spin ψ . The angle between the axis of symmetry and the Z-axis is the nutation θ , and
the rotation of the axis of symmetry about the Z-axis is the precession ϕ.

Example 271 Second Type of Euler Rotation Matrix We may call the Euler rotation
matrix (4.142) a local 3–1–3 matrix to indicate the order of rotations about z = x3,
x = x1, z = x3. Because the indices i, j , and k can be interchanged, the rotation
matrices 1–2–1 and 2–3–2 are also mathematically equivalent to the first type of
Euler rotation matrix (4.142).

We may change the middle rotation axis from x to y and develop the second type
of Euler rotation matrix:

BRG = Rz,ψRy,θRz,ϕ

=
 cθcψcϕ − sψsϕ cϕsψ + cθcψsϕ −cψsθ

−cψsϕ − cθcϕsψ cψcϕ − cθsψsϕ sθsψ

cϕsθ sθsϕ cθ

 (4.168)
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Figure 4.11 Application of Euler angles in describing the configuration of a top.

This is the local 3–2–3 matrix, which is mathematically equivalent to 1–3–1 and
2–1–2 rotations. Therefore, six triple rotations of the 12 combinations in (4.133) are
Euler rotation matrices:

7. Rx,ψ Ry,θ Rx,ϕ 1–2–1
8. Ry,ψ Rz,θ Ry,ϕ 2–3–2
9. Rz,ψ Rx,θ Rz,ϕ 3–1–3

10. Rx,ψ Rz,θ Rx,ϕ 1–3–1
11. Ry,ψ Rx,θ Ry,ϕ 2–1–2
12. Rz,ψ Ry,θ Rz,ϕ 3–2–3

(4.169)

Example 272 � Angular Velocity Vector in Terms of Euler Frequencies We may
define an Eulerian local frame E

(
O, ûϕ, ûθ , ûψ

)
by introducing the unit vectors ûϕ , ûθ ,

and ûψ as are shown in Figure 4.12. The Eulerian frame is not necessarily orthogonal;
however, it is very useful in rigid-body kinematic analysis.

The angular velocity vector GωB of the body frame B(Oxyz) with respect to the
global frame G(OXYZ) can be written in the Euler frame E as the sum of three Euler
angle rate vectors:

E
GωB = ϕ̇ûϕ + θ̇ ûθ + ψ̇ ûψ (4.170)

The rates of the Euler angles, ϕ̇, θ̇ , and ψ̇ are called Euler frequencies . The angular
speeds ϕ̇, θ̇ , and ψ̇ are also called precession , nutation , and spin , respectively.

To find GωB , we define the unit vectors ûϕ , ûθ , and ûψ along the axes of the Euler
angles, as shown in Figure 4.12, and express them in the body frame B. The precession
unit vector ûϕ ,

ûϕ =
0

0
1

 = K̂ (4.171)
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z

x

y

X Y

Z

u

u

u

Figure 4.12 Euler angles frame ûϕ, ûθ , ûψ .

is a vector in the global frame and can be transformed to the body frame after three
rotations:

Bûϕ = BRG K̂ = Rz,ψRx,θRz,ϕK̂ =
sin θ sin ψ

sin θ cos ψ

cos θ

 (4.172)

The nutation unit vector ûθ ,

ûθ =
1

0
0

 = ı̂′ (4.173)

is in the intermediate frame Ox′y′z′ and needs to get two rotations Rx,θ and Rz,ψ to
be transformed to the body frame:

Bûθ = BROx′y′z′ ı̂′ = Rz,ψ Rx,θ ı̂′ =
 cos ψ

− sin ψ

0

 (4.174)

The spin unit vector ûψ is already in the body frame:

ûψ =
0

0
1

 = k̂ (4.175)

Therefore, GωB can be expressed in the body coordinate frame as

B
GωB = ϕ̇

sin θ sin ψ

sin θ cos ψ

cos θ

 + θ̇

 cos ψ

− sin ψ

0

 + ψ̇

0
0
1


= (

ϕ̇ sin θ sin ψ + θ̇ cos ψ
)
ı̂ + (

ϕ̇ sin θ cos ψ − θ̇ sin ψ
)
̂

+ (
ϕ̇ cos θ + ψ̇

)
k̂ (4.176)
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The components of GωB in the body frame B(Oxyz) are related to the Euler frame
E(Oϕθψ) by the relationship

B
GωB = BRE

E
GωB (4.177)ωx

ωy

ωz

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇

 (4.178)

Then, GωB can be expressed in the global frame using an inverse transformation of the
Euler rotation matrix (4.142),

GωB = BR−1
G

B
GωB = BR−1

G

ϕ̇ sin θ sin ψ + θ̇ cos ψ

ϕ̇ sin θ cos ψ − θ̇ sin ψ

ϕ̇ cos θ + ψ̇


= (

θ̇ cos ϕ + ψ̇ sin θ sin ϕ
)
Î + (

θ̇ sin ϕ − ψ̇ cos ϕ sin θ
)
Ĵ

+ (
ϕ̇ + ψ̇ cos θ

)
K̂ (4.179)

and hence components of GωB in the global coordinate frame G(OXYZ) are related to
the Euler angle coordinate frame E(Oϕθψ) by the relationship

GωB = GRE
E
GωB (4.180)ωX

ωY

ωZ

 =
0 cos ϕ sin θ sin ϕ

0 sin ϕ − cos ϕ sin θ

1 0 cos θ

 ϕ̇

θ̇

ψ̇

 (4.181)

Example 273 � Euler Frequencies Based on Cartesian Frequencies The vector
B
GωB , which indicates the angular velocity of a rigid body B with respect to the global
frame G written in frame B, is related to the Euler frequencies by

B
GωB = BRE

E
GωB

=
ωx

ωy

ωz

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇

 (4.182)

The matrix of coefficients is not an orthogonal matrix because

BRT
E =

sin θ sin ψ sin θ cos ψ cos θ

cos ψ − sin ψ 0
0 0 1

 (4.183)

BR−1
E = 1

sin θ

 sin ψ cos ψ 0
sin θ cos ψ − sin θ sin ψ 0

− cos θ sin ψ − cos θ cos ψ 1

 (4.184)

BRT
E �= BR−1

E (4.185)
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This is because the Euler coordinate frame E(Oϕθψ) is not an orthogonal frame. For
the same reason, the matrix of coefficients that relates the Euler frequencies and the
components of G

GωB ,

GωB = GRE
E
GωB

=
ωX

ωY

ωZ

 =
0 cos ϕ sin θ sin ϕ

0 sin ϕ − cos ϕ sin θ

1 0 cos θ

 ϕ̇

θ̇

ψ̇

 (4.186)

is not an orthogonal matrix. Therefore, the Euler frequencies based on local and global
decomposition of the angular velocity vector GωB must be found by the inverse of the
coefficient matrices:

E
GωB = BR−1

E
B
GωB (4.187) ϕ̇

θ̇

ψ̇

 = 1

sin θ

 sin ψ cos ψ 0
sin θ cos ψ − sin θ sin ψ 0

− cos θ sin ψ − cos θ cos ψ 1

ωx

ωy

ωz

 (4.188)

E
GωB = GR−1

E GωB (4.189) ϕ̇

θ̇

ψ̇

 = 1

sin θ

− cos θ sin ϕ cos θ cos ϕ 1
sin θ cos ϕ sin θ sin ϕ 0

sin ϕ − cos ϕ 0

ωX

ωY

ωZ

 (4.190)

Using (4.187) and (4.189), it can be verified that the transformation matrix BRG

= BRE
GR−1

E would be the same as the Euler transformation matrix (4.142). So, the
angular velocity vector can be expressed in different frames as

B
GωB = [

ı̂ ̂ k̂
] ωx

ωy

ωz

 (4.191)

GωB = [
Î Ĵ K̂

]ωX

ωY

ωZ

 (4.192)

E
GωB = [

K̂ êθ k̂
] ϕ̇

θ̇

ψ̇



Example 274 � Integrability of Angular Velocity Components The integrability
condition for an arbitrary total differential dz of a function z = f (x, y),

dz = P dx + Q dy (4.193)
is

∂P

∂y
= ∂Q

∂x
(4.194)
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The angular velocity components ωx , ωy , and ωz along the body coordinate axes
x, y, and z cannot be integrated to obtain the associated angles because

ωx dt = sin θ sin ψ dϕ + cos ψ dθ (4.195)
and

∂(sin θ sin ψ)

∂θ
�= ∂ cos ψ

∂ϕ
(4.196)

However, the integrability condition (4.194) is satisfied by the Euler frequencies. Let
us rewrite (4.188) as

dϕ = sin ψ

sin θ
(ωx dt) + cos ψ

sin θ

(
ωy dt

)
(4.197)

dθ = cos ψ (ωx dt) − sin ψ
(
ωy dt

)
(4.198)

dψ = − cos θ sin ψ

sin θ
(ωx dt) + − cos θ cos ψ

sin θ

(
ωy dt

) + (ωz dt)

sin θ
(4.199)

These equations indicate that

sin ψ

sin θ
= ∂ϕ

∂ (ωx dt)

cos ψ

sin θ
= ∂ϕ

∂
(
ωy dt

) (4.200a)

cos ψ = ∂θ

∂ (ωx dt)
− sin ψ = ∂θ

∂
(
ωy dt

) (4.200b)

− cos θ sin ψ

sin θ
= ∂ψ

∂ (ωx dt)

− cos θ cos ψ

sin θ
= ∂ψ

∂
(
ωy dt

) (4.200c)

1

sin θ
= ∂ψ

∂ (ωz dt)
(4.200d)

and therefore,

∂

∂
(
ωy dt

) ( sin ψ

sin θ

)
= 1

sin2 θ

(
cos ψ sin θ

∂ψ

∂
(
ωy dt

) − cos θ sin ψ
∂θ

∂
(
ωy dt

))

= 1

sin2 θ
(− cos ψ cos θ cos ψ + cos θ sin ψ sin ψ)

= − cos θ cos 2ψ

sin2 θ
(4.201)

∂

∂ (ωx dt)

(
cos ψ

sin θ

)
= 1

sin2 θ

(
− sin ψ sin θ

∂ψ

∂ (ωx dt)
− cos θ cos ψ

∂θ

∂ (ωx dt)

)
= 1

sin2 θ
(sin ψ cos θ sin ψ − cos θ cos ψ cos ψ)

= − cos θ cos 2ψ

sin2 θ
(4.202)

It can be checked that dθ and dψ are also integrable.
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Example 275 � Cardan Angles and Frequencies The system of Euler angles is sin-
gular at θ = 0, and as a consequence, ϕ and ψ become coplanar and indistinguishable.
To overcome this problem, we may employ a triple rotation about three different axes.
From the 12 angle systems of Appendix B, the rotations about three different axes such
as BRG = Rz,ψRy,θRx,ϕ are called Cardan or Bryant angles . The Cardan angle system
is not singular at θ = 0 and has applications in vehicle, aircraft, and attitude dynamics:

BRG = Rz,ψRy,θRx,ϕ

=

 cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ

−cθsψ cϕcψ − sθsϕsψ cψsϕ + cϕsθsψ

sθ −cθsϕ cθcϕ

 (4.203)

The angular velocity ω of a rigid body can be expressed in terms of either
the components along the axes of B(Oxyz) or the Cardan frequencies along the
axes of the nonorthogonal Cardan frame. The angular velocity in terms of Cardan
frequencies is

GωB = ϕ̇Rz,ψRy,θ

1
0
0

 + θ̇Rz,ψ

0
1
0

 + ψ̇

0
0
1

 (4.204)

Therefore, ωx

ωy

ωz

 =
 cos θ cos ψ sin ψ 0

− cos θ sin ψ cos ψ 0
sin θ 0 1


 ϕ̇

θ̇

ψ̇

 (4.205)

 ϕ̇

θ̇

ψ̇

 =
 cos ψ/ cos θ − sin ψ/ cos θ 0

sin ψ cos ψ 0
− tan θ cos ψ tan θ sin ψ 1

ωx

ωy

ωz

 (4.206)

For small Cardan angles, we have

BRG =
 1 ψ −θ

−ψ 1 ϕ

θ −ϕ 1

 (4.207)

and ωx

ωy

ωz

 =
 1 ψ 0

−ψ 1 0
θ 0 1

 ϕ̇

θ̇

ψ̇

 (4.208)

 ϕ̇

θ̇

ψ̇

 =
 ψ −ψ 0

ψ 1 0
−θ 0 1

ωx

ωy

ωz

 (4.209)
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4.7 LOCAL ROLL–PITCH–YAW ANGLES

Rotation about the x-axis of the local frame is called roll or bank , rotation about the
y-axis of the local frame is called pitch or attitude, and rotation about the z-axis of
the local frame is called yaw, spin , or heading . The local roll–pitch–yaw angles are
also called the Cardan or Bryant angles . The Cardan angles shown in Figure 4.13
represent an applied method to express the orientation of mobile rigid bodies such as
vehicles, airplanes, and submarines.

The local roll–pitch–yaw rotation matrix is

BRG = Rz,ψ Ry,θ Rx,ϕ

=
 cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ

−cθsψ cϕcψ − sθsϕsψ cψsϕ + cϕsθsψ

sθ −cθsϕ cθcϕ

 (4.210)

or
GRB = BRT

G = [Rz,ψ Ry,θ Rx,ϕ]T = RT
x,ϕ RT

y,θ RT
z,ψ = RX,ϕ RY,θ RZ,ψ

=
 cθcψ −cθsψ sθ

cϕsψ + sθcψsϕ cϕcψ − sθsϕsψ − cθsϕ

sϕsψ − cϕsθcψ cψsϕ + cϕsθsψ cθcϕ

 (4.211)

Having a rotation matrix BRG = [
rij

]
, we are able to determine the equivalent

local roll, pitch, and yaw angles by

θ = sin−1 r31 (4.212)

ϕ = − tan−1 r32

r33
(4.213)

ψ = − tan−1 r21

r11
(4.214)

provided that cos θ �= 0.

Example 276 Equivalent Local Roll–Pitch–Yaw for a Set of Euler Angles A body
frame B turns 45 deg about the X-axis followed by another 45 deg turn about the Y -axis.

Roll

Pitch

Yaw

x

y

z

Figure 4.13 Local roll–pitch–yaw angles.



392 Rotation Kinematics

The global coordinates of a body point would be found by a combined rotation:

Gr = RY,45 RX,45
Br = GRB

Br (4.215)

GRB =


cos

π

4
0 sin

π

4
0 1 0

− sin
π

4
0 cos

π

4




1 0 0

0 cos
π

4
− sin

π

4

0 sin
π

4
cos

π

4


=

 0.70711 0.5 0.5
0 0.70711 −0.70711

−0.70711 0.5 0.5


The same transformation may be done by a local roll–pitch–yaw rotation if the

roll, pitch, and yaw angles are found from GRT
B according to Equations (4.212)–(4.214):

BRG = GRT
B =

0.707 0 −0.707
0.5 0.707 0.5
0.5 −0.707 0.5

 (4.216)

θ = sin−1 r31 = sin−1 0.5 = 0.5236 rad = 30 deg (4.217)

ϕ = − tan−1 r32

r33
= − tan−1 −0.707

0.5
= 0.955 rad ≈ 54.7 deg (4.218)

ψ = − tan−1 r21

r11
= − tan−1 0.5

0.707
= −0.615 rad ≈ −35.26 deg (4.219)

As a double check, we may calculate BRG from (4.210):

BRG = Rz,−0.615 Ry,0.5236 Rx,0.955

=
0.70735 1.1611 × 10−4 −0.70687

0.49966 0.70727 0.50011
0.5 −0.70695 0.50022

 (4.220)

The same rotation may also be performed by proper Euler angles from Equations
(4.154)–(4.156):

θ = cos−1 r33 = cos−1 0.5 = 1.0472 rad = 60 deg (4.221)

ϕ = − tan−1 r31

r32
= − tan−1 0.5

−0.707
= 0.615 rad ≈ 35.27 deg (4.222)

ψ = tan−1 r13

r23
= tan−1 −0.707

0.5
= −0.955 rad ≈ −54.7 deg (4.223)

We may calculate BRG from (4.142) to check our calculations:

BRG = Rz,ψRx,θRz,ϕ

=
0.70714 9.8226 × 10−5 −0.70707

0.4999 0.70714 0.50005
0.50005 −0.70707 0.5

 (4.224)
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Example 277 Time-Dependent Local Roll–Pitch–Yaw Rotation A rigid body B is
turning about the x-axis with 0.2 rad/s for 2 s and then about the z-axis with 0.3 rad / s
for 2 s. The body rotation matrices are

Rx,ψ =
1 0 0

0 cos 0.2t sin 0.2t

0 − sin 0.2t cos 0.2t

 (4.225)

Rz,ϕ =
 cos 0.3t sin 0.3t 0

− sin 0.3t cos 0.3t 0
0 0 1

 (4.226)

and therefore, the final rotation matrix between frames B and G is

BRG = Rz,0.3×2 Rx,0.2×2

=
 0.82534 0.52007 0.21988

−0.56464 0.76018 0.3214
0 −0.38942 0.92106

 (4.227)

To check if it is possible to turn about both x- and z-axes at the same time and finish
the rotation in just 2 s, we may combine the rotation matrices and find BRG:

BRG = Rz,0.3t Rx,0.2t

=
 cos 0.3t sin 0.3t cos 0.2t sin 0.3t sin 0.2t

− sin 0.3t cos 0.3t cos 0.2t cos 0.3t sin 0.2t

0 − sin 0.2t cos 0.2t

 (4.228)

The combined rotation matrix BRG at t = 2 s would be

BRG =
 0.82534 0.52007 0.21988

−0.56464 0.76018 0.3214
0 −0.38942 0.92106

 (4.229)

which is the same as (4.227). Therefore, the whole rotation maneuver can be done in
just 2 s if both rotations are performed simultaneously.

Example 278 � Second Type of Cardan Rotation Matrix We may call the Cardan
rotation matrix (4.210) a local 1–2–3-matrix to indicate the order of rotations about
x = x1, y = x2, z = x3. Interchanging the indices i, j , and k produces the rotation
matrices 2–3–1 and 3–1–2, which are mathematically equivalent to the first type of
Cardan rotation matrix (4.210).

We may reverse the order of rotation axes from x –y –z to z–y –x and develop the
second type of Cardan rotation matrix:

BRG = Rx,ψ Ry,θ Rz,ϕ

=
 cθcϕ cθsϕ −sθ

cϕsθsψ − cψsϕ cψcϕ + sθsψsϕ cθsψ

sψsϕ + cψcϕsθ cψsθsϕ − cϕsψ cθcψ

 (4.230)
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This is the local 3–2–1 matrix that is mathematically equivalent to 1–3–2 and 2–1–3
rotations. Therefore, six triple rotations of the 12 combinations in (4.133) are Cardan
rotation matrices:

1. Rx,ψ Ry,θ Rz,ϕ 1–2–3
2. Ry,ψ Rz,θ Rx,ϕ 2–3–1
3. Rz,ψ Rx,θ Ry,ϕ 3–1–2
4. Rz,ψ Ry,θ Rx,ϕ 3–2–1
5. Ry,ψ Rx,θ Rz,ϕ 2–1–3
6. Rx,ψ Rz,θ Ry,ϕ 1–3–2

(4.231)

Example 279 � Angular Velocity and Local Roll–Pitch–Yaw Rate Because the
local roll–pitch–yaw rotation matrix (4.210) is the same as the Cardan xyz -matrix
(4.203), we show the local roll–pitch–yaw coordinate frame by C (ϕ, θ,ψ). Using
the local roll–pitch–yaw frequencies, the angular velocity of a body B with respect to
the global reference frame can be expressed in B or C as

B
GωB = ωxı̂ + ωŷ + ωzk̂ (4.232)

C
GωB = ϕ̇ûϕ + θ̇ ûθ + ψ̇ûψ (4.233)

Relationships between the components of B
GωB and C

GωB are found when the roll unit
vector ûϕ , pitch unit vector ûθ , and yaw unit vector ûψ are transformed to the body
frame. The roll unit vector

ûϕ =
1

0
0

 (4.234)

transforms to the body frame after rotation θ and then rotation ψ :

Bûϕ = Rz,ψRy,θ

1
0
0

 =
 cos θ cos ψ

− cos θ sin ψ

sin θ

 (4.235)

The pitch unit vector

ûθ =
0

1
0

 (4.236)

transforms to the body frame after rotation ψ :

Bûθ = Rz,ψ

0
1
0

 =
sin ψ

cos ψ

0

 (4.237)

The yaw unit vector

ûψ =
0

0
1

 (4.238)
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is already along the local z-axis. Hence, B
GωB can be expressed in body frame

B(Oxyz) as

B
GωB =

ωx

ωy

ωz

 = ϕ̇

 cos θ cos ψ

− cos θ sin ψ

sin θ

 + θ̇

sin ψ

cos ψ

0

 + ψ̇

0
0
1


=

 cos θ cos ψ sin ψ 0
− cos θ sin ψ cos ψ 0

sin θ 0 1

 ϕ̇

θ̇

ψ̇

 (4.239)

and therefore, G
GωB in the global frame G(OXYZ) in terms of local roll–pitch–yaw

frequencies is

G
GωB =

ωX

ωY

ωZ

 = BR−1
G

ωx

ωy

ωz

 = BR−1
G

θ̇ sin ψ + ϕ̇ cos θ cos ψ

θ̇ cos ψ − ϕ̇ cos θ sin ψ

ψ̇ + ϕ̇ sin θ


=

 ϕ̇ + ψ̇ sin θ

θ̇ cos ϕ − ψ̇ cos θ sin ϕ

θ̇ sin ϕ + ψ̇ cos θ cos ϕ


=

1 0 sin θ

0 cos ϕ − cos θ sin ϕ

0 sin ϕ cos θ cos ϕ

 ϕ̇

θ̇

ψ̇

 . (4.240)

4.8 LOCAL VERSUS GLOBAL ROTATION

The global rotation matrix GRB is equal to the inverse of the local rotation matrix BRG

and vice versa,

GRB = BR−1
G

BRG = GR−1
B (4.241)

and premultiplication of the global rotation matrix is equal to postmultiplication of the
local rotation matrix.

Proof : To distinguish between the two type of rotations, let us show rotation matrices
about global axes by [Q] and rotation matrices about local axes by [A]. Consider a
sequence of global rotations and their resultant global rotation matrix GQB to transform
a position vector Br to Gr:

Gr = GQB
Br (4.242)

The global position vector Gr can also be transformed to Br using a local rotation
matrix BAG:

Br = BAG
Gr (4.243)
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Combining Equations (4.242) and (4.243) leads to

Gr = GQB
BAG

Gr (4.244)
Br = BAG

GQB
Br (4.245)

and hence,
GQB

BAG = BAG
GQB = I (4.246)

Therefore, the global and local rotation matrices are inverses of each other:

GQB = BA−1
G (4.247a)

GQ−1
B = BAG (4.247b)

Assume that

GQB = Qn . . .Q3Q2Q1 (4.248)
BAG = An . . . A3A2A1 (4.249)

then

GQB = BA−1
G = A−1

1 A−1
2 A−1

3 . . . A−1
n (4.250)

BAG = GQ−1
B = Q−1

1 Q−1
2 Q−1

3 . . .Q−1
n (4.251)

and Equation (4.246) becomes

Qn · · · Q2Q1An . . . A2A1 = An · · · A2A1Qn . . .Q2Q1 = I (4.252)

and therefore,

Qn · · · Q3Q2Q1 = A−1
1 A−1

2 A−1
3 . . . A−1

n (4.253a)

An · · · A3A2A1 = Q−1
1 Q−1

2 Q−1
3 . . . Q−1

n (4.253b)
or

Q−1
1 Q−1

2 Q−1
3 · · · Q−1

n Qn . . .Q3Q2Q1 = I (4.254)

A−1
1 A−1

2 A−1
3 · · · A−1

n An . . . A3A2A1 = I (4.255)

Hence, the effect of order rotations about the global coordinate axes is equiva-
lent to the effect of the same rotations about the local coordinate axes performed in
reverse order:

GQB = A−1
1 A−1

2 A−1
3 · · ·A−1

n (4.256)

BAG = Q−1
1 Q−1

2 Q−1
3 · · · Q−1

n (4.257)
�

Example 280 Global Position and Postmultiplication of Rotation Matrix The local
position of a point P after a rotation is at Br = [1, 2, 3]T. If the local rotation matrix
to transform Gr to Br is given as

BRz,ϕ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 =
 cos 30 sin 30 0

− sin 30 cos 30 0
0 0 1

 (4.258)
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then we may find the global position vector Gr by postmultiplying BRz,ϕ and the local
position vector BrT,

GrT = BrT BRz,ϕ = [
1 2 3

]  cos 30 sin 30 0

− sin 30 cos 30 0

0 0 1


= [−0.13 2.23 3.0

]
(4.259)

instead of premultiplying of BR−1
z,ϕ by Br:

Gr = BR−1
z,ϕ

Br

=

cos 30 − sin 30 0

sin 30 cos 30 0

0 0 1


1

2

3

 =

−0.13

2.23

3

 (4.260)

4.9 GENERAL ROTATION

Consider a general rotation of a local coordinate frame B(Oxyz) with respect to a global
frame G(OXYZ) about their common origin O. The components of any vector r may
be expressed in either frame. There is always a transformation matrix GRB to map the
components of r from the frame B(Oxyz) to the other frame G(OXYZ):

Gr = GRB
Br (4.261)

In addition, the inverse map Br = GR−1
B

Gr can be done by BRG,

Br = BRG
Gr (4.262)

where ∣∣GRB

∣∣ = ∣∣BRG

∣∣ = 1 (4.263)

and

BRG = GR−1
B = GRT

B (4.264)

When the coordinate frames B and G are orthogonal, the rotation matrix GRB is called
an orthogonal matrix . The transpose RT and inverse R−1 of an orthogonal matrix [R]
are equal:

RT = R−1 (4.265)

Because of the matrix orthogonality condition, only three of the nine elements of GRB

are independent.

Proof : Employing the orthogonality condition (3.2) and decomposition of the unit
vectors of G(OXYZ) along the axes of B(Oxyz),
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Î = (Î · ı̂)ı̂ + (Î · ̂ )̂ + (Î · k̂)k̂ (4.266)

Ĵ = (Ĵ · ı̂)ı̂ + (Ĵ · ̂ )̂ + (Ĵ · k̂)k̂ (4.267)

K̂ = (K̂ · ı̂)ı̂ + (K̂ · ̂ )̂ + (K̂ · k̂)k̂ (4.268)

introduces the transformation matrix GRB to map the local axes to the global axes: Î

Ĵ

K̂

 =
 Î · ı̂ Î · ̂ Î · k̂

Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂
K̂ · ı̂ K̂ · ̂ K̂ · k̂

 ı̂

̂

k̂

 = GRB

 ı̂

̂

k̂

 (4.269)

where

GRB =
 Î · ı̂ Î · ̂ Î · k̂

Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂

K̂ · ı̂ K̂ · ̂ K̂ · k̂



=
 cos(Î , ı̂) cos(Î , ̂ ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ̂ ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ̂ ) cos(K̂, k̂)

 (4.270)

Each column of GRB is the decomposition of a unit vector of the local frame B(Oxyz)
in the global frame G(OXYZ):

GRB = [
Gı̂ Ĝ Gk̂

]
(4.271)

Similarly, each row of GRB is the decomposition of a unit vector of the global frame
G(OXYZ) in the local frame B(Oxyz):

GRB =
 BÎT

BĴ T

BK̂T

 (4.272)

so the elements of GRB are directional cosines of the axes of G(OXYZ) in B(Oxyz)
or B in G. This set of nine directional cosines completely specifies the orientation of
B(Oxyz) in G(OXYZ) and can be used to map the coordinates of any point (x,y,z) to its
corresponding coordinates (X,Y,Z).

Alternatively, using the method of unit-vector decomposition to develop the matrix
BRG leads to

Br = BRG
Gr = GR−1

B
Gr (4.273)

BRG =
 ı̂ · Î ı̂ · Ĵ ı̂ · K̂

̂ · Î ̂ · Ĵ ̂ · K̂

k̂ · Î k̂ · Ĵ k̂ · K̂



=
cos(ı̂, Î ) cos(ı̂, Ĵ ) cos(ı̂, K̂)

cos(̂ , Î ) cos(̂ , Ĵ ) cos(̂ , K̂)

cos(k̂, Î ) cos(k̂, Ĵ ) cos(k̂, K̂)

 (4.274)
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It shows that the inverse of a transformation matrix is equal to the transpose of the
transformation matrix,

GR−1
B = GRT

B (4.275)

or

GRB · GRT
B = I (4.276)

A matrix with condition (4.275) is called an orthogonal matrix . Orthogonality
of GRB comes from the fact that it maps an orthogonal coordinate frame to another
orthogonal coordinate frame.

An orthogonal transformation matrix GRB has only three independent elements.
The constraint equations among the elements of GRB will be found by applying the
matrix orthogonality condition (4.275):r11 r12 r13

r21 r22 r23

r31 r32 r33

r11 r21 r31

r12 r22 r32

r13 r23 r33

 =
1 0 0

0 1 0
0 0 1

 (4.277)

Therefore, the inner product of any two different rows of GRB is zero, and the inner
product of any row of GRB by itself is unity:

r2
11 + r2

12 + r2
13 = 1

r2
21 + r2

22 + r2
23 = 1

r2
31 + r2

32 + r2
33 = 1 (4.278)

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0

These relations are also true for columns of GRB and evidently for rows and columns
of BRG. The orthogonality condition can be summarized by the equation

3∑
i=1

rij rik = δjk j, k = 1, 2, 3 (4.279)

where rij is the element of row i and column j of the transformation matrix GRB and
δjk is the Kronecker delta (1.125).

Equation (4.279) provides six independent relations that must be satisfied by the
nine directional cosines. Therefore, there are only three independent directional cosines.
The independent elements of the matrix GRB cannot be in the same row or column or
any diagonal.

The determinant of a transformation matrix is equal to unity,∣∣GRB

∣∣ = 1 (4.280)

because of Equation (4.276) and noting that∣∣GRB · GRT
B

∣∣ = ∣∣GRB

∣∣ · ∣∣GRT
B

∣∣ = ∣∣GRB

∣∣ · ∣∣GRB

∣∣ = ∣∣GRB

∣∣2 = 1 (4.281)
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Using linear algebra and column vectors Gı̂, Ĝ , and Gk̂ of GRB , we know that∣∣GRB

∣∣ = Gı̂ ·
(

Ĝ × Gk̂
)

(4.282)

and because the coordinate system is right handed, we have Ĝ × Gk̂ = Gı̂ and
therefore, ∣∣GRB

∣∣ = Gı̂T · Gı̂ = +1 (4.283)

�

Example 281 Elements of Transformation Matrix The coordinate frames of a body
B(Oxyz ) and a global G(OXYZ ) are shown in Figure 4.14, and we are interested in
determining the rotation matrix BRG.

The row elements of BRG are the directional cosines of the axes of B(Oxyz) in
the coordinate frame G(OXYZ ). The x-axis lies in the (X, Z)-plane at 30 deg from the
X-axis, and the angle between y and Y is 45 deg.

Therefore,

BRG =


ı̂ · Î ı̂ · Ĵ ı̂ · K̂
̂ · Î ̂ · Ĵ ̂ · K̂

k̂ · Î k̂ · Ĵ k̂ · K̂

 =


cos

π

6
0 sin

π

6
̂ · Î cos

π

4
̂ · K̂

k̂ · Î k̂ · Ĵ k̂ · K̂



=


0.866 0 0.5

̂ · Î 0.707 ̂ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

 (4.284)

X

y

Y

Z

x

z

B

G

30°

45°

Figure 4.14 Body and global coordinate frames of Example 281.
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and using BRG
GRB = BRG

BRT
G = I ,0.866 0 0.5

r21 0.707 r23

r31 r32 r33

0.866 r21 r31

0 0.707 r32

0.5 r23 r33

 =
1 0 0

0 1 0
0 0 1

 (4.285)

we obtain a set of equations to find the missing elements:

0.866 r21 + 0.5r23 = 0

0.866 r31 + 0.5r33 = 0

r2
21 + r2

23 + 0.5 = 1 (4.286)

0.707 r32 + r21r31 + r23r33 = 0

r2
31 + r2

32 + r2
33 = 1

Solving these equations provides the following four possible transformation matrices:

(
BRG

)
1 =

 0.86603 0 0.5
−0.35355 0.70711 0.61237

0.35355 0.70711 −0.61237

 (4.287)

(
BRG

)
2 =

 0.86603 0 0.5
−0.35355 0.70711 0.61237
−0.35355 0.61237 −0.70711

 (4.288)

(
BRG

)
3 =

0.86603 0 0.5
0.35355 0.70711 −0.61237
0.35355 −0.70711 −0.61237

 (4.289)

(
BRG

)
4 =

 0.86603 0 0.5
0.35355 0.70711 −0.61237

−0.35355 0.70711 0.61237

 (4.290)

The first, third, and fourth matrices satisfy the matrix orthogonality condition and are
possible rotation matrices.

Example 282 Global Position Using Br and BRG The position vector r of a
point P may be described in either the G(OXYZ) or the B(Oxyz) frame. If
Br = 10ı̂ − 5̂ + 15k̂ and the transformation matrix to map Gr to Br is

Br = BRG
Gr =

 0.866 0 0.5
−0.353 0.707 0.612

0.353 0.707 −0.612

 Gr (4.291)
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then the components of Gr in G(OXYZ) would be

Gr = GRB
Br = BRT

G
Br =

 15.72
7.07

−7.24

 (4.292)

Example 283 Two-Point Transformation Matrix The global position vectors of two
points P1 and P2 of a rigid body B are

GrP1 =
1.077

1.365
2.666

 GrP2 =
−0.473

2.239
−0.959

 (4.293)

The origin of the body B(Oxyz ) is fixed on the origin of G(OXYZ ), and the points P1

and P2 are lying on the local x- and y-axis, respectively.
To find GRB , we use the local unit vectors Gı̂ and Ĝ ,

Gı̂ =
GrP1∣∣GrP1

∣∣ =
0.338

0.429
0.838

 Ĝ =
GrP2∣∣GrP2

∣∣ =
−0.191

0.902
−0.387

 (4.294)

to obtain

Gk̂ = ı̂ × ̂ =
−0.922

−0.029
0.387

 (4.295)

Hence, the transformation matrix GRB would be

GRB = [
Gı̂ Ĝ Gk̂

] =
0.338 −0.191 −0.922

0.429 0.902 −0.029
0.838 −0.387 0.387

 (4.296)

Example 284 Length Invariant of a Position Vector Expressing a vector in different
frames utilizing rotation matrices does not affect the length and direction properties of
the vector. So, the length of a vector is an invariant property:

|r| = ∣∣Gr
∣∣ = ∣∣Br

∣∣ (4.297)

The length invariant property can be shown as

|r|2 = GrT Gr = [
GRB

Br
]T GRB

Br = BrT GRT
B

GRB
Br

= BrT Br (4.298)
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Example 285 Inverse of Euler Angle Rotation Matrix Precession–nutation–spin
or Euler angle rotation matrix (4.142),

BRG = Az,ψAx,θAz,ϕ

=
 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (4.299)

must be inverted to be a transformation matrix that maps body coordinates to global
coordinates:

GRB = BR−1
G = BRT

G = AT
z,ϕAT

x,θA
T
z,ψ

=
cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

 (4.300)

The transformation matrix (4.299) is called a local Euler rotation matrix, and
(4.300) is called a global Euler rotation matrix.

Example 286 � Tracking Transformation Consider a tracking radar that is to track
a remote object such as an airplane. The radar is at the origin O of a coordinate
frame G(OXYZ ) that is attached to a tangent plane on the surface of Earth. We also
attach a local coordinate frame B(Oxyz) to the radar. The radar frame B is initially
coincident with G. In radar-tracking kinematics we may define the X- and Y -axes
of G to be lying in the tangent plane and pointing North and East, respectively.
Therefore, the Z-axis is perpendicular to the surface of Earth and points toward the
center of Earth. Such a coordinate frame with an axis on Earth’s radius is called the
geocentric frame.

Z G
Y

x

y

z

O

Airplane

B

North

East

X

Figure 4.15 The tracking azimuth α and elevation β angles are used to point an object with
the x-axis.
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To track the airplane, we move the x-axis to point to the airplane. To do so, we
turn the radar α degrees about the Z-axis followed by a rotation β about the y-axis.
The angle α is called the azimuth or heading angle and is defined in the tangent plane
between North and the projected position vector of the airplane on the (X, Y )-plane. The
angle β is called the elevation angle and is defined as the angle between the position
vector of the airplane and the (X, Y )-plane. The configurations of the coordinate frames
are shown in Figure 4.15.

The transformation matrices between B and G are

R1 = GRB = RZ,α (4.301)

R2 = BRG = Ry,β (4.302)

So, the combined transformation matrix is

GRB = BRT
G = [

Ry,β RT
Z,α

]T = RZ,α RT
y,β

=
cos α − sin α 0

sin α cos α 0
0 0 1

cos β 0 − sin β

0 1 0
sin β 0 cos β

T

=
cos α cos β − sin α cos α sin β

cos β sin α cos α sin α sin β

− sin β 0 cos β

 (4.303)

Now assume that at four o’clock and a distance r = 16 km an airplane is moving
north at height h = 3 km. Four o’clock means that

α = 120 deg = 2π

3
rad (4.304)

and the distance r = 16 km and height h = 3 km mean

Br = 16ı̂ (4.305a)

β = arcsin
3

16
= 0.18862 rad ≈ 10.807 deg (4.305b)

Therefore, the global coordinates of the airplane areX

Y

Z

 = GRB

16
0
0

 =
−7.8581

13.611
−3.0001

 km (4.306)

Example 287 � Coordinates on the Spherical Earth For many practical problems,
we can deal with Earth as a spherical body. The Earth’s axis is the diameter that
connects the north and south poles. The great circle whose plane is perpendicular to
the axis is called the equator . Let us set up a coordinate frame at Earth’s center such
that the Z-axis points to the north pole and the X- and Y -axes lie on the equatorial
plane, as shown in Figure 4.16 .
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Y

Z

Lat. 0° Equator

Lat. 30° N

x

G

Lat. 30° S

Lat. 60° N

Prime
Meridian

z

y

y

x

C

B

X

Figure 4.16 Earth’s coordinate frame sits at the center such that the Z-axis points to the
north pole and the X- and Y -axes lie on the equatorial plane with X pointing to the Greenwich
Meridian.

Any location on Earth is expressed by two angles: longitude ϕ and latitude λ.
The angles of latitude and longitude are coordinates that specify the position on a
map, usually measured in degrees, minutes of arc, and seconds of arc (deg, ′, ′′). The
distance between two points subtending an angle of one minute of arc at the center of
Earth is known as the nautical mile. So, there are 360 × 60 = 21,600 nautical miles
on a great circle around Earth:

1 nmi = R0
1

60

π

180
≈ 1.852 km ≈ 6076.1 ft ≈ 1.1508 mi (4.307)

Based on the nautical mile, we may define a knot as the speed equal to one nautical
mile in one hour. The knot is used in sea and air navigation:

1 knot ≈ 0.514 m/ s ≈ 1.852 km/h ≈ 1.1508 mi/h (4.308)

The latitude λ of a point P on the Earth’s surface is the angle between its position
vector rP and the projection of rP on the equatorial plane. So, λ > 0 north of the equator
and λ < 0 south of the equator. Lines of constant latitude are circles of different sizes.
The largest is the equator, whose latitude is zero, and the smallest are two points at
the poles where latitude is 90 and −90 deg.

Any semi–great circle terminated by the poles is a meridian . So, meridians are
lines of constant longitude that extend from pole to pole. The equator is divided into
360 deg and the meridian passing the Royal Astronomical Observatory in Greenwich,
located at the eastern edge of London, England, is the one chosen as zero longitude. The
longitude ϕ of a point is the associated angle of its meridian on the equator. Longitudes
are measured from 0 deg to 180 deg east of the Greenwich Meridian and from 0 deg to
180 deg west.

The intersection of the Greenwich Meridian and the equator indicates the X-
axis of Earth’s coordinate frame. Such a coordinate frame is sometimes called the
Earth-Centerd Earth-Fixed (ECEF ) or the Conventional Terrestrial System (CTS).
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Figure 4.16 indicates the latitude and longitude of Tehran as a sample point P

on Earth:
Latitude : 35◦40′19′′N Longitude : 51◦25′28′′ E (4.309)

To have a local coordinate B at P such that its x-axis points North, the y-axis points
West, and the z-axis points up, we may define an intermediate coordinate frame C at
the center of Earth. The frame G may go to C by a rotation − (π − ϕ) about the z-axis
followed by a rotation − (π/2 − λ) about the y-axis. The transformation between G

and C is
CRG = Ry,−(π/2−λ)Rz,−(π−ϕ)

=
− cos ϕ sin λ − sin λ sin ϕ cos λ

sin ϕ − cos ϕ 0
cos λ cos ϕ cos λ sin ϕ sin λ

 (4.310)

Therefore, the global coordinates of the point P at

ϕ = 51◦25′28′′ ≈ 51.424 deg ≈ 0.89752 rad

λ = 35◦40′19 ′′ ≈ 35.672 deg ≈ 0.62259 rad (4.311)

rP ≈ R0 = 6371230 m (4.312)

would be
Gr = CRT

G
Cr

=
−0.36362 −0.45589 0.81237

0.78178 −0.62355 0
0.50655 0.63510 0.58314

T  0
0

6371230


=

3.227 3 × 106

4.046 4 × 106

3.715 3 × 106

 m (4.313)

The coordinates of the origin of the B-frame at a point P (X, Y ,Z) would be

Gr = CRT
G

Cr

=
− cos ϕ sin λ − sin λ sin ϕ cos λ

sin ϕ − cos ϕ 0
cos λ cos ϕ cos λ sin ϕ sin λ

T  0
0
R0


= R0

cos λ cos ϕ

cos λ sin ϕ

sin λ

 (4.314)

which can be used to determine the longitude ϕ and latitude λ for the point P :

tan ϕ = Y

X
(4.315)

tan λ = Z√
X2 + Y 2

(4.316)
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The body frame B is achieved from C by a translation
[
0 0 R0

]
:

Br = Cr − R0k̂ (4.317)

Therefore, the global coordinates of P at the origin of B are

Gr = CRT
G

Cr = CRT
G

(
Br + R0k̂

)

= CRT
G

0
0
0

 +
 0

0
6,371,230

 =

3.2273 × 106

4.0464 × 106

3.7153 × 106

 m (4.318)

Example 288 � Satellite-Tracking Angles The tracking azimuth and elevation angles
are also used to adjust the dish of satellite receivers as shown in Figure 4.17. Let us
attach a geocentric coordinate frame B1(OXYZ ) on Earth at the dish point P such that
the X-axis points North, the Y -axis points West, and the Z-axis points up. The azimuth
angle α is traditionally measured clockwise such that North = 0 deg, South = 180 deg,
East = 90 deg, and West = 270 deg. Elevation angle β is measured from the tangent
surface on Earth to the sky such that β = 90 deg points straight up.

Let us also attach a local coordinate frame B(Oxyz) to the dish such that its
x-axis is on the centerline of the dish and B is originally coincident with B1. To
adjust the dish to point to a specific satellite, we need to aim the satellite by the
centerline.

To point the x-axis of B to the satellite, we can turn B from a coincident orientation
with B1, −α degrees about the z-axis and then turn it −β degrees about the y-axis.

X

ZB1
x

y
z

North

South

B

Y West

Figure 4.17 The tracking azimuth α and elevation β angles to point a satellite with the x-axis.
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So, the transformation matrix between B and B1 is

BR1 = Ry,−βRz,−α

=
 cos α cos β − cos β sin α sin β

sin α cos α 0
− cos α sin β sin α sin β cos β

 (4.319)

The satellite is at BrP = [rP , 0, 0] and therefore its position in the tangent frame B1 is

1r = BRT
1

1r = BRT
1

rP

0
0

 =
 rP cos β cos α

−rP cos β sin α

rP sin β

 (4.320)

Therefore, if we know the coordinate of the satellite in the tangent plane B1, we are
able to determine the required azimuth α and elevation β to adjust the dish antenna:

tan α = −Y

X
tan β = Z√

X2 + Y 2
(4.321)

Example 289 � Group Property of Transformations A set S together with a binary
operation ⊗ between the elements of S is called a group (S, ⊗) if it satisfies the
following four axioms:

1. Closure: If s1, s2 ∈ S, then s1 ⊗ s2 ∈ S.
2. Identity : There exists an identity element s0 such that s0 ⊗ s = s ⊗ s0 = s∀s ∈ S.
3. Inverse: For any s ∈ S there exists a unique inverse s−1 ∈ S such that s−1 ⊗ s =

s ⊗ s−1 = s0.
4. Associativity : If s1, s2, s3 ∈ S, then (s1 ⊗ s2) ⊗ s3 = s1 ⊗ (s2 ⊗ s3).

Three-dimensional coordinate transformations make a group if we define the set
of rotation matrices by

S = {
R ∈ R3×3 : RRT = RTR = I, |R| = 1

}
(4.322)

Therefore, the elements of the set S are transformation matrices [R], the binary operator
⊗ means matrix multiplication, the identity matrix is I, and the inverse of element [R]
is [R]−1 = [R]T.

The set S is also a continuous group because:

1. Binary matrix multiplication is a continuous operation.
2. The inverse of any element in S is a continuous function of that element.

Such a set S is a differentiable manifold . A group that is a differentiable manifold
is called a Lie group.

Example 290 � Transformation with Determinant −1 An orthogonal matrix
with determinant +1 corresponds to a rotation as described in Equation (4.280). In
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contrast, an orthogonal matrix with determinant −1 describes a reflection. Moreover,
it transforms a right-handed coordinate system into a left-handed one, and vice versa.
This transformation does not correspond to any physical action on rigid bodies.

4.10 ACTIVE AND PASSIVE ROTATIONS

We call the rotation of a local frame B in a global frame G an active rotation if
the position vector Br of a point P is fixed in the local frame and rotates with it.
Alternatively, the rotation of a local frame B in a global frame G is called a passive
rotation if the position vector Gr of a point P is fixed in the global frame and does
not rotate with the local frame.

The passive and active transformations are mathematically equivalent. The coor-
dinates of a point P can be transformed from one coordinate to the other by a proper
rotation matrix. In an active rotation, the observer is standing in a global frame G and
calculating the position of body points in G. However, in a passive rotation, the observer
is standing on the body frame B and calculating the position of global points in B.

If R1 = GRB is an active rotation matrix about an axis, such as the Z-axis, then

Gr = R1
Br = RZ,α

Br (4.323)

However, if the same rotation is a passive rotation and R2 = BRG is the rotation
matrix, then

Gr = RT
2

Br = RZ,−α
Br (4.324)

In rigid-body kinematics, we usually work with active rotations and examine the rotation
of a rigid body in a global frame.

Proof : A local frame B(Oxyz ) that is initially coincident with a global frame G(OXYZ )

performs a rotation. In an active rotation, a body point P will move with B and its
global coordinate will be found by the proper rotation matrix R1 = GRB . For simplicity,
let us assume that the axis of rotation is the Z-axis:

Gr = R1
Br = GRB

Br = RZ,α
Br (4.325)

In a passive rotation, the point P will keep its global coordinates. We may switch the
roll of frames B and G to consider an active rotation of −α for G in B about the z-axis.
The coordinate of P in B will be found by the proper rotation matrix R1 = BRG:

Br = R2
Gr = BRG

Gr = Rz,−α
Gr (4.326)

So, the global coordinates of P in the passive rotation may be found from (4.326) as

Gr = RT
2

Br = RT
z,−α

Br (4.327)

However, because of RZ,α = RT
z,α , we have

Gr = RT
2

Br = RZ,−α
Br (4.328)

�
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Example 291 Active and Passive Rotation about Z-Axis When the local and global
frames B and G are coincident, a body point P is at Br:

Br =
1

2
3

 (4.329)

A rotation 45 deg about the Z-axis will move the point to Gr:
Gr = RZ,90

Br

=


cos

π

2
− sin

π

2
0

sin
π

2
cos

π

2
0

0 0 1




1

2

3

 =


−2

1

3

 (4.330)

Now assume that the point P is a fixed point in G. When B rotates 90 deg about the
Z-axis, the coordinates of P in the local frame will change such that

Br = RZ,−90
Gr

=


cos

−π

2
− sin

−π

2
0

sin
−π

2
cos

−π

2
0

0 0 1


1

2
3

 =
 2

−1
3

 (4.331)

Example 292 Multiple Rotation about Global Axes Consider a globally fixed point
P at

Gr =
1

2
3

 (4.332)

The body B will turn 45 deg about the X-axis and then 45 deg about the Y -axis. An
observer in B will see P at

Br = Ry,−45 Rx,−45
Gr

=


cos

−π

4
0 − sin

−π

4
0 1 0

sin
−π

4
0 cos

−π

4




1 0 0

0 cos
−π

4
sin

−π

4

0 − sin
−π

4
cos

−π

4


1

2
3



=
 0.707 0.5 0.5

0 0.707 −0.707
−0.707 0.5 0.5

1
2
3

 =
 3.207

−0.707
1.793

 (4.333)

To check this result, let us change the role of B and G. So, the body point at

Br =
1

2
3

 (4.334)
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undergoes an active rotation of 45 deg about the x-axis followed by 45 deg about the
y-axis. The global coordinates of the point would be

Br = Ry,45 Rx,45
Gr (4.335)

so
Gr = [

Ry,45 Rx,45
]T Br =RT

x,45 RT
y,45

Br (4.336)

Example 293 Multiple Rotations about Body Axes Consider a globally fixed point
P at

Gr =
1

2
3

 (4.337)

The body B will turn 45 deg about the x-axis and then 45 deg about the y-axis. An
observer in B will see P at

Br = RY,−45 RX,−45
Gr

=


cos

−π

4
0 sin

−π

4
0 1 0

− sin
−π

4
0 cos

−π

4




1 0 0

0 cos
−π

4
− sin

−π

4

0 sin
−π

4
cos

−π

4


1

2
3



=
0.707 0.5 −0.5

0 0.707 0.707
0.707 −0.5 0.5

1
2
3

 =
0.20711

3.5356
1.2071

 (4.338)

4.11 � ROTATION OF ROTATED BODY

Consider a rigid body with a fixed point at position B0 that is not necessarily coincident
with the global frame G. The rotation matrix GR0 between B0 and G is known. If the
body rotates from this initial position, then the transformation matrix GRB between the
final position of the body and the global frame is

GRB = GR0
0RB (4.339)

The matrix 0RB is the transformation between initial and final positions of the body
with the assumption that B0 is a fixed position.

Proof : The principal assumption in the theory of rotation kinematics is that the body
coordinate frame B always begins to rotate from a coincident configuration with the
global frame G. If the body frame is not initially on the global frame, we show it by
B0 and assume that the body is already rotated from the coincident configuration with
G. The rotated body B0 is then going to turn a second rotation.
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P0

Y

X

y0

x0

y

G
B

0

B0

P

x

Figure 4.18 Rotation of a rotated rigid body about the Z-axis.

Figure 4.18 illustrates a body frame B at its final position after a rotation of α

degrees about the Z-axis from an initial position B0. The initial position of the body
is after a first rotation of α0 degrees about the Z-axis. In this figure both the first and
second rotations are about the global Z-axis.

To prevent confusion and keep the previous definitions, we define three transfor-
mation matrices GR0, 0RB , GRB . The matrix GR0 indicates the transformation between
G and the initial position of the body at B0. The matrix 0RB is the transformation
between the initial position of the body at B0 and the final position of the body B, and
the matrix GRB is the transformation between G and the final position of the body B.

We assume that GR0 is given as

GR0 =
cos α0 − sin α0 0

sin α0 cos α0 0
0 0 1

 (4.340)

The matrix GRB can be found using the regular method. We consider a body frame
starts from G and goes to the final position by two rotations α0 and α:

GRB = RZ,α0 RZ,α = GR0
0RB

=
cos (α + α0) − sin (α + α0) 0

sin (α + α0) cos (α + α0) 0
0 0 1

 (4.341)

Therefore, the rotation matrix BR0 is given as

BR0 = GRT
B

GR0 =
 cos α sin α 0

− sin α cos α 0
0 0 1

 (4.342)

The method is correct for a general case in which the first and second rotations are
about the same axis.
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To see the application, let us assume that a point P is at

Br = xı̂ + ŷ + zk̂ (4.343)

Its global position is
Gr = GRB

Br (4.344)

and its position in the initial frame B0 is

0r = BRT
0

Br (4.345)

When the body is at its initial position, the global coordinates of P are

G0r = GR0
0r (4.346)

�

Example 294 Rotation about X of a Rotated Body about Z Consider a rigid body
that is already rotated 30 deg about the Z-axis and is at B0:

GR0 =


cos

π

6
− sin

π

6
0

sin
π

6
cos

π

6
0

0 0 1

 (4.347)

The body rotates 60 deg about the X-axis from the position B0. The rotation matrix
GRB is given as

GRB = RX,π/6 RZ,π/3 =
0.86603 −0.5 0

0.35355 0.61237 −0.70711
0.35355 0.61237 0.70711

 (4.348)

Therefore,

0RB = GRT
0

GRB =
 0.92678 −0.12683 −0.35356

−0.12683 0.78033 −0.61238
0.35355 0.61237 0.70711

 (4.349)

If a point P is at

Br = 1ı̂ + 1̂ + 1k̂ (4.350)
its global coordinates are

Gr = GRB
Br = GRB

1
1
1

 =
0.36603

0.25881
1.673

 (4.351)

The coordinates of the current position of P can be found in B0 as

0r = 0RB
Br = 0RB

1
1
1

 =
0.446 39

0.041 12
1.673

 (4.352)
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Example 295 Rotation about x of a Rotated Body about Z Consider a rigid body
that is already rotated 45 deg about the Z-axis and is at B0:

GR0 =


cos

π

4
− sin

π

4
0

sin
π

4
cos

π

4
0

0 0 1

 ≈
0.707 −0.707 0

0.707 0.707 0
0 0 1

 (4.353)

The body rotates 45 deg about the x-axis from the position B0. Considering B0 as a
fixed frame, we can determine 0RB :

0RB = BRT
0 = RT

x,π/4 =


1 0 0

0 cos
π

4
sin

π

4

0 − sin
π

4
cos

π

4


T

(4.354)

Therefore,

GRB = GR0
0RB =

0.70711 −0.5 0.5
0.70711 0.5 −0.5

0 0.70711 0.70711

 (4.355)

Let us watch a triangle on the body with corners at O, P1, and P2, where

Br1 = 1ı̂ (4.356)
Br2 = 1ı̂ + 1̂ + 1k̂ (4.357)

The global coordinates of P1 and P2 are

Gr1 = GRB
Br1= GRB

1
0
0

 =
0.707 11

0.707 11
0

 (4.358)

Gr2 = GRB
Br2= GRB

1
1
1

 =
0.707 11

0.707 11
1.414 2

 (4.359)

The coordinates of the current positions of P1 and P2 in B0 are

0r1 = 0RB
Br1= 0RB

1
0
0

 =
1

0
0

 (4.360)

0r2 = 0RB
Br2= 0RB

1
1
1

 =
 1

0
1.414 2

 (4.361)
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KEY SYMBOLS

a general vector
ã skew-symmetric matrix of the vector a
A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
c cos
d distance between two points
êϕ, êθ , êψ coordinate axes of E, local roll–pitch–yaw coordinate axes
E Eulerian local frame
f, f1, f2 function of x and y

G global coordinate frame, fixed coordinate frame
I = [I ] identity matrix

ı̂, ̂ , k̂ local coordinate axis unit vectors

ı̃, ̃ , k̃ skew-symmetric matrices of the unit vectors ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axis unit vectors
l length
m number of repeating rotation
n fraction of 2π , number of repeating rotation
O common origin of B and G

Oϕθψ Euler angle frame
P body point, fixed point in B

Q transformation matrix of rotation about a global axis
r position vector
rij element of row i and column j of a matrix
R radius of a circle
R set of real numbers
s sin, a member of S

S set
t time
u a general axis
v velocity vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
δij Kronecker’s delta
ϕ, θ, ψ rotation angles about local axes, Euler angles
ϕ̇, θ̇ , ψ̇ Euler frequencies
ωx, ωy, ωz angular velocity components
ω angular velocity vector

Symbol
[ ]−1 inverse of matrix [ ]
[ ]T transpose of matrix [ ]
⊗ binary operation
(S, ⊗) group
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EXERCISES

1. Body Point and Global Rotations The point P is at rP = (1, 2, 1) in a body coordinate
frame B(Oxyz).

(a) Find the final global position of P after a rotation of 30 deg about the X-axis followed
by a 45 deg rotation about the Z-axis.

(b) Find the final global position of P after a rotation of 45 deg about the X-axis followed
by a 30 deg rotation about the Z-axis.

(c) Find the final global position of P after a rotation of 45 deg about the X-axis followed
by a 45 deg rotation about the Y -axis and then a 45 deg rotation about the Z-axis.

(d) � Does it matter if we change the order of rotations in part (c)?

2. Body Point after Global Rotation

(a) Find the position of a point P in the local coordinate frame if it is moved to GrP =
[1, 3, 2]T after a 60 deg rotation about the Z-axis.

(b) Find the position of a point P in the local coordinate frame if it is moved to GrP =
[1, 3, 2]T after a 60 deg rotation about the X-axis.

(c) Find the position of a point P in the local coordinate frame if it is moved to GrP =
[1, 3, 2]T after a 60 deg rotation about the Z-axis followed by a 60 deg rotation about
the X-axis.

(d) � Is it possible to combine the rotations in part (c) and do only one rotation about
the bisector of X- and Z-axes?

3. Invariant of a Vector A point was at BrP = [1, 2, z]T. After a rotation of 60 deg about
the X-axis followed by a 30 deg rotation about the Z-axis, it is at

GrP =
 X

Y

2.933


Find z, X, and Y .

4. Constant-Length Vector Show that the length of a vector will not change by rotation:∣∣Gr
∣∣ = ∣∣GRB

Br
∣∣

Show that the distance between two body points will not change by rotation:∣∣ Bp1 − Bp2
∣∣ = ∣∣GRB

Bp1 − GRB
Bp2

∣∣
5. Repeated Global Rotations Rotate BrP = [2, 2, 3]T 60 deg about the X-axis followed

by 30 deg about the Z-axis. Then, repeat the sequence of rotations for 60 deg about the
X-axis followed by 30 deg about the Z-axis. After how many rotations will point P be
back to its initial global position?

6. � Repeated Global Rotations How many rotations of α = π/m deg about the X-axis
followed by β = π/n deg about the Z-axis are needed to bring a body point to its initial
global position if m,n ∈ N?

7. Triple Global Rotations Verify the equations in Appendix A.

8. � Special Triple Rotation Assume that the first triple rotation in Appendix A brings
a body point back to its initial global position. What are the angles α �= 0, β �= 0, and
γ �= 0?
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Figure 4.19 A displaced and rotated frame.

9. � Combination of Triple Rotations Any triple rotation in Appendix A can move a
body point to its new global position. Assume α1, β1, and γ1 for case 1 are given as
QX,γ1QY,β1QZ,α1 . What can α2, β2, and γ2 be (in terms of α1, β1, and γ1) to get the same
global position if we use case 2: QY,γ2QZ,β2QX,α2 ?

10. Global Roll–Pitch–Yaw Rotation Matrix Calculate the global roll–pitch–yaw rotation
matrix for α = 30, β = 30, and γ = 30.

11. A Displaced and Rotated Frame Determine the rotation transformation matrix GRB in
Figure 4.19.

12. Global Roll–Pitch–Yaw Rotation Angles Calculate the role, pitch, and yaw angles for
the following rotation matrix:

BRG =
 0.53 −0.84 0.13

0.0 0.15 0.99
−0.85 −0.52 0.081


13. Body Point, Local Rotation What are the global coordinates of a body point at BrP =

[2, 2, 3]T after a rotation of 60 deg about the x-axis?

14. Two Local Rotations Find the global coordinates of a body point at BrP = [2, 2, 3]T

after a rotation of 60 deg about the x-axis followed by 60 deg about the z-axis.

15. Triple Local Rotations Verify the equations in Appendix B.

16. Combination of Local and Global Rotations Find the final global position of a body
point at BrP = [10, 10,−10]T after a rotation of 45 deg about the x-axis followed by 60 deg
about the z-axis.

17. Combination of Global and Local Rotations Find the final global position of a body
point at BrP = [10, 10,−10]T after a rotation of 45 deg about the x-axis followed by 60 deg
about the z-axis.

18. Repeated Local Rotations Rotate BrP = [2, 2, 3]T 60 deg about the x-axis followed by
30 deg about the z-axis. Then repeat the sequence of rotations for 60 deg about the x-axis
followed by 30 deg about the z-axis. After how many rotations will point P be back to its
initial global position?
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19. � Repeated Local Rotations How many rotations of α = π/m degrees about the
x-axis followed by β = π/n degrees about the z-axis are needed to bring a body point to
its initial global position if m,n ∈ N?

20. � Remaining Rotation Find the result of the following sequence of rotations:

GRB = AT
y,θA

T
z,ψAT

y,−θ

21. Angles from Rotation Matrix Find the angles ϕ, θ , and ψ if the rotation of case 1 in
Appendix B is given as Ax,ψAy,θAz,ϕ .

22. Euler Angles from Rotation Matrix Find the Euler angles for the rotation matrix

BRG =
 0.53 −0.84 0.13

0.0 0.15 0.99
−0.85 −0.52 0.081


23. Equivalent Euler Angles to Two Rotations Find the Euler angles corresponding to the

rotation matrix BRG = Ay,45Ax,30.

24. Equivalent Euler Angles to Three Rotations Find the Euler angles corresponding to
the rotation matrix BRG = Az,60Ay,45Ax,30.

25. � Local and Global Positions, Euler Angles Find the conditions between the Euler
angles to transform GrP = [1, 1, 0]T to BrP = [0, 1, 1]T.

26. � Equivalent Euler Angles to Three Rotations Find the Euler angles for the rotation
matrix of case 4 in Appendix B, Az,ψ ′Ay,θ ′Ax,ϕ′ .

27. � Integrability of Euler Frequencies Show that dθ and dψ are integrable if θ and ψ

are second and third Euler angles.

28. � Cardan Angles for Euler Angles Find the Cardan angles for a given set of Euler
angles.

29. � Cardan Frequencies for Euler Frequencies Find the Euler frequencies in terms of
Cardan frequencies.

30. Elements of Rotation Matrix The rotation matrix GRB is given as

GRB =
 cos(Î , ı̂) cos(Î , ̂ ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ̂ ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ̂ ) cos(K̂, k̂)


Find GRB if GrP1 = (0.7071,−1.2247, 1.4142) is a point on the x-axis and
GrP2 = (2.7803, 0.38049,−1.0607) is a point on the y-axis.

31. Completion of Rotation Matrix Complete the rotation matrix

GRB =
 √

3/3
√

6/6
√

2/2√
3/3

√
6/6 ?

? ? ?


32. Path of Motion in Two Coordinate Frames Assume a particle is moving on the fol-

lowing path in a global frame G:

X = a cos ωt Y = b sin ωt
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Figure 4.20 The restricted three-body problem in B and G coordinate frames.

A coordinate frame B which is coincident with G at t = 0 is turning about the Z-axis with
a constant angular velocity GωB = �K̂ .

(a) Determine the path of motion of the point in G.

(b) Determine the coordinates of the point in B.

(c) Determine the path of motion of the point in B.

(d) Solve parts (b) and (c) for ω = �.

33. � Kinematics of the Restricted Three-Body Problem Following Victor Szebehely
(1921–1997) we define the restricted three-body problem as: Two bodies m1 and m2

revolve around their center of mass O in circular orbits under the influence of their mutual
gravitational attraction and a third body m3 (attracted by the previous two but not influenc-
ing their motion) moves in the plane defined by the two revolving bodies. The restricted
problem of three bodies is to describe the motion of the third body m3. Figure 4.20
illustrates the problem in B and G coordinate frames:

a = m1l

M
b = m2l

M
a + b = l M = m1 + m2

Balance between the gravitational and centrifugal forces requires that

G
m1m2

l2
= m2aω2 = m1bω2

where G is the gravitational constant and ω is the common angular velocity of m1 and m2.
From these equations we have

Gm1 = aω2l2 Gm2 = bω2l2 G(m1 + m2) = ω2l2

where the last equation is Kepler’s third law. The equations of motion of m3 in the global
coordinate frame G are

Ẍ = ∂f

∂X
Ÿ = ∂f

∂Y

f = G

(
m1

r1
+ m2

r2

)
r1 =

√
(X − X1)

2 + (Y − Y1)
2

r2 =
√

(X − X2)
2 + (Y − Y2)

2

where X,Y are the global coordinates of m3, X1, Y1 are the global coordinates of m1, and
X2, Y2 are the global coordinates of m2.
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(a) Define X1, Y1, X2, Y2 as functions of time and show that the differential equations of
motion of m3 are

Ẍ = −G

(
m1 (X − b cos ωt)

r3
1

+ m2 (X + a cos ωt)

r3
2

)

Ÿ = −G

(
m1 (Y − b sin ωt)

r3
1

+ m2 (Y + a sin ωt)

r3
2

)

(b) Determine the transformation of coordinates of m3 between B and G to find the
equations of motion as

ẍ − 2ωẋ − ω2x = −G

(
m1

x − b

r3
1

+ m2
x + a

r3
2

)

ÿ + 2ωẏ − ω2y = −G

(
m1

y

r3
1

+ m2
y

r3
2

)

34. Linearly Independent Vectors A set of vectors a1, a2, . . ., an are considered linearly
independent if the equation

k1a1 + k2a2 + · · · + knan = 0

in which k1, k2, . . . , kn are unknown coefficients has only one solution:

k1 = k2 = · · · = kn = 0

Verify that the unit vectors of a body frame B(Oxyz) expressed in the global frame G(OXYZ)
are linearly independent.

35. Product of Orthogonal Matrices A matrix R is called orthogonal if R−1 = RT where(
RT

)
ij

= Rji . Prove that the product of two orthogonal matrices is also orthogonal.

36. Vector Identity The formula (a + b)2 = a2 + b2 + 2ab for scalars is equivalent to

(a + b)2 = a · a + b · b + 2a · b

for vectors. Show that this formula is equal to

(a + b)2 = a · a + b · b + 2 GRB a · b

if a is a vector in the local frame and b is a vector in the global frame.

37. Rotation as a Linear Operation Show that

R (a × b) = Ra × Rb

where R is a rotation matrix and a and b are two vectors defined in a coordinate frame.
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38. Scalar Triple Product Show that for three arbitrary vectors a, b, and c we have

a · (b × c) = (a × b) · c

39. Decomposition of a Matrix into Symmetric and Skew Symmetric Any matrix can be
decomposed into symmetric and a skew-symmetric matrices. Show the decomposition for
the following matrix:  ∂rx/∂x ∂rx/∂y ∂rx/∂z

∂ry/∂x ∂ry/∂y ∂ry/∂z

∂rz/∂x ∂rz/∂y ∂rz/∂z
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Orientation Kinematics

Any rotation φ of a rigid body with a fixed point O about a fixed axis û can be
decomposed into three rotations about three given non-coplanar axes. On the contrary,
the finial orientation of the rigid body after a finite number of rotations is equivalent
to a unique rotation about a unique axis. Determination of the angle and axis is called
the orientation kinematics of rigid bodies.

5.1 AXIS–ANGLE ROTATION

Let the body frame B(Oxyz ) rotate φ about a fixed line in the global frame G(OXYZ )

that is indicated by a unit vector û with directional cosines u1, u2, u3,

û = u1Î + u2Ĵ + u3K̂ (5.1)√
u2

1 + u2
2 + u2

3 = 1 (5.2)

This is called the axis–angle representation of a rotation. Two parameters are needed
to define the axis of rotation that goes through O and one parameter is needed to
define the amount of rotation about the axis. So, an angle–axis rotation needs three
independent parameters to be defined.

The angle–axis transformation matrix GRB that transforms the coordinates of the
body frame B(Oxyz ) to the associated coordinates in the global frame G(OXYZ ),

Gr = GRB
Br (5.3)

is
GRB = Rû,φ = I cos φ + ûûT vers φ + ũ sin φ (5.4)

GRB =
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (5.5)

where

vers φ = versin φ = 1 − cos φ = 2 sin2 φ

2
(5.6)

and ũ is the skew-symmetric matrix associated to the vector û,

ũ =
 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (5.7)

422
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A matrix ũ is skew symmetric if

ũT = −ũ (5.8)

For any transformation matrix GRB , we may obtain the equivalent axis û and angle φ

to provide the same matrix by

ũ = 1

2 sin φ

(
GRB − GRT

B

)
(5.9)

cos φ = 1

2

(
tr

(
GRB

) − 1
)

(5.10)

Equation (5.5) is called the angle–axis or axis–angle rotation matrix and is the
most general transformation matrix for rotation of a body frame B in a global frame
G. If the axis of rotation (5.1) coincides with a global coordinate axis Z, Y , or X,
then Equation (5.5) reduces to the principal local rotation matrices (4.101), (4.102),
and (4.103), respectively.

Proof : The rotation φ about an axis û is equivalent to a sequence of rotations about
the axes of a body frame B such that the local frame is first rotated to bring one of its
axes, say the z-axis, into coincidence with the rotation axis û followed by a rotation φ

about that local axis, then the reverse of the first sequence of rotations.
Figure 5.1 illustrates an axis of rotation û = u1Î + u2Ĵ + u3K̂ , the global frame

G(OXYZ ), and the rotated body frame B (Oxyz) when the local z-axis is coincident
with û. Assume that the body and global frames were coincident initially. When we
apply a sequence of rotations ϕ about the z-axis and θ about the y-axis on the body
frame B (Oxyz), the local z-axis will become coincident with the rotation axis û. We
apply the rotation φ about û and then perform the sequence of rotations ϕ and θ

backward. Following Equation (4.250), the rotation matrix GRB to map the coordinates

X
Y

Z

O

x

y

z

ϕ

θ

B
G

u

φ

Figure 5.1 Axis of rotation û when it is coincident with the local z-axis.
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of a point in the body frame to its coordinates in the global frame after rotation φ

about û is
GRB = BR−1

G = BRT
G = Rû,φ

= [
Rz,−ϕ Ry,−θ Rz,φ Ry,θ Rz,ϕ

]T

= RT
z,ϕ RT

y,θ RT
z,φ RT

y,−θ RT
z,−ϕ (5.11)

Substituting the equations

sin ϕ = u2√
u2

1 + u2
2

cos ϕ = u1√
u2

1 + u2
2

sin θ =
√

u2
1 + u2

2 cos θ = u3

sin θ sin ϕ = u2 sin θ cos ϕ = u1 (5.12)

in GRB will provide the angle–axis rotation matrix
GRB = Rû,φ

=
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (5.13)

The matrix (5.13) can be decomposed to

Rû,φ = cos φ

 1 0 0
0 1 0
0 0 1

 + (1 − cos φ)

 u1

u2

u3

 [
u1 u2 u3

]

+ sin φ

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (5.14)

which can be summarized as (5.4). Showing the rotation matrix by its elements GRB =
Rû,φ = [

rij

]
, we have

rij = δij cos φ + uiuj (1 − cos φ) − εijkuk sin φ (5.15)

The angle–axis rotation equation (5.4) is also called the Rodriguez rotation formula
or the Euler–Lexell–Rodriguez formula . It is sometimes reported in the literature as
the following equivalent forms:

Rû,φ =



I + ũ sin φ + 2ũ2 sin2 φ

2
(5.16)

I + 2ũ sin
φ

2

(
I cos

φ

2
+ ũ sin

φ

2

)
(5.17)

I + ũ sin φ + ũ2 vers φ (5.18)[
I − ûûT

]
cos φ + ũ sin φ + ûûT (5.19)

I + ũ2 + ũ sin φ − ũ2 cos φ (5.20)
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The inverse of an angle–axis rotation is

BRG = GRT
B = Rû,−φ = I cos φ + ûûT vers φ − ũ sin φ (5.21)

which means that the orientation of B in G when B is rotated φ about û is the same
as the orientation of G in B when B is rotated −φ about û. The rotation Rû,−φ is also
called the reverse rotation.

The 3 × 3 real orthogonal transformation matrix GRB is also called a rotator and
the skew-symmetric matrix ũ is called a spinor . We can verify that

ũû = 0 (5.22)

I − ûûT = ũ2 (5.23)

rTũr = 0 (5.24)

û × r = ũr = −r̃ û = −r × û (5.25)

We may examine Equations (5.9) and (5.10) by direct substitution and show that

GRB − GRT
B =

 0 −2u3 sin φ 2u2 sin φ

2u3 sin φ 0 −2u1 sin φ

−2u2 sin φ 2u1 sin φ 0



= 2 sin φ

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 = 2ũ sin φ (5.26)

and
tr

(
GRB

) = r11 + r22 + r33

= 3 cos φ + u2
1 (1 − cos φ) + u2

2 (1 − cos φ) + u2
3 (1 − cos φ)

= 3 cos φ + u2
1 + u2

2 + u2
3 − (

u2
1 + u2

2 + u2
3

)
cos φ

= 2 cos φ + 1 (5.27)

The axis of rotation û is also called the Euler axis or the eigenaxis of rotation. �

Example 296 Skew-Symmetric Matrices for ı̂, ̂ , and k̂ The definition of an skew-
symmetric matrix ã corresponding to a vector a is defined by

ã =
 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (5.28)

Hence,

ı̃ =
 0 0 0

0 0 −1
0 1 0

 (5.29)
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j̃ =
 0 0 1

0 0 0
−1 0 0

 (5.30)

k̃ =
 0 −1 0

1 0 0
0 0 0

 (5.31)

Example 297 Angle–Axis of Rotation When û = K̂ If the local frame B(Oxyz )

rotates about the Z-axis, then
û = K̂ (5.32)

and the transformation matrix (5.5) reduces to

GRB =
 0 vers φ + cos φ 0 vers φ − 1 sin φ 0 vers φ + 0 sin φ

0 vers φ + 1 sin φ 0 vers φ + cos φ 0 vers φ − 0 sin φ

0 vers φ − 0 sin φ 0 vers φ + 0 sin φ 1 vers φ + cos φ



=
 cos φ − sin φ 0

sin φ cos φ 0
0 0 1

 (5.33)

which is equivalent to the rotation matrix about the Z-axis of the global frame
in (4.17).

Example 298 Angle and Axis of a Rotation Matrix A body coordinate frame B

undergoes three Euler rotations (ϕ, θ, ψ) = (30, 30, 30) deg with respect to a global
frame G. The rotation matrix to transform the coordinates of B to G is

GRB = BRT
G = [

Rz,ψRx,θRz,ϕ

]T = RT
z,ϕRT

x,θR
T
z,ψ

=
 0.875 −0.216 51 0.433 01

0.433 01 0.75 −0.5
−0.216 51 0.625 0.75

 (5.34)

The unique angle–axis of rotation for this rotation matrix can then be found by
Equations (5.9) and (5.10):

φ = cos−1 [ 1
2 (tr (GRB) − 1)

] = cos−1(0.6875)

= 0.812 76 rad = 46.568 deg (5.35)

ũ = 1

2 sin φ
(GRB − GRT

B) =
 0 −0.447 0.447

0.447 0 −0.774
−0.447 0.774 0

 (5.36)
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û =
 0.774

0.447
0.447

 (5.37)

As a double check, we may verify the angle–axis of rotation formula and derive the
same rotation matrix:

GRB = Rû,φ = I cos φ + ûûT vers φ + ũ sin φ

=
 0.875 −0.216 51 0.433 01

0.433 01 0.75 −0.5
−0.216 51 0.625 0.75

 (5.38)

Example 299 Rotation about a Rotated Local Axis When the body coordinate frame
B(Oxyz ) rotates ϕ about the global Z-axis, then the x-axis will move to a new orien-
tation in G indicated by ûx :

ûx = GRZ,ϕ ı̂ =
 cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

 1
0
0

 =
 cos ϕ

sin ϕ

0

 (5.39)

Rotation θ about ûx = (cos ϕ)Î + (sin ϕ)Ĵ can be defined by Rodriguez’s formula (5.5):

GRûx,θ = cos2 ϕ vers θ + cos θ cos ϕ sin ϕ vers θ sin ϕ sin θ

cos ϕ sin ϕ vers θ sin2 ϕ vers θ + cos θ − cos ϕ sin θ

− sin ϕ sin θ cos ϕ sin θ cos θ

 (5.40)

Therefore, a rotation ϕ about the global Z-axis followed by a rotation θ about the local
x-axis makes a transformation matrix

GRB = GRûx,θ
GRZ,ϕ

=
 cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (5.41)

that must be equal to [Rx,θ Rz,ϕ]−1 = RT
z,ϕ RT

x,θ :

RT
z,ϕ RT

x,θ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

T  1 0 0
0 cos θ sin θ

0 − sin θ cos θ

T

=
 cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (5.42)
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Example 300 Orthogonality of Rotation Matrix The orthogonality characteristic of
the rotation matrix must be consistent with the Rodriguez formula as well. We show
that we can multiply Equation (5.4) and (5.21):

GRB
BRG = Rû,φRû,−φ

= (
I cos φ + ûûT vers φ + ũ sin φ

) (
I cos φ + ûûT vers φ − ũ sin φ

)
= I cos2 φ + ûûT vers φ cos φ − ũ sin φ cos φ

+ ûûT vers φ cos φ + ûûTûûT vers φ vers φ − ũûûT vers φ sin φ

+ ũ sin φ cos φ + ûûTũ sin φ vers φ − ũũ sin2 φ

= I (5.43)

That is because of

ûûT =

 u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3

 (5.44)

ûûTûûT =

 u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u1u3 u2u3 u2
3

 = ûûT (5.45)

ũûûT = ûûTũ =
 0 0 0

0 0 0
0 0 0

 (5.46)

Example 301 Nonuniqueness of Angle–Axis of Rotation The angle–axis of rotation
matrices for (θ, û), (−θ,−û), and (θ + 2π, û) are the same. So, the equivalent angle
and axis for a rotation matrix is not unique. However, the final orientation of B would
be the same by applying any of these angle–axis rotations.

Example 302 Elimination of First and Last Local Rotations Consider a body point P

at Br = [2, 3, 1]T. The body undergoes three rotations: 90 deg about the z-axis, 90 deg
about the x-axis, and −90 deg about the z-axis. Because the first and last rotations are
in reverse, they eliminate each other and a single 90 deg rotation about the line û that
is on the x-axis after the first rotation remains.

To examine this fact, we may find the global position of the corner P :

Gr = GRB
Br = [

Rz,−πRx,πRz,π

]T Br

=
 1 0 0

0 −1 0
0 0 −1

 2
3
1

 =
 2

−3
−1

 (5.47)
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We must get the same coordinates if we turn the block about the line û where the
x-axis points when the block is turned 90 deg about the z-axis, where

û = Rz,π ı̂ =
 cos π sin π 0

− sin π cos π 0
0 0 1

 1
0
0

 =
−1

0
0

 (5.48)

and hence, the rotation matrix BRG = RT
û,π

is

BRG = GRT
B = Rû,−π = I cos π + ûûT vers π − ũ sin π

=
 1 0 0

0 −1 0
0 0 −1

 (5.49)

The global coordinates of P after 90 deg rotation about û would be

Gr = RT
û,−π

Br =
 1 0 0

0 −1 0
0 0 −1

T  2
3
1

 =
 2

−3
−1

 (5.50)

Example 303 One Rotation, Equivalent to Three Rotations Consider the brick in
Figure 5.2 at initial position 1, at position 2 after 90 deg rotation about the z-axis, at
position 3 after 90 deg rotation about the x-axis, and at position 4 after −90 deg rotation
about the y-axis. As the figure shows, the brick can go to the final position by only
one rotation about the x-axis.

To check this, we can find the transformation matrix GRB for the two sequence of
rotations to go to the final positions and determine the global coordinates of a point P

at Br = [2, 3, 1]T. The first transformation matrix is

GRB = BRT
G = [

Ry,−π/2Rx,π/2Rz,π/2
] T =

 1 0 0
0 0 −1
0 1 0

 (5.51)

and the second transformation matrix is

GRB = RT
x,π/2 =


1 0 0

0 cos
π

2
sin

π

2
0 − sin

π

2
cos

π

2


T

=
 1 0 0

0 0 −1
0 1 0

 (5.52)
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z3

z4
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Figure 5.2 A brick at initial position 1 and after rotations of 90 deg about the z-axis, 90 deg
about the x-axis, and −90 deg about the y-axis.

It shows that Ry,−π/2Rx,π/2Rz,π/2 ≡ Rx,π/2, and therefore the final global position
of P is

Gr = BRT
G

Br =
 2

−1
3

 (5.53)

Example 304 The Reverse Global Rotations Do Not Eliminate Each Other When
the first and last rotations are about the same global axis reversely, they do not eliminate
each other. Figure 5.2 illustrates a brick at initial position 1, at position 2 after 90 deg
rotation about the Z-axis, at position 3 after 90 deg rotation about the Y -axis, and at
position 4 after −90 deg rotation about the Z-axis. The transformation matrix of these
rotations is

GRB = RZ,−π/2RY,π/2RZ,π/2 =
 1 0 0

0 0 −1
0 1 0

 (5.54)

It shows that the first rotations, which are reverse rotations about the same axis, do not
eliminate each other:

RZ,−π/2RY,π/2RZ,π/2 �= RY,π/2 (5.55)

Example 305 � Condition of Rigid-Body Rotation Consider some body points
O,P1, P2, . . . at 0,Gr1,

Gr2, . . . . The body has a fixed point at O that is the origin of
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the global and body coordinate frames G and B. After a motion of the body, the points
will be O,P ′

1, P
′
2, . . . at 0,Gr′

1,
Gr′

2, . . . . The condition for the motion of the body to
be a rigid body motion about the fixed point O is that the relative distances of the
points remain constant. So, for every pair of points Pi , Pj we have(

ri − rj

) = (
r′
i − r′

j

)
i, j = 1, 2, 3, . . . (5.56)

Now consider a body point P at r that moves to P ′ at r′ after a rigid-body motion
about O. As is shown in Figure 5.3, let M be the midpoint of PP ′ and let λ = λû

indicate a line through O in some direction perpendicular to PP ′. Point N is the foot
of the perpendicular from M to the axis of û. Then, PP ′ is perpendicular to MN , and
MN is perpendicular to the axis of û. In triangle �PNP ′ we have

∠PNM = ∠P ′NM = 1
2φ (5.57)

X Y

Z

O

N

P

r

P′

a r′

u

M

φ/2

φ/2 b

λ

Figure 5.3 Rigid body rotation of a body point P .

The vectors
−→
ON and

−→
PP ′ can be expressed by r and r′:

−→
OM = a = 1

2 (r′ + r) (5.58)
−→
PP ′ = b = (r′ − r) (5.59)

The vector b is parallel to û × a, and we have

b = λ × a = 2(û × a) tan
φ

2
(5.60)

λ = 2 tan
φ

2
(5.61)

Therefore, the point P goes to P ′ by a rotation φ about the axis û and its new position
vector is determined by Equation (5.60). The condition for a rigid-body rotation about
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a fixed point is determination of a vector λ such that Equation (5.60) is satisfied.
Although the rotation is not a vector quantity, λ is called the rotation vector .

Example 306 � Time Derivative of Rotation Matrix Is Skew Symmetric To take the
derivative of a matrix, we should take the derivative of every element of the matrix.
So, if we show the rotation matrix by its elements, GRB = [rij ], then GṘB = [ṙij ].

The time derivative of the orthogonality condition of rotation matrices (4.276) is
given as

d

dt

(
GRT

B
GRB

) = GṘT
B

GRB + GRT
B

GṘB = 0 (5.62)

and leads to [
GRT

B
GṘB

]T = −GRT
B

GṘB (5.63)

which shows that
[
GRT

B
GṘB

]
is a skew-symmetric matrix. We may show the skew-

symmetric matrix
[
GRT

B
GṘB

]
by

ω̃ = GRT
B

GṘB (5.64)

and find the following equation for the time derivative of the rotation matrix:

GṘB = GRB ω̃ (5.65)

where ω is the vector of angular velocity of the frame B(Oxyz ) with respect to frame
G(OXYZ ) and ω̃ is its skew-symmetric matrix.

Example 307 � Parametric Derivative of a Rotation Matrix When a rotation matrix
[R] = R(τ) is a function of a variable τ , we use the orthogonality condition (4.276),

[R][R]T = I (5.66)

to determine the derivative of [R] with respect to τ :

d[R]

dτ
[R]T + [R]

d[R]T

dτ
= 0 (5.67)

It can be rewritten in the form

d[R]

dτ
[R]T +

[
d[R]

dτ
[R]T

]T

= 0 (5.68)

which shows that [(dR/dτ)RT] is a skew-symmetric matrix.
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Example 308 � Eigenvalues and Eigenvectors of GRB Assume that the rotation
matrix for angle φ about û is GRB . Applying the rotation on the axis of rotation û

cannot change its direction,

GRB û = λû (5.69)

so the transformation equation implies that∣∣GRB − λI
∣∣ = 0 (5.70)

The characteristic equation of this determinant is

−λ3 + tr(GRB)λ2 − tr(GRB)λ + 1 = 0 (5.71)

Factoring the left-hand side gives

(λ − 1)
[
λ2 − λ

(
tr(GRB) − 1

) + 1
] = 0 (5.72)

and shows that λ1 = 1 is always an eigenvalue of GRB . Hence, there exist a real vector û

such that every point on the line indicated by vector n1 = û remains fixed and invariant
under transformation GRB . The remaining eigenvalues are complex conjugates,

λ2 = eiφ = cos φ + i sin φ (5.73)

λ3 = e−iφ = cos φ − i sin φ (5.74)

and their associated eigenvectors are v and v, where v is the complex conjugate of
v. Because GRB is orthogonal, its eigenvectors n1, v, and v are also orthogonal. The
eigenvectors v and v span a plane perpendicular to the axis of rotation n1. A real basis
for this plane can be found by using the following vectors:

n2 = 1
2 |v + v| (5.75)

n3 = 1
2 i|v − v| (5.76)

The basis vectors n2 and n3 transform to

GRB n2 = 1
2 |λ2v + λ3v| = 1

2

∣∣∣eiφv + eiφv
∣∣∣

= v cos φ + v sin φ (5.77)

GRB n3 = 1
2 i|λ2v − λ3v| = 1

2

∣∣∣eiφv − eiφv
∣∣∣

= −v cos φ + v sin φ (5.78)

Therefore, the effect of the transformation GRB is to rotate vectors in the planes parallel
to the plane that is spanned by n2 and n3 through angle φ about n1.

Example 309 � Rigid-Body Rotation Theorem We may prove a theorem to show
that any displacement of a rigid body with a fixed point is a rotation.
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Theorem If O, P1, and P2 are three particles of a rigid body, and if the body is
displaced about O, then the body undergoes a rotation about O that can be determined
by the displacement of P1 and P2.

Let us set up global and local coordinate frames G and B at O and show the
position vectors of P1 and P2 by Gr1 and Gr2, respectively. The position vectors will
be at Gr′

1 and Gr′
2 after displacement of the body. To prove the theorem, we must show

that there is a vector λ such that if

a1 = 1
2

(
r′

1 + r1
)

a2 = 1
2

(
r′

2 + r2
)

(5.79)

b1 = (
r′

1 − r1
)

b2 = (
r′

2 − r2
)

(5.80)

then

b1 = λ × a1 b2 = λ × a2 (5.81)

Furthermore, if r is the position vector of any other body point P , and if

a = 1
2

(
r′ + r

)
b = (r′ − r) (5.82)

then

b = λ × a (5.83)

Because the body is rigid, we must have

b1 · a1 = 0 b2 · a2 = 0 b1 · a1 + b2 · a2 = 0 (5.84)

Now if there exists a rotation vector λ, then it must be perpendicular to b1 and b2.
Therefore,

λ = c (b1 × b2) (5.85)

and conditions (5.81) require that

b1 = c (b1 × b2) × a1 b2 = c (b1 × b2) × a2 (5.86)

or

b1 = −cb1 (b2 · a1) b2 = cb2 (b1 · a2) (5.87)

so

c = − 1

b2 · a1
= 1

b1 · a2
(5.88)

If b2 · a1 �= 0 and b1 · a2 �= 0, then there exists a rotation vector λ such that

u = b1 × b2

b1 · a2
= b2 × b1

b2 · a1
(5.89)
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Now if r is the position vector of an arbitrary body point P and b = λ × a,
b · a = 0, then

b · a1 = (λ × a) · a1 = −(λ × a1) · a = −b1 · a (5.90)

b · a2 = (λ × a) · a2 = −(λ × a2) · a = −b2 · a (5.91)

The point P at r is therefore rigidly connected to O, P1, and P2. The Euler rigid-body
rotation theorem may also be expressed as: The displacement of a rigid body with a
fixed point at the origin of global and body coordinate frames G and B from an initial
to a final orientation is achieved by a rotation 2R1 through a certain angle φ about an
axis û which is fixed in both frames. The axis is in the direction of the eigenvector
associated with the eigenvalue λ = +1 of the rotation transformation matrix 2R1.

Example 310 � Final Rotation Formula We need a formula to determine the rotation
φ about Gû of a body coordinate frame B that is not coincident with the global frame G.

Figure 5.4 illustrates a global frame G and a body frame B0 at an arbitrary con-
figuration. The body frame is supposed to turn φ about an axis Gû from its current
position at B0. For simplicity, we may drop the superscript G from Gû and remember
that û indicates the fixed axis in G:

û = Gû = u1Î + u2Ĵ + u3K̂ (5.92)√
u2

1 + u2
2 + u2

3 = 1 (5.93)

X

y1

z1

y0

u

Y

Z

z0

x1

G

B1

B0

θ

ϕ

β
φ

α γ

x0

y

z

B

Figure 5.4 A global frame G and a body frame B0 at an arbitrary configuration.

We can always assume that the body has come to the position B0 from a coincident
position with G by a rotation α about z0 followed by a rotation β about x0 and then a
rotation γ about z0.

Consider the body frame B at the coincident position with B0. When we apply a
sequence of rotations ϕ about the z-axis and θ about the y-axis on the body frame, the
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local z-axis will coincide with the rotation axis Gû. Let us take a picture of B at this
time and indicate it by B1. Then we apply the rotation φ about z ≡ û and perform the
sequence of rotations −θ about the y-axis and −ϕ about the z-axis. The resultant of
this maneuver would be a rotation φ of B about û starting from B0.

The initial relative orientation of the body must be known, and therefore the trans-
formation matrix GR0 between B0 and G is known:

GR0 = [
bij

] =
 b11 b12 b13

b21 b22 b23

b31 b32 b33

 (5.94)

Having
GR0 = Rz0,γ Rx0,β Rz0,α

=
 cαcγ − cβsαsγ cγ sα + cαcβsγ sβsγ

−cαsγ − cβcγ sα cαcβcγ − sαsγ cγ sβ

sαsβ −cαsβ cβ

 (5.95)

we can determine the angles α, β, and γ :

α = −arctan
b31

b32
(5.96)

β = arccos b33 (5.97)

γ = arctan
b13

b23
(5.98)

The transformation matrix between B0 and B comes from the Rodriguez formula (5.4).
However, Gû must be expressed in B0 to use Equation (5.4):

0û = GRT
0

Gû = GRT
0 û (5.99)

0RB = I cos φ + 0û0ûT vers φ + 0ũ sin φ

= GRT
0 cos φ + (

GRT
0 û

) (
GRT

0 û
)T

vers φ + GRT
0 ũ sin φ

= GRT
0 cos φ + GRT

0 û ûT GR0 vers φ + GRT
0 ũ sin φ (5.100)

The transformation matrix GRB between the final position of the body and the global
frame would be

GRB = GR0
0RB

= GR0
[
GRT

0 cos φ + GRT
0

[
û ûT]GR0 vers φ + GRT

0 ũ sin φ
]

= I cos φ + [
û ûT]GR0 vers φ + ũ sin φ (5.101)

This equation needs a name. Let us call it the final rotation formula . It determines
the transformation matrix between a body frame B and the global frame G after the
rotation φ of B about û = Gû, starting from a position B0 �= G.
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As an example, consider a body that is rotated 45 deg about the Z-axis and
is at B0:

GR0 =


cos

π

4
− sin

π

4
0

sin
π

4
cos

π

4
0

0 0 1

 ≈
 0.707 −0.707 0

0.707 0.707 0
0 0 1

 (5.102)

The body is then supposed to turn 90 deg about Gû:

φ = 1
2π Gû = Î (5.103)

Therefore,

GRB =
 1 0 0

0 1 0
0 0 1

 cos
π

2
+

 0 0 0
0 0 −1
0 1 0

 sin
π

2

+GR0

 1
0
0

 [
1 0 0

](
1 − cos

π

2

)

=
 0.707 11 0 0

0.707 11 0 −1
0 1 0

 (5.104)

A body point at Br = ı̂ will be seen at

Gr = GRB
Br

=
 0.707 11 0 0

0.707 11 0 −1
0 1 0

 1
0
0

 =
 0.707 11

0.707 11
0

 (5.105)

Example 311 � Euler Theorem 1 A rotation about a point is equivalent to a rotation
about a line passing through this point.

Proof : Let us suppose that a body has been rotated about the point O. Let us select an
arbitrary segment A1B1 in the initial position of the body that is not passing through
O. Then A2B2 would be the corresponding segment at the final position. Let us draw
the plane of symmetry π of segment A1B1 and A2B2 by points O and midpoints of
A1A2 and B1B2. The planes OA1 B1 and OA2 B2 intersect at a line l which is also in
the plane of symmetry. The line l passes through O because l is the locus of points
equidistant from A1 and A2 as well as B1 and B2. While OA1 = OA2 and OB1 = OB2 ,
let us pick a point C on l different than O.

The tetrahedrons OCA1 B1 and OCA2 B2 are equal and superposable. This is
because the vertices O,C, A1 and O, C,A2 are placed symmetrically with respect
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to π . Hence, if the tetrahedrons OCA1 B1 and OCA2 B2 were not superposable, the
vertices B1 and B2 would have to be placed asymmetrically with respect to π .

If we now rotate the rigid body about the axis l so that A1 falls on A, then the
tetrahedron OCA1 B1 will fall on the tetrahedron OCA2 B2 . After this rotation of the
body we will know the position of three points O,A2, B2 of the body and therefore
we know the positions of every point of the body.

A consequence of the Euler theorem is that: During a rotation of a body about a
point, there exists in the body a certain line having the property that its points do not
change their position.

Another consequence of the Euler theorem is that: If a rigid body makes two
successive rotations about two axes passing through the fixed point O, then the body
can be displaced from its initial position to its final position by means of one rotation
about an axis passing through O. Therefore, the combination of two rotations about
an axis passing through one point is a rotation about an axis passing through the
same point. �

Example 312 � Euler–Chasles Theorem A rigid body can be displaced from an
initial position to another final position by means of one translation and one rotation.

Proof : Let P1 be a point of the rigid body B in its initial position B1 and P2 the cor-
responding point in the final position B2. We first translate the body to an intermediate
position B ′ so that P1 falls on P2. If the position B ′ is identical with B2, then we have
displaced the body by means of one translation, conformably to the requirements of the
theorem. Let us assume that the position B ′ is different than B2. Because the positions
B ′ and B2 of the rigid body have a common point P2, then by Euler theorem 1 of
Example 311 we can displace B ′ to B2 by a rotation about an axis passing through P2.

If we choose a different P1, then in general we will have a different translation
and a different rotation about a different axis. �

Example 313 � Euler Theorem 2 A rigid body can be displaced from an initial
position to a final position by means of two successive rotations.

Proof : Let P1 be a point of the rigid body B in its initial position B1 and P2 the
corresponding point in the final position B2. We rotate the body 180 deg about the
axis l, which is the axis of symmetry of the segment P1P2. By this rotation, point P1

will fall on point P2. The body will assume the position B ′ which has the point P2

in common with position B2. Consequently, we can go from position B ′ to B2 by a
rotation about an axis l passing through P2. �

5.2 EULER PARAMETERS

Any orientation of a local frame B(Oxyz ) relative to a global frame G(OXYZ ) can be
achieved by a rotation φ about an axis Gû = u1Î + u2Ĵ + u3K̂ . The existence of such
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an axis of rotation is the analytical representation of Euler’s theorem for rigid-body
rotation: The most general displacement of a rigid body with one point fixed is a rotation
about some axis.

An effective way to find the angle φ and axis Gû is the Euler parameters
e0, e1, e2, e3 such that e0 is a scalar and e1, e2, e3 are components of a vector e,

e0 = cos
φ

2
(5.106)

e = e1Î + e2Ĵ + e3K̂ = û sin
φ

2
(5.107)

so
e2

1 + e2
2 + e2

3 + e2
0 = e2

0 + eT e = 1 (5.108)

Using the Euler parameters, the transformation matrix GRB to satisfy the equation
Gr = GRB

Br is

GRB = Rû,φ = (
e2

0 − e2) I + 2e eT + 2e0ẽ

=
 e2

0 + e2
1 − e2

2 − e2
3 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)

2 (e0e3 + e1e2) e2
0 − e2

1 + e2
2 − e2

3 2 (e2e3 − e0e1)

2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e2
0 − e2

1 − e2
2 + e2

3

 (5.109)

where ẽ is the skew-symmetric matrix associated with e,

ẽ =
 0 −e3 e2

e3 0 −e1

−e2 e1 0

 (5.110)

Euler parameters provide a well-suited, redundant, and nonsingular rotation descrip-
tion for arbitrary and large rotations. It is redundant because there are four parameters
and a constraint equation to define the required three parameters of angle–axis rotation.

When a transformation matrix GRB is given as

GRB = [
rij

] =
 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (5.111)

where rij indicates the element of row i and column j of GRB ,we may find the Euler
parameters e0, e1, e2, e3 and indicate the axis and angle of rotation from

e2
0 = 1

4 (tr(GRB) + 1) = 1
4 (r11 + r22 + r33 + 1) (5.112)

e = 1

4e0

 r32 − r23

r13 − r31

r21 − r12

 (5.113)
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or from one of the following four sets of equations:

e0 = ±1

2

√
1 + r11 + r22 + r33

e1 = 1

4

r32 − r23

e0
e2 = 1

4

r13 − r31

e0
e3 = 1

4

r21 − r12

e0
(5.114)

e1 = ±1

2

√
1 + r11 − r22 − r33

e2 = 1

4

r21 + r12

e1
e3 = 1

4

r31 + r13

e1
e0 = 1

4

r32 + r23

e1
(5.115)

e2 = ±1

2

√
1 − r11 + r22 − r33

e3 = 1

4

r32 + r23

e2
e0 = 1

4

r13 − r31

e2
e1 = 1

4

r21 + r12

e2
(5.116)

e3 = ±1

2

√
1 − r11 − r22 + r33

e0 = 1

4

r21 − r12

e3
e1 = 1

4

r31 + r13

e3
e2 = 1

4

r32 + r23

e3
(5.117)

Any set of Equations (5.114)–(5.117) provides the same Euler parameters e0, e1, e2, e3.
To minimize the numerical inaccuracies, it is recommended to use the set with maxi-
mum divisor. The plus-and-minus sign indicates that rotation φ about û is equivalent
to rotation −φ about −û.

We may obtain the angle of rotation φ and the axis of rotation û for a given
transformation matrix GRB by

cos φ = 1
2 (r11 + r22 + r33 − 1) (5.118)

û = 1

2 sin φ

 r32 − r23

r13 − r31

r21 − r12

 (5.119)

Proof : Consider the point P of a rigid body with a fixed point at O, as is shown in
Figure 5.5. The position vector of P before rotation is r and the globally fixed axis of
rotation ON is indicated by the unit vector û. After a rotation φ about û, the point P

moves to P ′ with the position vector r′. To obtain the relationship between r and r′,
we express r′ by the following vector equation:

r′ = −→
ON + −→

NQ + −→
QP ′ (5.120)

Employing Figure 5.5 and using r, r′, û, and φ, we may rewrite Equation (5.120):

r′ = (
r · û) û + û × (

r × û
)

cos φ − (
r×û

)
sin φ

= (
r · û) û + [

r − (
r · û) û

]
cos φ + (

û × r
)

sin φ (5.121)
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X Y

Z

O

N

u

Q

P

φ

r

P′

r′

Figure 5.5 Axis and angle of rotation.

Rearranging (5.121) leads to a new form of the Rodriguez rotation formula:

r′ = r cos φ + (1 − cos φ)(û · r)û + (û × r) sin φ (5.122)

Using the Euler parameters in (5.106) and (5.107) along with the trigonometric relations

cos φ = 2 cos2 φ

2
− 1 (5.123)

sin φ = 2 sin
φ

2
cos

φ

2
(5.124)

1 − cos φ = 2 sin2 φ

2
(5.125)

we can convert the Rodriguez rotation formula (5.122) to a more useful form:

r′ = r
(
2e2

0 − 1
) + 2e (e · r) + 2e0 (e × r) (5.126)

We may define the new position vector of P as r′ = Gr and the initial position
vector as r = Br to write Equation (5.126) as

Gr = (
e2

0 − e2) Br + 2e
(
eT Br

) + 2e0
(
ẽBr

)
. (5.127)

When we factor out Br, the transformation matrix GRB based on the Euler parameters
appears as

Gr = GRB
Br = Rû,φ

Br (5.128)

GRB = (
e2

0 − e2) I + 2e eT + 2e0ẽ (5.129)

Direct substitution shows that

tr
(
GRB

) = r11 + r22 + r33 = 4e2
0 − 1 = 2 cos φ + 1 (5.130)
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and

GRB − GRT
B =

 0 −r21 + r12 r13 − r31

r21 − r12 0 −r32 + r23

−r13 + r31 r32 − r23 0


=

 0 −2u3 sin φ 2u2 sin φ

2u3 sin φ 0 −2u1 sin φ

−2u2 sin φ 2u1 sin φ 0


=

 0 −4e0e3 4e0e2

4e0e3 0 −4e0e1

−4e0e2 4e0e1 0

 (5.131)

Therefore,

e2
0 = 1

4 [tr(GRB) + 1] (5.132)

ẽ = 1

4e0
(GRB − GRT

B) (5.133)

e = 1

4e0

 r32 − r23

r13 − r31

r21 − r12

 (5.134)

or

cos φ = 1
2 [tr(GRB) − 1] (5.135)

ũ = 1

2 sin φ
(GRB − GRT

B) (5.136)

û = 1

2 sin φ

 r32 − r23

r13 − r31

r21 − r12

 (5.137)

The first set of Equations (5.114) may be proven by comparing (5.109) and (5.111).
The Euler parameter e0 can be found by summing the diagonal elements r11, r22, and
r33 to get tr

(
GRB

) = 4e2
0 − 1. To find e1, e2, and e3 we need to simplify r32 − r23,

r13 − r31, and r21 − r12, respectively. The other sets of solutions (5.115)–(5.117) can
also be found by comparison. �

Example 314 Euler Parameters and Angle–Axis Rotation of GRB The Euler param-
eters for rotation φ = 30 deg about û = (Î + Ĵ + K̂)/

√
3 are

e0 = cos
φ

2
= cos

π

12
= 0.965 93 (5.138)

e = û sin
φ

2
= e1Î + e2Ĵ + e3K̂ = 0.14943

(
Î + Ĵ + K̂

)
(5.139)
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Therefore, from (5.109) the transformation matrix is

GRB = (
e2

0 − e2) I + 2e eT + 2e0ẽ

=
 0.91069 −0.24402 0.33334

0.33334 0.91069 −0.24402
−0.24402 0.33334 0.91069

 (5.140)

As a double check, we may see that any point on the axis of rotation is invariant under
the rotation:  0.91069 −0.24402 0.33334

0.33334 0.91069 −0.24402
−0.24402 0.33334 0.91069

 1
1
1

 =
 1

1
1

 (5.141)

Example 315 Rodriguez Formula in Terms of Euler Parameters Employing the
Rodriguez rotation formula (5.17),

Rû,φ = I + 2ũ sin
φ

2

(
I cos

φ

2
+ ũ sin

φ

2

)
(5.142)

we can use the definition of Euler parameters,

e0 = cos
φ

2
(5.143)

e1 = u1 sin
φ

2
e2 = u2 sin

φ

2
e3 = u3 sin

φ

2
(5.144)

and rewrite the Rodriguez formula in terms of Euler parameters:

Rû,φ = I + 2ẽ (Ie0 + ẽ) (5.145)

Example 316 Euler Parameter and Euler Angle Relationship Comparing the Euler
angle rotation matrix (4.142) and the Euler parameter transformation matrix (5.109), we
can determine the following relationships between Euler angles and Euler parameters:

e0 = cos
θ

2
cos

ψ + ϕ

2
(5.146)

e1 = sin
θ

2
cos

ψ − ϕ

2
(5.147)

e2 = sin
θ

2
sin

ψ − ϕ

2
(5.148)

e3 = cos
θ

2
sin

ψ + ϕ

2
(5.149)
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The reverse relations may be written as

ϕ = cos−1 2 (e2e3 + e0e1)

sin θ
(5.150)

θ = cos−1 [2 (
e2

0 + e2
3

) − 1
]

(5.151)

ψ = cos−1 −2 (e2e3 − e0e1)

sin θ
(5.152)

or as

ϕ = tan−1 e3

e0
+ tan−1 e2

e0
(5.153)

θ = cos−1 (e2
0 − e2

1 − e2
2 + e2

3

)
(5.154)

ψ = tan−1 e3

e0
− tan−1 e2

e0
(5.155)

Example 317 Rotation Matrix for e0 = 0 or φ = kπ When the angle of rotation is
φ = kπ , k = ±1,±3, . . . , then e0 = 0. In this case, the Euler parameter transformation
matrix (5.109) becomes

GRB = 2

 e2
1 − 1

2 e1e2 e1e3

e1e2 e2
2 − 1

2 e2e3

e1e3 e2e3 e2
3 − 1

2

 (5.156)

which is a symmetric matrix. It indicates that rotations φ = kπ and φ = −kπ provide
equivalent orientations.

Example 318 � Vector of Infinitesimal Rotation The Rodriguez rotation formula
(5.122) for a differential rotation dφ becomes

r′ = r + (û × r) dφ (5.157)

In this case the difference between r′ and r is also very small,

dr = r′ − r = (
dφ û

) × r (5.158)

and hence a differential rotation dφ about the axis û is a vector along û with magnitude
dφ. Dividing both sides by dt leads to

ṙ = dφ

dt
û × r = φ̇ × r = ω × r (5.159)

which represents the global velocity vector of any point in a rigid body rotating
about û.
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Example 319 � Exponential Form of Rotation eφũ Consider a point P in the body
frame B with a position vector r. If the rigid body has an angular velocity ω, then the
velocity of P in the global coordinate frame is

ṙ = ω × r = ω̃r (5.160)

This is a first-order linear differential equation that may be integrated to have

r(t) = r(0)eω̃t (5.161)

where r(0) is the initial position vector of P and eω̃t is a matrix exponential,

eω̃t = I + ω̃t + (ω̃t)
2

2!
+ (ω̃t)

3

3!
+ · · · (5.162)

The angular velocity ω has a magnitude ω and direction indicated by a unit vector
û. Therefore,

ω = ωû (5.163)

ω̃ = ωũ (5.164)

ω̃t = ωtũ = φũ (5.165)

and hence

eω̃t = eφũ

= I +
(

φ − φ3

3!
+ φ5

5!
− · · ·

)
ũ +

(
φ2

2!
− φ4

4!
+ φ6

6!
· · ·

)
ũ2 (5.166)

or equivalently

eφũ = I + ũ sin φ + ũ2(1 − cos φ) (5.167)

It is an alternative form of the Rodriguez rotation formula showing that eφũ is the
rotation transformation to map Br = r(0) to Gr = r(t).

We may show that eφũ ∈ S, where S is the set of rotation matrices

S = {R ∈ R3×3 : RRT = I, |R| = 1} (5.168)

by showing that R = eφũ has the orthogonality property RTR = I and its determinant
is |R| = 1.

The orthogonality of eφũ can be verified by considering[
eφũ

]−1 = e−φũ = eφũT =
[
eφũ

]T
(5.169)

Therefore, R−1 = RT and consequently RRT = I. From orthogonality, it follows that
|R| = ±1, and from continuity of the exponential function, it follows that |e0| = 1.
Therefore, |R| = 1.

Expanding eφũ,

eφũ = I + ũ sin φ + ũ2 (1 − cos φ) (5.170)
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gives

eφũ =

 u2
1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (5.171)

which is equal to the angle–axis equation (5.5), and therefore

eφũ = Rû,φ = GRB = I cos φ + ûûT vers φ + ũ sin φ (5.172)

Example 320 � Rodriguez Vector We may redraw Figure 5.5 as shown in Figure 5.6
and write

cos
φ

2

∣∣∣−−→MP ′
∣∣∣ = sin

φ

2

∣∣∣−→
NM

∣∣∣ (5.173)∣∣∣−→
NM

∣∣∣−−→MP ′ =
∣∣∣−−→MP ′

∣∣∣ û × −→
NM (5.174)

X Y

Z

O

N

u

Q

P P′

r
r′

M

φ

Figure 5.6 llustration of a rotation of a rigid body to derive a new form of the Rodriguez
rotation formula in Example 320.

to find (
cos

φ

2

)−−→
MP ′ =

(
sin

φ

2

)
û × −→

NM (5.175)

Now using the equalities

2
−−→
MP ′ = −→

NP ′ − −→
NP (5.176)

2
−→
NM = −→

NP ′ + −→
NP (5.177)

−→
NP ′ − −→

NP = r′ − r (5.178)

û ×
(−→

NP ′ + −→
NP

)
= û × (

r′ + r
)

(5.179)
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we can write an alternative form of the Rodriguez rotation formula ,

cos
φ

2

(
r′ − r

) = sin
φ

2
û × (

r′ + r
)

(5.180)

or

(r′ − r) = q × (r′ + r) (5.181)

where

q = tan
φ

2
û (5.182)

is called the Rodriguez vector or the Gibbs vector . The Euler parameters are related to
the Rodriguez vector according to

q = e
e0

(5.183)

and

e0 = 1√
1 + qTq

= 1√
1 + q2

(5.184)

ei = qi√
1 + qTq

= qi√
1 + q2

i = 1, 2, 3. (5.185)

So, the Rodriguez formula (5.109) can be converted to a new form based on the
Rodriguez vector:

GRB = Rû,φ = (
e2

0 − e2) I + 2e eT + 2e0ẽ

= 1

1 + qTq
[(1 − qTq)I + 2qqT + 2q̃] (5.186)

Using the Rodriguez vector, we can show that the combination of two rotations q′ and
q′′ is equivalent to a single rotation q, where

q = q′′ + q′ − q′′ × q′

1 − q′′ · q′ (5.187)

Example 321 Gibbs Rotation Matrix We may rearrange the rotation matrix (5.186)
to

GRB = Rû,φ = [
I − q̃

] [
I + q̃

]−1
(5.188)

and call it the Gibbs rotation formula . Expressing the Gibbs vector q = tan(φ/2)û as

q =
 q1

q2

q3

 = tan
φ

2

 u1

u2

u3

 (5.189)
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and expanding (5.188) or (5.186) provide the Gibbs form of the rotation matrix:

GRB = 1

1 + q2
1 + q2

2 + q2
3

×


q2

1 − q2
2 − q2

3 + 1 2q1q2 − 2q3 2q2 + 2q1q3

2q3 + 2q1q2 −q2
1 + q2

2 − q2
3 + 1 2q2q3 − 2q1

2q1q3 − 2q2 2q1 + 2q2q3 −q2
1 − q2

2 + q2
3 + 1

 (5.190)

Given a rotation matrix GRB = [rij ], we can determine the associated Gibbs vector
q = tan(φ/2)û and the angle of rotations:

q̃ = 1

4

GRB − GRT
B

1 + q2
1 + q2

2 + q2
3

(5.191)

q = 1

4

1

1 + q2
1 + q2

2 + q2
3

 r32 − r23

r13 − r31

r21 − r12

 (5.192)

φ = 2 arctan
√

3 − tr
(
GRB

) = arctan
√

3 − (r11 + r22 + r33) (5.193)

Example 322 � Elements of GRB Recalling the permutation symbol (1.126) and
the Kronecker delta (1.125), we can redefine the elements of the Rodriguez rotation
matrix by

rij = δij cos φ + (1 − cos φ)uiuj + εijkuk sin φ (5.194)

Example 323 Euler Parameters from GRB The following transformation matrix is
given:

GRB =
 0.5449 −0.5549 0.6285

0.3111 0.8299 0.4629
−0.7785 −0.0567 0.6249

 (5.195)

To calculate the corresponding Euler parameters, we use Equation (5.114) and find

tr
(
GRB

) = r11 + r22 + r33

= 0.5449 + 0.8299 + 0.6249 = 1.9997 (5.196)

therefore,

e0 = 1
2

√
tr
(
GRB

) + 1 = 0.86598 (5.197)
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and

e1 = 1

4

r32 − r23

e0
= 1

4

−0.0567 − 0.4629

0.86598
= −0.15

e2 = 1

4

r13 − r31

e0
= 1

4

0.6285 + 0.7785

0.86598
= 0.40619 (5.198)

e3 = 1

4

r21 − r12

e0
= 1

4

0.3111 + 0.5549

0.86598
= 0.25001

Example 324 � Euler Parameters When One of Them Is Known Consider the Euler
parameter rotation matrix (5.109) corresponding to rotation φ about an axis indicated
by a unit vector û. The off-diagonal elements of GRB ,

e0e1 = 1
4 (r32 − r23)

e0e2 = 1
4 (r13 − r31)

e0e3 = 1
4 (r21 − r12)

e1e2 = 1
4 (r12 + r21) (5.199)

e1e3 = 1
4 (r13 + r31)

e2e3 = 1
4 (r23 + r32)

can be utilized to find ei, i = 0, 1, 2, 3, if we know one of them.

Example 325 � Stanley Method Following an effective method developed by Stan-
ley, we may first find the four e2

i ,

e2
0 = 1

2 [1 + tr(GRB)]

e2
1 = 1

4 [1 + 2r11 − tr(GRB)]

e2
2 = 1

4 [1 + 2r22 − tr(GRB)] (5.200)

e2
3 = 1

4 [1 + 2r33 − tr(GRB)]

and take the positive square root of the largest e2
i . Then the other ei are found by

dividing the appropriate three of the six equations (5.199) by the largest ei .

5.3 � QUATERNION

A quaternion q is defined as a scalar+vector quantity

q = q0 + q = q0 + q1Î + q2Ĵ + q3K̂ (5.201)
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where q0 is a scalar and q is a vector. A quaternion q can also be shown by a four-
element vector,

q =


q0

q1

q2

q3

 (5.202)

or in a flag form,

q = q0 + q1i + q2j + q3k (5.203)

where i, j, k are flags defined as

i2 = j 2 = k2 = ijk = −1 (5.204)

ij = −ji = k (5.205)

jk = −kj = i (5.206)

ki = −ik = j (5.207)

Addition and multiplication of two quaternions q and p are quaternions:

q + p = (q0 + q) + (p0 + p)

= q0 + q1i + q2j + q3k + p0 + p1i + p2j + p3k

= (q0 + p0) + (q1 + p1) i + (q2 + p2) j + (q3 + p3) k (5.208)

qp = (q0 + q) (p0 + p) = q0p0 + q0p + p0q + qp

= q0p0 − q · p + q0p + p0q + q × p

= (q0p0 − q1p1 − q2p2 − q3p3)

+ (p0q1 + p1q0 − p2q3 + p3q2) i

+ (p0q2 + q0p2 + p1q3 − q1p3) j

+ (p0q3 − p1q2 + q0p3 + p2q1) k (5.209)

where qp is the quaternion vector product and is equal to the outer product minus the
inner product of q and p:

qp = q × p − q · p (5.210)

Quaternion addition is associative and commutative,

q + p = p + q (5.211)

q + (p + r) = (q + p) + r (5.212)

while quaternion multiplication is not commutative,

qp �= pq (5.213)
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However, quaternion multiplication is associative and distributes over addition,

(pq) r = p (qr) (5.214)

(p + q) r = pr + qr (5.215)

A quaternion q has a conjugate q∗ defined by

q∗ = q0 − q = q0 − q1Î − q2Ĵ − q3K̂ (5.216)

Multiplication of a quaternion q by its conjugate q∗ is given as

qq∗ = (q0 + q) (q0 − q) = q0q0 + q0q − p0q − qq

= q0q0 + q · q − q × q = q2
0 + q2

1 + q2
2 + q2

3 = |q|2 (5.217)

and therefore, we may define the quaternion inverse and quaternion division:

|q| = √
qq∗ =

√
q2

0 + q2
1 + q2

2 + q2
3 (5.218)

q−1 = 1

q
= q∗

|q|2 (5.219)

A quaternion q is a unit quaternion if |q| = 1. When a quaternion q is a unit, we have

q−1 = q∗ (5.220)

A quaternion may be variable because of both its scalar and its vector arguments.
So, we show a variable quaternion q by q = q (q0, q).

Let us define a unit quaternion e
(
φ, û

)
,
∣∣e (φ, û

)∣∣ = 1 as

e
(
φ, û

) = e0 + e = e0 + e1Î + e2Ĵ + e3K̂ = cos
φ

2
+ sin

φ

2
û (5.221)

and r = 0 + r be a quaternion associated to a pure vector r. The vector r after a rotation
φ about Gû would be

r′ = e
(
φ, û

)
r e∗ (φ, û

)
(5.222)

which is equivalent to

Gr = e
(
φ, û

)
Br e∗ (φ, û

)
(5.223)

Therefore, a rotation Rû,φ can be defined by a quaternion e
(
φ, û

) = cos(φ/2) +
sin(φ/2)û, and consequently, two consecutive rotations R = R2R1 are defined by

e
(
φ, û

) = e2
(
φ2, û2

)
e1

(
φ1, û1

)
(5.224)

The notations e1
(
φ1, û1

)
, e2

(
φ2, û2

)
, . . . are quaternion while e0, e1, e2, e3 are

Euler parameters.
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A quaternion may also be represented by a 4 × 4 matrix,

←→q =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 (5.225)

which provides the important orthogonality property

←→q −1 = ←→q T (5.226)

The matrix quaternion (5.225) can also be represented by

←→q =
[

q0 −qT

q q0I3 − q̃

]
(5.227)

where

q̃ =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

 (5.228)

Employing the matrix quaternion ←→q , we can show quaternion multiplication by matrix
multiplication:

qp = ←→q p =


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




p0

p1

p2

p3

 (5.229)

The matrix description of quaternions relates quaternion manipulations and matrix
manipulations. If p, q, and v are three quaternions such that

qp = v (5.230)

then ←→q ←→p = ←→v (5.231)

Hence, the quaternion representation of transformation between coordinate frames
(5.224) can also be defined by matrix multiplication:

←→
Gr = ←−−→

e
(
φ, û

)←→
Br

←−−−→
e∗ (φ, û

) = ←−−→
e
(
φ, û

)←→
Br

←−−→
e
(
φ, û

)T (5.232)

Proof : To show that a unit quaternion e
(
φ, û

)
can work as a rotation matrix GRB , let us

consider a quaternion e
(
φ, û

)
as shown in Equation (5.221). Employing the quaternion
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multiplication (5.209) we can write

re∗ = e0r + r × e∗ − r · e∗

= e0

 r1

r2

r3

 +
 r1

r2

r3

 ×
−e1

−e2

−e3

 + (e1r1 + e2r2 + e3r3)

= (e1r1 + e2r2 + e3r3) +
 e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1

e0r3 + e1r2 − e2r1

 (5.233)

and therefore,

ere∗ = e0 (e1r1 + e2r2 + e3r3) −
 e1

e2

e3

 ·
 e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1

e0r3 + e1r2 − e2r1


+ e0

 e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1

e0r3 + e1r2 − e2r1

 + (e1r1 + e2r2 + e3r3)

 e1

e2

e3


+

 e1

e2

e3

 ×
 e0r1 + e2r3 − e3r2

e0r2 − e1r3 + e3r1

e0r3 + e1r2 − e2r1

 = GRB

 r1

r2

r3

 (5.234)

Here GRB is equivalent to the Euler parameter transformation matrix (5.109):

GRB =
 e2

0 + e2
1 − e2

2 − e2
3 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)

2 (e0e3 + e1e2) e2
0 − e2

1 + e2
2 − e2

3 2 (e2e3 − e0e1)

2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e2
0 − e2

1 − e2
2 + e2

3

 (5.235)

Employing a similar method, we can also show that

Br = e∗ (φ, û
)

Gr e
(
φ, û

)
(5.236)

which is the inverse transformation of Gr = e
(
φ, û

)
Br e∗ (φ, û

)
.

Now assume e1
(
φ1, û1

)
and e2

(
φ2, û2

)
are the quaternions corresponding to the

rotation matrices Rû1,φ1 and Rû2,φ2 , respectively. The first rotation maps B1r to B2r and
the second rotation maps B2r to B3r. Therefore,

B2r = e1
(
φ1, û1

)
B1r e∗

1

(
φ1, û1

)
(5.237)

B3r = e2
(
φ2, û2

)
B2r e∗

2

(
φ2, û2

)
(5.238)

which implies

B3r = e2
(
φ2, û2

)
e1

(
φ1, û1

)
B1r e∗

1

(
φ1, û1

)
e∗

2

(
φ2, û2

)
= e

(
φ, û

)
B1r e

(
φ, û

)
(5.239)
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showing that

e
(
φ, û

) = e2
(
φ2, û2

)
e1

(
φ1, û1

)
(5.240)

It is the quaternion equation corresponding to R = R2R1.
We can use the matrix definition of quaternions and see that

←−−→
e
(
φ, û

) =


e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0

 (5.241)

←→
Br =


0 −BR1 −BR2 −BR3

BR1 0 −BR3
BR2

BR2
BR3 0 −BR1

BR3 −BR2
BR1 0

 (5.242)

←−−→
e
(
φ, û

)T =


e0 e1 e2 e3

−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 e2 −e1 e0

 (5.243)

Therefore,

←→
Gr = ←−−→

e
(
φ, û

)←→
Br

←−−→
e
(
φ, û

)T =


0 −GR1 −GR2 −GR3

GR1 0 −GR3
GR2

GR2
GR3 0 −GR1

GR3 −GR2
GR1 0

 (5.244)

where

GR1 = BR1
(
e2

0 + e2
1 − e2

2 − e2
3

) + BR2 (2e1e2 − 2e0e3)

+BR3 (2e0e2 + 2e1e3) (5.245)
GR2 = BR1 (2e0e3 + 2e1e2) + BR2

(
e2

0 − e2
1 + e2

2 − e2
3

)
+BR3 (2e2e3 − 2e0e1) (5.246)

GR3 = BR1 (2e1e3 − 2e0e2) + BR2 (2e0e1 + 2e2e3)

+BR3
(
e2

0 − e2
1 − e2

2 + e2
3

)
(5.247)

Equation (5.244) is compatible to Equation (5.234). �

Example 326 Composition of Rotations Using Quaternions Using quaternions to
represent rotations makes it easy to calculate the composition of rotations. If the quater-
nion e1

(
φ1, û1

)
represents the rotation Rû1,φ1 and e2

(
φ2, û2

)
represents Rû2,φ2 , then

the product

e
(
φ, û

) = e2
(
φ2, û2

)
e1

(
φ1, û1

)
(5.248)
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represents Rû2,φ2Rû1,φ1 because

e
(
φ, û

) = Rû2,φ2Rû1,φ1r

= Rû2,φ2

[
e1

(
φ1, û1

)
r e∗

1

(
φ1, û1

)]
= e2

(
φ2, û2

) [
e1

(
φ1, û1

)
r e∗

1

(
φ1, û1

)]
e∗

2

(
φ2, û2

)
= [

e2
(
φ2, û2

)
e1

(
φ1, û1

)]
r
[
e∗

1

(
φ1, û1

)
e∗

2

(
φ2, û2

)]
= [

e2
(
φ2, û2

)
e1

(
φ1, û1

)]
r
[
e1

(
φ1, û1

)
e2

(
φ2, û2

)] ∗ (5.249)

Example 327 Principal Global Rotation Matrices The associated quaternion to the
principal global rotation matrices RZ,α, RY,β , and RX,γ are

e
(
α, K̂

)
=

cos
α

2
, sin

α

2

 0
0
1

 (5.250)

e
(
β, Ĵ

)
=

cos
β

2
, sin

β

2

 0
1
0

 (5.251)

e
(
γ, Î

)
=

cos
γ

2
, sin

γ

2

 1
0
0

 (5.252)

Therefore, we must be able to derive the same matrices (4.17)–(4.19) by substi-
tuting (5.250)–(5.252) in (5.235), respectively. As an example, we check RZ,α:

RZ,α = GRB = (
e2

0 − e2) I + 2e eT + 2e0ẽ

=
(

cos2 α

2
− sin2 α

2

)
I + 2K̂K̂T + 2 cos

α

2
sin

α

2
K̃

=
 cos α − sin α 0

sin α cos α 0
0 0 1

 (5.253)

Example 328 Global Roll–Pitch–Yaw Quaternions The three rotations about the X-,
Y -, and Z-axes of the global coordinate frame are called the global roll–pitch–yaw .
The associated rotation matrix is

GRB = RZ,γ RY,β RX,α

=
 cβ cγ −cα sγ + cγ sα sβ sα sγ + cα cγ sβ

cβ sγ cα cγ + sα sβ sγ −cγ sα + cα sβ sγ

−sβ cβ sα cα cβ

 (5.254)
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The global roll–pitch–yaw rotation matrix can be derived by the quaternion as

well. The roll quaternion e
(
α, Î

)
, pitch quaternion e

(
β, Ĵ

)
, and yaw quaternion

e
(
γ, K̂

)
are given in (5.250)–(5.252). Multiplying these quaternions creates the

global roll–pitch–yaw quaternion e
(
φ, û

)
:

e
(
φ, û

) = e
(
γ, K̂

)
e
(
β, Ĵ

)
e
(
α, Î

)
= cos

α

2
cos

β

2
cos

γ

2
+ sin

α

2
sin

β

2
sin

γ

2

+


cos

β

2
cos

γ

2
sin

α

2
− cos

α

2
sin

β

2
sin

γ

2

cos
α

2
cos

γ

2
sin

β

2
+ cos

β

2
sin

α

2
sin

γ

2

cos
α

2
cos

β

2
sin

γ

2
− cos

γ

2
sin

α

2
sin

β

2

 (5.255)

As a double check, we must get the same matrix (5.254) by substituting (5.255) in
(5.235).

Example 329 Expansion of Quaternion Rotation Equation We may substitute for
the unit quaternion e(φ, û) in the rotation equation

Gr = e
(
φ, û

)
Br e∗ (φ, û

)
(5.256)

and show that

Gr = (e0 + e)
(
0 + Br

)
(e0 − e)

= (
2e2

0 − 1
)

Br + 2
(
e·Br

) + 2e0
(
e×Br

)
(5.257)

Now substituting for e and factoring Br out generate the same transformation matrix
as (5.235). However, it is possible to rearrange the matrix as

GRB =

 2e2
0 + 2e2

1 − 1 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)

2 (e0e3 + e1e2) 2e2
0 + 2e2

2 − 1 2 (e2e3 − e0e1)

2 (e1e3 − e0e2) 2 (e0e1 + e2e3) 2e2
0 + 2e2

3 − 1

 (5.258)

Example 330 � Rodriguez Rotation Formula Using Quaternion We may simplify
Equation (5.234) to have a vectorial form similar to the Rodriguez formula:

Gr = e
(
φ, û

)
Br e∗ (φ, û

)
= (

e2
0 − e · e

)
r + 2e0 (e × r) + 2e (e · r) (5.259)
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Example 331 � Inner Automorphism Property of e(φ,û) Because e(φ, û) is a unit
quaternion,

e∗ (φ, û
) = e−1 (φ, û

)
(5.260)

we may write

Gr = e
(
φ, û

)
Br e−1 (φ, û

)
(5.261)

In abstract algebra, a mapping of the form r = q r q−1, computed by multiplying on
the left by an element and on the right by its inverse, is called an inner automorphism .
Thus, Gr is the inner automorphism of Br based on the rotation quaternion e(φ, û).

5.4 � SPINORS AND ROTATORS

There are two general ways to express the finite rotations: a 3 × 3 real orthogonal
matrix R called a rotator and an angle φ plus a 3 × 3 real skew-symmetric matrix
ũ called a spinor . Rotator is a short name for rotation tensor and spinor is for spin
tensor .

A rotator is a linear operator that transforms Br to Gr when the directional cosines
of the axes of the coordinate frames B and G are known:

Gr = GRB
Br (5.262)

The spinor ũ corresponds to the vector û, which, along with angle φ, can be utilized
to describe a rotator:

GRB = (
I cos φ+ûûT vers φ + ũ sin φ

)
(5.263)

The rotator R is a linear function of I, ũ, and ũ2:

R = I + a(λũ) + b(λũ)2

=
−bλ2(u2

2 + u2
3) + 1 −aλu3 + bλ2u1u2 aλu2 + bλ2u1u3

aλu3 + bλ2u1u2 −bλ2(u2
1 + u2

3) + 1 −aλu1 + bλ2u2u3

−aλu2 + bλ2u1u3 aλu1 + bλ2u2u3 −bλ2(u2
1 + u2

2) + 1

 (5.264)

where λ is the spinor normalization factor and a = a(φ) and b = b(φ) are scalar
functions of the rotation angle φ.

Table 5.1 presents some representations of rotator R as a function of the coefficients
a, b and the spinor λũ.

Proof : The square of ũ is

ũ2 = ũũ =
−u2

2 − u2
3 u1u2 u1u3

u1u2 −u2
1 − u2

3 u2u3

u1u3 u2u3 −u2
1 − u2

2


= −ũ ũT = −ũTũ = ûûT − u2I (5.265)
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Table 5.1 Rotator R as a Function of Spinor ũ

a b λ R

sin φ sin2 φ

2
1 I + sin φũ + 2 sin2 φ

2
ũ2

2 cos2 φ

2
2 cos2 φ

2
tan

φ

2

I + 2 cos2 φ

2
[tan

φ

2
ũ + tan2 φ

2
ũ2]

= [I+ tan
φ

2
ũ][I− tan

φ

2
ũ]−1

2 cos
φ

2
2 sin

φ

2
I + 2 cos

φ

2
sin

φ

2
ũ + 2 sin2 φ

2
ũ2

1

φ
sin φ

2

φ2
sin2 φ

2
φ I + sin φũ + 2 sin2 φ

2
ũ2

This is a symmetric matrix whose eigenvalues are 0, −u2, −u2 and its trace is

tr[ũ2] = −2|û|2 = −2u2 = −2(u2
1 + u2

2 + u2
3) (5.266)

This is because ũ satisfies its own characteristic equation:

ũ2 = −u2I, ũ3 = −u2ũ, . . . , ũn = −u2ũn−2 n ≥ 3 (5.267)

So, the odd powers of ũ are skew symmetric with distinct purely imaginary eigenvalues,
while even powers of ũ are symmetric with repeated real eigenvalues.

A rotator is a function of a spinor, so R can be expanded in a Taylor series of ũ:

R = I + c1ũ + c2ũ
2 + c3ũ

3 + · · · (5.268)

However, because of (5.267), all powers of order 3 or higher can be eliminated. There-
fore, R is a quadratic function of ũ:

R = I + a(λũ) + b(λũ)2 (5.269)

For the moment let us forget that |û| =
√

u2
1 + u2

2 + u2
3 = 1 and develop the theory for

nonunit vectors indicating the rotation axis. The parameter λ is the spinor normalization
factor, and a = a(φ, u) and b = b(φ, u) are scalar functions of rotation angle φ and
an invariant of ũ.

Assuming λ = 1, we find trR = 1 + 2 cos φ, which, because of (5.264),
is equal to

trR = 1 + 2 cos φ = 3 − 2bu2 (5.270)

and therefore,

b = 1 − cos φ

u2
= 2

u2
sin2 φ

2
(5.271)

Now the orthogonality condition

I = RTR = (
I − aũ + bũ2) (I + aũ + bũ2)

= I + (2b − a2)ũ2 + b2ũ4 = I + (2b − a2 − b2u2)ũ2 (5.272)
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leads to

a =
√

2b − b2u2 = 1

u
sin φ (5.273)

and therefore,

R = I + 1

u
sin φũ + 2

u2
sin2 φ

2
ũ2 = I + sin φũ + vers φũ2 (5.274)

From a numerical viewpoint, the sine-squared form of R is preferred to avoid the
cancellation in computing 1 − cos φ for small φ. Replacing a and b in (5.264) provides
the explicit rotator in terms of ũ and φ,

R =


u2

1 + (
u2

2 + u2
3

)
cφ 2u1u2s

2 φ

2 − u3sφ 2u1u3s
2 φ

2 + u2sφ

2u1u2s
2 φ

2 + u3sφ u2
2 + (

u2
3 + u2

1

)
cφ 2u2u3s

2 φ

2 − u1sφ

2u1u3s
2 φ

2 − u2sφ 2u2u3s
2 φ

2 + u1sφ u2
3 + (

u2
1 + u2

2

)
cφ

 (5.275)

which is equivalent to Equation (5.13).
If λ �= 1 and λ �= 0, then the answers are a = (1/λu) sin φ and b = [

2/(λu)2
]

sin2(φ/2) which do not affect R.

Recalling u =
√

u2
1 + u2

2 + u2
3 = 1, we may use (5.269) to determine different a,

b and λ as are shown in Table 5.1. �

Example 332 � Eigenvalues of a Spinor Consider the axis of rotation indicated by

u =

 6

2

3

 u = 7 (5.276)

The associated spin matrix and its square are

ũ =

 0 −3 2

3 0 −6

−2 6 0

 (5.277)

ũ2 =

−13 12 18

12 −45 6

18 6 −40

 (5.278)

where the eigenvalues of ũ are (0,7i,−7i) while those of of ũ2 are (0, −49, −49).

5.5 � PROBLEMS IN REPRESENTING ROTATIONS

The applied rotation analysis of rigid bodies is done by matrix calculus. Therefore, we
try to express rotations in matrix form for simpler calculation. There are a number of
different methods for representing rigid-body rotations; however, only a few of them are
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fundamentally distinct. The parameters or coordinates that are required to completely
describe the orientation of a rigid body relative to another frame are called attitude
coordinates . There are two inherent problems in representing rotations, both related to
incontrovertible properties of rotations:

1. Rigid-body rotations do not commute.
2. Rigid-body rotations cannot map smoothly in three-dimensional Euclidean

space.

The noncommutativity of rotations force us to obey the order of rotations.
The lack of a smooth mapping in three-dimensional Euclidean space means we

cannot smoothly represent every kind of rotation by using only one set of three numbers.
Any set of three rotational coordinates contains at least one geometric orientation where
the coordinates are singular, at which at least two coordinates are undefined or not
unique. This problem is similar to defining a coordinate system to locate a point on
Earth’s surface. Using longitude and latitude becomes problematic at the north and
south poles, where a small displacement can produce a radical change in longitude. We
cannot find a superior system because it is not possible to smoothly wrap a sphere with
a plane. Similarly, it is not possible to smoothly wrap the space of rotations with three-
dimensional Euclidean space. This is the reason why we sometimes describe rotations
by using four numbers.

We may only use three-number systems and expect to see singularities or use four
numbers and cope with the redundancy. The choice depends on the application and
method of calculation. For computer applications, the redundancy is not a problem, so
most algorithms use representations with extra numbers. However, engineers prefer to
work with the minimum set of numbers.

5.5.1 � Rotation Matrix

For many purposes, the rotation matrix representation, based on directional cosines, is
the most useful representation method of rigid-body rotations. The two reference frames
G and B, having a common origin, are defined through orthogonal right-handed sets of
unit vectors {G} = {Î , Ĵ , K̂} and {B} = {ı̂, ̂ , k̂}. The rotation or transformation matrix
between the two frames is found by using the orthogonality condition of B and G and
describing the unit vectors of one of them in the other:

Î = (Î · ı̂)ı̂ + (Î · ̂ )̂ + (Î · k̂)k̂

= cos(Î , ı̂)ı̂ + cos(Î , ̂ )̂ + cos(Î , k̂)k̂ (5.279)

Ĵ = (Ĵ · ı̂)ı̂ + (Ĵ · ̂ )̂ + (Ĵ · k̂)k̂

= cos(Ĵ , ı̂)ı̂ + cos(Ĵ , ̂ )̂ + cos(Ĵ , k̂)k̂ (5.280)

K̂ = (K̂ · ı̂)ı̂ + (K̂ · ̂ )̂ + (K̂ · k̂)k̂

= cos(K̂, ı̂)ı̂ + cos(K̂, ̂ )̂ + cos(K̂, k̂)k̂ (5.281)
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Therefore, having the rotation matrix

GRB =
 Î · ı̂ Î · ̂ Î · k̂

Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂
K̂ · ı̂ K̂ · ̂ K̂ · k̂



=
 cos(Î , ı̂) cos(Î , ̂ ) cos(Î , k̂)

cos(Ĵ , ı̂) cos(Ĵ , ̂ ) cos(Ĵ , k̂)

cos(K̂, ı̂) cos(K̂, ̂ ) cos(K̂, k̂)

 (5.282)

would be enough to find the coordinates of a point in the coordinate frame G when its
coordinates are given in B:

Gr = GRB
Br (5.283)

The rotation matrices convert the composition of rotations to matrix multiplication. It
provides a simple and convenient method of rotations, especially when rotations are
about the global or local principal axes.

Orthogonality is the most important and useful condition of rotation matrices. It
shows that the inverse of a rotation matrix is equivalent to its transpose, GR−1

B = GRT
B .

The null rotation is represented by the identity matrix I.
The primary disadvantage of rotation matrices is that there are so many numbers,

which often make rotation matrices hard to interpret. Numerical errors may build up
until a normalization is necessary.

5.5.2 � Axis–Angle

Axis–angle representation, described by the Rodriguez formula, is a direct result of the
Euler rigid-body rotation theorem. In this method, a rotation is expressed by the magni-
tude of rotation, φ, with the positive right-hand direction about the axis of rotation û:

GRB = Rû,φ = I cos φ + ûûT vers φ + ũ sin φ (5.284)

Matrix representation of the angle–axis expression is found by expanding it:

GRB =
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (5.285)

Converting the matrix representation to angle–axis form can be done by matrix
manipulation. However, it is usually easier if we convert the matrix to a quaternion
and then convert the quaternion to angle–axis form.

Angle–axis representation has also some shortcomings. First, the rotation axis is
indeterminate when φ = 0. Second, the angle–axis rotation represents a two-to-one
mapping system because

R−û,−φ = Rû,φ (5.286)

Third, it is redundant because for any integer k we have

Rû,φ+2kπ = Rû,φ (5.287)
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However, all of these problems can be improved to some extent by restricting φ to
some suitable range such as [0, π] or [−π/2, π/2]. The angle–axis representation is
also not an efficient method to find the composition of two rotations and determine the
equivalent angle–axis of rotations.

5.5.3 � Euler Angles

Euler angles are employed to describe the rotation matrix of rigid bodies by only three
numbers:

GRB = [
Rz,ψRx,θRz,ϕ

]T

=
 cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

 (5.288)

The first Euler angle ϕ is about a globally fixed axis, the third Euler angle ψ is about
a body-fixed axis, and the second Euler angle θ is between these two axes.

Euler angles and rotation matrices are not generally one to one, and also, they are
not convenient for composite rotations. The angles ϕ and ψ are also not distinguishable
when θ → 0.

The equivalent rotation matrix for a set of Euler angles is directly obtained by
matrix multiplication; however, the inverse conversion, from rotation matrix to a set
of Euler angles, is not straightforward. It is also not applicable when sin θ = 0. Using
Equation (5.288), we have

θ = cos−1 (r33) (5.289)

ψ = tan−1
(

r31

r32

)
(5.290)

ϕ = − tan−1
(

r13

r23

)
(5.291)

It is possible to use a modified Euler angle method that is more efficient and can
handle all cases uniformly. The main idea is to work with the sum and difference of ϕ

and ψ ,

σ = ϕ + ψ (5.292)

υ = ϕ − ψ (5.293)

and then

ϕ = 1
2 (σ − υ) (5.294)

ψ = 1
2 (σ + υ) (5.295)

Therefore,

r11 + r22 = cos σ(1 + cos θ) (5.296)

r11 − r22 = cos υ(1 − cos θ) (5.297)



5.5 � Problems in Representing Rotations 463

r21 − r12 = sin σ(1 + cos θ) (5.298)

r21 + r12 = sin υ(1 − cos θ) (5.299)

which leads to

σ = tan−1 r21 − r12

r11 + r22
(5.300)

υ = tan−1 r21 + r12

r11 − r22
(5.301)

This approach resolves the problem at sin θ = 0. At θ = 0, we can find σ but υ is
undetermined, and at θ = π , we can find υ but σ is undetermined. The undetermined
values are results of tan−1(0/0). Besides these singularities, both σ and υ are uniquely
determined. The middle rotation angle θ can also be found using the arctan operator:

θ = tan−1
(

r13 sin ϕ − r23 cos ϕ

r33

)
(5.302)

The main advantage of Euler angles is that they use only three numbers. They are
integrable, and they provide good visualization of spatial rotation with no redundancy.
Every set of Euler angles determines a unique orientation. Euler angles are used in the
dynamic analysis of spinning bodies.

The other combinations of Euler angles as well as roll–pitch–yaw angles have the
same kinds of problems and similar advantages.

5.5.4 � Quaternion and Euler Parameters

Quaternions with special rules for addition and multiplication use four numbers to
represent rotations. A rotation quaternion is a unit quaternion that may be expressed
by Euler parameters or the angle and axis of rotations:

e
(
φ, û

) = e0 + e = e0 + e1 ı̂ + e2̂ + e3k̂ = cos
φ

2
+ sin

φ

2
û (5.303)

Euler parameters are the elements of rotation quaternions. There is a direct con-
version between rotation quaternions and Euler parameters, which in turn are related
to angle–axis parameters. We can obtain the angle φ and axis û of rotation from Euler
parameters or rotation quaternion e

(
φ, û

)
by

φ = 2 tan−1 |e|
e0

(5.304)

û = e
|e| (5.305)

Unit quaternions provide a suitable base for describing rigid-body rotations,
although they need normalization due to the error pile-up problem. In general,
quaternions offer superior computational efficiency in most applications.

It is interesting to know that Leonhard Euler (1707–1783) was the first to derive the
Rodriguez formula, while Benjamin Rodriguez (1795–1851) was the first to discover
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the Euler parameters. William Hamilton (1805–1865) introduced quaternions, although
Friedrich Gauss (1777–1855) discovered them but never published.

Example 333 � Taylor Expansion of Rotation Matrix Assume that the rotation
matrix GRB between coordinate frames B and G is a time-dependent transformation

GRB = R(t) (5.306)

The body frame B is coincident with G at t = 0. Therefore, R(0) = I, and we may
expand the elements of R in a Taylor series

R(t) = I + R1t + 1

2!
R2t

2 + 1

3!
R3t

3 + · · · (5.307)

in which Ri(i = 1, 2, 3, . . .) is a constant matrix. The rotation matrix R(t) must be
orthogonal for all t ; hence,

[R] [R]T = I (5.308)(
I + R1t + 1

2!
R2t

2 + · · ·
)(

I + RT
1 t + 1

2!
RT

2 t2 + · · ·
)

= I. (5.309)

The coefficient of t i (i = 1, 2, 3, . . .) must vanish on the left-hand side. This gives

R1 + RT
1 = 0 (5.310)

R2 + 2R1R
T
1 + RT

2 = 0 (5.311)

R3 + 3R2R
T
1 + 3R1R

T
2 + RT

3 = 0 (5.312)

or in general

n∑
i=0

(
n

i

)
Rn−iR

T
i = 0 (5.313)

where

R0 = RT
0 = I (5.314)

Equation (5.310) shows that R1 is a skew-symmetric matrix, and therefore, R1R
T
1 =

−R2
1 = C1 is symmetric. Now, from Equation (5.311),

R2 + RT
2 = −2R1R

T
1 = −[R1R

T
1 + [R1R

T
1 ]T] = 2C1 (5.315)

which leads to

R2 = C1 + [C1 − RT
2 ] (5.316)

RT
2 = C1 + [C1 − R2] = C1 + [C1 − RT

2 ]T (5.317)

which shows that [C1 − RT
2 ] is skew symmetric because we must have

[C1 − RT
2 ] + [C1 − RT

2 ]T = 0 (5.318)
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Therefore, the matrix product [C1 − RT
2 ][C1 − RT

2 ]T is symmetric:

[C1 − RT
2 ][C1 − RT

2 ]T = −[C1 − RT
2 ]2 (5.319)

The next step,

R3 + RT
3 = −3[R1R

T
2 + R2R

T
1 ] = −3[R1R

T
2 + [R1R

T
2 ]T]

= 3[R1[R2
1 − RT

2 ] + [R2
1 − RT

2 ]R1] = 2C2 (5.320)

leads to

R3 = C2 + [
C2 − RT

3

]
(5.321)

RT
3 = C2 + [C2 − R3] = C2 + [

C2 − RT
3

]T
(5.322)

which shows that
[
C2 − RT

3

]
is skew symmetric because we must have[
C2 − RT

3

] + [
C2 − RT

3

]T = 0 (5.323)

Therefore, the matrix product
[
C2 − RT

3

] [
C2 − RT

3

]T
is also symmetric:[

C2 − RT
3

] [
C2 − RT

3

]T = − [
C2 − RT

3

]2
(5.324)

Continuing this procedure shows that the expansion of a rotation matrix R(t)

around the unit matrix can be written in the form

R(t) = I + C1t + 1

2!

[
C1 + [C1 − RT

2 ]
]
t2

+ 1

3!

[
C2 + [

C2 − RT
3

]]
t3 + · · · (5.325)

where the Ci are symmetric, [Ci − RT
i+1] are skew-symmetric matrices, and

Ci = 1
2

[
Ri−1 + RT

1−1

]
(5.326)

Therefore, the expansion of an inverse rotation matrix can also be written as

RT(t) = I + C1t + 1

2!

[
C1 + [C1 − RT

2 ]
]
t2

+ 1

3!

[
C2 + [

C2 − RT
3

]]
t3 + · · · (5.327)

5.6 COMPOSITION AND DECOMPOSITION OF ROTATIONS

Determination of a rotation to be equivalent to some given rotations and determination
of some rotations to be equivalent to a given rotation matrix represent a challenging
problem when the axes of rotations are not orthogonal. This problem is called the
composition and decomposition of rotations .
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5.6.1 Composition of Rotations

Rotation φ1 about û1 of a rigid body with a fixed point followed by a rotation φ2 about
û2 can be composed to a unique rotation φ3 about û3. In other words, when a rigid
body rotates from an initial position to a middle position, B2r = B2RB1

B1r, and then
rotates to a final position, B3r = B3RB2

B2r, the middle position can be skipped to rotate
directly to the final position, B3r = B3RB1

B1r.

Proof : To show that two successive rotations of a rigid body with a fixed point is
equivalent to a single rotation, we start with the Rodriguez rotation formula (5.181)
and rewrite it as (

r′ − r
) = w × (

r′ + r
)

(5.328)

where w is the Rodriguez vector

w = tan
φ

2
û (5.329)

Rotations w1 followed by w2 are given as

r2 − r1 = w1 × (r2 + r1) (5.330)

r3 − r2 = w2 × (r3 + r2) (5.331)

The right-hand side of the first one is perpendicular to w1 and the second one is
perpendicular to w2. Hence, the dot products of the first one with w1 and the second
one with w2 show that

w1 · r2 = w1 · r1 (5.332)

w2 · r3 = w2 · r2 (5.333)

Also, the cross products of the first one with w2 and the second one with w1 show that

w2 × (r2 − r1) − w1 × (r3 − r2)

= w1 [w2 · (r2 + r1)] − (w1 · w2) (r2 + r1)

− w2 [w1 · (r3 + r2)] + (w1 · w2) (r3 + r2) (5.334)

Rearranging while using Equations (5.332) and (5.333) gives us

w2 × (r2 − r1) − w1 × (r3 − r2)

= (w2 × w1) × (r1 + r3) + (w1 · w2) (r3 − r1) (5.335)

which can be written as

(w1 + w2) × r2 = w2 × r1 + w1 × r3

+ (w2 × w1) × (r1 + r3) + (w1 · w2) (r3 − r1) (5.336)
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Adding Equations (5.330) and (5.331) to obtain (w1 + w2) × r2 leads to

(w1 + w2) × r2 = r3 − r1 − w1 × r1 − w2 × r3 (5.337)

Therefore, we obtain the required Rodriguez rotation formula to rotate r1 to r3,

r3 − r1 = w3 × (r3 + r1) (5.338)

where
w3 = w1 + w2 + w2 × w1

1 − w1 · w2
(5.339)

�

Example 334 Equivalent Rotation to Two Individual Rotations Consider a rigid body
B that undergoes a first rotation α = 30 deg about

û = 1√
3

(
Î + Ĵ + K̂

)
(5.340)

followed by a rotation β = 45 deg about

v̂ = K̂ (5.341)

To determine the equivalent single rotation, we define the vectors u and v,

u = tan
α

2
û =


√

3/3√
3/3√
3/3

 tan
π/6

2
=

0.1547
0.1547
0.1547

 (5.342)

v = tan
β

2
û =

 0
0
1

 tan
π/4

2
=

 0
0

0.41421

 (5.343)

and calculate the w from (5.339):

w = u + v + v × u
1 − u · v

=
 0.23376

9.6827 × 10−2

0.60786

 (5.344)

The equivalent Rodriguez vector w may be decomposed to determine the axis and
angle of rotations ŵ and φ:

w =
 0.23376

9.68 × 10−2

0.60786

 = 0.658

 0.355
0.147
0.923

 = tan
φ

2
ŵ (5.345)

φ = 2 arctan 0.658 = 1.1645 rad ≈ 66.72 deg (5.346)
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5.6.2 � Decomposition of Rotations

Consider a rotating rigid body B with a fixed point O in a global frame G. A rotation
φ1 about û1 can be decomposed into three successive rotations about three arbitrary
axes â, b̂, and ĉ through unique angles α, β, and γ .

Let GRâ,α, GR
b̂,β

, and GRĉ, γ be any three successive rotation matrices about non-

coaxis non-coplanar unit vectors â, b̂, and ĉ through nonvanishing values α, β, and γ .
Then, any other rotation GRû,φ can be expressed in terms of GRâ,α , GR

b̂,β
, and GRĉ,γ ,

GRû,φ = GRĉ,γ
GR

b̂,β
GRâ,α (5.347)

if α, β, and γ are properly chosen numbers.

Proof : Using the definition of rotation based on quaternions, we may write

Gr = GRû,φ
Br = e

(
φ, û

)
Br e∗ (φ, û

)
(5.348)

Let us assume that r1 indicates the position vector r before rotation and r2, r3, and r4

indicate the position vector r after rotation Râ,α , R
b̂,β

, and Rĉ,γ respectively. Hence,

r2 = ar1a
∗ (5.349)

r3 = br2b
∗ (5.350)

r4 = cr3c
∗ (5.351)

r4 = er1e
∗ (5.352)

where a, b, c, and e are quaternions corresponding to
(
α, â

)
, (β, b̂),

(
γ, ĉ

)
, and

(
φ, û

)
,

respectively:

a
(
α, â

) = a0 + a = cos
α

2
+ sin

α

2
â (5.353)

b(β, b̂) = b0 + b = cos
β

2
+ sin

β

2
b̂ (5.354)

c
(
γ, ĉ

) = c0 + c = cos
γ

2
+ sin

γ

2
ĉ (5.355)

e
(
φ, û

) = e0 + e = cos
φ

2
+ sin

φ

2
û (5.356)

We define the following scalars to simplify the calculations:

cos
α

2
= C1 cos

β

2
= C2 cos

γ

2
= C3 cos

φ

2
= C (5.357)

sin
α

2
= S1 sin

β

2
= S2 sin

γ

2
= S3 sin

φ

2
= S (5.358)
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b2c3 − b3c2

S2S3
= f1

b3c1 − b1c3

S2S3
= f2

b1c2 − b2c1

S2S3
= f3 (5.359)

c2a3 − c3a2

S3S1
= g1

a3c1 − a1c3

S3S1
= g2

a1c2 − a2c1

S3S1
= g3 (5.360)

a2b3 − a3b2

S1S2
= h1

a3b1 − a1b3

S1S2
= h2

a1b2 − a2b1

S1S2
= h3 (5.361)

b · c = n1S2S3 (5.362)

c · a = n2S3S1 (5.363)

a · b = n3S1S2 (5.364)

(a × b) · c = n4S1S2S3 (5.365)

Direct substitution shows that

r4 = er1e
∗ = cbar1a

∗b∗c∗ (5.366)

and therefore,

e = cba = c (b0a0 − b · a + b0a + a0b + b × a)

= c0b0a0 − a0b · c − b0c · a − c0a · b + (a × b) · c

+ a0b0c + b0c0a + c0a0b

+ a0 (b × c) + b0 (c × a) + c0 (b × a)

− (a · b) c − (b · c) a + (c · a) b (5.367)

Hence,

e0 = c0b0a0 − a0n1S2S3 − b0n2S3S1 − c0n3S1S2 + n4S1S2S3 (5.368)

and
e = a0b0c + b0c0a + c0a0b

+ a0 (b × c) + b0 (c × a) + c0 (b × a)

− n1S2S3a + n2S3S1b−n3S1S2c (5.369)

which generate the four equations

C1C2C3 − n1C1S2S3 − n2S1C2S3 + n3S1S2C3 − n4S1S2S3 = C (5.370)

a1S1C2C3 + b1C1S2C3 + c1C1C2S3

+f1C1S2S3 + g1S1C2S3 + h1S1S2C3

−n1a1S1S2S3 + n2b1S1S2S3−n3c1S1S2S3 = u1S (5.371)
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a2S1C2C3 + b2C1S2C3 + c2C1C2S3

+f2C1S2S3 + g2S1C2S3 + h2S1S2C3

−n1a2S1S2S3 + n2b2S1S2S3−n3c2S1S2S3 = u2S (5.372)

a3S1C2C3 + b13C1S2C3 + c3C1C2S3

+f3C1S2S3 + g3S1C2S3 + h3S1S2C3

−n1a3S1S2S3 + n2b3S1S2S3−n3c3S1S2S3 = u3S (5.373)

Because e2
0 + e2

1 + e2
2 + e2

3 = 1, only the first equation and two of the others
along with

C1 =
√

1 − S2
1 C2 =

√
1 − S2

2 C3 =
√

1 − S2
3 (5.374)

must be utilized to determine C1, C2, C3, S1, S2, and S3. �

KEY SYMBOLS

A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
C constant value, cosine of half angle
c cosine
e unit quaternion, rotation quaternion, exponential
e0, e1, e2, e3 Euler parameters
G global coordinate frame, fixed coordinate frame
i, j, k flags of a quaternion
I = [I ] identity matrix

ı̂, ̂ , k̂ local coordinate axis unit vectors

ı̃, ̃ , k̃ skew-symmetric matrices of the unit vectors ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axis unit vectors
n eigenvectors of R

l length
O common origin of B and G

P a body point, a fixed point in B

p, q, r general quaternions
r position vector
rij element of row i and column j of a matrix
R rotation transformation matrix
R set of real numbers
s sine
S sine of half angle
t time
û unit vector on axis of rotation
ũ skew-symmetric matrix of the vector û
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v velocity vector, eigenvector of R

w Rodriguez vector
x,y,z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
εijk permutation symbol
δij Kronecker’s delta
λ eigenvalues of R

φ angle of rotation about û

ϕ, θ, ψ rotation angles about local axes, Euler angles
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω

Symbol
tr trace operator
vers 1 − cos
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
←→q matrix form of a quaternion q

EXERCISES
1. Invariant Axis of Rotation Find out if the axis of rotation û is fixed in B(Oxyz ) or

G(OXYZ ).

2. z-Axis–Angle Rotation Matrix Expand

GRB = BR−1
G = BRT

G = Rû,φ

= [
Az,−ϕAy,−θAz,φAy,θAz,ϕ

]T

= AT
z,ϕAT

y,θA
T
z,φAT

y,−θA
T
z,−ϕ

and verify the axis–angle rotation matrix
GRB = Rû,φ

=
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ


3. x-Axis–Angle Rotation Matrix Find the axis–angle rotation matrix by transforming the

x-axis on the axis of rotation û.

4. y-Axis–Angle Rotation Matrix Find the axis–angle rotation matrix by transforming the
y-axis on the axis of rotation û.

5. Axis–Angle Rotation and Euler Angles Find the Euler angles corresponding to the
45 deg rotation about u = [1,1,1]T.

6. Euler Angles between Two Local Frames The Euler angles between the coordinate
frame B1 and G are 20 deg, 35 deg, and −40 deg. The Euler angles between the coordinate
frame B2 and G are 60 deg, −30 deg, and −10 deg. Find the angle and axis of rotation that
transforms B2 to B1.
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7. � Angle and Axis of Rotation Based on Euler Angles Compare the Euler angle rotation
matrix with the angle–axis rotation matrix and find the angle and axis of rotation based
on Euler angles.

8. � Euler Angles Based on Angle and Axis of Rotation Compare the Euler angle rotation
matrix with the angle–axis rotation matrix and find the Euler angles based on the angle
and axis of rotation.

9. � Repeating Global–Local Rotations Rotate BrP = [6, 2, −3]T 60 deg about the Z-
axis followed by 30 deg about the x-axis. Then repeat the sequence of rotations for 60 deg
about the Z-axis followed by 30 deg about the x-axis. After how many rotations will point
P be back to its initial global position?

10. � Repeating Global–Local Rotations How many rotations of α = π/m degrees about
the X-axis followed by β = π/k degrees about the z-axis are needed to bring a body point
to its initial global position if m, k ∈ N?

11. � Small Rotation Angles Show that for very small angles of rotation ϕ, θ , and ψ about
the axes of the local coordinate frame the first and third rotations are indistinguishable
when they are about the same axis.

12. � Inner Automorphism Properly of ã If R is a rotation matrix and a is a vector, show
that

RãRT = R̃a

13. � Angle–Derivative of Principal Rotation Matrices Show that

dRZ,α

dα
= K̃RZ,α

dRY,β

dβ
= J̃RY,β

dRX,γ

dγ
= ĨRX,γ

14. � Euler Angles, Euler Parameters Compare the Euler angle rotation matrix and Euler
parameter transformation matrix and verify the following relationships between Euler
angles and Euler parameters:

e0 = cos
θ

2
cos

ψ + ϕ

2

e1 = sin
θ

2
cos

ψ − ϕ

2

e2 = sin
θ

2
sin

ψ − ϕ

2

e3 = cos
θ

2
sin

ψ + ϕ

2

and

ϕ = cos−1 2 (e2e3 + e0e1)

sin θ

θ = cos−1 [2 (
e2

0 + e2
3

) − 1
]

ψ = cos−1 −2 (e2e3 − e0e1)

sin θ
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15. � Quaternion Definition Find the unit quaternion e
(
φ, û

)
associated with

û =
 1/

√
3

1/
√

3
1/

√
3


φ = π

3

and find the result of e
(
φ, û

)
ı̂ e∗ (φ, û

)
.

16. � Quaternion Product Find pq, qp, p∗q, qp∗, p∗p, qq∗, p∗q∗, and p∗rq∗ if

p = 3 + i − 2j + 2k

q = 2 − i + 2j + 4k

r = −1 + i + j − 3k

17. � Quaternion Inverse Find q−1, p−1, p−1q−1, q−1p∗, p∗p−1, q−1q∗, and p∗−1
q∗−1

if

p = 3 + i − 2j + 2k

q = 2 − i + 2j + 4k

18. � Quaternion and Angle–Axis of Rotation Find the unit quaternion associated with

p = 3 + i − 2j + 2k

q = 2 − i + 2j + 4k

and find the angle and axis of rotation for each unit quaternion.

19. � Unit Quaternion and Rotation Use the unit quaternion p,

p = 1 + i − j + k

2

and find the global position of

Br =
 2

−2
6


20. � Quaternion Matrix Use the unit quaternion matrices associated with

p = 3 + i − 2j + 2k

q = 2 − i + 2j + 4k

r = −1 + i + j − 3k

and find ←→p ←→r ←→q , ←→q ←→p , ←→p∗←→q , ←→q ←→
p∗ ,

←→
p∗ ←→p , ←→q ←→

q∗ ,
←→
p∗ ←→

q∗ , and←→
p∗ ←→r ←→

q∗ .

21. � Euler Angles and Quaternion Find quaternion components in terms of Euler angles
and Euler angles in terms of quaternion components.

22. Angular Velocity Vector Use the definition GRB = [
rij

]
and GṘB = [

ṙij

]
, and find the

angular velocity vector ω, where ω̃ = GṘB
GRT

B .
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23. � bac –cab Rule Use the Levi-Civita density εijk to prove the bac –cab rule

a × (b × c) = b (a · c) − c (a · b)

24. � bac –cab Rule Application Use the bac –cab rule to show that

a = n̂
(
a · n̂

) + n̂ × (
a × n̂

)
where n̂ is any unit vector. What is the geometric significance of this equation?

25. � Two Rotations Are Not Enough Show that, in general, it is impossible to move a
point P(X, Y,Z) from the initial position P(Xi, Yi, Zi) to the final position P(Xf , Yf , Zf )

only by two rotations about the global axes.

26. � Three Rotations Are Enough Show that, in general, it is possible to move a point
P(X, Y,Z) from the initial position P(Xi, Yi, Zi) to the final position P(Xf , Yf , Zf ) by
three rotations about different global axes.

27. � Closure Property Show the closure property of transformation matrices.

28. Sum of Two Orthogonal Matrices Show that the sum of two orthogonal matrices is not,
in general, an orthogonal matrix but their product is.

29. Equivalent Cross Product Show that if a = [
a1, a2, a3

]T
and b = [

b1, b2, b3
]T

are
two arbitrary vectors and

ã =
 0 −a3 a2

a3 0 −a1

−a2 a1 0


is the skew-symmetric matrix corresponding to a, then

ãb = a × b

30. � Skew-Symmetric Matrices Use a = [
a1, a2, a3

]T
and b = [

b1, b2, b3
]T

to show
that

(a) ãb = −b̃a

(b)
(

ã + b
)

= ã + b̃

(c)
( ˜̃ab

)
= baT − abT

31. � Rotation Matrix Identity Show that if A, B, and C are three rotation matrices, then

(a) (AB) C = A (BC) = ABC

(b) (A + B)T = AT + BT

(c) (AB)T = BTAT

(d)
(
A−1

)T = (
AT

)−1

32. � Skew-Symmetric Matrix Multiplication Verify that

(a) aT ãT = −aT ã = 0

(b) ãb̃ = baT − aTb I

33. � Skew-Symmetric Matrix Derivative Show that

·
ã=˜̇a
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34. � Time Derivative of A = [
a, ã

]
Assume that a is a time-dependent vector and A =[

a,ã
]

is a 3 × 4 matrix. What is the time derivative of C = AAT?

35. � Combined Angle–Axis Rotations The rotation φ1 about û1 followed by rotation φ2

about û2 is equivalent to a rotation φ about û. Find the angle φ and axis û in terms of φ1,
û1, φ2, and û2.

36. � Rodriguez Vector Using the Rodriguez rotation formula, show that

r′ − r = tan
φ

2
û × (

r′ + r
)

37. � Equivalent Rodriguez Rotation Matrices Show that the Rodriguez rotation matrix

GRB = I cos φ + ûûT vers φ + ũ sin φ

can also be written as

GRB = I + (sin φ) ũ + ( vers φ) ũ2

38. � Rotation Matrix and Rodriguez Formula Knowing the alternative definition of the
Rodriguez formula,

GRB = I + (sin φ) ũ + ( vers φ) ũ2

and
ũ2n−1 = (−1)n−1 ũ

ũ2n = (−1)n−1 ũ2

examine the equation

GRT
B

GRB = GRB
GRT

B

39. � Rodriguez Formula Application Use the alternative definition of the Rodriguez for-
mula,

GRB = I + (sin φ) ũ + ( vers φ) ũ2

and find the global position of a body point at

Br = [
1 3 4

]T

after a rotation of 45 deg about the axis indicated by

û =
[

1√
3

1√
3

1√
3

]T
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40. Axis and Angle of Rotation Consider the transformation matrix

R =



3

4

√
6

4

1

4

−√
6

4

2

4

√
6

4

1

4

−√
6

4

3

4



(a) Find the axis and angle of rotation.

(b) Determine the Euler angles.

(c) Determine the Euler parameters.

(d) Determine the eigenvalues and eigenvectors.

41. � Axis of Rotation Multiplication Show that

ũ2k+1 = (−1)k ũ

and
ũ2k = (−1)k

(
I − ûûT)

42. � Stanley Method Find the Euler parameters of the following rotation matrix based on
the Stanley method:

GRB =
 0.5449 −0.5549 0.6285

0.3111 0.8299 0.4629
−0.7785 −0.0567 0.6249





6

Motion Kinematics

The general motion of a rigid body in a global frame G is a combination of displace-
ments and rotations. This combination may be defined by a 4 × 4 matrix to express
the rigid-body motion.

6.1 RIGID-BODY MOTION

Consider a rigid body with an attached local coordinate frame B(oxyz) that is moving
in a fixed global coordinate frame G(OXYZ). The rigid body can rotate in G, while
point o of B can translate relative to the origin O of G, as is shown in Figure 6.1. If
the vector Gd indicates the position of the moving origin o relative to the fixed origin
O, then the coordinates of a body point P in local and global frames are related by

GrP = GRB
BrP + Gd (6.1)

where

Gr =
XP

YP

ZP

 Br =
 xP

yP

zP

 Gd =
Xo

Yo

Zo

 (6.2)

The vector Gd is called the displacement or translation of B with respect to G, and
GRB is the rotation matrix that transforms Br to Gr when Gd = 0. Such a combination
of a rotation and translation in Equation (6.1) is called the rigid-body motion in which
the configuration of the body can be expressed by the position of the origin o of B and
the orientation of B.

Decomposition of a rigid motion into a rotation and a translation is the simplest
method for representing spatial displacement of rigid bodies. We show the translation
by a vector and the rotation by any of the methods described in Chapter 5.

Proof : Consider a body frame B that is initially coincident with a globally fixed frame
G. Figure 6.1 illustrates a translated and rotated frame B in a frame G. The most general
rotation is represented by the Rodriguez rotation formula (5.122), which depends on
BrP , the position vector of a point P measured in the body coordinate frame. All points
of the body have the same displacement for the translation Gd. Therefore, translation
of a rigid body is independent of the local position vector Br. Because of that, we can
represent the most general displacement of a rigid body by a rotation and a translation:

Gr = Br cos φ + (1 − cos φ)
(
û · Br

)
û + (

û × Br
)

sin φ + Gd

= GRB
Br + Gd (6.3)

477
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X
Y

Z

O

x

y

z

θ

φ

G

x

y

z

Bd o

ψ

Figure 6.1 Rotation and translation of a body frame.

Equation (6.3) indicates that the most general displacement of a rigid body is a
rotation about an axis and a translation along an axis. The choice of the point of
reference o is arbitrary; however, when this point is chosen and the body coordinate
frame is set up, the rotation and translation are determined.

Based on translation and rotation, the configuration of a body can be uniquely
determined by six independent parameters: three translation components Xo, Yo, Zo

and three rotational components. The rotation parameters may be the Euler angles,
Euler parameters, or any set of the triple rotations of Appendices A and B.

If a body moves in such a way that its rotational components remain constant, the
motion is called a pure translation; if it moves in such a way that Xo, Yo, and Zo

remain constant, the motion is called a pure rotation . Therefore, a rigid body has three
translational and three rotational degrees of freedom. �

Example 335 Rotation and Translation of a Body Coordinate Frame A body coordi-
nate frame B(oxyz) that is originally coincident with global coordinate frame G(OXYZ)

rotates 60 deg about the X-axis and translates to [3,4,5]T. The global position of a point
at Br = [

x, y, z
]T

is

Gr = GRB
Br + Gd

=


1 0 0

0 cos
π

3
− sin

π

3

0 sin
π

3
cos

π

3


 x

y

z

 +
 3

4
5



= (x + 3)Î +
(

1

2
y −

√
3

2
z + 4

)
Ĵ +

(
1

2
z +

√
3y + 5

)
K̂ (6.4)

Example 336 Moving-Body Coordinate Frame Figure 6.2 shows a point P at BrP =
ı̂ + 3̂ + 3k̂ in a body frame B which is rotated 45 deg about the Z-axis and translated
−9 along the X-axis, 5 along the Y -axis, and 2 along the Z-axis.
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X Y

Z

x

y

z

P

Br
Gr

G

B

Gd o

O

Figure 6.2 A translating and rotating body in a global coordinate frame.

The position of P in a global coordinate frame is

Gr = GRB
BrP + Gd (6.5)

=


cos

π

4
− sin

π

4
0

sin
π

4
cos

π

4
0

0 0 1


 1

3
3

 +
−9

5
2

 =
−10.41

7.83
5



Example 337 Rotation of a Translated Rigid Body Point P of a rigid body B has
the initial position vector

BrP =
 1

2
3

 (6.6)

If the body rotates 45 deg about the x-axis and then translates to Gd = [3,2,1]T, the
final position of P would be

Gr = BRT
x,45

BrP + Gd (6.7)

=


1 0 0

0 cos
π

4
sin

π

4

0 − sin
π

4
cos

π

4


T  1

2
3

 +
 3

2
1

 =
 4

1.29
4.53





480 Motion Kinematics

Example 338 Robotic Arm Rotation and Elongation The position vector of point P1

at the tip of a robotic arm, shown in Figure 6.3(a), is

GrP1 = BrP1 =
 1150

0
950

mm (6.8)

The arm rotates 60 deg about the global Z-axis and elongates by

Bd =
 725.2

0
512

mm (6.9)

The final configuration of the arm is shown in Figure 6.3(b).

Y

y

X

Z

P2

X
Y

Z

(a) (b)

z

x

y

z

60°
x

P1

G

B

Gd

Figure 6.3 A two-arm robot with a revolute and a prismatic joint.

The new position vector of P in G is

GrP2 = GRB
BrP1 + Gd = RZ,60

BrP1 + Gd (6.10)

where GRB = RZ,60 is the rotation matrix to transform rP2 to rP1 when Gd = 0. The
translation vector Bd must be transformed from the body to the global coordinate frame:

Gd = GRB
Bd (6.11)

=


cos

π

3
− sin

π

3
0

sin
π

3
cos

π

3
0

0 0 1


 725.2

0
512

 =
 362.6

628.04
512
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Therefore, the final global position of the tip of the arm is at

GrP2 = GRB
BrP1 + Gd (6.12)

=
 c60 −s60 0

s60 c60 0
0 0 1

 1150
0

950

 +
 362.6

628.04
512

 =
 937.6

1624
1462



Example 339 Composition of Rigid-Body Motion Consider a rigid motion of body
B1 with respect to body B2 and then a rigid motion of body B2 with respect to frame
G such that

2r = 2R1
1r + 2d1 (6.13)

Gr = GR2
2r + Gd2 (6.14)

These two motions may be combined to determine a rigid motion that transforms
1r to Gr:

Gr = GR2
(2R1

1r + 2d1
) + Gd2 = GR2

2R1
1r + GR2

2d1 + Gd2

= GR1
1r + Gd1 (6.15)

Therefore,
GR1 = GR2

2R1 (6.16)
Gd1 = GR2

2d1 + Gd2 (6.17)

which shows that the transformation from frame B1 to frame G can be done by rotation
GR1 and translation Gd1.

6.2 HOMOGENEOUS TRANSFORMATION

Figure 6.4 depicts a body point P where its positions in the local frame B and global
frame G are denoted by BrP and GrP . The vector Gd indicates the position of origin

X
Y

Z

x

y

z

P

BrGr

G

B

Gd o

O

Figure 6.4 Representation of a point P in coordinate frames B and G.
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o of B in G. Therefore, a general motion of a rigid body B(oxyz) in the global frame
G(OXYZ) is a combination of rotation GRB and translation Gd:

Gr = GRB
Br + Gd (6.18)

We may combine a rotation matrix and a translation vector by introducing a 4 × 4
homogeneous transformation matrix GTB and express a rigid motion by a single matrix
transformation

Gr = GTB
Br (6.19)

where

GTB =


r11 r12 r13 Xo

r21 r22 r23 Yo

r31 r32 r33 Zo

0 0 0 1

 ≡
[

GRB
Gd

0 0 0 1

]

≡
[

GRB
Gd

0 1

]
(6.20)

and

Gr =


XP

YP

ZP

1

 Br =


xP

yP

zP

1

 Gd =


Xo

Yo

Zo

1

 (6.21)

The combined matrix GTB is called the homogeneous transformation matrix and is a
concise method to represent rigid motions. Introducing the 4 × 4 matrix GTB simplifies
numerical calculations and transforms the coordinates of a body point between the
frames B and G.

Representation of a three-component vector by a four-component vector is called
homogeneous coordinate representation. The appended element is a scale factor w that
may be used to separate the magnitude and directional cosines of the vector. Therefore,
the homogeneous expression of a natural vector is

r = rûr = r
(
u1 ı̂ + u2̂ + u3k̂

)
=


u1

u2

u3

r

 (6.22)

and the homogeneous representation of a vector r = [
x,y,z

]T
is

r =


wx

wy

wz

w

 (6.23)

Expressing a vector r by its homogeneous coordinates shows that the absolute values
of the four coordinates are not important. Instead, it is the three ratios x/w, y/w, and
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z/w that are important because

r =


x

y

z

w

 =


x/w

y/w

z/w

1

 (6.24)

provided w �= 0 and w �= ∞. The homogeneous vector wr refers to the same point as
r does.

If w = 1, then the homogeneous coordinates of a position vector are the same as
the physical coordinates of the vector and the space is a Euclidean space. Hereafter, if
no confusion exists and w = 1, we will use the regular vectors and their homogeneous
representation equivalently.

Proof : We append a fourth element 1 to the coordinates of vectors GrP , BrP , Gd and
define homogeneous vectors as given in (6.21).

Applying the homogeneous transformation (6.19), we find

GrP = GTB
BrP (6.25)

XP

YP

ZP

1

 =


r11 r12 r13 Xo

r21 r22 r23 Yo

r31 r32 r33 Zo

0 0 0 1




xP

yP

zP

1



=


Xo + r11xP + r12yP + r13zP

Yo + r21xP + r22yP + r23zP

Zo + r31xP + r32yP + r33zP

1

 (6.26)

However, the standard method provides

GrP = GRB
Brp + Gd (6.27)XP

YP

ZP

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33


 xP

yP

zP

 +

Xo

Yo

Zo



=

Xo + r11xP + r12yP + r13zP

Yo + r21xP + r22yP + r23zP

Zo + r31xP + r32yP + r33zP

 (6.28)

which is equivalent to its homogeneous expression (6.26). �

Example 340 Rotation and Translation of a Body Coordinate Frame A body coordi-
nate frame B(oxyz) that is originally coincident with global coordinate frame G(OXYZ)
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rotates 60 deg about the X-axis and translates to [3,4,5,1]T. The global position of a
point at

Br = [
x y z 1

]T
(6.29)

is

Gr = GTB
Br (6.30)

=


X

Y

Z

1

 =



1 0 0 3

0 cos
π

3
− sin

π

3
4

0 sin
π

3
cos

π

3
5

0 0 0 1




x

y

z

1

 =



x + 3

y

2
−

√
3

2
z + 4

z

2
+

√
3

2
y + 5

1



Example 341 Rotation and Translation of a Body Coordinate Frame Figure 6.5
illustrates a body coordinate frame B(oxyz) that was originally coincident with global
coordinate frame G(OXYZ). The body is rotated 60 deg about the X-axis and then 30 deg
about the Z-axis and then translated to [3,14,5,1]T. The homogeneous transformation
matrix GTB is

GTB =
[

GRB
Gd

0 1

]
=


0.86603 −0.25 0.43301 3

0.5 0.43301 −0.75 14

0 0.86603 0.5 5

0 0 0 1

 (6.31)

X Y

Z

y

z P
Gr

G

B

Br

Gd

x

Figure 6.5 A body coordinate frame B(oxyz) after a combined rotation and translation.
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because
GRB = GRZ,30

GRX,60

=


cos

π

6
− sin

π

6
0

sin
π

6
cos

π

6
0

0 0 1




1 0 0

0 cos
π

3
− sin

π

3

0 sin
π

3
cos

π

3



=
 0.86603 −0.25 0.43301

0.5 0.43301 −0.75
0 0.86603 0.5

 (6.32)

So, the global position of a point at Br = [1, 5, 4, 1]T is

Gr = GTB
Br = GTB


1
5
1
1

 =


3.049

15.915
9.8302

1

 (6.33)

Example 342 Pure Rotation and Translation Matrices The homogeneous transfor-
mation matrix GTB can be decomposed to a matrix multiplication of a pure rotation
matrix GRB and a pure translation matrix GDB ,

GTB = GDB
GRB =


1 0 0 Xo

0 1 0 Yo

0 0 1 Zo

0 0 0 1




r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1



=


r11 r12 r13 Xo

r21 r22 r23 Yo

r31 r32 r33 Zo

0 0 0 1

 (6.34)

So, the body-to-global homogeneous transformation matrix GTB of a rigid-body motion
can be achieved by a pure rotation first followed by a pure translation (RFDS):

GTB = GDB
GRB = RFDS

= Rotation First, Displacement Second (6.35)

The decomposition of a homogeneous transformation to rotation and translation is
not interchangeable:

GTB = GDB
GRB �= GRB

GDB (6.36)

However, according to the definition of GRB and GDB , we have

GTB = GDB
GRB = GDB + GRB − I = GRB + GDB − I (6.37)
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Therefore, if a body coordinate frame B(oxyz) that is originally coincident with global
coordinate frame G(OXYZ) translates to

Gd =
 dx

dy

dz

 (6.38)

its motion is a pure translation. The associated homogeneous transformation matrix for
such a body point in the global frame is

Gr = GTB
Br = GDB

Br (6.39)

=


X

Y

Z

1

 =


1 0 0 dX

0 1 0 dY

0 0 1 dZ

0 0 0 1




x

y

z

1

 =


x + dx

y + dy

z + dz

1


Similarly, the homogeneous representation of rotations about an axis of the global
coordinate frame, say rotation α about the Z-axis, is

GTB = RZ,α =


cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

 (6.40)

Example 343 Rotation about and Translation along a Principal Axis A point P

is located at Br = [5,5,5]T. If the rigid body rotates 60 deg about the global X-axis
and the origin of the body frame translates to Gd = [5,5,5]T, then the homogeneous
transformation can provide the coordinates of the point in the global frame:

1 0 0 5
0 1 0 5
0 0 1 5
0 0 0 1




1 0 0 0
0 cos 60 − sin 60 0
0 sin 60 cos 60 0
0 0 0 1




5
5
5
1

 =


10

3.17
11.83

1

 (6.41)

Now assume that the same point of the rigid body rotates 60 deg about the local
x-axis and the origin of the body frame translates to Gd. Then the coordinates of the
point in the global frame are

1 0 0 5
0 1 0 5
0 0 1 5
0 0 0 1




1 0 0 0
0 cos 60 sin 60 0
0 − sin 60 cos 60 0
0 0 0 1


T 

5
5
5
1

 =


10

3.17
11.83

1

 (6.42)
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Example 344 Translation Consider a body point at

Br = [−1 0 2 1
]T

(6.43)

that is translated to
Gr = [

0 10 −5 1
]T

(6.44)

The corresponding transformation can be found by
2
10

−5
1

 =


1 0 0 dX

0 1 0 dY

0 0 1 dZ

0 0 0 1




1
4
2
1

 (6.45)

Therefore,
1 + dX = 2 4 + dY = 10 2 + dZ = −5 (6.46)

and
dX = 1 dY = 6 dZ = −7 (6.47)

Example 345 Pure Rotation and Translation about Global Axes The basic homo-
geneous transformations for translation along and rotation about the local x-, y-, and
z-axes are given as

BTG = Dx,a =


1 0 0 −a

0 1 0 0
0 0 1 0
0 0 0 1

 (6.48)

BTG = Rx,γ =


1 0 0 0
0 cos γ sin γ 0
0 − sin γ cos γ 0
0 0 0 1

 (6.49)

BTG = Dy,b =


1 0 0 0
0 1 0 −b

0 0 1 0
0 0 0 1

 (6.50)

BTG = Ry,β =


cos β 0 − sin β 0

0 1 0 0
sin β 0 cos β 0

0 0 0 1

 (6.51)

BTG = Dz,c =


1 0 0 0
0 1 0 0
0 0 1 −c

0 0 0 1

 (6.52)
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BTG = Rz,α =


cos α sin α 0 0

− sin α cos α 0 0
0 0 1 0
0 0 0 1

 (6.53)

The rule (RFDS) of (6.35) for a homogeneous transformation matrix of global-to-body
BTG is also applicable if we use matrices (6.48)–(6.53):

BTG = BDG
BRG = RFDS

= Rotation First, Displacement Second (6.54)

Example 346 Pure Rotation and Translation about Local Axes The basic homoge-
neous transformations for translation along and rotation about the global X-, Y -, and
Z-axes are given as

GTB = DX,a =


1 0 0 a

0 1 0 0
0 0 1 0
0 0 0 1

 (6.55)

GTB = RX,γ =


1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

 (6.56)

GTB = DY,b =


1 0 0 0
0 1 0 b

0 0 1 0
0 0 0 1

 (6.57)

GTB = RY,β =


cos β 0 sin β 0
0 1 0 0

− sin β 0 cos β 0
0 0 0 1

 (6.58)

GTB = DZ,c =


1 0 0 0
0 1 0 0
0 0 1 c

0 0 0 1

 (6.59)

GTB = RZ,α =


cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

 (6.60)
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Example 347 Homogeneous Transformation as a Vector Addition Figure 6.4 shows
that the position of point P can be described by vector addition:

GrP = Gd + BrP (6.61)

Because a vector equation is not meaningful unless all the vectors are expressed in the
same coordinate frame, we need to transform either BrP to G or GrP and Gd to B.
Therefore, the correct vector equation is

GrP = GRB
BrP + Gd (6.62)

or
BRG

GrP = BRG
Gd + BrP (6.63)

The first one defines a homogenous transformation from B to G,

GrP = GTB
BrP (6.64)

GTB =
[

GRB
Gd

0 1

]
(6.65)

and the second one defines a transformation from G to B,

BrP = BTG
GrP (6.66)

BTG =
[

BRG −BRG
Gd

0 1

]
=

[
GRT

B −GRT
B

Gd
0 1

]
(6.67)

Example 348 � Point at Infinity A point at infinity indicates a direction. Points
at infinity have a convenient representation with homogeneous coordinates. Consider
the scale factor w as the fourth coordinate of a point, and hence the homogeneous
representation of the point is given by

x

y

z

w

 =


x/w

y/w

z/w

1

 (6.68)

As w tends to zero, the point goes to infinity, and the homogeneous coordinate
x

y

z

0

 (6.69)

represents all lines parallel to the vector r = [
x, y, z

]T
which intersect at a point at

infinity. The homogeneous coordinate transformation of points at infinity introduces a
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proper decomposition of the homogeneous transformation matrices:

GTB =


r11 r12 r13 Xo

r21 r22 r23 Yo

r31 r32 r33 Zo

0 0 0 1

 (6.70)

The first three columns have zero as the fourth coordinate and represent points at
infinity, which are the directions corresponding to the three coordinate axes. The fourth
column has one as the fourth coordinate and represents the location of the coordinate
frame origin.

Example 349 � General Homogeneous Transformation The homogeneous trans-
formation (6.20) is a special case of the general transformation. The most general
homogeneous transformation, which has been extensively used in the field of computer
graphics, is

ATB =
[

ARB(3 × 3) Ad(3 × 1)

p(1 × 3) w(1 × 1)

]
(6.71)

=
[

rotation translation

perspective scale factor

]
In rigid-body dynamics, we always take the last row vector of [T ] to be (0,0,0,1).
However, a more general form of (6.71) could be useful, for example, when a graphical
simulator or a vision system is added to a robotic system or an autonomous vehicle.

The upper left 3 × 3 submatrix ARB denotes the orientation of a moving frame B

with respect to another moving frame A. The upper right 3 × 1 submatrix Ad denotes the
position of the origin of frame B relative to frame A. The lower left 1 × 3 submatrix p

denotes a perspective transformation, and the lower right element w is a scaling factor.

Example 350 Rigid-Body and Corner Coordinates We may represent a rigid body by
an array of homogeneous coordinates of specific points of the body, usually expressed
in a body coordinate frame B. The specific points are usually the corners. Figure 6.6(a)

illustrates the configuration of a box. The coordinates of the corners of the box in its
body frame B are collected in the matrix [P ]:

BP = [
r1 r2 r3 r4 r5 r6 r7 r8

]
=


1 1 0 0 1 1 0 0
0 3 3 0 0 3 3 0
0 0 0 0 5 5 5 5
1 1 1 1 1 1 1 1

 (6.72)

The configuration of the box after a rotation of −90 deg about the Z-axis and
a translation of three units along the X-axis is shown in Figure 6.6(b). The new
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G

X
Y

Z

O

x
y

z

B

5

1

2

3

4

8

G

X

Y

Z

O
x

y

z

B

5

1

2

3

4

8

(a) (b)

6

7

6

7

Figure 6.6 Describing the motion of a rigid body in terms of some body points.

coordinates of its corners in the global frame G are found by multiplying the cor-
responding transformation matrix by [P ]:

GTB = DX,3RZ,90

=


1 0 0 3
0 1 0 0
0 0 1 0
0 0 0 1




cos(−90) − sin(−90) 0 0
sin(−90) cos(−90) 0 0

0 0 1 0
0 0 0 1



=


0 1 0 3

−1 0 0 0
0 0 1 0
0 0 0 1

 (6.73)

Therefore, the global coordinates of corners 1–6 after motion are

GP = GTB
BP

=


0 1 0 3

−1 0 0 0
0 0 1 0
0 0 0 1




1 1 0 0 1 1 0 0
0 3 3 0 0 3 3 0
0 0 0 0 5 5 5 5
1 1 1 1 1 1 1 1



=


3 6 6 3 3 6 6 3

−1 −1 0 0 −1 −1 0 0
0 0 0 0 5 5 5 5
1 1 1 1 1 1 1 1

 (6.74)
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Example 351 � Rotation and Translation in a Plane Homogeneous transformation
(6.20) will be simplified to

GTB =


cos θ − sin θ 0 Xo

sin θ cos θ 0 Yo

0 0 1 0
0 0 0 1

 ≡
[ GRZ,θ

Gd
0 0 0 1

]
(6.75)

for a motion parallel to the (X,Y )-plane. Consider a planar body that is displaced from
position 1 to position 2 according to Figure 6.7.

P0

X

Y

P1(10,10)

60.0°

Q2(X,Y)

Q1(30,10)

P2(50,20)

Figure 6.7 Motion in a plane.

New coordinates of Q2 are

rQ2 = 2R1
(
rQ1 − rP1

) + rP2

=
 cos 60 − sin 60 0

sin 60 cos 60 0
0 0 1

 30
10
0

 −
 10

10
0

 +
 50

20
0


=

 10
17.321

0

 +
 50

20
0

 =
 60

37.321
0

 (6.76)

or equivalently

rQ2 = 2T1 rQ1 =
[

2R1 rP2 − 2R1 rP1

0 1

]
rQ1

=


cos 60 − sin 60 0 53.66
sin 60 cos 60 0 6.3397

0 0 1 0
0 0 0 1




30
10
0
1

 =


60

37.32
0
1

 (6.77)
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Example 352 � Pole of Planar Motion Any planar motion of a rigid body can be
substituted with a rotation about a point. Such a point is called the finite rotation pole.
Assume that the plane of motion is the (X,Y )-plane. The pole can be determined from
the transformation matrix of the planar motion:

GTB =


cos θ − sin θ 0 d1

sin θ cos θ 0 d2

0 0 1 0
0 0 0 1

 (6.78)

The components d1 and d2 are the given displacements of a body point. To locate
the pole of motion P0(X0, Y0), we search for a point that will not move under the
transformation:

rP0 = 2T1 rP0 (6.79)
X0

Y0

0
1

 =


cos θ − sin θ 0 d1

sin θ cos θ 0 d2

0 0 1 0
0 0 0 1




X0

Y0

0
1


Therefore, we will have two equations to determine the coordinates of the pole:

X0 = d1 + X0 cos θ − Y0 sin θ (6.80)

Y0 = d2 + Y0 cos θ + X0 sin θ (6.81)

The matrix form of the equations,[
1 − cos θ sin θ

− sin θ 1 − cos θ

] [
X0

Y0

]
=

[
d1

d2

]
(6.82)

provides the required solutions:[
X0

Y0

]
=

[
1 − cos θ sin θ

− sin θ 1 − cos θ

]−1 [
d1

d2

]

= 1

2

 d1 + d2
sin θ

cos θ − 1

−d1
sin θ

cos θ − 1
+ d2

 (6.83)

As an example, the transformation matrix in Example 351 is

GTB =


0.5 −0.86603 0 53.66

0.86603 0.5 0 6.3397
0 0 1.0 0
0 0 0 1.0
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which generates two equations to determine the position of the pole of the motion:

X0 = 0.5X0 − 0.86603Y0 + 53.66 (6.84)

Y0 = 0.86603X0 + 0.5Y0 + 6.3397 (6.85)[
X0

Y0

]
=

[
21.339
49.641

]
(6.86)

6.3 INVERSE AND REVERSE HOMOGENEOUS
TRANSFORMATION

If we show a rigid-body motion by the homogeneous transformation

GTB =
[

I Gd
0 1

] [
GRB 0

0 1

]
=

[
GRB

Gd
0 1

]
(6.87)

then the inverse of GTB would be

BTG = GT −1
B =

[
GRB

Gd
0 1

]−1

=
[

GRT
B −GRT

B
Gd

0 1

]
(6.88)

and the reverse motion of GTB would be

GT−B =
[

GRT
B 0

0 1

] [
I −Gd
0 1

]
=

[
GRT

B −GRT
B

Gd
0 1

]
(6.89)

which yields
GT −1

B
GTB = I4 (6.90)

GT−B
GTB = I4 (6.91)

The homogeneous transformation matrix simplifies the rigid-body motion; however,
a shortcoming is that they lose the orthogonality property because a transformation
matrix is not orthogonal and its inverse is not equal to its transpose:

GT −1
B �= GT T

B (6.92)

Although it is traditional to use the inverse matrix notation GT −1
B for BTG,

GT −1
B = BTG (6.93)

calculating GT −1
B must be done according to Equation (6.88), and not by regular matrix

inversion of a 4 × 4 matrix. The matrix inversion notation makes equations consistent
with the multiplication of a matrix [T ] by its inverse, [T ]−1, because

GT −1
B

GTB = BTG
GTB = I4 (6.94)
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X
Y

Z

x

y

z

G

B

Gd

Figure 6.8 Illustration of a rotated and translated body frame B(oxyz) with respect to the global
frame G(OXYZ).

Proof : A rotated and translated body frame B(oxyz) with respect to the global frame
G(OXYZ) is depicted in Figure 6.8. Transformation of the coordinates of a point P

from the global frame to the body frame is BTG, which is the inverse of the transfor-
mation GTB .

Starting with the expression of Gr and the definition of GTB for mapping Br to Gr,

Gr = GRB
Br + Gd = GTB

Br (6.95)[
Gr
1

]
=

[
GRB

Gd
0 1

] [
Br
1

]
(6.96)

we find
Br = GR−1

B

(
Gr − Gd

) = GRT
B

Gr − GRT
B

Gd (6.97)

to express the transformation matrix BTG for mapping Gr to Br:

BTG = GT −1
B =

[
GRT

B −GRT
B

Gd
0 1

]
(6.98)

Furthermore, a matrix multiplication indicates that

GT −1
B

GTB =
[

GRT
B −GRT

B
Gd

0 1

][
GRB

Gd
0 1

]

=
[

GRT
B

GRB
GRT

B
Gd − GRT

B
Gd

0 1

]
=

[
I3 0
0 1

]
= I4 (6.99)

Recalling that a homogeneous motion GTB is equal to a rotation GRB plus a trans-
lation GDB ,

GTB = GDB
GRB =

[
I Gd
0 1

] [
GRB 0

0 1

]
(6.99a)
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we define the reverse motion by a translation −GDB followed by a reverse rotation
GR−B = GRT

B :

GT−B = [
GR−B

] [−GDB

] =
[

GRT
B 0

0 1

] [
I −Gd
0 1

]
(6.99b)

The result of a rigid-body motion GTB and then the reverse motion GT−B would be an
identity matrix:

GT−B
GTB = GTB

GT−B

=
[

GRT
B 0

0 1

] [
I −Gd
0 1

] [
I Gd
0 1

] [
GRB 0

0 1

]
=

[
GRT

B 0
0 1

] [
I3 0
0 1

] [
GRB 0

0 1

]
= I4 (6.100)

�

Example 353 Alternative Proof for GT −1
B

BTG can be found by a geometric expres-
sion. Consider the inverse of the rotation matrix GRB ,

GR−1
B = GRT

B = BRG (6.101)

and the reverse of Gd as the vector Bd to indicate the origin of the global frame with
respect to the origin of the body frame,

Bd = BRG
Gd = GRT

B
Gd (6.102)

They allow us to define the homogeneous transformation BTG:

BTG =
[

BRG −Bd
0 1

]
=

[
GRT

B −GRT
B

Gd
0 1

]
(6.103)

Example 354 Inverse and Reverse of a Homogeneous Matrix Assume that

GTB =


1 0 0 −1
0 cos 60 − sin 60 5
0 sin 60 cos 60 2
0 0 0 1

 =
[

GRB
Gd

0 1

]
(6.104)

Then

GRB =
 1 0 0

0 cos 60 − sin 60
0 sin 60 cos 60

 Gd =
−1

5
2

 (6.105)
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The inverse transformation is

BTG = GT −1
B =

[
GRT

B −GRT
B

Gd
0 1

]

=


1 0 0 1
0 −0.95241 −0.30481 5.3717
0 0.30481 −0.95241 0.38077
0 0 0 1

 (6.106)

and the reverse transformation is

GT−B =
[

GR−B 0
0 1

] [
I −Gd
0 1

]

=


1 0 0 0
0 cos −60 − sin −60 0
0 sin −60 cos −60 0
0 0 0 1




1 0 0 1
0 1 0 −5
0 0 1 −2
0 0 0 1



=


1 0 0 1
0 −0.95241 −0.30481 5.3717
0 0.30481 −0.95241 0.38077
0 0 0 1

 (6.107)

Example 355 Transformation Matrix and Coordinate of Points We are able to deter-
mine the rigid-body transformation matrix if we have the coordinates of four points of
the body in both B and G frames.

Assume A, B, C, and D are four points with the following coordinates in two
different frames:

A1(2, 4, 1) B1(2, 6, 1) C1(1, 5, 1) D1(3, 5, 2) (6.108)

A2(5, 1, 1) B2(7, 1, 1) C2(6, 2, 1) D2(6, 2, 3) (6.109)

The homogeneous transformation matrix [T ] maps the coordinates between the
two frames,

[T ]


2 2 1 3
4 6 5 5
1 1 2 2
1 1 1 1

 =


5 7 6 6
1 1 2 2
1 1 1 3
1 1 1 1

 (6.110)

and hence

[T ] =


5 7 6 6
1 1 2 2
1 1 1 3
1 1 1 1




2 2 1 3
4 6 5 5
1 1 2 2
1 1 1 1


−1

=


0 1 0 1
0 0 1 0
1 0 1 −2
0 0 0 1

 (6.111)
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Example 356 Quick Inverse Transformation Decomposition of a transformation
matrix into translation and rotation provides a practical numerical method for quick
inversion of the matrix.

Consider the transformation matrix

[T ] =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 = [D][R]

=


1 0 0 r14

0 1 0 r24

0 0 1 r34

0 0 0 1




r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (6.112)

Therefore,

[T ]−1 = [DR]−1 = R−1D−1 = RTD−1

=


r11 r21 r31 0
r12 r22 r32 0
r13 r23 r33 0
0 0 0 1




1 0 0 −r14

0 1 0 −r24

0 0 1 −r34

0 0 0 1



=


r11 r21 r31 −r11r14 − r21r24 − r31r34

r12 r22 r32 −r12r14 − r22r24 − r32r34

r13 r23 r33 −r13r14 − r23r24 − r33r34

0 0 0 1

 (6.113)

Example 357 � Inverse of a Combined Matrix Consider a matrix [T ] that is a
combination of four submatrices [A], [B], [C], and [D] such that

[T ] =
[

A B

C D

]
(6.114)

The inverse is given by

T −1 =
[

A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
(6.115)

where

[E] = D − CA−1B (6.116)

In the case of the general homogeneous transformation

ATB =
[

ARB(3 × 3) Ad(3 × 1)

p(1 × 3) w(1 × 1)

]
(6.117)

=
[

rotation translation

perspective scale factor

]
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we have
[T ] = ATB (6.118)

[A] = ARB (6.119)

[B] = Ad (6.120)

[C] = [
p1 p2 p3

]
(6.121)

[D] = [
w1×1

] = w (6.122)

and therefore,

[E] = [E1×1] = E = w − [
p1 p2 p3

]
AR−1

B
Ad

= w − [
p1 p2 p3

]
ART

B
Ad

= 1 − p1(d1r11 + d2r21 + d3r31)

+ p2(d1r12 + d2r22 + d3r32)

+ p3(d1r13 + d2r23 + d3r33) (6.123)

−E−1CA−1 = 1

E

[
g1 g2 g3

]
(6.124)

where
g1 = p1r11 + p2r12 + p3r13 (6.124a)

g2 = p1r21 + p2r22 + p3r23 (6.124b)

g3 = p1r31 + p2r32 + p3r33 (6.124c)

and

−A−1BE−1 = − 1

E

 d1r11 + d2r21 + d3r31

d1r12 + d2r22 + d3r32

d1r13 + d2r23 + d3r33

 (6.125)

A−1 + A−1BE−1CA−1 = [F ] =
 f11 f12 f13

f21 f22 f23

f31 f32 r33

 (6.126)

where

f11 = r11 + 1

E
(p1r11 + p2r12 + p3r13)(d1r11 + d2r21 + d3r31) (6.126a)

f12 = r21 + 1

E
(p1r21 + p2r22 + p3r23)(d1r11 + d1r21 + d1r31) (6.126b)

f13 = r31 + 1

E
(p1r31 + p2r32 + p3r33)(d1r11 + d2r21 + d3r31) (6.126c)

f21 = r12 + 1

E
(p1r11 + p2r12 + p3r13)(d1r12 + d2r22 + d3r32) (6.126d)



500 Motion Kinematics

f22 = r22 + 1

E
(p1r21 + p2r22 + p3r23)(d1r12 + d2r22 + d3r32) (6.126e)

f23 = r32 + 1

E
(p1r31 + p2r32 + p3r33)(d1r12 + d2r22 + d3r32) (6.126f)

f31 = r13 + 1

E
(p1r11 + p2r12 + p3r13)(d1r13 + d2r23 + d3r33) (6.126g)

f32 = r23 + 1

E
(p1r21 + p2r22 + p3r23)(d1r13 + d2r23 + d3r33) (6.126h)

f33 = r33 + 1

E
(p1r31 + p2r32 + p3r33)(d1r13 + d2r23 + d3r33). (6.126i)

This method for a coordinate homogeneous transformation

[T ] = ATB (6.127)

[A] = ARB (6.128)

[B] = Ad (6.129)

[C] = [
0 0 0

]
(6.130)

[D] = [1] (6.131)

reduces to

[E] = [1] (6.132)

AT −1
B =

[
ART

B −ART
B

Ad
0 1

]
(6.133)

6.4 COMPOUND HOMOGENEOUS TRANSFORMATION

Figure 6.9 shows three reference frames: A, B, and C. The transformation matrices to
transform coordinates from frame B to A and from frame C to B are

ATB =
[

ARB
Ad1

0 1

]
BTC =

[
BRC

Bd2

0 1

]
(6.134)

The transformation matrix from C to A is

ATC = ATB
BTC =

[
ARB

Ad1

0 1

][
BRC

Bd2

0 1

]

=
[

ARB
BRC

ARB
Bd2 + Ad1

0 1

]
=

[
ARC

Ad2

0 1

]
(6.135)
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Bd2

Ad2

A

B

C

X
Y

Z

Ad1

Figure 6.9 Three coordinate frames to analyze compound transformations.

and therefore, the inverse transformation is

CTA =
[

BRT
C

ART
B −BRT

C
ART

B [ARB
Bd2 + Ad1]

0 1

]
=

[
BRT

C
ART

B −BRT
C

Bd2 − ART
C

Ad1

0 1

]
=

[
ART

C −ART
C

Ad2

0 1

]
(6.136)

The homogeneous transformations, similar to rotation matrices, follow the rule of
in-order transformations. As an example, the combination of four transformations

GT4 = GT1
1T2

2T3
3T4 (6.137)

would be equivalent to only one transformation:

GT4 = GR4
4rP + Gd4

= GR1
(1R2

(2R3
(3R4

4rP + 3d4
)+2d3

)+1d2
)+Gd1 (6.138)

Example 358 Homogeneous Transformation for Multiple Frames There are two
relatively moving rigid-body frames B1 and B2 and a global frame G in Figure 6.10.
A point P in the local frame B2(x2y2z2) is at 2rP . The coordinates of P in the global
frame G(OXYZ) can be found by using the homogeneous transformation matrices.

The position of P in frame B1(x1y1z1) is

1rP =


x1

y1

z1

1

 =
[

1R2
1d2

0 1

]
x2

y2

z2

1

 (6.139)
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x1
y1

z1

x2

y2

z2

Gd1

P

B1
B2

O

G

X
Y

Z

1d2 2rP

Figure 6.10 Point P in a local frame B2 (x2y2z2).

and therefore, its position in the global frame G(OXYZ) would be

GrP =


X

Y

Z

1

 =
[

GR1
Gd1

0 1

]
x1

y1

z1

1



=
[

GR1
Gd1

0 1

] [
1R2

1d2

0 1

]
x2

y2

z2

1



=
[

GR1
1R2

GR1
1d2 + Gd1

0 1

]
x2

y2

z2

1

 (6.140)

Example 359 Rotation about an Axis Not Going through Origin The homogeneous
transformation matrix can be used to determine the coordinates of body points after
rotation about an axis not going through the origin. Such an axis is called an off-center
axis. Figure 6.11 indicates an angle of rotation φ about the axis û passing through a
point Q at a position GdQ.

To find the transformation matrix GTB , we set a local frame B at point Q parallel
to the global frame G. Then, a rotation around û can be expressed by a translation
along −d to bring the body fame B to the global frame G followed by a homogeneous
transformation that is a rotation about û and a translation along d,

GTB = D
d̂,d

Rû,φ D
d̂,−d

=
[

I d
0 1

] [
Rû,φ 0

0 1

] [
I −d
0 1

]
=

[
Rû,φ d − Rû,φd

0 1

]
(6.141)
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GdQ

B
z

x y
O

G

X
Y

Z

φ

Figure 6.11 Rotation about an axis not going through origin.

where

Rû,φ =
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (6.142)

and

d − Rû,φd =

 d1(1 − u2
1) vers φ − u1 vers φ(d2u2 + d3u3) + sφ(d2u3 − d3u2)

d2(1 − u2
2) vers φ − u2 vers φ(d3u3 + d1u1) + sφ(d3u1 − d1u3)

d3(1 − u2
3) vers φ − u3 vers φ(d1u1 + d2u2) + sφ(d1u2 − d2u1)


(6.143)

As an example, let a body frame B with a body point P at

BrP =
 1

0
0

 (6.143a)

turn 90 deg about an axis û parallel to K̂ that is at

Gd =
 1

1
0

 (6.143b)

The associated homogeneous transformation GTB from (6.141) is

GTB = D
d̂,d

Rû,φ D
d̂,−d

=


1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1




cos
π

2
− sin

π

2
0 0

sin
π

2
cos

π

2
0 0

0 0 1 0
0 0 0 1




1 0 0 −1
0 1 0 −1
0 0 1 0
0 0 0 1
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=


0 −1 0 2
1 0 0 0
0 0 1 0
0 0 0 1

 (6.144)

So, after the rotation, point P will be seen at GrP :

GrP = GTB
BrP =


0 −1 0 2
1 0 0 0
0 0 1 0
0 0 0 1




1
0
0
1

 =


2
1
0
1

 (6.145)

At this moment, the origin o of the body coordinate frame B would be at

Gro = GTB
Bro =


0 −1 0 2
1 0 0 0
0 0 1 0
0 0 0 1




0
0
0
1

 =


2
0
0
1

 (6.146)

The final positions of point P and frame B are shown in Figure 6.12.

X

YZ

P

G

B

u

z

xy
1

2

1

Figure 6.12 Rotation of a body frame B about an off center axis.

Example 360 Tip Point of an RPR Mechanism Point P indicates the tip point of
the last arm of the mechanism shown in Figure 6.13. The mechanism has three arms.
The first one is the L-shape arm that can turn about the Z-axis with a revolute joint
at O. The second arm, which carries the coordinate frame B1(x1y1z1) at its end, has
a prismatic joint with the first arm. The third arm is attached to the second arm by a
revolute joint. A coordinate B2(x2y2z2) is attached to the beginning of the this arm.
The position vector of point P in frame B2(x2y2z2) is 2rP . Frame B2(x2y2z2) can
rotate about z2 and slide along y1. Frame B1(x1y1z1) can rotate about the Z-axis of
the global frame G(OXYZ) while its origin is at Gd1. This is neither the best nor the
standard method of attaching coordinate frames to connected multibodies.
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X Y
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Figure 6.13 An RPR mechanism.

The position of P in G(OXYZ) would be at

Gr = GR1
1R2

2rP + GR1
1d2 + Gd1 = GT1

1T2
2rP

= GT2
2rP (6.147)

where
1T2 =

[
1R2

1d2

0 1

]
(6.148)

GT1 =
[

GR1
Gd1

0 1

]
(6.149)

and
GT2 =

[
GR1

1R2
GR1

1d2 + Gd1

0 1

]
(6.150)

Example 361 End Effector of a SCARA Robot Figure 6.14 depicts a model of
a SCARA robot. This robot has three arms. A global coordinate frame G(OXYZ) is
attached to the base link, while coordinate frames B1(o1x1y1z1) and B2(o2x2y2z2) are
attached to link (1) and the tip of link (3).

To find the coordinates of the tip point in G, we combine the transformations
between the coordinate frames. The transformation matrix from B1 to the base
frame G is

GTB1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1

 (6.151)

and the transformation matrix from B2 to B1 is

B1TB2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 −h

0 0 0 1

 (6.152)
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Figure 6.14 The SCARA robot of Example 361.

Therefore, the transformation matrix from B2 to the base frame G is

GTB2 = GTB1
B1TB2 (6.153)

=


c(θ1 + θ2) −s(θ1 + θ2) 0 l1cθ1 + l2c(θ1 + θ2)

s(θ1 + θ2) c(θ1 + θ2) 0 l1sθ1 + l2s(θ1 + θ2)

0 0 1 −h

0 0 0 1


The origin of the last frame is at B2ro2 = [0, 0, 0, 1]T. Hence, the position of o2 in

the base coordinate frame is at

Gr2 = GTB2
B2ro2 =


l1 cos θ1 + l2 cos(θ1 + θ2)

l1 sin θ1 + l2 sin(θ1 + θ2)

−h

1

 (6.154)

Example 362 Cylindrical Coordinates To reach a point P in a cylindrical coordinate
system, we need a translation r along the X-axis followed by a rotation ϕ about the
Z-axis and finally a translation z along the Z-axis. A set of cylindrical coordinates is
shown in Figure 6.15.

The homogeneous transformation matrix for going from cylindrical coordinates
C(Orϕz) to Cartesian coordinates G(OXYZ) is

GTC = DZ,z RZ,ϕ DX,r

=


1 0 0 0
0 1 0 0
0 0 1 z

0 0 0 1




cos ϕ − sin ϕ 0 0
sin ϕ cos ϕ 0 0

0 0 1 0
0 0 0 1




1 0 0 r

0 1 0 0
0 0 1 0
0 0 0 1
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=


cos ϕ − sin ϕ 0 r cos ϕ

sin ϕ cos ϕ 0 r sin ϕ

0 0 1 z

0 0 0 1

 (6.155)

As an example, consider a point P at (2, π/2, 3) in a cylindrical coordinate frame.
Then, the Cartesian coordinates of P would be

cos
π

2
− sin

π

2
0 2 cos

π

2

sin
π

2
cos

π

2
0 2 sin

π

2
0 0 1 3
0 0 0 1




0
0
0
1

 =


0
2
3
1

 (6.156)
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ϕ

ur

uz

Figure 6.15 Cylindrical coordinates of a point P .

Example 363 � Dish Antenna Adjusting to a Satellite, Old Method Figure 6.16
illustrates the relative position of a geostationary satellite S and an observation point
P on Earth. Assume the satellite is at a longitude γ and the dish P is at a longitude ϕ

and latitude λ on Earth. To set a dish antenna at P , we should determine the azimuth
angle α and the elevation angle β as functions of given parameters γ , ϕ, λ, R0, and rS .

The subsatellite point B on the equator at the longitude γ is the intersection of the
geocentric radius vector of the satellite S with Earth’s surface. The angle ∠POB = η

between the radius vectors of points P and B can be obtained from the right spherical
triangle �BPC and employing Equation (4.65):

cos η = cos (ϕ − γ ) cos λ (6.157)
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Figure 6.16 The relative position of a geostationary satellite S and an observation point P

on Earth.

Using η we can determine the distance d of the satellite S and dish P :

d =
√

r2
S + r2

P − 2rSrP cos η (6.158)

rP ≈ R0 ≈ 6371230 m (6.159)

rS = OS ≈ 42200 km (6.160)

The distance d is called the topocentric distance from the dish to the satellite, R0 is
the radius of Earth, and rS is the radius of the geostationary orbit.

To determine the elevation angle β, we may look at the plane triangle �OPS, as
shown in Figure 6.17. Using the sine law

rS

sin ξ
≈ d

sin η
(6.161)

O

P

S

ξ

d
R0

rsB

η

β Local horizon

Figure 6.17 The Earth center–dish–satellite triangle �OPS.
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provides the zenith angle ξ ≈ π/2 − β of the satellite at point P :

ξ = arcsin
(rs

d
sin η

)
(6.162)

Then
β = π

2
− ξ = arccos

(rs

d
sin η

)
(6.163)

η = arccos (cos (ϕ − γ ) cos λ) (6.164)

To determine the azimuth angle α and set the centerline of the dish to the satellites,
we need to determine the angle ∠BPC = σ of the spherical right triangle �BPC. We
can determine σ by employing Equation (4.72):

cos σ = cos(∠BPC) = cos η tan λ = cos (ϕ − γ ) sin λ (6.165)

Therefore, the azimuth angle α would be

α =


π + σ λ> 0, ϕ >γ

π − σ λ> 0, ϕ < γ

σ λ< 0, ϕ >γ

−σ λ< 0, ϕ < γ

(6.166)

As an example, consider a point P at

ϕ ≈ 51.424 deg ≈ 0.89752 rad (6.167)

λ ≈ 35.672 deg ≈ 0.62259 rad (6.168)

and Hot Bird, a series of communication satellites, at

rS ≈ 42200 km (6.169)

ϕS ≈ 0◦2′ South ≈ 0 (6.170)

γ ≈ 12◦59′ East ≈ 12.983 deg ≈ 0.2266 rad (6.171)

Using R0 ≈ 6371230 m, we will have

cos η = cos (γ − ϕ) cos λ = 0.63629 (6.172)

η ≈ 0.88112 rad ≈ 50.484 deg (6.173)

d =
√

r2
S + R2

0 − 2rSR0 cos η = 38461 km (6.174)

and therefore,

β = arccos
( rS

d
sin η

)
= arccos

(
42,200

38,461
sin 0.88112

)
= 0.56152 rad ≈ 32.173 deg (6.175)

cos σ = cos (γ − ϕ) sin λ = 0.45675 (6.176)

σ = 1.0965 rad ≈ 62.825 deg < 90 deg (6.177)

α = π + σ ≈ 180 + 62.825 = 242.83 deg (6.178)
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Example 364 � Dish Antenna Adjusting, Transformation Method The relative posi-
tion of a geostationary satellite S and the dish antenna P on Earth are illustrated in
Figure 6.18. The satellite S is always on the (X,Y )-plane of Earth’s coordinate frame
G(X, Y,Z) at GrS :

GrS =
 rS cos γ

rS sin γ

0

 (6.179)
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Figure 6.18 The relative position of a geostationary satellite S and the dish antenna P on Earth.

We attach a frame B1 at point P such that the x1-axis points North, the y1-axis
West, and the z1-axis up. So, the (x1, y1)-plane indicates the local horizontal plane. We
also attach a frame B to the dish at point P such that the x-axis is the normal vector
to the plane of the dish and (y,z) is on the plane of the dish. The y-axis is in the local
horizontal plane of (x1, y1). The point P is at a longitude ϕ and latitude λ on Earth.
To determine the dish angles α and β, let us find the transformation matrices between
the frames.

We determine the transformation matrix between B1 and G by moving B1 from
the coincident configuration with G and rotating ϕ about the z1-axis, then a rotation
π/2 − λ about the y1-axis followed by a rotation π about the z1-axis, and moving a
distance R0 along the z1-axis:

1RG = Rz,πRy,(π/2−λ)Rz,ϕ (6.180)

=
− cos ϕ sin λ − sin λ sin ϕ cos λ

sin ϕ − cos ϕ 0
cos λ cos ϕ cos λ sin ϕ sin λ


1d = [

0 0 R0 1
]T

(6.181)
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Gd = 1RT
G

1d = 1RT
G

 0
0
R0

 =
R0 cos λ cos ϕ

R0 cos λ sin ϕ

R0 sin λ

 (6.182)

GT1 =
[ 1RT

G
Gd

0 1

]
=

[
GR1

Gd
0 1

]
(6.183)

=


− cos ϕ sin λ sin ϕ cos λ cos ϕ R0 cos λ cos ϕ

− sin λ sin ϕ − cos ϕ cos λ sin ϕ R0 cos λ sin ϕ

cos λ 0 sin λ R0 sin λ

0 0 0 1


The fourth column of this homogeneous transformation matrix determines the coordi-
nates of any point on Earth provided the longitude ϕ and latitude λ are given. That
means the global coordinates of the point P are

GrP = GT1


0
0
0
1

 =


R0 cos λ cos ϕ

R0 cos λ sin ϕ

R0 sin λ

1

 (6.184)

Therefore, the position of the satellite in the B1-frame is

1rS = 1TG
GrS =

[
GRT

1 −GRT
1

Gd
0 1

]
rS cos γ

rS sin γ

0
1



=


−rS sin λ cos (γ − ϕ)

−rS sin (γ − ϕ)

−R0 + rS cos λ cos (γ − ϕ)

1

 (6.185)

1TG =


− cos ϕ sin λ − sin λ sin ϕ cos λ 0

sin ϕ − cos ϕ 0 0
cos λ cos ϕ cos λ sin ϕ sin λ −R0

0 0 0 1

 (6.186)

The coordinate frame B is the dish antenna coordinate frame such that the x-axis
of B is on the dish centerline. To point the x-axis of B to the satellite, we may turn B

from a coincident orientation with B1 about the z-axis −α = −π − ε degrees and then
turn it about the y-axis −β degrees. So, the transformation matrix between B and B1 is

BT1 =
[

Ry,−βRz,−π−ε 0
0 1

]
=

[
1RB 0

0 1

]
(6.187)

=


− cos β cos ε cos β sin ε sin β 0

− sin ε − cos ε 0 0
cos ε sin β − sin β sin ε cos β 0

0 0 0 1
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The position of the satellite in dish frame B is

BrS = BT1
1rS = BT1


−rS sin λ cos (γ − ϕ)

−rS sin (γ − ϕ)

−R0 + rS cos λ cos (γ − ϕ)

1

 (6.188)

=


rS(cos λ cos φ sin β − cos β sin φ sin ε + cos β cos φ cos ε sin λ) − R0 sin β

rS cos ε sin φ + rS cos φ sin λ sin ε

rS(cos λ cos φ cos β + sin β sin φ sin ε − sin β cos φ cos ε sin λ) − R0 cos β

1


φ = γ − ϕ (6.189)

1TB =


− cos β cos ε − sin ε cos ε sin β 0

cos β sin ε − cos ε − sin β sin ε 0
sin β 0 cos β 0

0 0 0 1

 (6.190)

However, BrS must be at [d,0,0,1], where

d = ∣∣1rS

∣∣ = ∣∣BrS

∣∣
=

√
R2

0 + r2
S − 2R0rS cos λ cos (γ − ϕ) (6.191)

Therefore, the second and third components of BrS must be zero:

rS cos ε sin φ + rS cos φ sin λ sin ε = 0 (6.192a)

rS(cos λ cos φ cos β + sin β sin φ sin ε − sin β cos φ cos ε sin λ)

−R0 cos β = 0 (6.192b)

These equations provide the required angles α and β to adjust the antenna. The first
equation can be solved for ε,

tan ε = − sin φ

cos φ sin λ
= − sin(λ − ϕ)

cos(λ − ϕ) sin λ
(6.193a)

α = π + ε (6.193b)

and the first equation for β,

tan β = − rS cos λ cos φ − R0

rS sin φ sin ε − rS cos φ cos ε sin λ

= − rS cos λ cos(γ − ϕ) − R0

rS sin(λ − ϕ) sin ε − rS cos(γ − ϕ) cos ε sin λ
(6.194)
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As an example, let us use

R0 ≈ 6371230 m (6.195)

rs ≈ 42200 km (6.196)

ϕ ≈ 51.424 deg ≈ 0.89752 rad (6.197)

λ ≈ 35.672 deg ≈ 0.62259 rad (6.198)

γ ≈ 12◦59′ East ≈ 12.983 deg ≈ 0.2266 rad (6.199)

and determine α and β:

β ≈ 0.56154 rad ≈ 32.174 deg (6.200)

α = 4.0788 rad ≈ 233.70 deg (6.201)

Example 365 Foot–Leg Relative Kinematics The foot skeleton is composed of
26 bones in three regions: 7 bones in the tarsal, 5 bones in the metatarsal, and
14 bones in the fingers. Dislocation of any of these bones causes a walking problem
that appears as an irregular clinical angle.

To determine the foot–leg clinical angles during the gait and examine their relative
kinematics, we attach a sensor to the leg at an arbitrary position and orientation. The
sensor reports its position vector Gd1 and a rotation transformation matrix GR1 between
its coordinate frame B1 and the base global frame G. Another sensor on the foot reports
the position vector Gd2 and a rotation transformation matrix GR2 between its coordinate
frame B2 and the global frame G. Figure 6.19 illustrates the stationary base frame G

along with the leg and foot frames B1 and B2.

B1
G

B2

Y

X

Z

Foot sensor

Leg sensor

Base sensor

x4

z4

y4

x3

z3

y3

B3

B4

ϕ
θ

ψ

Figure 6.19 A stationary base frame G along with two moving frames B1 and B2 attached to
the leg and foot.
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Let us assume that at the upright standing position the following transformation
matrices are initially reported:

GT1 =
[

GR1
Gd1

0 1

]

=


0.0360 −0.1770 −0.9840 21.0150
0.5060 0.8520 −0.1350 −5.6340
0.8620 −0.4930 0.1200 3.0810

0 0 0 1

 (6.202)

GT2 =
[

GR2
Gd2

0 1

]

=


0.4190 −0.7290 0.5410 21.8770

−0.0200 −0.6030 −0.7980 −7.7520
0.9080 0.3230 −0.2670 −4.7460

0 0 0 1

 (6.203)

Using the homogeneous transformation calculus, we can determine the position and
orientation of the foot with respect to the leg from 1T2:

1T2 = GT −1
1

GT2 =
[

1R2
1d2

0 1

]
(6.204)

=


0.78766 −0.052936 −0.61447 −7.7876

−0.53885 −0.54396 −0.64402 1.9018
−0.30064 0.8375 −0.45665 −1.5020

0 0 0 1


where

GT −1
1 =


0.036 0.506 0.862 −0.56156

−0.177 0.852 −0.493 10.039
−0.984 −0.135 0.12 19.548

0 0 0 1

 (6.205)

GT −1
2 =


0.419 −0.02 0.908 −5.0121

−0.729 −0.603 0.323 12.807
0.541 −0.798 −0.267 −19.289
0 0 0 1

 (6.206)

To determine the clinical angles of the shank–ankle, we prefer to assume that the
foot and leg coordinate frames are initially parallel. Then the relative orientation can be
decomposed to rotations of the foot about three perpendicular axes of the foot frame.
Let us attach frames B3 and B4 to the leg and foot, as shown in Figure 6.19. These
frames, which are initially parallel, may be attached at the same points as the sensors or
at constant distances 1d3 and 2d4 from them. We assume the transformations between
B1 and B3 as well as B2 and B4 remain constant while the person walks. Therefore, at
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the initial moment the transformation matrices GT3 and GT4 are

GT3 =
[

GR3
Gd3

0 1

]
=

[
GRZ,90

Gd1 + GR1
1d3

0 1

]
(6.207)

GT4 =
[

GR4
Gd4

0 1

]
=

[
GRZ,90

Gd2 + GR2
2d4

0 1

]
(6.208)

The clinical angles are dorsiflexion, plantarflexion, eversion, inversion, inward rotation,
and outward rotation. Dorsiflexion is a rotation about the y4-axis which decreases the
angle between the foot and the leg, so that the toes are brought closer to the shin. The
movement about the −y4-axis is called plantarflexion. Eversion is the movement of
the sole of the foot in the lateral direction about the x4-axis. Movement in the median
direction about the −x4-axis is called inversion. Two more clinical angles which are
rotations of the foot about the normal z3-axis passing through the ankle are called
internal and external rotations.

For simplicity, let us assume

1d3 = 0 2d4 = 0 (6.209)

and find the initial matrices GT3 and GT4 and the constant transformations 1T3 and
2T4 as

[
GT3

]
0 =


0 −1 0 21.0150
1 0 0 −5.6340
0 0 1 3.0810
0 0 0 1

 (6.210)

[
GT4

]
0 =


0 −1 0 21.8770
1 0 0 −7.7520
0 0 1 −4.7460
0 0 0 1

 (6.211)

1T3 = GT −1
1

[
GT3

]
0 (6.212)

=


0.506 −0.036 0.862 0
0.852 0.177 −0.493 0

−0.135 0.984 0.12 0
0 0 0 1


2T4 = GT −1

2

[
GT4

]
0 (6.213)

=


−0.02 −0.419 0.908 0
−0.603 0.729 0.323 0
−0.798 −0.541 −0.267 0

0 0 0 1


During walking, the sensors provide the instantaneous matrices GT1 and GT2. Multi-

plying these matrices by the constant matrices 1T3 and 2T4 determines the instantaneous



516 Motion Kinematics

matrices GT3 and GT4:

GT3 = GT1
1T3 (6.214)

GT4 = GT2
2T4 (6.215)

Then we can use the relative transformation 3T4 to determine the rotations of the foot
about its local axes:

3T4 = GT −1
3

GT4 (6.216)

As an example let us consider the following matrices during the motion:

GT1 =


0.0360 −0.1770 −0.9840 21.0150
0.5060 0.8520 −0.1350 −5.6340
0.8620 −0.4930 0.1200 3.0810

0 0 0 1

 (6.217)

GT2 =


0.4190 −0.7290 0.5410 21.8770

−0.0200 −0.6030 −0.7980 −7.7520
0.9080 0.3230 −0.2670 −4.7460

0 0 0 1

 (6.218)

Therefore,

GT3 = GT1
1T3

=


2.52 × 10−4 −1.0009 2.13 × 10−4 21.015

1.0002 −2.52 × 10−4 −6.4 × 10−5 −5.634
−6.4 × 10−5 −2.13 × 10−4 1.0005 3.081

0 0 0 1

 (6.219)

GT4 = GT2
2T4

=


−5.11 × 10−4 −0.99968 5.38 × 10−4 21.877

1.0008 5.11 × 10−4 1.37 × 10−4 −7.752
1.37 × 10−4 −5.38 × 10−4 1.0001 −4.746

0 0 0 1

 (6.220)

GT −1
3 =


2.52 × 10−4 1.0002 −6.4 × 10−5 5.63

−1.0009 −2.52 × 10−4 −2.13 × 10−4 21.033
2.13 × 10−4 −6.4 × 10−5 1.0005 −3.0874

0 0 0 1

 (6.221)

3T4 = GT −1
3

GT4

=


1.001 2.5922 × 10−4 7.3157 × 10−5 −2.1177

2.5923 × 10−4 1.0006 −7.5154 × 10−4 −0.86072
7.2908 × 10−5 −7.5123 × 10−4 1.0006 −7.8306

0 0 0 1

 (6.222)

Because B3 is parallel to B4 initially, we may assign the clinical angles by using
the rotations ϕ about the z4-axis, θ about the x4-axis, and ψ about the y4-axis. The
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rotation matrix of case 1 in Appendix B provides 4R3. Therefore, 4RT
3 must be equal

to the rotation part of 3T4:

4RT
3 = [

Rx,ψRy,θRz,ϕ

]T

=
 cθcϕ cϕsθsψ − cψsϕ sψsϕ + cψcϕsθ

cθsϕ cψcϕ + sθsψsϕ cψsθsϕ − cϕsψ

−sθ cθsψ cθcψ

 (6.223)

The magnitude of angle ϕ is

ϕ = arctan
r21

r11
= arctan

2.5923 × 10−4

1.001

≈ 2.5897 × 10−4 rad ≈ 1.4838 × 10−7 deg (6.224)

The magnitude of angle θ is

θ = − arcsin r31 = − arcsin
(
7.2908 × 10−5)

≈ −7.2908 × 10−5 rad ≈ −4.1772 × 10−3 deg (6.225)

The magnitude of angle ψ is

ψ = arctan
r32

r33
= arctan

−7.5123 × 10−4

1.0006

≈ −7.5078 × 10−4 rad ≈ −4.3016 × 10−2 deg (6.226)

6.5 � SCREW MOTION

A rigid-body motion is called a screw if the body translates along an axis while it
rotates about that axis. This is called the Chasles theorem , which states: Every rigid-
body motion can be reproduced by a screw . Consider the screw motion illustrated in
Figure 6.20. A rigid body rotates about the screw axis û and simultaneously translates
along the same axis. So, any point on the screw axis moves along the axis, while any
point off the axis moves on a helix .

The angular rotation of a rigid body about the screw axis is called the twist φ of
the screw, and the sliding motion along the screw axis is called the translation h. The
ratio of translation to twist is called the pitch p of the screw:

p = h

φ
(6.227)

Pitch is the distance through which the rigid body translates parallel to the axis of the
screw for a unit rotation. If p > 0, then the screw is right handed , and if p < 0, the
screw is left handed .

We show a screw by š(h, φ, û, s) to indicate the unit vector on the screw axis û,
the location vector s, the twist angle φ, and the translation h. The location vector Gs
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p

u

Figure 6.20 A screw motion is the translation along a line combined with a rotation about
the line.

indicates the global position of a point on the screw axis. The twist angle φ, the twist
axis û, and the translation h are called screw parameters . If û passes through the origin
of the global coordinate frame, then s = 0 and the screw motion is called the central
screw š(h, φ, û).

The screw š(h, φ, û, s) is a transformation between the initial and final configura-
tions of a rigid body. The screw transformation can be expressed by a homogeneous
matrix that is a combination of rotation and translation. The screw is basically another
transformation method to describe the motion of a rigid body. A linear displacement
along an axis combined with an angular displacement about the same axis arises repeat-
edly in multibody dynamics.

For a central screw we have
GšB(h, φ, û) = GTB =

[
GRB hû

0 1

]
= Dû,h Rû,φ (6.228)

where

Dû,h =


1 0 0 hu1

0 1 0 hu2

0 0 1 hu3

0 0 0 1

 (6.229)

Rû,φ =


u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ 0

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ 0

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ 0

0 0 0 1

 (6.230)

and hence,
GšB(h, φ, û) =

u2
1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ hu1

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ hu2

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ hu3

0 0 0 1

 (6.231)



6.5 � Screw Motion 519

A central screw transformation matrix reduces to a pure translation for φ = 0 and
reduces to a pure rotation for h = 0. The negative screw motion is defined by changing
the sign of both the translation and twist. Such a motion is called the reverse central
screw and is denoted by š(−h, −φ, û).

When the screw is not central and û is not passing through the origin, a screw
motion to move p to p′′ is denoted by

p′′ = (p − s) cos φ + (1 − cos φ) [û · (p − s)]û

+ [û × (p − s)] sin φ + s + hû (6.232)

or

p′′ = GRB (p − s) + s + hû = GRB p + s − GRB s + hû (6.233)

and therefore,

p′′ = š(h, φ, û, s)p = [T ] p (6.234)

where

[T ] =
[

GRB
Gs − GRB

Gs + hû

0 1

]
=

[
GRB

Gd
0 1

]
(6.235)

The location vector Gs is the global position of the body frame before the screw motion.
The vectors p′′ and p indicate global positions of a point P after and before the screw,
as shown in Figure 6.21. The screw axis is indicated by the unit vector û.

Let us break the screw motion to a twist φ about û and a translation h along û.
A body point P moves from its first position at p to its second position P ′ at p′ by a
rotation about û. Then it moves to P ′′ at p′′ by a translation h parallel to û.

r

r'

u

G

P''

X Y

Z

O

p

p''

s

h

x
y

B

φ

p'
P

P'

z

Figure 6.21 Screw motion of a rigid body.
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Proof : The axis–angle rotation formula (5.4) relates r′ and r, which are position vectors
of P after and before rotation φ about û when s = 0, h = 0:

r′ = r cos φ + (1 − cos φ)
(
û · r

)
û + (

û × r
)

sin φ (6.236)

When the screw axis does not pass through the origin of G(OXYZ), then r′ and r must
accordingly be substituted with the following equations:

r = p − s (6.237)

r′ = p′′ − s − hû (6.238)

Substituting (6.237) and (6.238) in (6.236) provides the relationship between the
new and old positions of the body point P after a screw motion

p′′ − (s + hû) = (p − s) cos φ + [1 − cos φ)(û · (p − s)]û

+ [û × (p − s)] sin φ (6.239)

Equation (6.239) is the Rodriguez formula for the most general rigid-body motion.
The vector r′ is a vector after rotation and hence is in the G coordinate frame, and

r is a vector before rotation and hence is in the B coordinate frame:

Br = Bp − Bs (6.240)
Gr = Gp − Gs − hGû (6.241)

Using these notations, Equation (6.239) will become

Gp = (
I cos φ + ûûT (1 − cos φ) + ũ sin φ

)
Bp

− (
I cos φ + ûûT (1 − cos φ) + ũ sin φ

)
Bs + Gs + hGû (6.242)

The vectors Br and Gr are coincident before rotation, and so is the location vector s.
Therefore, Bs, which is the expression of the location vector before rotation, has the
same components as Gs, which remains unchanged in the global frame. Furthermore,
the unit vector û on the screw axis remains unchanged during the screw motion. We may
drop the superscript G from Gû and substitute Bs with Gs to rewrite Equation (6.242)
in a clearer form:

Gp = (
I cos φ + ûûT (1 − cos φ) + ũ sin φ

)
Bp

− (
I cos φ + ûûT (1 − cos φ) + ũ sin φ

)
Gs + Gs + hû (6.243)

Equation (6.243) can be rearranged to show that a screw can be represented by a
homogeneous transformation,

Gp = GRB
Bp + Gs − GRB

Gs + hû (6.244)

= GRB
Bp + Gd = GTB

Bp
GTB = GšB(h, φ, û, s) (6.245)

=
[

GRB

(
I − GRB

)
Gs + hû

0 1

]
=

[
GRB

Gd
0 1

]
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where
GRB = I cos φ + ûûT (1 − cos φ) + ũ sin φ (6.246)

Gd = [(I − ûûT)(1 − cos φ) − ũ sin φ]Gs + hû (6.247)

Direct substitution develops GRB and Gd:

GRB =
 u2

1 vers φ + cφ u1u2 vers φ − u3sφ u1u3 vers φ + u2sφ

u1u2 vers φ + u3sφ u2
2 vers φ + cφ u2u3 vers φ − u1sφ

u1u3 vers φ − u2sφ u2u3 vers φ + u1sφ u2
3 vers φ + cφ

 (6.248)

Gd =

 hu1 + [(1 − u2
1)s1 − u1(s2u2 + s3u3)]vers φ + (s2u3 − s3u2)sφ

hu2 + [(1 − u2
2)s2 − u2(s3u3 + s1u1)]vers φ + (s3u1 − s1u3)sφ

hu3 + [(1 − u2
3)s3 − u3(s1u1 + s2u2)]vers φ + (s1u2 − s2u1)sφ

 (6.249)

This representation of a rigid motion requires six independent parameters, namely
one for rotation angle φ, one for translation h, two for screw axis û, and two for
location vector Gs. It is because three components of û are related to each other
according to

ûTû = 1 (6.250)

and the location vector Gs can locate any arbitrary point on the screw axis. It is
convenient to choose the point where it has the minimum distance from O and make
Gs perpendicular to û. Let’s indicate the shortest location vector by Gs0; then there is
a constraint among the components of the location vector:

GsT
0 û = 0 (6.251)

If s = 0, then the screw axis passes through the origin of G and (6.245) reduces
to the central screw expression (6.231).

The screw parameters φ and h, together with the screw axis û and location vector
Gs, completely define a rigid motion of B(oxyz) in G(OXYZ). So, given the screw
parameters and screw axis, we can find the elements of the transformation matrix by
Equations (6.248) and (6.249). On the other hand, given the transformation matrix GTB ,
we can find the screw angle and axis by

cos φ = 1
2

[
tr
(
GRB

) − 1
) = 1

2

(
tr
(
GTB

) − 2
]

= 1
2 (r11 + r22 + r33 − 1) (6.252)

ũ = 1

2 sin φ

(
GRB − GRT

B

) = 1

2 sin φ

 r32 − r23

r13 − r31

r21 − r12

 (6.253)

To find all the required screw parameters, we must also find h and coordinates of
one point on the screw axis. Since the points on the screw axis are invariant under the
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rotation, we must have
r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1




X

Y

Z

1

 =


1 0 0 hu1

0 1 0 hu2

0 0 1 hu3

0 0 0 1




X

Y

Z

1

 (6.254)

where (X, Y, Z) are coordinates of points on the screw axis.
As a sample point, we may set Xs = 0 and find the intersection point of the screw

line with the (Y, Z)-plane by searching for s = [0, Ys, Zs]T. Therefore,
r11 − 1 r12 r13 r14 − hu1

r21 r22 − 1 r23 r24 − hu2

r31 r32 r33 − 1 r34 − hu3

0 0 0 0




0
Ys

Zs

1

 =


0
0
0
0

 (6.255)

which generates three equations to be solved for Ys , Zs , and h: h

Ys

Zs

 =
u1 −r12 −r13

u2 1 − r22 −r23

u3 −r32 1 − r33

−1  r14

r24

r34

 (6.256)

Now we can find the shortest location vector Gs0 by

Gs0 = s − (s · û)û (6.257)

It is interesting to know that the instantaneous screw axis was first used by
Giulio Mozzi (1730–1813); however, Michel Chasles (1793–1880) is credited with this
discovery. �

Example 366 � Alternative Proof of Screw Transformation Matrix Assume that a
body and global frames are parallel initially. To turn the body about an off-center axis
û, we can translate the body frame B along −s − hû to bring the body frame B to be
coincident with the global frame G followed by a rigid-body motion that is a rotation
about û and a translation along s:

GTB = Dŝ,s Rû,φ Dŝ,−s Dû,−h

=
[

I s
0 1

] [
Rû,φ 0

0 1

] [
I −s
0 1

] [
I −hû

0 1

]
=

[
Rû,φ s − Rû,φs + hRû,φû

0 1

]
=

[
Rû,φ

(
I − Rû,φ

)
s + hû

0 1

]
=

[
GRB

Gd
0 1

]
(6.258)

The rotation matrix GRB is given in (6.248) and the displacement vector Gd is given in
(6.249). Substituting h = 0 reduces GTB to (6.141) in Example 359, which indicates a
rotation about an off-center axis. Rotation of a rigid body about an axis indicated by û
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and passing through a point at Gs such that Gs × û �= 0 is a rotation about an off-center
axis. Therefore, the off-center rotation transformation is

GTB =
[

GRB
Gs − GRB

Gs
0 1

]
(6.259)

Example 367 � Alternative Derivation of Screw Transformation Assume the screw
axis does not pass through the origin of G. If Gs is the position vector of some point
on the axis û, then we can derive the matrix representation of the screw š(h, φ, û, s)
by translating the screw axis back to the origin, performing the central screw motion,
and translating the line back to its original position:

š(h, φ, û, s) = D
(
Gs

)
š
(
h, φ, û

)
D

(−Gs
)

= D
(
Gs

)
D(hû)R(û, φ)D

(−Gs
)

=
[

I Gs
0 1

] [
GRB hû

0 1

] [
I −Gs
0 1

]

=
[

GRB

(
I − GRB

)
Gs + hû

0 1

]
(6.260)

Example 368 � Central Screw Transformation of a Base Unit Vector Consider
two initially coincident frames G(OXYZ) and B(oxyz). The body performs a screw
motion along the Y -axis for h = 3 and φ = 90 deg. The position of a body point at
Br = [1, 1, 0, 1]T can be found by applying the central screw transformation:

š(h, φ, û) = š
(

3, 1
2π, Ĵ

)
= D

(
3Ĵ

)
R
(
Ĵ , 1

2π
)

(6.261)

=


1 0 0 0
0 1 0 3
0 0 1 0
0 0 0 1




0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

 =


0 0 1 0
0 1 0 3

−1 0 0 0
0 0 0 1


Therefore,

Gr = š
(

3, 1
2π, Ĵ

)
Br =


0 0 1 0
0 1 0 3

−1 0 0 0
0 0 0 1




1
1
0
1

 =


0
4

−1
1

 (6.262)

The pitch of this screw is

p = h

φ
= 3

π/2
= 6

π
= 1.9099 units/rad (6.263)
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Example 369 � Screw Transformation of a Point Consider two initially parallel
frames G(OXYZ) and B(oxyz). The body performs a screw motion for h = 5 and φ =
90 deg along a line that is parallel to the Y -axis and passes through X = 4. Therefore,
the body coordinate frame is at location s = [4, 0, 0]T. The position of a body point at
Br = [3,0,0]T can be found by applying the screw transformation

GTB =
[

GRB

(
I − GRB

)
s + hû

0 1

]
=


0 0 1 2
0 1 0 2

−1 0 0 2
0 0 0 1

 (6.264)

because

GRB =
 0 0 1

0 1 0
−1 0 0

 s =
 4

0
0

 û =
 0

1
0

 (6.265)

Therefore, the position vector of Gr would be

Gr = GTB
Br =


0 0 1 4
0 1 0 5

−1 0 0 4
0 0 0 1




3
0
0
1

 =


4
5
1
1

 (6.266)

Any point on the screw axis û will only change its coordinate by h on û. As an example,
a point at Br = [4, 0, 0]T will change its y-coordinate by h:

0 0 1 4
0 1 0 5

−1 0 0 4
0 0 0 1




4
0
0
1

 =


4
5
0
1

 (6.267)

Example 370 � Rotation of a Vector Consider a vector Br that connects a point P1
at Br1 to a point P2 at Br2. The body frame B is coincident with the global frame G

and has a fixed origin. The rotation transformation equation between B and G can be
written as

G(r2 − r1) = GRB
B(r2 − r1) (6.268)

Assume the initial and final positions of point P1 are along the rotation axis. Equation
(6.268) can then be rearranged in a suitable form to calculate the coordinates of the
new position of point P2:

Gr2 = GRB
B(r2 − r1) + Gr1

= GRB
Br2 + Gr1 − GRB

Br1 = GTB
Br2 (6.269)

where
GTB =

[
GRB

Gr1 − GRB
Br1

0 1

]
(6.270)

It is compatible with screw motion (6.245) for h = 0.
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Example 371 � Special Case for Screw Determination When r11 = r22 = r33 = 1
and φ = 0, the screw motion is a pure translation h parallel to û, where

û = r14 − s1

h
Î + r24 − s2

h
Ĵ + r34 − s3

h
K̂ (6.271)

Example 372 � Determination of Screw Parameters We are able to determine the
screw parameters when we have the original and final positions of three non-colinear
points of a rigid body. Assume p0, q0, and r0 denote the positions of points P , Q, and
R before the screw motion and p1, q1, and r1 denote their positions after the screw
motion.

To determine the screw parameters φ, û, h, and s, we should solve the following
three simultaneous Rodriguez equations:

p1 − p0 = tan
φ

2
û × (p1 + p0 − 2s) + hû (6.272)

q1 − q0 = tan
φ

2
û × (q1 + q0 − 2s) + hû (6.273)

r1 − r0 = tan
φ

2
û × (r1 + r0 − 2s) + hû (6.274)

First, we subtract Equation (6.274) from (6.272) and (6.273):

(p1 − p0) − (r1 − r0) = tan
φ

2
û × [

(p1 + p0) − (r1 − r0)
]

(6.275)

(q1 − q0) − (r1 − r0) = tan
φ

2
û × [

(q1 + q0) − (r1 − r0)
]

(6.276)

Multiplying both sides of (6.275) by
[
(q1 − q0) − (r1 − r0)

]
, which is perpendicu-

lar to û,[
(q1 − q0) − (r1 − r0)

] × [
(p1 − p0) − (r1 − r0)

] = tan
φ

2

[
(q1 − q0) − (r1 − r0)

]
× {

û × [
(p1 + p0) − (r1 − r0)

]}
(6.277)

gives us [
(q1 − q0) − (r1 − r0)

] × [
(p1 + p0) − (r1 − r0)

]
= tan

φ

2

{[
(q1 − q0) − (r1 − r0)

] · [(p1 + p0) − (r1 − r0)
]}

û (6.278)

and therefore, the rotation angle can be found by equating tan(φ/2) and the norm of
the right-hand side of the following equation:

tan
φ

2
û =

[
(q1 − q0) − (r1 − r0)

] × [
(p1 + p0) − (r1 − r0)

][
(q1 − q0) − (r1 − r0)

] · [(p1 + p0) − (r1 − r0)
] (6.279)
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To find s, we may start with the cross product of û with Equation (6.272):

û × (p1 − p0) = û ×
[

tan
φ

2
û × (p1 + p0 − 2s) + hû

]
= tan

φ

2

{[
û · (p1 + p0)

]
û − (p1 + p0) + 2

[
s − (

û · s
)
û
]}

(6.280)

s is a vector from the origin of the global frame G(OXYZ) to an arbitrary point on the
screw axis, and the term s − (

û · s
)
û is the perpendicular component of s to û. This

perpendicular component indicates a vector with the shortest distance between O and
û. Let us show the shortest s by s0. Therefore,

s0 = s − (
û · s

)
û

= 1

2

[
û × p1 − p0

tan φ

2

− [
û · (p1 + p0)

]
û + p1 + p0

]
(6.281)

The last parameter of the screw is the pitch h, which can be found from any one of
the Equations (6.272), (6.273), and (6.274):

h = û · (p1 − p0) = û · (q1 − q0) = û · (r1 − r0) (6.282)

Example 373 � Principal Central Screw There are three principal central screws,
namely the X-screw, Y -screw, and Z-screw, which are given as

š(hZ, α, K̂) =


cos α − sin α 0 0
sin α cos α 0 0

0 0 1 pZ α

0 0 0 1

 (6.283)

š(hY , β, Ĵ ) =


cos β 0 sin β 0
0 1 0 pY β

− sin β 0 cos β 0
0 0 0 1

 (6.284)

š(hX, γ, Î ) =


1 0 0 pX γ

0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

 (6.285)

Example 374 � Proof of Chasles Theorem Let [T ] be an arbitrary spatial displace-
ment and decompose it into a rotation [R] about û and a translation [D]:

[T ] = [D][R] (6.286)
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Furthermore, we may also decompose the translation [D] into parallel and perpendicular
components [D‖] and [D⊥] to û:

[T ] = [D‖][D⊥][R] (6.287)

Now [D⊥][R] is a planar motion and is therefore equivalent to some rotation [R′] =
[D⊥][R] about an axis parallel to the rotation axis û. So, we have [T ] = [D‖][R′].
This decomposition completes the proof because the axis of [D‖] can be taken
equal to û.

Example 375 � Every Rigid Motion Is a Screw To show that any proper rigid motion
can be considered as a screw motion, we must show that a homogeneous transformation
matrix

GTB =
[

GRB
Gd

0 1

]
(6.288)

can be written in the form

GTB =
[

GRB (I − GRB) s + hû

0 1

]
(6.289)

This problem is then equivalent to the following equation to find h and û:

Gd = (I − GRB) s + hû (6.290)

The matrix [I − GRB ] is singular because GRB always has 1 as an eigenvalue. This
eigenvalue corresponds to û as the eigenvector. Therefore,[

I − GRB

]
û = [

I − GRT
B

]
û = 0 (6.291)

and an inner product shows us that

û · Gd = û · [I − GRB

]
s + û · hû

= [
I − GRB

]
û · s + û · hû (6.292)

which leads to
h = û · Gd (6.293)

Now we may use h to find s:

s = [
I − GRB

]−1 (Gd − hû
)

(6.294)

Example 376 � Classification of Rigid-Body Motion Consider a rigid body with a
local coordinate frame B(oxyz) that is moving with respect to a global frame G(OXYZ).
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The possible motions of B(oxyz) and the transformation between B- and G-frames can
be classified as:

1. Rotation φ about an axis that is passing through the origin and indicated by the
unit vector û = [u1, u2, u3]T:

Gr = GRB
Br (6.295)

2. Rotation GRB plus translation Gd = [d1, d2, d3]T:

Gr = GRB
Br + Gd = GTB

Br (6.296)

3. Rotation φ about an axis on the unit vector û = [u1, u2, u3]T that is passing
through an arbitrary point indicated by Gs = [s1, s2, s3]T:

Gr = GRB
Br + (

I − GRB

)
Gs (6.297)

4. Screw motion with angle φ and displacement h about and along an axis
directed by û = [u1, u2, u3]T passing through an arbitrary point indicated by
Gs = [s1, s2, s3]T:

Gr = GRB
Br + (

I − GRB

)
Gs + hû (6.298)

Besides the above rigid-body motions, the transformation matrices are the main
applied tools in computer graphics to calculate motion and reflection. The reflection of
a body point can be classified as:

1. Reflection in the xy-plane:

Gr = GRB
Br(−z) (6.299)

where

r(−z) =
 p1

p2

−p3

 (6.300)

2. Reflection in the yz-plane:

Gr = GRB
Br(−x) (6.301)

where

r(−z) =
−p1

p2

p3

 (6.302)

3. Reflection in the xz-plane:

Gr = GRB
Br(−y) (6.303)

where

r(−z) =
 p1

−p2

p3

 (6.304)



6.6 � Inverse Screw 529

4. Reflection in a plane with equation u1x + u2y + u3z + h = 0:

Gr = 1

u2
1 + u2

2 + u2
3

(
GRB

Br − 2hû
) = GRB

Br − 2hû (6.305)

where

GRB =
−u2

1 + u2
2 + u2

3 −2u1u2 −2u3u1

−2u2u1 u2
1 − u2

2 + u2
3 −2u2u3

−2u1u3 −2u3u2 u2
1 + u2

2 − u2
3

 (6.306)

5. Reflection in a plane going through point [s1, s2, s3]T and normal to
û = [u1,u2,u3]T:

Gr = GRB
Br + (

I − GRB

)
Gs (6.307)

where GRB is as in (6.306).

6.6 � INVERSE SCREW

The inverse of a screw š(h, φ, û, s) is defined by

Gš−1
B (h, φ, û, s) = BšG(h, φ, û, s)

=
[GRT

B
Gs − GRT

B
Gs − hû

0 1

]
(6.308)

where û is a unit vector indicating the axis of the screw, s is the location vector of a
point on the axis of the screw, φ is the screw angle, and h is the screw translation. If the
screw is central, the axis of the screw passes through the origin and s = 0. Therefore,
the inverse of a central screw is

Gš−1
B (h, φ, û) =

[
GRT

B −hû

0 1

]
(6.309)

Proof : The homogeneous matrix expression of a screw š(h, φ, û, s) is

GTB = GšB(h, φ, û, s)

=
[GRB

Gs − GRB
Gs + hû

0 1

]
=

[GRB
Gd

0 1

]
(6.310)

A homogeneous matrix can be inverted according to

BTG = GT −1
B =

[
GRT

B −GRT
B

Gd
0 1

]
(6.311)
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To show Equation (6.308), we need to calculate −GRT
B

Gd:

−GRT
B

Gd = −GRT
B

(
Gs − GRB

Gs + hû
)

= −GRT
B

Gs + GRT
B

GRB
Gs − GRT

B hû

= −GRT
B

Gs + Gs − GRT
B hû (6.312)

Since û is an invariant vector in both coordinate frames B and G, we have

û = GRB û = GRT
B û (6.313)

and therefore,
−GRT

B
Gd = Gs − GRT

B
Gs − hû (6.314)

This completes the inversion of a general screw:

Gš−1
B (h, φ, û, s) =

[GRT
B

Gs − GRT
B

Gs − hû

0 1

]
(6.315)

If the screw is central, the location vector is zero and the inverse of the screw simpli-
fies to

Gš−1
B (h, φ, û) =

[
GRT

B −hû

0 1

]
(6.316)

The inversion of a rotation matrix GRB = Rû,φ can be found by a rotation −φ about û:

GR−1
B = GRT

B = BRG = Rû,−φ (6.317)

So, the inversion of a screw can also be interpreted as a rotation −φ about û plus a
translation −h along û:

Gš−1
B (h, φ, û, s) = š(−h, −φ, û, s) (6.318)

�

Example 377 Checking the Inversion Formula Employing the inversion screw for-
mula, we must have

GšB(h, φ, û, s)Gš−1
B (h, φ, û, s) = I4 (6.319)

It can be checked by[
GRB

Gs − GRB
Gs + hû

0 1

] [
GRT

B
Gs − GRT

B
Gs − hû

0 1

]
=

[
I3

GRB

(
Gs − GRT

B
Gs − hû

) + (
Gs − GRB

Gs + hû
)

0 1

]
=

[
I3

GRB
Gs − Gs − hGRB û + Gs − GRB

Gs + hû

0 1

]
=

[
I3 0
0 1

]
= I4 (6.320)
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6.7 � COMPOUND SCREW TRANSFORMATION

Assume 1š2(h1, φ1, û1, s1) is a screw motion to move from coordinate frame B2 to
B1 and Gš1(h0, φ0, û0, s0) is a screw motion to move from coordinate frame B1 to G.
Then, the screw motion to move from B2 to G is

Gš2(h, φ, û, s) = Gš1(h0, φ0, û0, s0)
1š2(h1, φ1, û1, s1)

=
[

GR2
GR1(I − 1R2) s1 + (I − GR1) s0 + h1

GR1û1 + h0û0

0 1

]
(6.321)

Proof : Direct substitution for 1s2(h1, φ1, û1) and Gs1(h0, φ0, û0),

Gš1(h0, φ0, û0, s0) =
[GR1 s0 − GR1 s0 + h0û0

0 1

]
(6.322)

1š2(h1, φ1, û1, s1) =
[

1R2 s1 − 1R2 s1 + h1û1

0 1

]
(6.323)

shows that

Gš2(h, φ, û, s)

=
[GR1 s0 − GR1 s0 + h0û0

0 1

][
1R2 s1 − 1R2 s1 + h1û1

0 1

]

=
[

GR2
GR1

(
s1 − 1R2 s1 + h1û1

) + s0 − GR1 s0 + h0û0

0 1

]

=
[

GR2
GR1(I − 1R2) s1 + (I − GR1) s0 + h1

GR1û1 + h0û0

0 1

]
(6.324)

where
GR2 = GR1

1R2 (6.325)

To find the screw parameters of the equivalent screw Gš2(h, φ, û, s), we start obtaining
û and φ from GR2 based on (6.253) and (6.252). Then, utilizing (6.293) and (6.294),
we can find

h = û · Gd (6.326)

s = [
I − GR2

]−1
(Gd − hû) (6.327)

where
Gd = GR1(I − 1R2) s1 + (I − GR1) s0 + h1

GR1û1 + h0û0

= (
GR1 − GR2

)
s1 + GR1

(
h1û1 − s0

) + s0 + h0û0 (6.328)
�
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Example 378 � Exponential Representation of a Screw Consider the body point
P in the screw motion shown in Figure 6.21. The final position of the point can be
given by

p′′ = s + eφũr + hû = s + eφũ(p − s) + hû = [T ]p (6.329)

where [T ] is the exponential representation of screw motion,

[T ] =
[

eφũ (I − eφũ) s + hû

0 1

]
(6.330)

The exponential screw transformation matrix (6.330) is based on the exponential form
of the Rodriguez formula (5.167):

eφũ = I + ũ sin φ + ũ2 (1 − cos φ) (6.331)

Therefore, the combination of two screws can also be found by

[T ] = T1T2

=
[

eφ1ũ1 (I − eφ1ũ1) s1 + h1û1

0 1

] [
eφ2ũ2 (I − eφ2ũ2) s2 + h2û2

0 1

]
=

[
eφ1ũ1+φ2ũ2 Gd

0 1

]
(6.332)

where

Gd =
(
eφ1ũ1 − eφ1ũ1+φ2ũ2

)
s2 + eφ1ũ1

(
h2û2 − s1

) + s1 + h1û1 (6.333)

Example 379 � Combination of Two Principal Central Screws Combination of
every two principal central screws can be found by matrix multiplication. As an
example, a screw motion about Y followed by another screw motion about X is

š(hX, γ, Î ) š(hY , β, Ĵ )

=


1 0 0 γ pX

0 cγ −sγ 0
0 sγ cγ 0
0 0 0 1




cβ 0 sβ 0
0 1 0 β pY

−sβ 0 cβ 0
0 0 0 1



=


cos β 0 sin β γpX

sin β sin γ cos γ − cos β sin γ β pY cos γ

− cos γ sin β sin γ cos β cos γ β pY sin γ

0 0 0 1

 (6.334)

Screw combination is not commutative, and therefore

š(hX, γ, Î ) š(hY , β, Ĵ ) �= š(hY , β, Ĵ ) š(hX, γ, Î ) (6.335)
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Example 380 � Decomposition of a Screw Every general screw can be decomposed
to three principal central screws:

GšB(h, φ, û, s) =
[GRB s − GRB s + hû

0 1

]
= š(hX, γ, Î ) š(hY , β, Ĵ ) š(hZ, α, K̂) (6.336)

Multiplication of the three screws provides

GRB =

 cαcβ −cβsα sβ

cγ sα + cαsβsγ cαcγ − sαsβsγ −cβsγ

sαsγ − cαcγ sβ cαsγ + cγ sαsβ cβcγ

 (6.337)

and

s − GRB s + hû =

 γpX + αpZ sin β

βpY cos γ − αpZ cos β sin γ

βpY sin γ + αpZ cos β cos γ

 =

 dX

dY

dZ

 (6.338)

The twist angles α, β, γ can be found from GRB , and the pitches pX, pY , pZ can be
found from (6.338):

pZ = dZ cos γ − dY sin γ

α cos β
(6.339)

pY = dZ sin γ + dY cos γ

β
(6.340)

pX = dX

γ
− dZ cos γ − dY sin γ

γ cos β
sin β (6.341)

Example 381 � Decomposition of a Screw to Principal Central Screws In general,
there are six different independent combinations of triple principal central screws,
and therefore there are six different methods to decompose a general screw into a
combination of principal central screws:

1. š(hX, γ, Î ) š(hY , β, Ĵ ) š(hZ, α, K̂)

2. š(hY , β, Ĵ ) š(hZ, α, K̂) š(hX, γ, Î )

3. š(hZ, α, K̂) š(hX, γ, Î ) š(hY , β, Ĵ )

4. š(hZ, α, K̂) š(hY , β, Ĵ ) š(hX, γ, Î )

5. š(hY , β, Ĵ ) š(hX, γ, Î ) š(hZ, α, K̂)

6. š(hX, γ, Î ) š(hZ, α, K̂) š(hY , β, Ĵ )

(6.342)

The expanded forms of the six combinations of principal central screws are pre-
sented in Appendix C.



534 Motion Kinematics

6.8 � PLÜCKER LINE COORDINATE

Plücker coordinates are a set of six coordinates used to define and show a directed
line in space. Such a line definition is more natural than the traditional methods and
simplifies kinematics. Assume that P1(X1, Y1, Z1) and P2(X2, Y2, Z2) at r1 and r2 are
two different points on the line l, as shown in Figure 6.22.

Using the position vectors r1 and r2, the equation of line l can be defined by a
vector with six elements that are made from the components of two vectors û and ρ:

l =
[

û

ρ

]
=



L

M

N

P

Q

R


(6.343)

The six elements L, M, N,P, Q, R are called the Plücker coordinates of the directed
line l. The vector û is a unit vector along the line l and is referred to as a direction
vector ,

û = r2 − r1

|r2 − r1| = LÎ + MĴ + NK̂ (6.344)

and vector ρ is the moment vector of û about the origin,

ρ = r1 × û = PÎ + QĴ + RK̂ (6.345)

Proof : The unit vector û along the line l that connects P1 to P2 is

û = r2 − r1

|r2 − r1| = X2 − X1

d
Î + Y2 − Y1

d
Ĵ + Z2 − Z1

d
K̂

= LÎ + MĴ + NK̂ (6.346)

X
Y

Z

l

P1

r1

r0

P2

O

r2

r

u

Figure 6.22 A line indicated by two points.
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where
L2 + M2 + N2 = 1 (6.347)

and the distance between P1 and P2 is

d =
√

(X2 − X1)2 + (Y2 − Y1)2 + (Z2 − Z1)2 (6.348)

If r represents a vector from the origin O to a point on line l, then the vector
r − r1 is parallel to û, and therefore the equation of the line l can be written as

(r − r1) × û = 0 (6.349)

or equivalently as
r × û = ρ (6.350)

where ρ is the moment of the direction vector û about O:

ρ = r1 × û (6.351)

Furthermore, because vectors ρ and û are perpendicular, there is a constraint among
their components,

û · ρ = 0 (6.352)

Expanding (6.345) yields

ρ =
∣∣∣∣∣∣

Î Ĵ K̂

X1 Y1 Z1

L M N

∣∣∣∣∣∣ = PÎ + QĴ + RK̂ (6.353)

where
P = Y1N − Z1M

Q = Z1L − X1N

R = X1M − Y1L (6.354)

and therefore the orthogonality condition (6.352) can be expressed as

LP + MQ + NR = 0 (6.355)

Because of the constraints (6.347) and (6.355), the Plücker coordinates of the line
(6.343) have only four independent components.

Our arrangement of Plücker coordinates in the form of (6.343) is the line arrange-
ment and is called ray coordinates; in some publication the reverse order in the axis
arrangement l = [

ρ|û]T
is used. In either case, a vertical line as in

[
û|ρ]T

or a

semicolon as in
[
û; ρ

]T
may be used to separate the first three elements from the

last three. Both arrangements can be used in kinematics efficiently.
The Plücker line coordinates [û, ρ]T are homogeneous because Equation (6.345)

shows that the coordinates [wû,wρ]T, where w ∈ R, define the same line.
Force–moment, angular velocity–translational velocity, and rigid-body motion act

like a line vector and can be expressed by Plücker coordinates. The Plücker method is
a canonical representation of line definition and therefore is more efficient than other
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methods such as the parametric form l(t) = r1 + t û, point and direction form
(
r1, û

)
,

or two-point representation (r1, r2). �

Example 382 � Plücker Coordinates of a Line Connecting Two Points Plücker line
coordinates of the line connecting points P1(1, 0, 0) and P2(0, 1, 1) are

l =
[

û

ρ

]
= [−1 1 1 0 −1 1

]T
(6.356)

because √
3û = r2 − r1

|r2 − r1| = −Î + Ĵ + K̂ (6.357)

and √
3ρ = r1 ×

√
3û = −Ĵ + K̂ (6.358)

Example 383 � Plücker Coordinates of Diagonals of a Cube Figure 6.23 depicts a
unit cube and two lines on diagonals of two adjacent faces. Line l1 connecting corners
P1(1, 0, 1) and P2(0, 1, 1) is given as

l1 =
[

û1

ρ1

]
=

[
−

√
2

2

√
2

2
0 −

√
2

2
−

√
2

2

√
2

2

]T

(6.359)

because

û1 = p2 − p1

|p2 − p1| = −Î + Ĵ√
2

(6.360)

and

ρ1 = p1 × û1 = −Î − Ĵ + K̂√
2

(6.361)

P1

P2

Y

X

Z

Q2

Q1

Figure 6.23 A unit cube and two lines along the diagonal of two faces.
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Line l2 connects the corner Q1(1, 0, 0) to Q2(1, 1, 1) and is expressed by

l2 =
[

û2

ρ2

]
=

[
0

√
2

2

√
2

2
0 −

√
2

2

√
2

2

]T

(6.362)

because

û2 = q2 − q1

|q2 − q1| = Ĵ + K̂√
2

(6.363)

and

ρ2 = q1 × û2 = −Ĵ + K̂√
2

(6.364)

Example 384 � Grassmanian Matrix to Show Plücker Coordinates The Grassma-
nian matrix is used to show the homogeneous coordinates. The Grassmanian matrix
for two points [

w1 X1 Y1 Z1

w2 X2 Y2 Z2

]
(6.365)

is a short notation for the Plücker coordinates of the line l that connects the two points
if we define

L =
∣∣∣∣w1 X1

w2 X2

∣∣∣∣ P =
∣∣∣∣Y1 Z1

Y2 Z2

∣∣∣∣
M =

∣∣∣∣w1 Y1

w2 Y2

∣∣∣∣ Q =
∣∣∣∣Z1 X1

Z2 X2

∣∣∣∣
N =

∣∣∣∣w1 Z1

w2 Z2

∣∣∣∣ R =
∣∣∣∣X1 Y1

X2 Y2

∣∣∣∣
(6.366)

Example 385 � Ray–Axis Arrangement Transformation We may verify that the
ray arrangement of Plücker coordinates,

lray =
[

û

ρ

]
(6.367)

can be transformed to the axis arrangement,

laxis =
[

ρ

û

]
(6.368)

and vice versa by using a 6 × 6 transformation matrix �:[
ρ

û

]
= �

[
û

ρ

]
(6.369)
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� =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 =
[

0 I3

I3 0

]
(6.370)

The transformation matrix � is symmetric and satisfies the following equations:

�2 = �� = I (6.371)

�T = � (6.372)

Example 386 � Classification of Plücker Coordinates There are three cases of
Plücker coordinates: general case, line through origin , and line at infinity . These cases
are illustrated in Figure 6.24.

In the general case l = [
û, ρ

]T
, illustrated in Figure 6.24(a), both vectors û and

ρ are nonzero. The vector û is parallel to the line l, and ρ is normal to the plane of l

and the origin. The magnitude of |ρ| gives the distance of l from the origin.
In the line through origin l = [

û, 0
]T

, as illustrated in Figure 6.24(b), the line
passes through the origin and ρ is zero.

In the line at infinity l = [
0, ρ

]T
, as illustrated in Figure 6.24(c), the distance l

from the origin tends to infinity. In this case we may assume û is zero. When the line
is at infinity, it is better to redefine the Plücker coordinates by normalizing the moment
vector

l =
[

û

|ρ|
ρ

|ρ|
]T

(6.373)

Therefore, the direction components of the line tend to zero by increasing the distance
while the moment components remain finite.

No line is defined by the zero Plücker coordinates [0, 0, 0, 0, 0, 0]T.

l

|ρ|

(a)

u

l

O

O

u = 0

l

ρ = 0

ρ ρ

u

O

(b) (c)

OO

Figure 6.24 Three cases of Plücker coordinates: (a) general case, (b) line through origin, (c)
line at infinity.
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Example 387 � Transformation of a Line Vector Consider the line Bl in Figure 6.25
defined in a local frame B(oxyz) by

Bl =
[

Bû
Bρ

]
=

[
Bû

BrP × Bû

]
(6.374)

where û is a unit vector parallel to the line l and P is any point on the line. The Plücker
coordinates of the line in the global frame G(OXYZ) is expressed by

Gl =
[

Gû
Gρ

]
=

[
Gû

GrP × Gû

]
(6.375)

where
Gû = GRB

Bû (6.376)

and Gρ is the moment of Gû about O:

Gρ = GrP × Gû = (Gso + GRB
BrP ) × GRB

Bû

= Gdo × GRB
Bû + GRB(BrP × Bû)

= Gdo × GRB
Bû + GRB

Bρ

= Gd̃o
GRB

Bû + GRB
Bρ. (6.377)

Therefore, the 6 × 1 Plücker coordinates
[
û, ρ

]T
for a line vector can be transformed

from a frame B to another frame G,

Gl = G�B
Bl (6.378)[

Gû
Gρ

]
= G�B

[
Bû
Bρ

]
(6.379)

by a 6 × 6 transformation matrix G�B defined as

G�B =
[

GRB 0
Gd̃o

GRB
GRB

]
(6.380)

u

X Y

Z

x

y

z

P

G

B

O

o

GrP

BrP

Gdo

Figure 6.25 A line vector in B- and G-frames.
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where

GRB =
 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (6.381)

Gd̃o =
 0 −d3 d2

d3 0 −d1

−d2 d1 0

 (6.382)

Gd̃o
GRB =

 d2r31 − d3r21 d2r32 − d3r22 d2r33 − d3r23

−d1r31 + d3r11 −d1r32 + d3r12 −d1r33 + d3r13

d1r21 − d2r11 d1r22 − d2r12 d1r23 − d2r13

 (6.383)

6.9 � GEOMETRY OF PLANE AND LINE

Plücker coordinates introduce a suitable method to define the moment between two
lines, the shortest distance between two lines, and the angle between two lines.

6.9.1 � Moment

Consider two directed lines l1 = [
û1, ρ1

]T
and l2 = [

û2, ρ2

]T
as are shown in

Figure 6.26. Points P1 and P2 on l1 and l2 are indicated by vectors r1 and r2,
respectively. The direction vectors of the lines are û1 and û2.

The moment of l2 about P1 is

(r2 − r1) × û2

and we can define the moment of the line l2 about l1 by

l2 × l1 = û1 · (r2 − r1) × û2 (6.384)

d

α

O

l1

u1

u2

l2

P1

P2r1

r2

Figure 6.26 Two skew lines and Plücker coordinates.
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which, because of û1 · r1 × û2 = û2 · û1 × r1, simplifies to

l2 × l1 = û1 · ρ2 + û2 · ρ1 (6.385)

The moment of the lines l2 about l1 can be defined by the reciprocal product of
the Plücker expression of the two lines:

l2 × l1 =
[

û2

ρ2

]
⊗

[
û1

ρ1

]
= û2 · ρ1 + û1 · ρ2 (6.386)

The reciprocal product, also called a virtual product , is commutative and gives the
moment between two directed lines.

6.9.2 � Angle and Distance

If d is the shortest distance between two lines l1 = [
û1, ρ1

]T
and l2 = [

û2,ρ2

]T
and

α ∈ [0, π] is the angle between l1 and l2, then

sin α = ∣∣û2 × û1
∣∣ (6.387)

and

d = 1

sin α

∣∣û2 · ρ1 + û1 · ρ2

∣∣ = 1

sin α

∣∣∣∣[ û2

ρ2

]
⊗

[
û1

ρ1

]∣∣∣∣
= 1

sin α
|l2 × l1| (6.388)

Therefore, two lines l1 and l2 intersect if and only if their reciprocal product is zero.
Two parallel lines may be assumed to intersect at infinity. The distance expression does
not work for parallel lines.

6.9.3 � Plane and Line

The equation of a plane Gπ with a normal unit vector n̂ = n1Î + n2Ĵ + n3K̂ is

n1X + n2Y + n3Z = s (6.389)

where s is the minimum distance of the plane to the origin O. We may indicate a plane
by using a homogeneous representation

π =


n1

n2

n3

s

 (6.390)

and write the condition πT · r = 0 for a point r = [X, Y,Z, w]T to be in the plane by

πT · r = [
n1 n2 n3 s

] 
X

Y

Z

w

 = 0 (6.391)
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Furthermore, w = 0 indicates all points at infinity, and s = 0 indicates all planes con-
taining the origin.

The intersection of the π -plane with the X-axis, or the X-intercept, is X = −s/n1,
the Y -intercept is Y = −s/n2, and the Z-intercept is Z = −s/n3. The plane is perpen-
dicular to the (X, Y )-plane if n3 = 0. It is perpendicular to the X-axis if n2 = n3 = 0.
There are similar conditions for the other planes and axes. If (X0, Y0, Z0) is a point in
the plane (6.390), then

n1(X − X0) + n2(Y − Y0) + n3(Z − Z0) = s (6.392)

The distance of a point [X,Y ,Z,w]T from the origin is

d =
√

X2 + Y 2 + Z2

w2
(6.393)

while the distance of a plane π = [
m1 m2 m3 s

]T
from the origin is

s =
√

s2

m2
1 + m2

2 + m2
3

(6.394)

The equation of a line connecting two points P1(X1, Y1, Z1) and P2(X2, Y2, Z2)

at r1 and r2 can also be expressed by

l = r1 + m(r2 − r1) (6.395)

and the distance of a point P(X, Y,Z) from any point on l is given by

s2 = (X1 + m(X2 − X1) − X)2

+ (Y1 + m(Y2 − Y1) − Y )2

+ (Z1 + m(Z2 − Z1) − Z)2 (6.396)

which is a minimum for

m = − (X2 − X1)(X1 − X) + (Y2 − Y1)(Y1 − Y ) + (Z2 − Z1)(Z1 − Z)

(X2 − X1)
2 + (Y2 − Y1)

2 + (Z2 − Z1)
2

(6.397)

To find the minimum distance of the origin we set X = Y = Z = 0.

Example 388 � Angle and Distance between Two Diagonals of a Cube The Plücker
coordinates of the two diagonals of the unit cube of Figure 6.23 are

l1 =
[

û1

ρ1

]
=

[
−

√
2

2

√
2

2
0 −

√
2

2
−

√
2

2

√
2

2

]T

(6.398)

l2 =
[

û2

ρ2

]
=

[
0

√
2

2

√
2

2
0 −

√
2

2

√
2

2

]T

(6.399)
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The angle between l1 and l2 is

α = sin−1
∣∣û2 × û1

∣∣ = sin−1

√
3

2
= 60 deg (6.400)

and the distance between them is

d = 1

sin α

∣∣∣∣[ û1

ρ1

]
⊗

[
û2

ρ2

]∣∣∣∣ = 1

sin α

∣∣û1 · ρ2 + û2 · ρ1

∣∣
= 2√

3
|−0.5| = 1√

3
(6.401)

Example 389 Distance of a Point from a Line The equation of a line that connects
two points r1 = [−1, 2, 1, 1]T and r2 = [1, −2, −1, 1]T is

l = r1 + m(r2 − r1) =


−1 + 2m

2 − 4m

1 − 2m

1

 (6.402)

So, the distance between point r3 = [1, 1, 0, 1]T and l is given by

s2 = (X1 + m(X2 − X1) − X3)
2

+ (Y1 + m(Y2 − Y1) − Y3)
2

+ (Z1 + m(Z2 − Z1) − Z3)
2

= 24m2 − 20m + 6 (6.403)

which is a minimum for
m = 5

12 (6.404)

Therefore, the point on the line at a minimum distance from r3 is

r =


− 1

6
1
3
1
6

1

 (6.405)

Example 390 Distance between Two Lines The line that connects r1 = [−1, 2, 1, 1]T

and r2 = [1,−2, −1, 1]T is

l = r1 + m(r2 − r1) =


−1 + 2m

2 − 4m

1 − 2m

1

 (6.406)
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and the line connecting r3 = [1, 1, 0, 1]T and r4 = [0, −1, 2, 1]T is

l = r1 + m(r2 − r1) =


1 − n

1 − 2n

2n

1

 (6.407)

The distance between two arbitrary points on the lines is

s2 = (−1 + 2m − 1 + n2) + (2 − 4m − 1 + 2n)2 + (1 − 2m − 2n)2 (6.408)

The minimum distance is found by minimizing s2 with respect to m and n:

m = 0.443 n = 0.321 (6.409)

So, the two points on the lines that have the minimum distance are at

rm =


−0.114

0.228
0.114
1

 rn =


0.679
0.358
0.642

1

 (6.410)

Example 391 � Intersection Condition for Two Lines If two lines l1 = [
û1, ρ1

]T

and l2 = [
û2, ρ2

]T
intersect and the position of their common point is at r, then

ρ1 = r × û1 (6.411)

ρ2 = r × û2 (6.412)

and therefore
ρ1 · û2 = (

r × û1
) · û2 = r· (û1 × û2

)
(6.413)

ρ2 · û1 = (
r × û2

) · û1 = r· (û2 × û1
)

(6.414)

which implies
û1 · ρ2 + û2 · ρ1 = 0 (6.415)

or equivalently [
û1

ρ1

]
⊗

[
û2

ρ2

]
= 0 (6.416)

Example 392 � Plücker Coordinates of the Axis of Rotation Consider a homo-
geneous transformation matrix corresponding to a rotation α about Z along with a
translation in the (X, Y )-plane,

GTB =


r11 r12 0 Xo

r21 r22 0 Yo

0 0 1 0
0 0 0 1

 (6.417)
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which must be equal to

GTB =


cos α − sin α 0 Xo

sin α cos α 0 Yo

0 0 1 0
0 0 0 1

 (6.418)

The angle of rotation can be obtained by comparison,

α = tan−1 r21

r11
(6.419)

The pole of rotation can be found by searching for a point that has the same coordinates
in both frames, 

r11 r12 0 Xo

r21 r22 0 Yo

0 0 1 0
0 0 0 1




Xp

Yp

0
1

 =


Xp

Yp

0
1

 (6.420)

which can be written as
r11 − 1 r12 0 Xo

r21 r22 − 1 0 Yo

0 0 1 0
0 0 0 1




Xp

Yp

0
1

 =


0
0
0
1

 (6.421)

The solutions of these equations are

Xp = 1

2
Xo − 1

2

r21

1 − r11
Yo = 1

2
Xo − 1

2

sin α

vers α
Yo (6.422)

Yp = 1

2
Yo + 1

2

r21

1 − r11
Xo = 1

2
Yo + 1

2

sin α

vers α
Xo (6.423)

The Plücker line l = [
û, ρ

]T
of the pole axis is then equal to

l = [
0 0 1 Yp −Xp 0

]T
(6.424)

6.10 � SCREW AND PLÜCKER COORDINATE

Consider a screw š(h, φ, û, s) with a line of action l = [
û, ρ

]T
and pitch p = h/φ. The

screw can be defined by a set of Plücker coordinates

š(h, φ, û, s) =
[

û

ξ

]
=

[
û

ρ + pû

]
=

[
φû

φρ + hû

]
(6.425)

If the pitch is infinite, p = ∞, then the screw reduces to a pure translation, or
equivalently a line at infinity,

š(h, 0, û, r) =
[

0
hû

]
(6.426)
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A zero pitch screw p = 0 corresponds to a pure rotation. Then the screw coordinates
are identical to the Plücker coordinates of the screw line:

š(0, φ, û, s) =
[

φû

φρ

]
=

[
û

ρ

]
(6.427)

A central screw is defined by a line through the origin:

š(h, φ, û) = š(h, φ, û, 0) =
[

û

pû

]
=

[
φû

hû

]
= D(hû) R(û, φ) (6.428)

Screw coordinates for differential screw motion is useful in the velocity analysis
of connected rigid bodies. Consider a screw axis l, an angular velocity ω = ωû = φ̇û

about l, and a velocity v along l. If the location vector s is the position of a point on l,
then Plücker coordinates of the line l are

l =
[

û

ρ

]
=

[
û

s × û

]
(6.429)

The pitch of the screw is

p = |v|
|ω| (6.430)

and the direction of the screw is defined by

û = ω

|ω| (6.431)

So, the instantaneous screw coordinates v̌(p, ω, û, s) are given as

v̌(p, ω, û, r) =
[
ωû

r × ω + |v| ω
|ω|

]T

=
[

ωû

s × û + v

]
=

[
ω

s × û + pω

]
=

[
ω

ρ + pω

]
(6.432)

Example 393 � Pitch of an Instantaneous Screw Using Plücker coordinates, we
may define the pitch of an instantaneous screw by

p = û · ξ (6.433)

ξ = ρ + hû (6.434)

because û · ρ = 0, and therefore,

û · ξ = û · (ρ + hû
) = (

û · ρ + φp
) = φp (6.435)
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Example 394 � Nearest Point on a Screw Axis to the Origin The point on the
instantaneous screw axis, nearest to the origin, is indicated by the following position
vector:

s0 = φ
(
û × ξ

)
(6.436)

KEY SYMBOLS

B body coordinate frame, local coordinate frame
c cosine
d translation vector, displacement vector
D displacement matrix
e exponential
G global coordinate frame, fixed coordinate frame
h translation of a screw
I = [I ] identity matrix
ı̂, ̂ , k̂ local coordinate axis unit vectors
ı̃, ̃ , k̃ skew-symmetric matrices of the unit vectors ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axis unit vectors
l line, Plücker coordinates, Plücker line
L,M, N components of û

n̂ normal unit vector to a plane
p pitch of a screw
P body point, fixed point in B, point matrix
P,Q,R components of ρ

p, q, r position vectors, homogeneous position vectors
rij element of row i and column j of a matrix
R rotation transformation matrix
s sine
s location vector of a screw
š screw
T homogeneous transformation matrix
û unit vector on axis of rotation
ũ skew-symmetric matrix of the vector û

v velocity vector
w weight factor of a homogeneous vector
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ rotation angles about global axes
G�B transformation matrix for Plücker coordinates
λ eigenvalues of R

ξ moment vector of a Plücker line
π homogeneous expression of a plane
ρ moment vector of û about origin
φ angle of rotation about û, rotation of a screw
ω angular velocity vector
ω̃ skew symmetric matrix of the vector ω
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Symbol
tr trace operator
vers 1 − cos
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
� transformation matrix of ray-to-axis arrangement

EXERCISES

1. Global Position in Rigid-Body Motion We move the body coordinate frame B to

Gd = [
4 −3 7

]T

Find GrP if the local position of a point is

BrP = [
7 3 2

]T

and the orientation of B with respect to the global frame G can be found by a rotation
45 deg about the X-axis and then 45 deg about the Y -axis.

2. Rotation Matrix Compatibility It is not possible to find GRB from the equation of
rigid-body motion

GrP = GRB
BrP + Gd

if GrP , BrP , and Gd are given. Explain why and find the required conditions to be able to
find GRB .

3. Global Position with Local Rotation in Rigid-Body Motion Assume a body coordinate
frame B is at

Gd = [
4 −3 7

]T

Find GrP if the local position of a point is

BrP = [
7 3 2

]T

and the orientation of B with respect to the global frame G can be found by a rotation
45 deg about the x-axis and then 45 deg about the y-axis.

4. Global and Local Rotation in Rigid-Body Motion A body coordinate frame B is trans-
lated to

Gd = [
4 −3 7

]T

Find GrP if the local position of a point is

BrP = [
7 3 2

]T

and the orientation of B with respect to the global frame G can be found by a rotation
45 deg about the X-axis, then 45 deg about the y-axis, and finally 45 deg about the z-axis.
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5. Combination of Rigid Motions The frame B1 is rotated 35 deg about the z1-axis and
translated to

B2 d = [−40 30 20
]T

with respect to another frame B2. The orientation of the frame B2 in the global frame G

can be found by a rotation of 55 deg about

u = [
2 −3 4

]
Calculate Gd1, and GR1.

6. Possible Transformations Determine the possible transformations to move Br =
[1, 1, 1]T from Gr = [1, 1, 1]T to Gr = [7, 3, 2]T.

7. Displaced and Rotated Frame Determine the axis–angle and transformation matrix GTB

in Figure 6.27.

Y

X

Z

x

y

z B

G

Figure 6.27 A displaced and rotated frame.

8. Rotation Submatrix in Homogeneous Transformation Matrix Find the missing ele-
ments in the homogeneous transformation matrix

[T ] =


? 0 ? 4

0.707 ? ? 3
? ? 0 1
0 0 0 1


9. Angle and Axis of Rotation Find the angle and axis of rotation for [T ] and T −1:

[T ] =


0.866 −0.5 0 4

0.5 0.866 0 3
0 0 1 1
0 0 0 1
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10. Combination of Homogeneous Transformations Assume that the origin of the frames
B1 and B2 are at

2 d1 = [−10 20 −20
]T

Gd2 = [−15 −20 30
]T

The orientation of B1 in B2 can be found by a rotation of 60 deg about

2u = [
1 −2 4

]
and the orientation of B2 in the global frame G can be found by a rotation of 30 deg about

Gu = [
4 3 −4

]
Calculate the transformation matrices GT2 and GT −1

2 .

11. Rotation about an Axis Not Going through Origin Find the global position of a body
point at

BrP = [
7 3 2

]T

after a rotation of 30 deg about an axis parallel to

Gu = [
4 3 −4

]
and passing through a point at (3, 3, 3).

12. Rotation about an Off-Center Axis A body point is at BrP = [7, 3, 2]T when the body
and global coordinate frames are coincident. Determine the global coordinate of the point
if B turns:

(a) 60 deg about Gu = [4 3 − 4] that goes through (0, 0, 1)

(b) 45 deg about Gu = [−4 3 4] that goes through (0, 0, 1)

(c) 45 deg about Gu = [1 1 1] that goes through (1, 1, 1)

13. Inversion of a Square Matrix The inverse of the 2 × 2 matrix

[A] =
[

a b

c d

]
is

A−1 =

− d

−ad + bc

b

−ad + bc
c

−ad + bc
− a

−ad + bc

 (6.437)

Use the inverse method of splitting a matrix [T ] into

[T ] =
[

A B

C D

]
applying the inverse technique (6.115), verify Equation (6.437), and calculate the inverse of

[A] =


1 2 3 4
12 13 14 5
11 16 15 6
10 9 8 7
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14. Combination of Rotations about Noncentral Axes Consider a rotation 30 deg about an
axis at the global point (3, 0, 0) followed by another rotation 30 deg about an axis at the
global point (0, 3, 0). Find the final global coordinates of

BrP = [
1 1 0

]T

to

GrP = [√
2 0 3

]T

15. Transformation Matrix from Body Points Figure 6.28(a) shows a cube at initial con-
figurations. Label the corners of the cube at the final configuration shown in Figure 6.28(b)

and find the associated homogeneous transformation matrix. The length of each side of the
cube is 2.

G

X
Y

Z

x
y

z

B

1

2

4

5

6

G

X

Y

Z

O

x

z

B

3
(a) (b)

7

8

y

−1

1

3

Figure 6.28 A cube before and after a rigid motion.

16. � Central Screw Find the central screw that moves the point

BrP = [
1 0 0

]T

to

GrP = [
0 1 4

]T

17. � Screw Motion Find the global position of

BrP = [
1 0 0 1

]T

after a screw motion GšB(h, φ, û, s) = GšB(4,60 deg, û, s) where

Gs = [
3 0 0

]T Gu = [
1 1 1

]T

18. � Pole of Planar Motion Find the pole position of a planar morion if we have the
coordinates of two body points before and after the motion as given below:

P1 (1, 1, 1) P2(5, 2, 1)

Q1 (4, 1, 1) Q2(7, 2 + √
5, 1)
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19. � Screw Parameters Find the global coordinates of the body points

P1(5, 0, 0) Q1(5, 5, 0) R1(0, 5, 0)

after a rotation of 30 deg about the x-axis followed by a rotation of 40 deg about an axis
parallel to the vector

Gu = [
4 3 −4

]
and passing through a global point at (0, 3, 0). Use the coordinates of the points and
calculate the screw parameters that are equivalent to the two rotations.

20. � Noncentral Rotation Find the global coordinates of a point at

BrP = [
10 20 −10

]T

when the body frame rotates about

Gu = [
1 1 1

]T

which passes through a point at (1, −4, 2).

21. � Equivalent Screw Calculate the transformation matrix GTB for a rotation of 30 deg
about the x-axis followed by a translation parallel to

Gs = [
3 2 −1

]T

and then a rotation of 40 deg about an axis parallel to the vector

Gu = [
2 −1 1

]T

Find the screw parameters of GTB .

22. � Central Screw Decomposition Find a triple central screw for case 1 in Appendix C,

GšB(h, φ, û, s) = š(hX, γ, Î ) š(hY , β, Ĵ ) š(hZ, α, K̂)

to get the same screw as

GšB(h, φ, û, s) = GšB(4, 60, û, s)

where

Gs = [
3 0 0

]T Gu = [
1 1 1

]T

23. � Central Screw Composition What is the final position of a point at

BrP = [
10 0 0

]T

after the central screw š(4, 30 deg, Ĵ ) followed by š(2, 30 deg, Î ) and š(−6, 120 deg, K̂)?
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24. � Screw Composition Find the final position of a point at

BrP = [
10 0 0

]T

after a screw

1š2(h1, φ1, û1, s1) = 1š2

1,40 deg,

 1/
√

3
−1/

√
3

1/
√

3

 ,

 2
3

−1


followed by

Gš1(h0, φ0, û0, s0) = Gš1

−1,45 deg,

 1/9
4/9
4/9

 ,

−3
1
5


25. � Plücker Line Coordinate Find the missing numbers:

l = [
1/3 1/5 ? ? 2 −1

]T

26. � Plücker Lines Find the Plücker lines for AE, BE, CE, DE in the local coordinate B

and calculate the angle between AE and the Z-axis in the pyramid shown in Figure 6.29.
The local coordinate of the edges are

A(1, 1, 0) B(−1, 1, 0) C(−1, −1, 0)

D(1, −1, 0) E(0, 0, 3)

Transforms the Plücker lines AE, BE, CE, DE to the global coordinate G. The global
position of o is at

o(1, 10, 2)

x
y

z

A

B

C

D

E

o

X
Y

Z

O

G

B

Figure 6.29 A pyramid.
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27. � Angle between Two Lines Find the angle between OE and OD of the pyramid shown
in Figure 6.29. The coordinates of the points are

D(1,−1, 0) E(0, 0, 3)

28. � Distance from the Origin The equation of a plane is given as

4X − 5Y − 12Z − 1 = 0

Determine the perpendicular distance of the plane from the origin.
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Multibody Kinematics

We can model most multibody systems as connected rigid bodies by revolute or pris-
matic joints that allow the bodies to move relatively. We apply rigid-body kinematics
to the connected bodies and show how to determine their relative motions.

7.1 MULTIBODY CONNECTION

Two rigid bodies that are permanently in contact with a possible relative motion is called
a kinematic pair . The multibody is a mechanical system that is made by connected rigid
bodies. Every body of the system that can move relative to all other members is called
a link , bar , arm , or object . Any two or more connected bodies, such that no relative
motion can occur among them, are considered a single body. Figure 7.1 illustrates the
Shuttle arm as an example of multibody systems.

Every two bodies of a kinematic pair are connected by a joint . Most of the joints
in multibody dynamics are revolute (rotary) or prismatic (translatory). Figure 7.2
illustrates revolute and prismatic joints. A revolute joint (R) allows relative rotation
and a prismatic joint (P ) allows a relative translation between the two connected bodies.
At every joint, the relative motion of the bodies is qualitatively expressed by a single
variable called the joint coordinate or joint variable. It is an angle for a revolute joint
and a distance for a prismatic joint. The relative rotation or translation between two
connected bodies occurs about a line called the joint axis .

A joint is called an active joint if its coordinate is controlled by an actuator.
A passive joint does not have any actuator, and its coordinate is a function of the
coordinates of active joints and the geometry of the links of the system. Passive joints
are also called inactive or free joints. Prismatic and revolute joints provide one degree
of freedom between the two connected bodies.

Although prismatic and revolute joints are the most applied connections, there are
other types of joints that are classified according to the number of degrees of freedom
(DOF ) they eliminate or they allow. A joint can provide a maximum of five DOF and
a minimum of one DOF.

Proof : If there is no contact between two bodies A and B, then B has six DOF with
respect to A. Every permanent contact eliminates some rotational or translational DOF.
All possible physically realizable kinematic pairs can be classified by the number of
rotational, R, or translational, T , degrees of freedom the contact provides.

A joint in class 1 provides one DOF and uses five contact points between A

and B. The class 1 joints and their point contact kinematic models are shown in

555
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z0

x5

Shoulder
joints

Elbow joint

Wrist joints

z1

z2

z3

z4

z5

z6

z7

x0 y0

x1

x3

x4

x6

y7

x2

x7

θ3

θ1

θ2

θ4

θ6

θ5

θ7C
an

ad
a···

Figure 7.1 Shuttle arm is a multibody system.

Revolute joint Prismatic joint

Joint axis Joint axis

xθ

Figure 7.2 A revolute joint and a prismatic joint.

Figure 7.3. There are three types of joints in class 1: revolute, R, with a rotational
freedom R1; prismatic, P, with a translational freedom T 1; and helical or screw, S,
with a proportional rotational–translational freedom R(T ). These joints provide one
DOF between two links A and B.

A joint in class 2 provides two DOF and uses four contact points between A and
B. The class 2 joints and their point contact kinematic models are shown in Figure 7.4.
There are three types of joints in class 2: sphere in slot, with two rotational freedom
R2; cylindrical, C, with a coaxial rotational and a translational freedom R1T 1; and
disc in slot, with a perpendicular rotational and translational freedom R1T 1. These
joints provide two DOF between two links A and B.

A joint in class 3 provides three DOF and uses three contact points between A and
B. The class 3 joints and their point contact kinematic models are shown in Figure 7.5.
There are three types of joints in class 3: spherical, S, with three rotational freedom
R3; sphere in slot, with two rotational and a translational freedom R2T 1; and disc in
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x
x

R = R1

θ

θ

P = T1 S = R(T )

Figure 7.3 Joints of class 1 with one DOF: revolute, R, prismatic, P, and screw, S.

x

R2 C = R1T1 R1T1

x

θθθ

ϕ

Figure 7.4 Joints of class 2 with two DOF: sphere in slot R2; cylidrical, C, and disc in slot
R1T .

slot, with a rotational and two translational freedom R1T 2. These joints provide three
DOF between two links A and B.

A joint in class 4 provides four DOF and uses two contact points between A

and B. The class 4 joints and their point contact kinematic models are shown in
Figure 7.6. There are two types of joints in class 4: sphere in slot, with three rotational
and one translational freedom R3T 1, and cylinder in slot, with two rotational and two
translational freedom R2T 2. These joints provide four DOF between two links A and B.

A joint in class 5 provides five DOF and uses one contact point between A and
B. The class 5 joint and its point contact kinematic model are shown in Figure 7.7.
There is only one type of joints in class 5: sphere on plane, with three rotational and
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SC = R3 R2T1 R1T2

x

xy

θ

θ
θψ ϕ

ϕ

Figure 7.5 Joints of class 3 with three DOF: spherical, S, sphere in slot, R2T 1; and disc in
slot, R1T 2.

R3T1 R2T2

x

y
x

θ

θ

ϕ ϕ
ψ

Figure 7.6 Joints of class 4 with four DOF: sphere in slot R3T 1 and cylidrer in slot R2T 2.

R3T2

Figure 7.7 Joint of class 5 with five DOF: sphere on plane R3T 2.
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two translational freedom R3T 2. This joint provides five DOF between two links A

and B.
Therefore, the DOF of a mechanism is equal to

f = 6n − j5 − 2j4 − 3j3 − 4j2 − 5j1

where n is number of links and ji , i = 1, 2, 3, 4, 5, indicates the number of joints of
type ji . �

Example 395 Number of Links Every triangle that is made by three connected bars
counts as one link, because there cannot be any relative motion among the bars.
Figure 7.8 illustrates a mechanism with 7 links using 11 bars. There cannot be any
relative motion among bars 3, 10, and 11, and they count as one link, say link 3. Bars
6, 8, and 9 also have no relative motion and are counted as one link, say link 6.

1

2

3

4

5

6

7

10 11

89

Figure 7.8 A planar linkage with seven links and eight revolute joints.

Example 396 Grübler Formula for DOF Most of the industrial multibodies are
planar mechanisms. The links of a planar mechanism move parallel to a fixed plane.
If a mechanism is planar, the only possible joints between two links are the revolute
R and prismatic P from class 1 and cylindrical C from class 2. Figure 7.9 illustrates
the planar joints R, P, and C between two links 1 and 2.

R P C

1

2
1

2

1

2

Figure 7.9 Two planar links can be connected by a revolute R, prismatic P , or cylindrical C

joint.
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Every free link in a planar motion has three DOF: one rotation and two translations.
A revolute or prismatic joint from class 1 remains one DOF and eliminates two DOF.
A cylindrical joint from class 2 eliminates one DOF and remains two DOF. Let us
show the number of links of a mechanism by n, the number of P and R joints by j1,
and the number of C joints by j2. Then the number of degrees of freedom f of a planar
mechanism with one grounded link is

f = 3 (n − 1) − 2j1 − j2 (7.1)

This is because every free link has three DOF, and if a link is attached to the ground,
it loses its three DOF. So, there are 3(n − 1) DOF for n links of a mechanism. Every
planar joint of class 1 eliminates two DOF and each planar joint of class 2 eliminates
one DOF. As an example, the planar mechanism in Figure 7.10 has three DOF:

n = 7 j1 = 7 j2 = 1 (7.2)

f = 3 (7 − 1) − 2 × 7 − 1 = 3 (7.3)

1

2

3

4

5

6

7

j1
j1

j1

j1

j1

j1

j1

j1

Figure 7.10 A planar linkage with seven links, seven joints j1, and one joint j2.

Equation (7.1) is called the Grübler formula. The three-dimensional form of the
equation, which may also be called the Chebychev–Grübler–Kutzbach formula, is

f = 6 (n − 1) − j5 − 2j4 − 3j3 − 4j2 − 5j1 (7.4)

These equations may not work, depending on the geometry of the mechanism or size
of the links. As an example, Figure 7.11 illustrates a universal joint. There are four
links in a universal joint: link (1) is the ground, which has a revolute joint with the
input link (2) and the output link (4). The input and the output links are connected with
a cross-link (3). The universal joint is a three-dimensional four-bar linkage with one
DOF for which the cross-link acts as a coupler link. However, the Kutzbach formula
determines a structure with −2 DOF:

n = 4 j1 = 4 (7.5)

f = 6 (4 − 1) − 5 × 4 = −2 (7.6)

The universal joint provides one DOF only when the four axes of rotations intersect at
a point.
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2

4
1

3

1

A

B

C
ω2

ω4
ϕ

D

Driver

Driven

Cross-link

Figure 7.11 A universal joint with four links: link (1) is the ground, link (2) is the input, link
(4) is the output, and the cross-link (3) is a coupler link.

Example 397 Compound Links and Multiple Joints When a link is connected to
more than two other links, it is called a compound link . A compound link needs to be
clearly identified because its sides cannot move relatively.

When more than two links are connected at the same point, the contact point is
called a multiple joint . If n links are connected at a point, there are n − 1 joints at the
connection point.

The mechanism in Figure 7.12 has 16 links where 1, 2, 6, 16, 8, and 9 are compound
links. All of the joints except two of them are revolute; however, there are some multiple
joints that make j1 = 23, and therefore,

f = 3 (16 − 1) − 2 × 23 = −1

1

2 6

8 9

10

4 5

3 7

11

12

13

14

15

16

Figure 7.12 A mechanism with 16 links amd 23 joints.
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A mechanism with f = 0 has no moveability and is equivalent to a rigid body. A
mechanism with f < 0 is called overrigid or a structure.

Example 398 Equivalent Spherical Joint There are many situations where a link
connected to other links must be able to turn about any axis. Such a link should
kinematically be connected to the base link by a spherical joint. However, we may use
three perpendicular revolute joints to simulate the spherical joint and be able to control
the rotations.

Figure 7.13 illustrates a helicopter blade that is kinematically attached to the main
rotor using a spherical joint. A practical method of attachment is shown in Figure 7.14
using three revolute joints. Therefore, a spherical joint between two links B1 and B4

can be substituted by two intermediate links B2 and B3 that are connected to B1 and
B4 by three mutually perpendicular revolute joints.

Figure 7.13 A helicopter blade kinematically needs a spherical joint to attach to the main rotor.

B1

B2

B3

B4

z2

z3

z4

z1

Figure 7.14 Three mutually perpendicular revolute joints are equivalent to a spherical joint.
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7.2 DENAVIT–HARTENBERG RULE

Every body of a multibody system needs a coordinate frame to be distinguished from
other bodies. We use the coordinate frame transformation calculus to determine the
relative orientation of the bodies and also the coordinate of a body point for an observer
in any frame. Although we are free to attach a coordinate frame at any point of a rigid
body, the mass center or a point on a joint axis provides some advantages.

A serial multibody with n joints will have n + 1 links. Numbering of links starts
from (0) for the base link and increases sequentially up to (n) for the end-effector
link. Numbering of joints starts from 1 for the joint connecting the first movable link
to the base link and increases sequentially up to n. Therefore, link (i) is connected to
its lower link (i − 1) at its proximal end by joint i and is connected to its upper link
(i + 1) at its distal end by joint i + 1. Figure 7.15 illustrates such a link (i).

Figure 7.16 illustrates the links (i − 1), (i), and (i + 1) of a multibody along with
joints i − 1, i, and i + 1. Each joint is indicated by its z-axis. We rigidly attach a
local coordinate frame Bi to each link i at joint i + 1 based on the following standard
method , known as the Denavit –Hartenberg (DH ) method:

1. The zi-axis is along the i + 1 joint axis. Every joint, without exception, is
represented by a z-axis. To set up the link coordinate frames, we always begin
with identifying the zi-axes. The positive direction of the zi-axis is arbitrary.
The joint axis for revolute joints is the pin’s centerline axis. However, the axis
of a prismatic joint may be any axis parallel to the direction of translation. By
assigning the zi-axes, the pairs of links on either side of each joint and also the
two joints on either side of each link are identified.

Generally speaking, the zi-axes of two joints at the ends of a link may
be two skew lines; however, we make the industrial multibody systems such
that the zi-axes are only parallel , perpendicular , or orthogonal . Two parallel
joint axes are indicated by a parallel sign (‖). Two joint axes are orthogonal if
their axes are intersecting at a right angle. Orthogonal joint axes are indicated
by an orthogonal sign (�). Two joints are perpendicular if their axes are at

zi

zi−1

Joint i + 1

Joint i

Joint axis

Joint axis

Link (i)

Proximal end

Distal end

Figure 7.15 A link (i) of multibody that is connected to link (i − 1) at joint i and to link
(i + 1) at joint i + 1.
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Figure 7.16 Link (i), its previous link (i − 1), and the next link (i + 1) along with the coor-
dinate frames Bi and Bi+1.
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Figure 7.17 A link with two revolute joints at its ends. The joint axes of link (a) are parallel,
link (b) are perpendicular, and link (c) are orthogonal.

a right angle with respect to their common normal. Perpendicular joint axes
are indicated by a perpendicular sign (⊥). Figures 7.17(a)–(c) illustrate two
revolute joints at the parallel, perpendicular, and orthogonal configurations.

Every link of a serial multibody, except the base and final links, has two
joints at either end, R or P. The axes of the joints can also be parallel (‖),
perpendicular (⊥) or orthogonal (�). Therefore, we may indicate a link by the
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type and configuration of the end joints. As an example P‖R indicates a link
where its lower joint is prismatic, its upper joint is revolute, and the joint axes
are parallel.

2. The xi-axis is along the common normal between the axes zi−1 and zi , pointing
from the zi−1- to the zi-axis. Even if the z-axes are skew lines, there is always
a mutually perpendicular line to the two skew lines. The line is the common
normal to the z-axes and has the shortest distance between the two z-axes.

If the two z-axes are parallel, there are an infinite number of common
normals to pick for the xi-axis. In that case, we may pick the common normal
that is collinear with the common normal of the previous joints.

If the two z-axes are intersecting, there is no common normal between
them. In that case, we may assign the xi-axis perpendicular to the plane formed
by the two z-axes in the direction of zi−1 × zi .

If the two z-axes are collinear, the only nontrivial arrangement of joints
is either P‖R or R‖P. So, we assign the xi-axis such that we have the joint
variable θi = 0 in the rest position of the multibody.

The configuration of a multibody at which all the joint variables are zero
is called the home configuration or rest position , which is the reference for all
motions of the multibody. The best rest position is where it makes as many
axes parallel and coplanar to each other as possible.

3. The yi-axis is determined by the right-hand rule such that yi = zi × xi .

By applying the DH method, the origin oi of frame Bi(oi, xi, yi, zi) attached to
link i is placed at the intersection of the axis of joint i + 1 with the common normal
between the zi−1- and zi-axes. There are many situations where the DH method may
be ignored to set up a more suitable frame for a particular application. However, we
always assign reference frames to each link so that one of the three coordinate axes xi ,
yi , or zi (usually xi) will be along the axis of the distal joint.

The DH method reduces the required number of parameters to identify two coordi-
nate frames in each other from six parameters to four parameters. The four parameters
are indicated by ai , αi , θi , di and are called the DH parameters.

1. The link length ai indicates the distance between the zi−1- and zi-axes along
the xi-axis, where ai is the kinematic length of link (i).

2. The link twist αi indicates the required rotation of the zi−1-axis about the xi-axis
to become parallel to the zi-axis.

3. The joint distance di indicates the distance between the xi−1- and xi-axes along
the zi−1-axis, where di is also called the link offset.

4. The joint angle θi indicates the required rotation of the xi−1-axis about the
zi−1-axis to become parallel to the xi-axis.

Figure 7.18 illustrates the DH frames and parameters of the links in Figure 7.16.
The parameters θi and di define the relative positions of two adjacent links at joint i

and are called the joint parameters . At each joint, either θi or di is variable and the
other is fixed. For a revolute joint (R) at joint i, the value of di is fixed, and θi is
the joint variable. For a prismatic joint (P), the value of θi is fixed and di is the joint
variable. The joint parameters θi and di define a central screw motion š(di , θi , k̂i−1)

because θi is a rotation about the zi−1-axis and di is a translation along the zi−1-axis.
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Figure 7.18 The DH parameters ai, αi, di, θi for the coordinate frame of link (i) at joint i.

The parameters αi and ai define the relative positions of joints i and i + 1 at two
ends of link (i) and are called the link parameters . The link twist αi is the angle
of rotation of the zi−1-axis about xi to become parallel to the zi-axis. The other link
parameter, ai , is the translation along the xi-axis to bring the zi−1-axis on the zi-axis.
The link parameters αi and ai define a central screw motion š(ai, αi, ı̂) because αi is
a rotation about the xi-axis and ai is a translation along the xi-axis.

Combining the two screws, we can move the zi−1-axis to the zi-axis by a central
screw š(ai , αi, ı̂) and move the xi−1-axis to the xi-axis by a central screw š(di , θi ,
k̂i−1).

Consider the coordinate frame Bi that is fixed to link (i) and the coordinate frame
Bi−1 that is fixed to link (i − 1). Applying the Denavit–Hartenberg rules, the homo-
geneous transformation matrix i−1Ti to transform coordinate frame Bi to Bi−1 can be
found using the parameters of link (i) and joint i:

i−1Ti =


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (7.7)

Therefore, we can determine the coordinates of a point in Bi−1(xi−1, yi−1, zi−1) if we
have its coordinates in Bi(xi , yi , zi) using the transformation matrix i−1Ti :

xi−1

yi−1

zi−1

1

 = i−1Ti


xi

yi

zi

1

 (7.8)
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The 4 × 4 matrix i−1Ti may be partitioned into two submatrices which represent a
unique rotation combined with a unique translation to produce the same rigid motion
required to move Bi to Bi−1,

i−1Ti =
[

i−1Ri
i−1di

0 1

]
(7.9)

where

i−1Ri =
cos θi − sin θi cos αi sin θi sin αi

sin θi cos θi cos αi − cos θi sin αi

0 sin αi cos αi

 (7.10)

and

i−1di =
ai cos θi

ai sin θi

di

 (7.11)

The inverse of the homogeneous transformation matrix (7.7) is

iTi−1 = i−1T −1
i (7.12)

=


cos θi sin θi 0 −ai

− sin θi cos αi cos θi cos αi sin αi −di sin αi

sin θi sin αi − cos θi sin αi cos αi −di cos αi

0 0 0 1


Proof : Consider the coordinate frames Bi = B2(x2, y2, z2) and Bi−1 = B1(x1, y1, z1)

in Figure 7.19, which are assumed to be set up based on Denavit–Hartenberg rules.
We may determine the homogeneous transformation matrix iTi−1 to transform

coordinate frame Bi−1 to Bi by moving Bi to its present position from the coincident

x1

y1

z1

2rP

x2

y2

z2

o1

P

s2

a2
d2

o2

B1

B2

α2

θ2

Figure 7.19 Two adjacent coordinate frames based on Denevit–Hartenberg rules.
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configuration with Bi−1. It can be done by following rotation and translation rules and
multiplying four basic transformations:

1. The frame Bi rotates θi about the zi-axis.
2. The rotated frame Bi translates di along the zi-axis.
3. The displaced frame Bi rotates αi about the local xi-axis.
4. The displaced frame Bi translates ai along the local xi-axis.

Therefore, employing the pure translation and rotation matrices (6.48)–(6.53), the
transformation matrix iTi−1 would be

iTi−1 = Dxi,ai
Rxi ,αi

Dzi ,di
Rzi ,θi

=


cos θi sin θi 0 −ai

− cos αi sin θi cos θi cos αi sin αi −di sin αi

sin θi sin αi − cos θi sin αi cos αi −di cos αi

0 0 0 1

 (7.13)

where

Rzi,θi
= iTi−1 =


cos θi sin θi 0 0

− sin θi cos θi 0 0
0 0 1 0
0 0 0 1

 (7.14)

Dzi,di
= iTi−1 =


1 0 0 0
0 1 0 0
0 0 1 −di

0 0 0 1

 (7.15)

Rxi,αi
= iTi−1 =


1 0 0 0
0 cos αi sin αi 0
0 − sin αi cos αi 0
0 0 0 1

 (7.16)

Dxi,ai
= iTi−1 =


1 0 0 −ai

0 1 0 0
0 0 1 0
0 0 0 1

 (7.17)

The inverse of the homogeneous transformation matrix (7.7) is

i−1Ti = iT −1
i−1

=


cos θi − cos αi sin θi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (7.18)
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Therefore, we can determine the coordinates of a point in Bi−1(xi−1, yi−1, zi−1) if we
have its coordinates in Bi(xi , yi , zi) using the transformation matrix i−1Ti :

xi−1

yi−1

zi−1

1

 = i−1Ti


xi

yi

zi

1

 (7.19)

The 4 × 4 matrix i−1Ti may be partitioned into two submatrices which represent a
unique rotation combined with a unique translation to produce the same rigid motion
required to move Bi to Bi−1,

i−1Ti =
[

i−1Ri
i−1di

0 1

]
(7.20)

where

i−1Ri =
cos θi − sin θi cos αi sin θi sin αi

sin θi cos θi cos αi − cos θi sin αi

0 sin αi cos αi

 (7.21)

and

i−1di =
ai cos θi

ai sin θi

di

 (7.22)

�

Example 399 An Alternative Method to Find iTi−1 Consider the coordinate
frames B2(x2, y2, z2) and B1(x1, y1, z1) in Figure 7.19 that are set up based on the
Denavit–Hartenberg rules. The point P indicates a body point in B2. The position
vector of the point P in B2 can be found in frame B1(x1, y1, z1) using 2rP and 1s2,

1rP = 1R2
2rP + 1s2 (7.23)

which, in homogeneous coordinate representation, is

1rP =
[

1R2
1s2

0 1

]
2rP (7.24)

x1

y1

z1

1

 =


cos(ı̂2, ı̂1) cos(̂2, ı̂1) cos(k̂2, ı̂1) s2x

cos(ı̂2, ̂1) cos(̂2, ̂1) cos(k̂2, ̂1) s2y

cos(ı̂2, k̂1) cos(̂2, k̂1) cos(k̂2, k̂1) s2z

0 0 0 1




x2

y2

z2

1

 (7.25)

Using the parameters of Figure 7.19, Equation (7.25) becomes
x1

y1

z1

1

 =


cθ2 −sθ2cα2 sθ2sα2 a2cθ2

sθ2 cθ2cα2 −cθ2sα2 a2sθ2

0 sα2 cα2 d2

0 0 0 1




x2

y2

z2

1

 (7.26)
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If we assume the coordinate frame B1 is Bi−1(xi−1, yi−1, zi−1), and B2 is Bi(xi, yi, zi),
then we can rewrite the above equation in the required form:

xi−1

yi−1

zi−1

1

 =


cθi −sθicαi sθisαi aicθi

sθi cθicαi −cθisαi aisθi

0 sαi cαi di

0 0 0 1




xi

yi

zi

1

 (7.27)

Following the inversion rule of the homogeneous transformation matrix (6.88), we also
find the inverse transformation (7.12):

xi

yi

zi

1

 =


cθi sθi 0 −ai

−sθicαi cθicαi sαi −disαi

sθisαi −cθisαi cαi −dicαi

0 0 0 1




xi−1

yi−1

zi−1

1

 (7.28)

Example 400 Another Alternative Method to Find iTi−1 We can determine iTi−1

by following the sequence of translations and rotations that brings the frame Bi−1 to
the present configuration starting from a coincident position with Bi . Considering the
frame B2 ≡ Bi as the body frame and B1 ≡ Bi−1 as the global frame, we can assume
that all the following rotations and translations are about and along the axes of the
local coordinate frame. Figure 7.19 shows that:

1. Frame Bi−1 is translated −di along the local zi-axis.
2. The displaced frame Bi−1 is rotated −θi about the local zi-axis.
3. The displaced frame Bi−1 is translated −ai along the local xi-axis.
4. The displaced frame Bi−1 is rotated −αi about the local xi-axis.

Therefore, the transformation matrix iTi−1 would be

iTi−1 = Rxi,−αi
Dxi,−ai

Rzi ,−θi
Dzi ,−di

(7.29)

=


cos θi sin θi 0 −ai

− sin θi cos αi cos θi cos αi sin αi −di sin αi

sin θi sin αi − cos θi sin αi cos αi −di cos αi

0 0 0 1


where

Dzi,−di
=


1 0 0 0
0 1 0 0
0 0 1 −di

0 0 0 1

 (7.30)

Rzi,−θi
=


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1

 (7.31)
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Dxi,−ai
=


1 0 0 −ai

0 1 0 0
0 0 1 0
0 0 0 1

 (7.32)

Rxi,−αi
=


1 0 0 0
0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1

 (7.33)

Using i−1Ti = iT −1
i−1, we find the inverse transformation:

i−1Ti = iT −1
i−1

=


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (7.34)

Example 401 Some Tricks in DH Method There are some tricks and comments that
may simplify the application of DH rules in multibody kinematics:

1. Showing only z- and x-axes is sufficient to identify a coordinate frame. Draw-
ings are more clear by not showing y-axes.

2. Certain parameters of the frames attached to the first and last links do not need
to be defined. If the first and last joints are revolute, R, then

a0 = 0 an = 0 (7.35)

α0 = 0 αn = 0 (7.36)

In these cases, the zero position for θ1 and θn can be chosen arbitrarily, and
link offsets can be set to zero:

d1 = 0 dn = 0 (7.37)

3. If the first and last joints are prismatic, P, then

θ1 = 0 θn = 0 (7.38)

and the zero positions for d1 and dn can be chosen arbitrarily.
4. A general applied comment is to set the coordinate frames such that as many

parameters as possible are zero at the rest position of the system.
If the final joint n is R, we may choose xn to be along with xn−1 when

θn = 0 and the origin of Bn is such that dn = 0.
If the final joint n is P, we may choose xn such that θn = 0 and the origin

of Bn is at the intersection of xn−1 and the axis of joint n to make dn = 0.
5. The link parameters ai and αi are determined by the geometric design of the

robot and are always constant. Because ai is a length, ai ≥ 0. The distance di

is the offset of the frame Bi with respect to Bi−1 along the zi−1-axis.



572 Multibody Kinematics

6. The angles αi and θi are directional. The positive direction is determined by
the right-hand rule and the directions of xi and zi−1, respectively.

7. For industrial multibody systems, such as robotic manipulators, the link twist
angle αi is usually a multiple of π/2 radians.

8. Because the directions of zi-axes are arbitrary, the DH coordinate frames and
hence their transformation matrices are not unique.

9. The base frame B0(x0, y0, z0) = G(X, Y, Z) is the global frame for an immobile
multibody. It is convenient to choose the Z-axis along the axis of joint 1 and
set the origin O where the axes of the G-frame are colinear or parallel with the
axes of the B1-frame at the rest position.

10. We can reverse the DH definition for direction of xi such that it points from
zi to zi−1 and still obtains a valid DH coordinate frame. The reverse direction
of xi may be used to set a more convenient reference frame when most of the
joint parameters are zero.

Example 402 DH Parameter Table A DH parameter table helps to establish a sys-
tematic DH link frame. A DH parameter table is a practical method to set up the
link frames in multibodies such as robotic systems. Table 7.1 illustrates the structure
of DH tables. It has five columns for frame index and DH parameters. The rows of
the DH parameters for each frame will be filled by constant parameters and the joint
variable.

As an example, we may examine a 2R planar manipulator. The 2R planar manipu-
lator is an R‖R manipulator with two parallel revolute joints, as is shown in Figure 7.20.
The DH parameters of the manipulator are shown in Table 7.2, and the link coordinate
frames are set up as in the figure.

To follow the DH rules, we should set the B2-frame at the center of the second
joint such that B2 and B1 have coincident origins. However, to determine the tip point
of the final link, we needed to instal another frame at the tip point. Such a frame is
called the end-effector coordinate frame. The presented coordinate frame eliminates a
frame and simplifies the kinematics calculations.

Table 7.1 DH Parameters for Link Frames

Frame No. a α d θ

1 a1 α1 d1 θ1

2 a2 α2 d2 θ2

...
...

...
...

...

i ai αi di θi

...
...

...
...

...

n an αn dn θn
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Figure 7.20 An R‖R planar manipulator robot.

Table 7.2 DH Parameters for R‖R Planar
Manipulator Robot of Figure 7.20

Frame No. a α d θ

1 l1 0 0 θ1

2 l2 0 0 θ2

Example 403 Shortcomings of Denavit–Hartenberg Method The DH method for
describing link coordinate frames is neither unique nor the best method. The main
drawbacks of the DH method are:

1. The successive coordinate axes are defined in such a way that the origin oi and
axis xi are defined on the common perpendicular to adjacent link axes. This
may be a difficult task depending on the geometry of the links and may produce
singularity.

2. The DH notation cannot be extended to ternary and compound links.

Example 404 Classification of Industrial Links A link is identified by its joints at
both ends. The relative configuration of the z-axes of the two ends determines the
transformation matrix to go from the distal joint coordinate frame Bi to the proximal
joint coordinate frame Bi−1. There are 12 types of links to make an industrial multibody.
The transformation matrix for each type depends solely on the proximal joint and the
angle between the z-axes. The 12 types of links are classified in Table 7.3.
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Table 7.3 Classification of
Industrial Links

1 R‖R(0) or R‖P(0)

2 R‖R(180) or R‖P(180)

3 R⊥R(90) or R⊥P(90)

4 R⊥R(−90) or R⊥P(−90)

5 R�R(90) or R�P(90)

6 R�R(−90) or R�P(−90)

7 P‖R(0) or P‖P(0)

8 P‖R(180) or P‖P(180)

9 P⊥R(90) or P⊥P(90)

10 P⊥R(−90) or P⊥P(−90)

11 P�R(90) or P�P(90)

12 P�R(−90) or P�P(−90)

The DH transformation matrix for the industrial links are given in Appendix D.

Example 405 DH Coordinate Transformation and Vector Addition The DH transfor-
mation from a coordinate frame to the other can also be described by vector addition.
Assume P is a point in frame B2, as shown in Figure 7.21. We may define the position
of the point in frame B1 by a vector equation

−−→
o1P = −−→

o2P + −−→
o1o2 (7.39)

where

B1
−−→
o1o2 =

s1

s2

s3

 B1
−−→
o1P =

x1

y1

z1

 B2
−−→
o2P =

x2

y2

z2

 (7.40)
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Figure 7.21 Alternative method to derive the Denavit–Hartenberg coordinate transformation.
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However, all of the vectors must be expressed in the same coordinate frame to be able
to perform the vector calculation. Using the cosines of the angles between axes of the
two coordinate frames, we have

x1 = x2 cos(x2, x1) + y2 cos(y2, x1) + z2 cos(z2, x1) + s1 (7.41a)

y1 = x2 cos(x2, y1) + y2 cos(y2, y1) + z2 cos(z2, y1) + s2 (7.41b)

z1 = x2 cos(x2, z1) + y2 cos(y2, z1) + z2 cos(z2, z1) + s3 (7.41c)

1 = x2(0) + y2(0) + z2(0) + 1 (7.41d)

The transformation (7.41) can be expressed by a homogeneous matrix.
x1

y1

z1

1

 =


cos(x2, x1) cos(y2, x1) cos(z2, x1) s1

cos(x2, y1) cos(y2, y1) cos(z2, y1) s2

cos(x2, z1) cos(y2, z1) cos(z2, z1) s3

0 0 0 1




x2

y2

z2

1

 (7.42)

The axis x2 in Figure 7.21 is on the shortest common perpendicular between the z1- and
z2-axes. The y2-axis makes B2 a right-handed coordinate frame. The DH parameters
are defined as follows:

1. a2 is the distance between the z1- and z2-axes.
2. α2 is the twist angle that screws the z1-axis into the z2-axis along a.
3. d2 is the distance from the x1-axis to the x2-axis.
4. θ2 is the angle that screws the x1-axis into the x2-axis along d .

Using these definitions, the homogeneous transformation matrix becomes
x1

y1

z1

1

 =


cos θ2 − sin θ2 cos α2 − sin θ2 sin α2 a2 cos θ2

sin θ2 cos θ2 cos α2 cos θ2 sin α2 a2 sin θ2

0 − sin α2 cos α2 d2

0 0 0 1




x2

y2

z2

1

 (7.43)

or
1rP = 1T2

2rP (7.44)

where

1T2 = (a, α, d, θ) (7.45)

The DH parameters a, α, θ, d belong to B2 and define the configuration of B2 in B1.
In general, the DH parameters ai, αi, θi, di belong to Bi and define the configuration
of Bi with respect to Bi−1:

i−1Ti = (ai, αi, di, θi) (7.46)

Example 406 Same DH Transformation Matrix In the DH method of setting coor-
dinate frames, because a translation D and a rotation R are along and about the same
axis, it is immaterial if we first apply the translation D and then the rotation R or vice
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versa. Therefore, we can interchange the order of D and R along and about the same
axis and obtain the same DH transformation matrix:

i−1Ti = Dzi,di
Rzi ,θi

Dxi ,ai
Rxi ,αi

= Rzi ,θi
Dzi ,di

Dxi,ai
Rxi ,αi

= Dzi,di
Rzi ,θi

Rxi ,αi
Dxi ,ai

= Rzi ,θi
Dzi ,di

Rxi,αi
Dxi ,ai

(7.47)

Example 407 � DH Application for Spherical Robot Figure 7.22 illustrates a spher-
ical manipulator attached with a spherical wrist. A spherical manipulator is an R�R�P
arm. The associated DH table of the robot is given in Table 7.4.
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Figure 7.22 A spherical robot made by a spherical manipulator equipped with a spherical wrist.

Table 7.4 DH Parameter Table for Stanford Arm

Frame No. ai αi di θi

1 0 −90 deg l1 θ1

2 0 90 deg l2 θ2

3 0 0 d3 0
4 0 −90 deg 0 θ4

5 0 90 deg 0 θ5

6 0 0 0 θ6

The link–joint classifications of the robot are tabulated in Table 7.5.
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Table 7.5 Link–Joint
Classifications for Stanford Arm

Link No. Type

1 R�R(−90)
2 R�P(90)
3 P‖R(0)
4 R�R(−90)
5 R�R(90)
6 R‖R(0)

Using Appendix D, we can determine the homogeneous transformation matrices
for the link–joint classification in Table 7.5 to move from Bi to Bi−1:

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 l1
0 0 0 1

 (7.48)

1T2 =


cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0

0 1 0 l2
0 0 0 1

 (7.49)

2T3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 (7.50)

3T4 =


cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0

0 −1 0 0
0 0 0 1

 (7.51)

4T5 =


cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0

0 1 0 0
0 0 0 1

 (7.52)

5T6 =


cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0

0 0 1 0
0 0 0 1

 (7.53)

Example 408 � DH Application for SSRMS The Space Shuttle Remote Manipulator
System (SSRMS) is a robotic arm to act as the hand of the Shuttle or a space station. It
may be used for different purposes such as satellite deployment, construction of a space
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station, transporting a crew member at the end of the arm, surveying and inspecting
the outside of the station using a camera.

The SSRMS is shown schematically in Figure 7.23, and the approximate values of
its kinematic characteristics are given in Table 7.6.
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Figure 7.23 Illustration of the space station remote manipulator system.

Table 7.6 Characteristics of SSRMS

Length 14.22 m
Diameter 38.1 cm
Weight 1336 kg
Number of joints Seven
Handling capacity 116,000 kg (in space)
Maximum velocity of

end of arm
Carrying nothing: 37 cm/s

Full capacity: 1.2 cm/s
Maximum rotational

speed
Approximately: 4 deg/s

Table 7.7 indicates the DH parameters of SSRMS, and Table 7.8 names the
link–joint Classifications of SSRMS. Using Appendix D, we can determine the homo-
geneous transformation matrices for the link–joint classification in Table 7.8 to move
from Bi to Bi−1.

Links (1) and (2) are R�R(−90), and therefore,

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 d1

0 0 0 1

 (7.54)
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Table 7.7 DH Parameters for SSRMS

Frame No. ai αi di θi

1 0 −90 deg 380 mm θ1

2 0 −90 deg 1360 mm θ2

3 7110 mm 0 570 mm θ3

4 7110 mm 0 475 mm θ4

5 0 90 deg 570 mm θ5

6 0 −90 deg 635 mm θ6

7 0 0 d7 0

Table 7.8 Link Joint
Classifications for SSRMS

Link No. Type

1 R�R(−90)
2 R�R(−90)
3 P‖R(0)
4 P‖R(0)
5 R�R(90)
6 R�R(90)
7 R‖R(0)

1T2 =


cos θ2 0 − sin θ2 0
sin θ2 0 cos θ2 0

0 −1 0 d2

0 0 0 1

 (7.55)

Links (3) and (4) are R‖R(0), and hence

2T3 =


cos θ3 − sin θ3 0 a3 cos θ3

sin θ3 cos θ3 0 a3 sin θ3

0 0 1 d3

0 0 0 1

 (7.56)

3T4 =


cos θ4 − sin θ4 0 a4 cos θ4

sin θ4 cos θ4 0 a4 sin θ4

0 0 1 d4

0 0 0 1

 (7.57)

Link (5) is R�R(90) and link (6) is R�R(−90), and therefore

4T5 =


cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0

0 1 0 d5

0 0 0 1

 (7.58)
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5T6 =


cos θ6 0 − sin θ6 0
sin θ6 0 cos θ6 0

0 −1 0 d6

0 0 0 1

 (7.59)

Finally link (7) is R�R(0) and the coordinate frame attached to the end effector has a
translation d7 with respect to the coordinate frame B6:

6T7 =


cos θ7 − sin θ7 0 0
sin θ7 cos θ7 0 0

0 0 1 d7

0 0 0 1

 (7.60)

Example 409 Non-DH Transformation Figure 7.24 depicts a polar manipulator with
two DOF and a set of coordinate frames that are not set up exactly according to the
DH rules.
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Figure 7.24 A 2 DOF polar manipulator with non-DH coordinate frames.

To determine the link’s transformation matrices 1T2, 2T3, and 1T3 in such cases,
we may follow the method of homogeneous transformation. The frame B1 can go to
B2 by a rotation Rz2,θ2 followed by Ry2,90. There is no translation between B1 and B2.
Therefore,

1R2 = [
Ry2,90 Rz2,θ2

]T = RT
z2,θ2

RT
y2,90

=
 cos θ2 sin θ2 0

− sin θ2 cos θ2 0
0 0 1

T


cos

π

2
0 − sin

π

2
0 1 0

sin
π

2
0 cos

π

2


T

=
 0 − sin θ2 cos θ2

0 cos θ2 sin θ2

−1 0 0

 (7.61)
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and hence,

1T2 =


0 − sin θ2 cos θ2 0
0 cos θ2 sin θ2 0

−1 0 0 0
0 0 0 1

 (7.62)

It is also possible to determine 1R2 directly from the definition of the directional
cosines:

1R2 =
 Î · ı̂ Î · ̂ Î · k̂

Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂
K̂ · ı̂ K̂ · ̂ K̂ · k̂

 =
 ı̂1 · ı̂2 ı̂1 · ̂2 ı̂1 · k̂2

̂1 · ı̂2 ̂1 · ̂2 ̂1 · k̂2

k̂1 · ı̂2 k̂1 · ̂2 k̂1 · k̂2



=


cos

π

2
cos

(π

2
+ θ2

)
cos θ2

cos
π

2
cos θ2 cos

(π

2
− θ2

)
cos π cos

π

2
cos

π

2


=

 0 − sin θ2 cos θ2

0 cos θ2 sin θ2

−1 0 0

 (7.63)

The final transformation matrix is only a translation along z3,

2T3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 (7.64)

which provides

1T3 = 1T2
2T3 =


0 − sin θ2 cos θ2 d3 cos θ2

0 cos θ2 sin θ2 d3 sin θ2

−1 0 0 0
0 0 0 1

 (7.65)

Example 410 Trebuchet Kinematics as a Multibody The trebuchet , shown in
Figure 7.25, is a shooting weapon of war powered by a falling massive counterweight
m1. The beam AB is pivoted to the chassis with two unequal sections a and b. The
counterweight m1 is hinged at the shorter arm of the beam at a distance c from the
end A. The mass of the projectile is m2, and it is at the end of a rope with a length l

attached to the end B of the longer arm of the beam.
To analyze the trebuchet as a multibody system, we attach a global coordinate

frame G at the fixed pivot M and three body frames B, B1, B2 to the three moving
bodies as shown in the figure. The three independent variable angles α, θ , and γ define
the relative positions of the bodies. Let us consider the parameters a, b, c, l, m1, and
m2 constant and find the transformation matrices to determine the coordinates in the
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Figure 7.25 The kinematic model of a trebuchet.

relative frames. We also attach two coordinate frames B3 and B4 to the beam at joints
A and B to simplify the coordinate transformations.

Every link needs at least one coordinate frame, called the main frame of the link.
However, we may also attach some other frames to the link for better expression of
coordinates or a simpler transformation. An extra coordinate frame on a link is called
the Sina frame. A Sina is a spare frame that can be used instead of the main frame.
Usually a Sina frame is related to the main frame of the same link by a constant
translation and constant rotation. The Sina frame may also be called the spare, extra,
dummy, temporary, intermediate, or jump frame. The frames B3 and B4 are the Sina
frames for the link AB and B is its main frame.

We may find BTG by using the transformation matrix of a zero-length link R‖R(0)
or equivalently by turning B a rotation −θ about the z-axis:

BTG = Rz,−θ =


cos −θ sin −θ 0 0

− sin −θ cos −θ 0 0
0 0 1 0
0 0 0 1

 (7.66)

The Sina frame B3 is connected to the main frame B by a translation b along x3.
Similarly, the Sina frame B4 is connected to B by a translation −a along x4:

3TB = Dx3,b =


1 0 0 −b

0 1 0 0
0 0 1 0
0 0 0 1

 (7.67)
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4TB = Dx4,−a =


1 0 0 a

0 1 0 0
0 0 1 0
0 0 0 1

 (7.68)

We find 1T3 by turning B1 a rotation −γ about the z1-axis:

1T3 = Rz1,−γ =


cos −γ sin −γ 0 0

− sin −γ cos −γ 0 0
0 0 1 0
0 0 0 1

 (7.69)

Using the same method, we find 2T4 by turning B2 a rotation −α about the z2-axis:

2T4 = Rz2,−α =


cos −α sin −α 0 0

− sin −α cos −α 0 0
0 0 1 0
0 0 0 1

 (7.70)

So,

1TB = 1T3
3TB =


cos γ − sin γ 0 −b cos γ

sin γ cos γ 0 −b sin γ

0 0 1 0
0 0 0 1

 (7.71)

2TB = 2T4
4TB =


cos α − sin α 0 a cos α

sin α cos α 0 a sin α

0 0 1 0
0 0 0 1

 (7.72)

By matrix multiplication and a homogeneous matrix inverse calculation, we can
determine the required transformation matrices to go to the G-frame:

GTB = BT −1
G =


cos θ sin θ 0 0

− sin θ cos θ 0 0
0 0 1 0
0 0 0 1

 (7.73)

GT1 = GTB
BT1 = BT −1

G
1T −1

B = [1TB
BTG

]−1

=


cos (θ + γ ) sin (θ + γ ) 0 b cos θ

− sin (θ + γ ) cos (θ + γ ) 0 −b sin θ

0 0 1 0
0 0 0 1

 (7.74)

GT2 = GTB
BT2 = BT −1

G
2T −1

B = [2TB
BTG

]−1

=


cos (θ + α) sin (θ + α) 0 −a cos θ

− sin (θ + α) cos (θ + α) 0 a sin θ

0 0 1 0
0 0 0 1

 (7.75)
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Therefore, the global coordinates of m1 at 1rm1 = [c, 0, 0] and m2 at 2rm2 = [l, 0, 0]
are

Grm1 = GT1
1rm1 =


b cos θ + c cos (θ + γ )

−b sin θ − c sin (θ + γ )

0
1

 (7.76)

Grm2 = GT2
2rm2 =


l cos (θ + α) − a cos θ

a sin θ − l sin (θ + α)

0
1

 (7.77)

Sina (Avicenna) (980–1037) , also known as the “Prince of Physicians,” is known
as one of the foremost philosophers and scientists of Persia.

Example 411 Transformation Matrix between Two Frames The multibody kine-
matic problems are always related to a correct expression of the transformation matrix
between two coordinate frames. The classical method is to set up the coordinate frames
based on DH rules and use the DH transformation matrix (7.7). However, when the DH
rules cannot be applied, we recommend determining the homogeneous transformation
matrix by a proper combination of principal rotations and translations.

Consider two arbitrary coordinate frames B and G. The homogeneous transforma-
tion matrix BTG can be found by moving B to its present position from the coincident
configuration with G and using Equations (6.48)–(6.53). The rotations are positive
about the local axes of B and the translations are negative along the local axes of B.

7.3 FORWARD KINEMATICS

The configuration as well as the kinematic information of a multibody may be expressed
by joint variables or Cartesian coordinates. Forward or direct kinematics is the transfor-
mation of kinematic information from the joint variables to the Cartesian coordinates.
The problem of forward kinematics is the determination of the relative position and
orientation of every body of a multibody for a given set of joint variables. This prob-
lem can be solved by determining transformation matrices 0Ti to express the kinematic
information of link (i) in the base coordinate frame B0.

Although the kinematic information includes configuration, velocity, acceleration,
and jerk, forward kinematics generally refers to position and orientation analysis.

The traditional method of forward kinematic analysis for multibodies is to pro-
ceed link by link using the Denavit–Hartenberg notations and frames. For an n-DOF
multibody, at least n DH transformation matrices, one for each link, are required to
determine the global coordinate of any point in any frame. For a given set of joint vari-
ables and a set of link coordinate frames, the transformation matrices j Ti are uniquely
determined. Therefore, the transformation matrices j Ti = j Ti(qk) are functions of n

joint variables qk, k = 1, 2, 3, . . . , n. The configuration of the multibody when all the
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joint variables are zero is called the rest position . Determination of the transformation
matrices at the rest position is an applied checking procedure.

If the links of the multibody are arranged such that each link (i) has only one
coordinate frame Bi and the frames are arranged sequentially, then

0Ti = 0T1
1T2

2T3
3T4 . . . i−1Ti i = 1, 2, 3, . . . , n (7.78)

Having 0Ti , we can determine the coordinates of any point P of link (i) in the base
frame when its coordinates are given in frame Bi :

0rP = 0Ti
irP i = 1, 2, 3, . . . , n (7.79)

Generally speaking, the number and labels of coordinate frames do not need to
be consequential or increasing. The designer is free to number the frames in any
order. However, assigning them sequentially provides a simpler and more meaningful
transformation.

Example 412 A 2R Planar Manipulator Figure 7.26 illustrates a 2R or R‖R planar
manipulator with two parallel revolute joints. Links (1) and (2) are both R‖R(0) and
therefore the transformation matrices 0T1, 1T2 are

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1

 (7.80)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1

 (7.81)
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Figure 7.26 A 2R or R‖R planar manipulator.
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The forward kinematics of the manipulator is to determine the transformation matri-
ces 0Ti , i = 1, 2. The matrix 0T1 is given in (7.80) and 0T2 can be found by matrix
multiplication:

0T2 = 0T1
1T2

=


cos (θ1 + θ2) − sin (θ1 + θ2) 0 l2 cos (θ1 + θ2) + l1 cos θ1

sin (θ1 + θ2) cos (θ1 + θ2) 0 l2 sin (θ1 + θ2) + l1 sin θ1

0 0 1 0
0 0 0 1

 (7.82)

Example 413 Cycloid Consider the wheel in Figure 7.27 that is turning with angular
velocity ω and is slip free on the ground. If the point P of the wheel is on the ground
at t = 0, then we can find its position in the wheel frame at a time t by employing
another coordinate frame M . The frame M is called the rim frame and is stuck to the
wheel at its center:

MrP =
 0

0
−Rw

 (7.83)

Because of spin, the M-frame turns about the yw-axis, and therefore, the transformation
matrix to go from the rim frame to the wheel frame is

WRM =
 cos ωt 0 sin ωt

0 1 0
− sin ωt 0 cos ωt

 (7.84)

So the coordinates of P in the wheel frame are

W rP = WRM
MrP =

−Rw sin tω

0
−Rw cos tω

 (7.85)

The center of the wheel is moving with speed vx = Rwω and is at Gr = [vxt, 0, Rw]
in the global coordinate frame G on the ground. Hence, the coordinates of point P in
the global frame G would be

GrP = W rP +
vxt

0
Rw

 =
Rw (ωt − sin tω)

0
Rw (1 − cos tω)

 (7.86)

The path of motion of point P in the (X, Z)-plane can be found by eliminating t

between X- and Z-coordinates. However, it is easier to express the path by using ωt

as a parameter. Such a path is called a cycloid .
In general, point P can be at any distance from the center of the rim frame. If the

point is at a distance d �= Rw, then its path of motion is called the trochoid . A trochoid is
called a curtate cycloid if d < Rw and a prolate cycloid if d >Rw. Figures 7.27(a)–(c)

illustrate a cycloid, curtate cycloid, and prolate cycloid, respectively.
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Figure 7.27 A cycloid (a), curtate cycloid (b), and prolate cycloid (c).

Example 414 A Three-Dimensional 2R Planar Manipulator Figure 7.28 illustrates
a 3D R‖R planar manipulator with two parallel revolute joints. Links (1) and (2) are
both R‖R(0) and move in parallel planes. Their transformation matrices 0T1, 1T2 are

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 d1

0 0 0 1

 (7.87)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 d2

0 0 0 1

 (7.88)

The forward kinematics of the manipulator is to determine the transformation matri-
ces 0Ti , i = 1, 2. The matrix 0T1 is given in (7.80) and 0T2 can be found by matrix
multiplication:

0T2 = 0T1
1T2

=


cos (θ1 + θ2) − sin (θ1 + θ2) 0 l2 cos (θ1 + θ2) + l1 cos θ1

sin (θ1 + θ2) cos (θ1 + θ2) 0 l2 sin (θ1 + θ2) + l1 sin θ1

0 0 1 d1 + d2

0 0 0 1

 (7.89)
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Figure 7.28 A 3D 2R planar manipulator.

Example 415 Space Shuttle Remote Manipulator System The SSRMS is shown in
Figure 7.23, with the link–joint classification reported in Table 7.8. The transformation
matrices to move from Bi to Bi−1 are given in Equations (7.54)–(7.60).

The forward kinematics of the SSRMS will be found by direct multiplication of
i−1Ti (i = 1, 2, . . . , 7):

0T7 = 0T1
1T2

2T3
3T4

4T5
5T6

6T7 (7.90)

The forward kinematics of the first three frames are given as

0T1 =


cos θ1 0 − sin θ1 0

sin θ1 0 cos θ1 0

0 −1 0 d1

0 0 0 1

 (7.91)

0T2 = 0T1
1T2 =


cθ1cθ2 sθ1 −cθ1sθ2 −d2sθ1

cθ2sθ1 −cθ1 −sθ1sθ2 d2cθ1

−sθ2 0 −cθ2 d1

0 0 0 1

 (7.92)

0T3 = 0T1
1T2

2T3

=


sθ1sθ3 + cθ1cθ2cθ3 cθ3sθ1 − cθ1cθ2sθ3 −cθ1sθ2

0d3x

cθ2cθ3sθ1 − cθ1sθ3 −cθ1cθ3 − cθ2sθ1sθ3 −sθ1sθ2
0d3y

−cθ3sθ2 sθ2sθ3 −cθ2
0d3z

0 0 0 1

 (7.93)
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where

0d3 =


a3sθ1sθ3 − d3cθ1sθ2 − d2sθ1 + a3cθ1cθ2cθ3

d2cθ1 − a3cθ1sθ3 − d3sθ1sθ2 + a3cθ2cθ3sθ1

d1 − d3cθ2 − a3cθ3sθ2

1

 (7.94)

and the forward kinematics of the last three frames as

6T7 =


cos θ7 − sin θ7 0 0

sin θ7 cos θ7 0 0

0 0 1 d7

0 0 0 1

 (7.95)

5T7 = 5T6
6T7 =


cθ6cθ7 −cθ6sθ7 −sθ6 −d7sθ6

cθ7sθ6 −sθ6sθ7 cθ6 d7cθ6

−sθ7 −cθ7 0 d6

0 0 0 1

 (7.96)

4T7 = 4T5
5T6

6T7

=


cθ5cθ6cθ7 − sθ5sθ7 −cθ7sθ5 − cθ5cθ6sθ7 −cθ5sθ6

4d7x

cθ5sθ7 + cθ6cθ7sθ5 cθ5cθ7 − cθ6sθ5sθ7 −sθ5sθ6
4d7y

cθ7sθ6 −sθ6sθ7 cθ6
4d7z

0 0 0 1

 (7.97)

where

4d7 =


d6sθ5 − d7cθ5sθ6

−d6cθ5 − d7sθ5sθ6

d5 + d7cθ6

1

 (7.98)

The transformation matrices 0T4, 0T5, 0T6 are determined by matrix multiplication,

0T4 = 0T3
3T4 (7.99)

0T5 = 0T4
4T5 (7.100)

0T6 = 0T5
5T6 (7.101)

and finally, we can find the coordinates of a point in the gripper frame B7 in the base
frame by using 0T3

3T4
4T7:

0T7 = 0T3


cos θ4 − sin θ4 0 a4 cos θ4

sin θ4 cos θ4 0 a4 sin θ4

0 0 1 d4

0 0 0 1

 4T7 (7.102)
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Example 416 Camera on an Arm of SSRMS The SSRMS is shown in Figure 7.29,
with the link transformation matrices given in Equations (7.54)–(7.60). Using the
numerical values of Table 7.7 and assuming the values

θ1 = 0

θ2 = − 1
2π rad

θ3 = − 1
4π rad

θ4 = − 1
2π rad

θ5 = − 3
4π (7.103)

θ6 = 1
2π rad

θ7 = 0

d7 = 500 mm
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Figure 7.29 The SSRMS with a camera attached to link (4).

for the joint variables and gripper length, we find the following link transformation
matrices:

0T1 =


1 0 0 0
0 0 1 0
0 −1 0 380
0 0 0 1

 (7.104)

1T2 =


0 0 1 0

−1 0 0 0
0 −1 0 1360
0 0 0 1

 (7.105)
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2T3 =


0.70711 0.70711 0 5027.5

−0.70711 0.70711 0 −5027.5
0 0 1 570
0 0 0 1

 (7.106)

3T4 =


0 1 0 0

−1 0 0 −7110
0 0 1 475
0 0 0 1

 (7.107)

4T5 =


−0.70711 0 −0.70711 0
−0.70711 0 0.70711 0

0 1 0 570
0 0 0 1

 (7.108)

5T6 =


0 0 −1 0
1 0 0 0
0 −1 0 635
0 0 0 1

 (7.109)

6T7 =


1 0 0 0
0 1 0 0
0 0 1 500
0 0 0 1

 (7.110)

Assume that there is a camera attached to link (4) to watch the gripper’s operation.
The camera is at a point P in B4 with position vector 4rP and is aiming the origin of
the gripper’s frame B7:

4rP = [−a b 0 1
]T

(7.111)

a = 696 mm (7.112)

b = 154 mm (7.113)

To determine the position of the camera in the base frame, 0rP , we need to calculate
0T4,

0T4 = 0T1
1T2

2T3
3T4

=


0 0 1 1045

0.70711 0.70711 0 11415
−0.70711 0.70711 0 379.95

0 0 0 1

 (7.114)

and find 0rP ,

0rP = 0T4
4rP = 0T4


−696
154
0
1

 =


1045
11032
980.99

1

 (7.115)
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At the configuration (7.103) the transformation matrix 0T7 is given as
0T7 = 0T1

1T2
2T3

3T4
4T5

5T6
6T7

=


1 0 0 1615
0 0 1 11915
0 −1 0 1015
0 0 0 1

 (7.116)

where the position of the gripper point in the base frame is

0d7 =


1615
11915
1015

1

 (7.117)

Therefore, the position of the camera in the gripper frame B7 would be
7rP = 7T4

4rP

= 7T6
6T5

5T4
4rP = 6T −1

7
5T −1

6
4T −1

5
4rP = [4T5

5T6
6T7

]−1 4rP

=


0 0 1 −570

0.707 −0.707 0 635
0.707 0.707 0 −500

0 0 0 1




−696
154

0
1

 =


−570
33.965

−883.25
1

 (7.118)

Example 417 Camera Coordinate Frame of SSRMS Consider the SSRMS and its
camera in Example 416. To use the camera kinematically, we need to attach a coordinate
frame B8 to the camera at P and determine the configuration of the gripper frame B7
in the camera frame. The position vectors of the camera in the base and gripper frames
are calculated in (7.115) and (7.118) as

0rP =


1045

11032
980.99

1

 7rP =


−570
33.965

−883.25
1

 (7.119)

Assume that the camera is equipped with two electric motors that give it two rotational
degrees of freedom. To determine the coordinate frame B8 at the present configuration,
we may begin with calculating the direction of the x8-axis in the gripper frame B7,

7 ı̂8 = − 7rP∣∣7rP

∣∣ =
 0.54193

−3.2292 × 10−2

0.83975

 (7.120)

and determine the x8-axis in frame B4,

4 ı̂8 = 4R7
7 ı̂8 =


0.57096
0.61663
0.54193

0

 (7.121)
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Let us assume that the first motor of the camera turns the camera about z8 and the
second motor turns it about the displaced y8. The B4-frame may act as a global frame
to the camera. So, we can find the matrix 8R4 by a rotation α about z8 followed by a
rotation β about y8:

8R4 = Ry,β Rz,α

=

cos α cos β cos β sin α − sin β

− sin α cos α 0

cos α sin β sin α sin β cos β

 (7.122)

Using 8 ı̂8 = [1, 0, 0], we have

4 ı̂8 = 4R8
8 ı̂8 = 8RT

4
8 ı̂80.57096

0.61663

0.54193

 = 8RT
4

1
0
0

 =

cos α cos β

cos β sin α

− sin β

 (7.123)

where

4R8 = 8RT
4 =

cos α cos β − sin α cos α sin β

cos β sin α cos α sin α sin β

− sin β 0 cos β

 (7.124)

The third part of (7.123) provides β,

β = − arcsin 0.54193 = −0.57273 rad ≈ −32.815 deg (7.125)

and the second part provides α,

α = arcsin
0.61663

0.84042
= 0.82378 rad ≈ 47.199 deg (7.126)

The first part may be used as a double check.
The angles α and β determine the orientation of B8 at 4d8 = [−a, b, 0, 1]T.

Therefore,

4T8 =


0.57103 −0.73372 −0.36821 −696

0.61664 0.67945 −0.39762 154

0.54193 0 0.84042 0

0 0 0 1

 (7.127)

8T4 =


0.57103 0.61664 0.54192 302.47

−0.73372 0.67945 −6.58 × 10−8 −615.31

−0.36822 −0.39763 0.84043 −195.04

0 0 0 1

 (7.128)
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Now, we can calculate the position and orientation of the gripper frame in the eye of
camera as well as the camera in the base coordinate frame:

8T7 = 8T4
4T5

5T6
6T7

≈


0.54192 −3.225 × 10−2 0.83981 1051.8

0 −0.99927 −3.837 × 10−2 0
0.84043 2.08 × 10−2 −0.54154 0

0 0 0 1

 (7.129)

0T8 = 0T7
7T8 = 0T7

8T −1
7

=


0.54192 −0.03225 0.83981 2666.8
0.84043 0.0208 −0.54154 11, 915

0 0.99927 0.03837 1015
0 0 0 1

 (7.130)

Example 418 � Directional Control System The satellite antenna and inspection
camera are samples of direction control and detection systems. To have a directional
control system, we usually need to control the angles of a flat plate and direct an axis
on the plate or its normal vector to the desired direction.

Such a directional control system is usually equipped with two motors that provide
two rotational degrees of freedom, as shown in Figure 7.30. The axes of the rotations
intersect at a wrist point . Let us attach a coordinate frame B8 to the camera at the
wrist point and a Sina coordinate frame B9 to the base link at the same point. The
fixed frame B9(x9, y9, z9) ≡ B9(X, Y,Z) acts as the global frame for the local frame
B8(x8, y8, z8).

The first motor turns the control plate about the fixed axis z9 that is initially coin-
cident with z8. The second motor turns the plate about the y8-axis. The transformation

b

B8

y8

x8

z8

z9

x9

B9

Control plate

Base link

Motor 1

Motor 2
β

α

Figure 7.30 A directional control system that is equiped with two motors.
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matrix 8R9 between B8 and B9 from a coincident configuration may be found by a
rotation α about z8 followed by a rotation β about y8:

8R9 = Ry,β Rz,α =
cos α cos β cos β sin α − sin β

− sin α cos α 0
cos α sin β sin α sin β cos β

 (7.131)

However, because the z8-axis is not the actual axis of rotation, we must determine 8R9

by rotations about the actual rotation axes z9 and y8. The first rotation RZ,α is about
the global Z-axis,

9R8 = RZ,α =
cos α − sin α 0

sin α cos α 0
0 0 1

 (7.132)

and the second rotation Ry,β is about the local y-axis,

8R9 = Ry,β =
cos β 0 − sin β

0 1 0
sin β 0 cos β

 (7.133)

To determine the combined rotation matrix, we may find 9R8 = RT
y,βRZ,α or 8R9 =

Ry,βRT
Z,α:

8R9 = Ry,βRT
Z,α

=
cos β 0 − sin β

0 1 0
sin β 0 cos β

cos α − sin α 0
sin α cos α 0

0 0 1

T

=
cos α cos β cos β sin α − sin β

− sin α cos α 0
cos α sin β sin α sin β cos β

 (7.134)

The transformation matrix (7.134) is the same as (7.131) and works only when the initial
configuration of the camera frame B8 coincides with the Sina frame B9. Furthermore,
the rotations must be in order.

Example 419 � Angle–Axis of Rotation of a Directional Control System
Figure 7.30 illustrates an inspection camera on a two-DOF directional control system.
The two DOF are provided by two motors such that motor 1 turns the control plate
of the camera about the z9-axis and motor 2 turns the plate about the y8-axis. The
axes of rotations intersect at the wrist point that is the origin of the camera coordinate
frame B8 and the Sina frame B9. The Sina frame is a fixed frame on the base link on
which the camera is installed.

Assume that the camera gets the desired direction when motor 1 turns α and motor
2 turns β. Because the two motors can act independently, the order of action of motors
is immaterial in determination of the final aiming direction as well as the transformation
matrix between B8 and B9, according to Equation (7.278). The two motors may also act



596 Multibody Kinematics

together and turn their associated angles together. In this case, the motor will perform
an axis–angle of rotation. Having the rotation matrix as

8R9 = Ry,β Rz,α =
cos α cos β cos β sin α − sin β

− sin α cos α 0
cos α sin β sin α sin β cos β

 (7.135)

we are able to determine the equivalent angle and axis of rotations by Equations (5.9)
and (5.10):

cos φ = 1
2 [tr

(
GRB

) − 1]

= 1
2 (cos α + cos β + cos α cos β − 1) (7.136)

ũ = 1

2 sin φ

(
GRB − GRT

B

) = 1

2 sin φ

(8RT
9 − 8R9

)

=

 0 −sα − cβsα sβ + cαsβ

sα + cβsα 0 sαsβ

−sβ − cαsβ −sαsβ 0


2
√

1 − [ 1
2 (cos α + cos β + cos α cos β − 1)]2

(7.137)

Let us assume that

α = 0.823 78 rad ≈ 47.199 deg (7.138)

β = −0.57273 rad ≈ −32.815 deg (7.139)

Therefore, the rotation matrix (7.135) is

8R9 = Ry,β Rz,α =
 0.57103 0.61664 0.54193

−0.73372 0.67945 0
−0.36821 −0.39762 0.84042

 (7.140)

and the associated axis and angle are

cos φ = 1
2 [tr

(
8RT

9

) − 1] = 0.545 45 rad ≈ 31.252 deg (7.141)

ũ = 1

2 sin φ

(8RT
9 − 8R9

)
=

 0 −1.3015 −0.87715
1.3015 0 −0.38321
0.87715 0.38321 0

 (7.142)

To activate both motors together, we may command motors 1 and 2 to act according
to the functions

α(t) = 2.4713
t2

t2
f

− 1.6476
t3

t3
f

(7.143)

β(t) = −1.7182
t2

t2
f

+ 1.1455
t3

t3
f

(7.144)
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where t is time and tf is the total time it takes for the motors to finish their rotations.
These equations guarantee that both motors start from zero angular velocity at t = 0
and reach their final angular rotations at t = tf and stop there. Let us assume

tf = 10 s (7.145)

to have
α(t) = 2.471 3 × 10−2t2 − 1.6476 × 10−3t3 (7.146)

β(t) = −1.718 2 × 10−2t2 + 1.1455 × 10−3t3 (7.147)

Example 420 Closed-Loop Mechanisms When a mechanism makes a closed loop,
there would also be a connection between the first and last links. The mathematical
condition for a kinematic loop is

[T ] = 0T1
1T2 . . . i−1Ti . . . n−1Tn

nT0 = I (7.148)

where i−1Ti is the homogeneous transformation matrix to go from the Bi-frame to the
Bi−1-frame and I = [I] indicates a 4 × 4 identity matrix. In a closed-loop multibody,
we may start from the base link and reach any coordinate frame from two different path.
Therefore, it is also possible to express the kinematics of a closed-loop mechanism by

0Tn = 0T1
1T2 . . . i−1Ti . . . n−1Tn (7.149)

As an example, consider the planar slider–crank mechanism in Figure 7.31. This
mechanism can be classified as an R⊥P�R‖R‖R. The transformation matrices are
functions of a1, a2, a3, d , θ2, θ3, and θ4. The parameters a2, a3, and a4 are constant
and d , θ3, θ4, and θ2 are variable. The mechanism has one DOF, and its configuration
is controlled by a motor that moves the crank link or a piston that moves the slider
block. The loop condition for the mechanism would be

[T ] = 1T2
2T3

3T4
4T1 = I4 (7.150)

x3

z1

x1

a3

x4

a2

x2

a1

d

z4

z3

z2

θ4

θ3

θ2

Figure 7.31 A planar slider–crank linkage making a closed loop or parallel mechanism.
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Example 421 � A 3D Slider–Crank Mechanism Figure 7.32 illustrates a slider that
is moving back and forth on the X-axis by the connected bar AB. The bar is attached
to a spinning disc that is controlled by a motor and is measured by an input angle
θ . The plane of the disc is at an angle 45 deg about the Z-axis. A side view of the
mechanism from the Z-axis is shown in Figure 7.33. The global coordinate frame G

is set at the fixed center of the disc to measure the distance of the slider, b.
We have only four relatively moving bodies, including the ground. So, we tech-

nically need four coordinate frames. However, it might be more clear to set up some
extra coordinate frames. Extra frames would simplify the kinematic of the multibody
with the penalty of extra matrix multiplications.

Xθ

θ

ψ

Y

Z

x1

y1

y2B2

B1

G

x2

y3

x5

x7

z7

z6

b

B6

B7

B3
A

B

O

z3

x4

z4

y4

x3

x6

z5

ϕ

Figure 7.32 A 3D slider–crank mechanism.

X

Y

G45

x1

y1

B1

x2x3

x7z4

Figure 7.33 Side view of the 3D slider–crank mechanism of Figure 7.32.
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The frame B1 is another globally fixed frame at an angle 45 deg about the Z-axis
such that the x1-axis is perpendicular to the disc and indicates its spin axis. The body
frame B2 is attached to the disc such that x1 and x2 are coincident and y2 points the
joint A. The angle between y1 and y2 is θ . The connecting bar AB has a constant
length l and is attached to the disc at point A at a distance R from the disc center:

2rA = [
0 R 0

]T
(7.151)

A Sina frame B3 parallel to B2 is attached to the disc at point A. The frame B4 is at
A such that y4 is coincident with y3 and x4 is seen coincident with AB from the Z

viewpoint. The angle between x3 and x4 is ϕ. There is another frame B5 at A such
that z4 and z5 are coincident and x5 is along AB. The angle between x4 and x5 is ψ .
At point B of the bar AB, we attach a coordinate frame B6 parallel to B5. The slider
frame B7, which is parallel to G, is attached to the box at point B:

GrB = [
b 0 0

]T
(7.152)

The transformation between G and B1 is a constant 45 deg rotation about the
Z-axis:

GT1 =
[
RZ,π/4 0

0 1

]
=


cos(π/4) − sin(π/4) 0 0
sin(π/4) cos(π/4) 0 0

0 0 1 0
0 0 0 1

 (7.153)

The transformation between B1 and B2 is a variable rotation θ about the x1-axis:

1T2 =
[
Rx1,θ 0

0 1

]
=


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (7.154)

The transformation between B2 and B3 is a constant translation R along the x2-axis:

2T3 =


1 0 0 R

0 1 1 0
0 0 1 0
0 0 0 1

 (7.155)

The transformation between B3 and B4 is a variable rotation ϕ about the y3-axis:

3T4 =
[
Ry3,ϕ 0

0 1

]
=


cos ϕ 0 sin ϕ 0

0 1 0 0
− sin ϕ 0 cos ϕ 0

0 0 0 1

 (7.156)

The transformation between B4 and B5 is a variable rotation ψ about the z4-axis:

4T5 =
[
Rz4,ψ 0

0 1

]
=


cos ψ − sin ψ 0 0
sin ψ cos ψ 0 0

0 0 1 0
0 0 0 1

 (7.157)
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The transformation between B5 and B6 is a constant translation l along the x5-axis:

5T6 =


1 0 0 l

0 1 1 0
0 0 1 0
0 0 0 1

 (7.158)

The transformation between B7 and G is a variable translation b along the X-axis:

GT7 =


1 0 0 b

0 1 1 0
0 0 1 0
0 0 0 1

 (7.159)

To find the global position of joint B, we go through B1, B2, . . . , B6 and determine
GT6:

GT6 = GT1
1T2

2T3
3T4

4T5
5T6

=


r11 r12 r13 d6X

r21 r22 r23 d6Y

r31 r32 r33 d6Z

0 0 0 1

 (7.160)

where

r11 =
√

2

2
(cos θ cos ψ − cos ψ sin θ) sin ϕ

+
√

2

2
(cos ψ cos ϕ − cos θ sin ψ) (7.161)

r21 =
√

2

2
(− cos θ cos ψ + cos ψ sin θ) sin ϕ

+
√

2

2
(cos ψ cos ϕ + cos θ sin ψ) (7.162)

r31 = 1
2 (cos (θ − ψ) − cos (θ + ψ))

− (cos θ cos ψ + cos ψ sin θ) sin ϕ (7.163)

r12 =
√

2

2
(sin θ sin ψ − cos θ sin ψ) sin ϕ

−
√

2

2
(cos ϕ sin ψ + cos θ cos ψ) (7.164)

r22 =
√

2

2
(cos θ sin ψ − sin θ sin ψ) sin ϕ

+
√

2

2
(cos θ cos ψ − cos ϕ sin ψ) (7.165)

r32 = 1
4 sin (θ + ψ − ϕ) + 1

4 sin (θ − ψ + ϕ) − 1
4 sin (θ − ψ − ϕ)

− 1
4 sin (θ + ψ + ϕ) + cos ψ sin θ + cos θ sin ψ sin ϕ (7.166)
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r13 = −
√

2

2
cos θ cos ψ +

√
2

2
(sin θ sin ψ − cos θ sin ψ) sin ϕ

+
√

2

2
(sin θ − cos θ − sin ψ) cos ϕ +

√
2

2
sin ϕ (7.167)

r23 =
√

2

2
sin ϕ +

√
2

2
(cos θ sin ψ − sin θ sin ψ) sin ϕ

+
√

2

2
(cos ψ + cos ϕ) cos θ −

√
2

2
(sin θ + sin ψ) cos ϕ (7.168)

r33 = 1
4 (sin (θ + ψ − ϕ) + sin (θ − ψ + ϕ) − sin (θ − ψ − ϕ))

− 1
4 sin (θ + ψ + ϕ) + cos θ (cos ϕ + sin ψ sin ϕ)

+ (cos ψ + cos ϕ) sin θ (7.169)

d6X =
√

2

2
R +

√
2

2
l cos ψ cos ϕ −

√
2

2
l cos θ sin ψ

+
√

2

2
l (cos θ cos ψ − cos ψ sin θ) sin ϕ (7.170)

d6Y =
√

2

2
R +

√
2

2
l cos ψ cos ϕ +

√
2

2
l cos θ sin ψ

−
√

2

2
l (cos θ cos ψ + cos ψ sin θ) sin ϕ (7.171)

d6Z = l sin θ sin ψ − l (cos θ cos ψ + cos ψ sin θ) sin ϕ (7.172)

The X-component of Gd6 must be equal to b and the Y - and Z-components of Gd6

must be zero:
d6X = b (7.173)

d6Y = 0 (7.174)

d6Z = 0 (7.175)

We should be able to solve these three equations to calculate b, ϕ, ψ for a given θ .
In a different design, we may assume that the angle between G and B1 is a

controllable angle α. In this case the transformation between G and B1 is a given angle
α rotation about the Z-axis:

GT1 =
[
RZ,α 0

0 1

]
=


cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

 (7.176)

Reevaluating both sides of Equation (7.160) provides three new equations instead of
(7.170)–(7.172) that must be solved for b, ϕ, ψ , for given θ and α. When α = 90 deg,
the mechanism reduces to the planar slider–crank mechanism in Figure 7.31, and when
α = 0, the slider will not move and b = const.
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Example 422 � Universal Joint The universal joint shown in Figure 7.34 is a com-
mon, inexpensive, reliable, and heavy-duty mechanism for connecting two rotating
shafts that intersect at an angle ϕ. The universal joint is also known as Hook’s cou-
pling, Hook joint, Cardan joint, U-joint, or yoke joint. The main disadvantage of the
joint is fluctuation of the speed ratio between the input and output shafts.

A universal joint has four links: link (1) is the ground, and has a revolute joint
with input link (2) and output link (4). The input and the output links are connected
with a coupler link (3) that is called the cross-link.

To determine the kinematics of the universal joint, let us separate its links and
show them in Figure 7.35. The intersection point of the input and output axes is the
common origin of all coordinate frames. Frame B1 is the ground or chassis frame.
Frame B2 is attached to the input driver link that turns by θ2 about the x1-axis. Frame
B3 is attached to the cross-link and turns by α about the y2-axis. Frame B4 is attached
to the driven output link that turns by β about the z3-axis. We attach a Sina coordinate
frame B5 to the chassis such that x5 is coincident with the x4-axis.

The transformation between B1 and B2 is a rotation θ2 about the x1-axis:

1R2 = [
RX,θ2

] =
1 0 0

0 cos θ2 − sin θ2

0 sin θ2 cos θ2

 (7.177)

The transformation between B2 and B3 is a rotation α about the y2-axis:

2R3 = [
RY,α

] =
 cos α 0 sin α

0 1 0
− sin α 0 cos α

 (7.178)

2

4
1

3

1

A

B

C

D

Driver

Driven

Cross-link

ω4

ω2

ϕ

Figure 7.34 A universal joint with four links: link 1 is the ground, link 2 is the input, link 4
is the output, and the cross-link 3 is a coupler link.
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Figure 7.35 A separate illustration of the input, output, and cross-links for a universal joint.

The transformation between B3 and B4 is a rotation β about the z3-axis:

3R4 = [
RZ,β

] =
cos β − sin β 0

sin β cos β 0
0 0 1

 (7.179)

The transformation between B4 and B5 is a rotation −θ4 about the x4-axis:

4R5 = [
RX,−θ4

] =
1 0 0

0 cos θ4 sin θ4

0 − sin θ4 cos θ4

 (7.180)

The direct transformation between B1 and B5 is a rotation ϕ about the z1-axis:

1R5 = [
RZ,ϕ

] =
cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

 (7.181)

Combining the transformation matrices B1, B2, . . . , B5, we have

1R5 = 1R2
2R3

3R4
4R5 =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (7.182)

where
r11 = cos α cos β (7.183)

r21 = cos θ2 sin β + cos β sin α sin θ2 (7.184)

r31 = sin β sin θ2 − cos β cos θ2 sin α (7.185)
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r12 = − sin α sin θ4 − cos α cos θ4 sin β (7.186)

r22 = (cos β cos θ2 − sin α sin β sin θ2) cos θ4 + cos α sin θ2 sin θ4 (7.187)

r32 = (cos β sin θ2 + cos θ2 sin α sin β) cos θ4 − cos α cos θ2 sin θ4 (7.188)

r13 = cos θ4 sin α − cos α sin β sin θ4 (7.189)

r23 = (cos β cos θ2 − sin α sin β sin θ2) sin θ4 − cos α cos θ4 sin θ2 (7.190)

r33 = (cos β sin θ2 + cos θ2 sin α sin β) sin θ4 + cos α cos θ2 cos θ4 (7.191)

However, the transformation 1R5 of (7.181) must be equal to 1R5 of (7.182). Therefore,
we can pick three independent elements, such as r11, r31, r13, to get a set of three
independent equations:

cos α cos β = cos ϕ (7.192)

sin β sin θ2 − cos β cos θ2 sin α = 0 (7.193)

cos θ4 sin α − cos α sin β sin θ4 = 0 (7.194)

These equations can theoretically be solved to determine α, β, and θ4 as functions of
θ2 and ϕ. Equation (7.193) and (7.194) may be written as

tan β tan θ2 = sin α (7.195)

tan α = sin β tan θ4 (7.196)

Multiplying these equations yields

tan α tan β tan θ2 = sin α sin β tan θ4 (7.197)

and employing (7.192) provides the equation to calculate θ4:

tan θ4 = tan θ2

cos ϕ
(7.198)

Eliminating α between (7.193) and (7.194) and using (7.198) provide the equation to
calculate β, and eliminating β between (7.193) and (7.194) and using (7.198) provide
the equation to calculate α.

Differentiation of (7.198) for constant ϕ,

ω2

csc2 θ
= ω4

csc2 θ4
cos ϕ (7.199)

and eliminating θ4 between (7.199) and (7.198) provide the relationship between the
input and output shaft angular velocities:

ω4 = cos ϕ

sin2 θ2 + cos2 θ2 cos2 ϕ
ω2 (7.200)

The speed ratio is then given as

� = ω4

ω2
= cos ϕ

1 − sin2 ϕ cos2 θ2
(7.201)
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Figure 7.36 depicts a three-dimensional plot for �. The �-surface is plotted for one
revolution of the drive shaft and every possible angle between the two shafts:

−π < θ < π − π < ϕ < π (7.202)

A two-dimensional view of � is depicted in Figure 7.37. When ϕ � 10 deg there is
not much fluctuation in speed ratio; however, when the angle between the two shafts
is more than 10 deg, the speed ratio � cannot be assumed constant. The universal joint
stuck when ϕ = 90 deg because theoretically

lim
ϕ→90

� = indefinite (7.203)

4
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Figure 7.36 A three-dimensional plot for the speed ratio of a universal joint � as a function
of the input angle θ and the angle between input and output shafts ϕ.
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Figure 7.37 A two-dimensional view of � as a function of the input angle θ and the angle
between input and output shafts ϕ.
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Example 423 � Application of Universal Joint To eliminate the inconstant speed
ratio of the universal joint between two shafts, we must connect the shafts with two
universal joints. Setting the second joint properly, we can compensate for the speed
fluctuation and provide a uniform output angular speed. The proper method of coupling,
shown in Figure 7.38, consists of two universal joints and a short shaft.

ϕ

ϕ

ϕ

ϕ

Figure 7.38 The proper methods of coupling to provide a constant speed ratio between the
input and output shafts.

The method is used more frequently to keep the input and output shafts parallel.
The shaft offset can be varied; however, due to variable length, one shaft must be spline
mounted. The velocity transmission is constant between the input and output shafts if
the forks are assembled such that they are always in the same plane. Therefore, by
coupling two universal joints, we make a constant-velocity joint. The velocity of the
central shaft fluctuates during rotation.

Example 424 � Tire–Wheel–Vehicle Coordinate Frames The setup of proper coor-
dinate frames is the first step in multibody kinematic analysis. Although each body
needs at least one coordinate frame, we may attach a few Sina coordinate frames to
a body or to the space to simplify the transformation kinematics. We recommend not
leaving it to chance and installing as many frames as needed. You can always eliminate
the unused frames or combine relatively fixed frames. Frames with a common origin
will more easily become coaxes at the rest position of the multibody.

A suspension vehicle is an example of a multibody with interesting kinematics. We
number the tires of a vehicle by starting from the front left as tire number 1. The front
right tire takes number 2, and the other tires on the right side of the vehicle sequentially
take the numbers 3, 4, . . . up to the last tire at the rear right. The numbering then moves
to the left side and sequentially increases forward to reach the front left tire.

Figure 7.39 illustrates the first and fourth tires of a four-wheel vehicle. We attach
a body coordinate frame B(x, y, z) to the mass center C of the vehicle. We also attach
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Figure 7.39 The coordinate frames of the first and fourth tires of a four-wheel vehicle and the
vehicle body frame.

Ground surface

Tire axis
xw

zw

yw

ϕ Spin angle

γ Camber angle

δ Steer angle

Figure 7.40 Six DOF of a wheel.

tire coordinate frames T1(xt1 , yt1 , zt1) to tire 1 and T4(xt4 , yt4 , zt4) to tire 4 at the center
of their tireprints. The tireprint is the contact area of a tire and the ground.

A wheel, as a rigid body, has six DOF with respect to the vehicle body: three
translations and three rotations. To express the motions of a wheel, we attach a wheel
coordinate frame W(oxw, yw, zw) to the center of the wheel as is shown in Figure 7.40.
The axes xw, yw, and zw indicate the direction of forward, lateral, and vertical transla-
tions and rotations. In the position shown in the figure, the rotation about the xw-axis
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is the camber angle γ , about the yw-axis is the spin , and about the zw-axis is the steer
angle δ.

The suspension mechanism eliminates most of the freedoms of a wheel and allows
a few. Ideally, translation in the zw-direction and spin about the yw-axis are allowed
for a nonsteerable wheel, and translation in the zw-direction, spin about the yw-axis,
and steer about the zw-axis are allowed for a steerable wheel.

We introduce three coordinate frames to express the orientation of a tire and wheel
with respect to the vehicle: the wheel frame W , wheel–body frame C, and tire frame
T . The coordinate frame as well as the interested planes of a cambered wheel are
illustrated in Figure 7.41.

Tire plane

Ground plane

xt

xw

yt

yw

zt

zw

T

W

γ Vertical plane

zc

xc

yc

C

Figure 7.41 Illustration of tire and wheel coordinate frames.

The wheel coordinate frame W(xw, yw, zw) that is attached to the center of a wheel
follows every motion of the wheel except the spin. Therefore, the xw- and zw-axes are
always in the tire plane, while the yw-axis is always along the spin axis. The tire plane
is defined by the equivalent disc of a tire.

When the wheel is straight and the W -frame is parallel to the vehicle coordinate
frame B, we attach a wheel–body coordinate frame C(xc, yc, zc) at the center of the
wheel. The C-frame is attached to the vehicle and parallel to the vehicle coordinate
axes. The wheel–body frame C is fixed to the vehicle and does not follow any motion
of the wheel.

The tire coordinate frame T (xt , yt , zt ) is set up at the center of the tireprint. The
zt -axis is always perpendicular to the ground. The xt -axis is along the intersection line
of the tire plane and the ground. The tire frame does not follows the spin and camber
rotations of the tire; however, it follows the steer angle rotation δ about the zc-axis.

Figure 7.42 illustrates a steered and cambered wheel along with the relative con-
figuration of a wheel–body frame C, a tire frame T , and a wheel frame W . If the
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Figure 7.42 Illustration of tire, wheel, and body coordinate frames.

steering axis is along the zc-axis, then the rotation of the wheel about the zc-axis is the
steer angle δ. However, the steering axis may have any angle and may go through any
point of the ground plane.

Example 425 � Wheel–Tire Coordinate Frame Transformation Let us use T dW

to indicate the T -expression of the position vector of the origin of the wheel frame
relative to the origin of the tire frame. Having the coordinates of a point P in the wheel
frame, we can find its coordinates in the tire frame:

T rP = T RW
W rP + T dW (7.204)

If W rP indicates the position vector of a point P in the wheel frame,

W rP =
xP

yP

zP

 (7.205)

then the coordinates of P in the tire frame T rP are

T rP = T RW
W rP + T d = T RW

W rP + T RW
W
T dW

=
 xP

yP cos γ − Rw sin γ − zP sin γ

Rw cos γ + zP cos γ + yP sin γ

 (7.206)
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The vector W
T dW is the W -expression of the position vector of the wheel frame in the

tire frame, Rw is the radius of the tire, and TRW is the transformation matrix from the
wheel frame W to the tire frame T :

T RW =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (7.207)

W
T dW =

 0
0

Rw

 (7.208)

We assume the only motion between W - and T -frames is a camber rotation γ of W

about the xW -axis.
As an example, the center of the wheel W rP = W ro = 0 is the origin of the wheel

frame W , that is, at T ro in the tire coordinate frame T :

T ro = T dW = T RW
W
T dW =

 0
−Rw sin γ

Rw cos γ

 (7.209)

The transformation from the wheel frame to the tire frame can also be expressed
by a 4 × 4 homogeneous transformation matrix

T rP = T TW
W rP

=
[

T RW
T dW

0 1

]
W rP (7.210)

where

T TW =


1 0 0 0
0 cos γ − sin γ −Rw sin γ

0 sin γ cos γ Rw cos γ

0 0 0 1

 (7.211)

The corresponding homogeneous transformation matrix WTT from the tire frame to the
wheel frame would be

WTT =
[

WRT
W dT

0 1

]
=


1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ −Rw

0 0 0 1

 (7.212)

It can be checked that WTT = T T −1
W using the inverse of a homogeneous transformation

matrix rule:

T T −1
W =

[
T RW

T dW

0 1

]−1

=
[

T RT
W − T RT

W
T dW

0 1

]
=

[
WRT − WRT

T dW

0 1

]
(7.213)
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Example 426 � Tire–Wheel Coordinate Frame Transformation If T rP indicates
the position vector of a point P in the tire coordinate frame,

T rP =
xP

yP

zP

 (7.214)

then the position vector W rP of the point P in the wheel coordinate frame is

W rP = WRT
T rP − W

T dW =
 xP

yP cos γ + zP sin γ

zP cos γ − Rw − yP sin γ

 (7.215)

where

WRT =
1 0 0

0 cos γ sin γ

0 − sin γ cos γ

 (7.216)

W dT =
 0

0
Rw

 (7.217)

We may multiply both sides of Equation (7.204) by T RT
W to get

T RT
W

T rP = W rP + T RT
W

T dW = W rP + W
T dW (7.218)

W rP = WRT
T rP − W

T dW (7.219)

As an example, the center of the tireprint in the wheel frame is at

W rP =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

T 0
0
0

 −
 0

0
Rw

 =
 0

0
−Rw

 (7.220)

Example 427 � Tire–Wheel Body Frame Transformation The origin of the tire
frame is at CdT in the wheel–body frame:

CdT =
 0

0
−Rw

 (7.221)

We assume the tire frame can ideally steer only about the zc-axis with respect to the
wheel–body frame. The associated rotation matrix is

CRT =
cos δ − sin δ 0

sin δ cos δ 0
0 0 1

 (7.222)

Therefore, the transformation between the tire frame and the wheel–body frame can
be expressed by

Cr = CRT
T r + CdT (7.223)
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or, equivalently, by the homogeneous transformation matrix

CTT =
[

CRT
CdT

0 1

]
=


cos δ − sin δ 0 0
sin δ cos δ 0 0

0 0 1 −Rw

0 0 0 1

 (7.224)

The homogeneous transformation matrix for the tire frame to the wheel–body frame is

T TC = CT −1
T =

[
CRT

CdT

0 1

]−1

=
[

CRT
T − CRT

T
CdT

0 1

]

=
[

CRT
T − T

CdT

0 1

]
=


cos δ sin δ 0 0

− sin δ cos δ 0 0

0 0 1 Rw

0 0 0 1

 (7.225)

Example 428 � Wheel Frame to wheel–body Frame Transformation We can
find the homogeneous transformation matrix CTW between the wheel frame and the
wheel–body frame by a combined transformation:

CTW = CTT
T TW

=


cδ −sδ 0 0

sδ cδ 0 0

0 0 1 −Rw

0 0 0 1




1 0 0 0

0 cγ −sγ −Rw sin γ

0 sγ cγ Rw cos γ

0 0 0 1



=


cos δ − cos γ sin δ sin γ sin δ Rw sin γ sin δ

sin δ cos γ cos δ − cos δ sin γ −Rw cos δ sin γ

0 sin γ cos γ Rw cos γ − Rw

0 0 0 1

 (7.226)

If rP indicates the position vector of a point P in the wheel coordinate frame,

W rP =
xP

yP

zP

 (7.227)

then the homogeneous position vector CrP of the point P in the wheel–body coordinate
frame is

CrP = CTW
W rP

=


xP cos δ − yP cos γ sin δ + (Rw + zP ) sin γ sin δ

xP sin δ + yP cos γ cos δ − (Rw + zP ) cos δ sin γ

−Rw + (Rw + zP ) cos γ + yP sin γ

1

 (7.228)
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The position of the wheel center W r = 0 for a cambered and steered wheel is at

Cr = CTW
W r =


Rw sin γ sin δ

−Rw cos δ sin γ

−Rw(1 − cos γ )

1

 (7.229)

The equation xc = Rw sin γ sin δ indicates the longitudinal motion of the wheel center,
and yc = −Rw cos δ sin γ determines the lateral displacement of the wheel center. The
equation zc = Rw (cos γ − 1) indicates by how much the center of the wheel comes
down when the wheel cambers.

If the wheel is not steerable, then δ = 0, and the transformation matrix CTW

reduces to

CTW =


1 0 0 0
0 cos γ − sin γ −Rw sin γ

0 sin γ cos γ Rw (cos γ − 1)

0 0 0 1

 (7.230)

which yields

CrP = CTW
W rP

=


xP

yP cos γ − Rw sin γ − zP sin γ

zP cos γ + yP sin γ + Rw (cos γ − 1)

1

 (7.231)

Example 429 � Tire-to-Vehicle Coordinate Frame Transformation Assume the ori-
gin of the tire coordinate frame T1 in Figure 7.39 is at Bd1,

BdT1 =
 a1

b1

−h

 (7.232)

where a1 is the longitudinal distance between C and the front axle, b1 is the lateral
distance between C and the tireprint of tire 1, and h is the height of C from ground
level. If P is a point in the tire frame at

T1rP =
xP

yP

zP

 (7.233)

then its coordinates in the body frame are

BrP = BRT1
T1rP + BdT1

=
a1 + xP cos δ1 − yP sin δ1

yP cos δ1 + b1 + xP sin δ1

zP − h

 (7.234)
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The rotation matrix BRT1 is a result of steering about the z1-axis,

BRT1 =

cos δ1 − sin δ1 0

sin δ1 cos δ1 0

0 0 1

 (7.235)

Employing Equation (7.204), we may examine a wheel point P at

W rP =

xP

yP

zP

 (7.236)

and find the body coordinates of the point:

BrP = BRT1
T1rP + BdT1

= BRT1

(
T1RW

W rP + T1dW

) + BdT1

= BRT1
T1RW

W rP + BRT1
T1dW + BdT1

= BRW
W rP + BRT1

T1dW + BdT1 (7.237)

=

a1 + xP cos δ1 − yP cos γ sin δ1 + (Rw + zP ) sin γ sin δ1

xP sin δ1 + b1 + yP cos γ cos δ1 − (Rw + zP ) cos δ1 sin γ

(Rw + zP ) cos γ + yP sin γ − h

 (7.238)

where
BRW = BRT1

T1RW

=

cos δ1 − cos γ sin δ1 sin γ sin δ1

sin δ1 cos γ cos δ1 − cos δ1 sin γ

0 sin γ cos γ

 (7.239)

T1dW =

 0

−Rw sin γ

Rw cos γ

 (7.240)

Example 430 � Wheel–Body–Vehicle Transformation The wheel–body coordinate
frame is always parallel to the vehicle frame. The origin of the wheel–body coordinate
frame of wheel 1 is at

BdW1 =
 a1

b1

−h + Rw

 (7.241)

Hence the transformation between the two frames is only a displacement:

Br = BIW1
W1r + BdW1 (7.242)
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7.4 ASSEMBLING KINEMATICS

Most modern industrial multibody systems are made modular. They have a main
machine and a series of interchangeable tools. The main machine is called the arm
and is a multibody that holds the main power units and provides a powerful motion of
a tip point.

Figure 7.43 illustrates an example of a single-DOF arm as the base for an R‖R
planar manipulator. This arm can rotate relative to the global frame by a motor at M1

and carries another motor at M2.
The changeable parts are called the wrist . They are complex multibodies made

to do special jobs. The base of the wrist will be attached to the tip point of the arm.
The wrist, which is the actual operator of the multibody, may also be called the end
effector , gripper , hand , or tool . Figure 7.44 illustrates a sample of a planar wrist that
is supposed to be attached to the arm in Figure 7.43.

y0

y2
x2

x0

B0

B1
l 1

M1

M2

y1

x1

B2

θ1

Figure 7.43 A single-DOF arm as the base for a R‖R planar manipulator.
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y4

y0
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x0
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Figure 7.44 A planar wrist.
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Figure 7.45 The R‖R planar manipulator that is made by assembling a wrist and an arm.

To solve the kinematics of a modular multibody, we consider the arm and the wrist
as individual multibodies. However, we attach a Sina coordinate frame at the tip point
of the arm and another Sina frame at the base point of the wrist. The coordinate frame
at the arm’s tip point is called the takht , and the coordinate frame at the base of the
wrist is called the neshin frame. Mating the neshin and takht frames assembles the
multibody kinematically. The kinematic mating process of the wrist and arm is called
assembling .

The coordinate frame B2 in Figure 7.43 is the takht frame of the arm, and the
coordinate frame B3 in Figure 7.44 is the neshin frame of the wrist. The R‖R planar
manipulator that is made by assembling the wrist and arm is shown in Figure 7.45.

The assembled multibody always has some extra coordinate frames. The extra
frames require extra transformation matrices that can increase the number of required
mathematical calculations. We recommend eliminating the neshin coordinate frame and
keep the takht frame to have a Sina frame at the connection point. However, as long
as the transformation matrices between the frames are known, having extra coordinate
frames is not a significant disadvantage.

The Persian words takht and neshin mean “chair” and “sit,” respectively.

Example 431 Spherical Wrist The spherical wrist is a combined multibody that sim-
ulates a spherical joint. Such a combination gives three rotational DOF to a link. The
link may be a gripper if the wrist is being used in an assembling and production line.
Figure 7.46 illustrates a sample spherical wrist. The axes z5, z6, and z7 are the rotation
axes of the wrists.

The coordinate frame B4 is the neshin frame of the wrist, and B9 is the tool frame
of the wrist. The coordinate frame B5 is fixed with respect to B4 and may be considered
as the wrist base frame and is called the wrist dead frame. B6 is the frame of the first
link in shape � that rotates about z5. B7 is the frame of the middle cylindrical link �
that rotates about z6. B8 is called the wrist living frame and is the fixed frame to the
long bar that supports the gripper. B8 rotates about z7. Therefore, B6, B7, and B8 are
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Figure 7.46 A sample of a spherical wrist.
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Figure 7.47 The rotating bodies of a spherical wrist.

the frames of the three rotating links. The joint axes of the wrist are intersecting at a
common point called the wrist point . These three links and their associated frames are
shown in Figure 7.47.

This spherical wrist is a common wrist configuration in robotic and multibody
applications. The spherical wrist of Figure 7.46 is made of a link R�R(−90) attached
to another link R�R(90) that finally is attached to a spinning gripper link R‖R(0). The
final frame B9 is always parallel to B8 and is attached to the gripper at a distance d9

from the wrist point. The final frame B9 is called the gripper or tool frame. It is set at
a symmetric point between the fingers of an empty gripper.

The wrist will be attached to the final link of a manipulator arm, which usually
provides three DOF for positioning the wrist point at a desired coordinate in space.

The kinematic analysis of the spherical wrist begins by deriving the required trans-
formation matrices 5T6, 6T7, and 7T8. The matrix 4T5 determines how the wrist dead
frame B5 relates to the neshin frame B4, and the matrix 8T9 determines how the tool
frame B9 connects to the wrist living frame B8, as are shown in Figure 7.48.
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Figure 7.48 The neshin, dead, living, and gripper frames of a spherical wrist.

Link (6) is an R�R(−90), link (7) is an R�R(90), and link (8) is an R‖R(0);
therefore,

5T6 =


cos θ6 0 − sin θ6 0

sin θ6 0 cos θ6 0

0 −1 0 0

0 0 0 1

 (7.243)

6T7 =


cos θ7 0 sin θ7 0

sin θ7 0 − cos θ7 0

0 1 0 0

0 0 0 1

 (7.244)

7T8 =


cos θ8 − sin θ8 0 0

sin θ8 cos θ8 0 0

0 0 1 0

0 0 0 1

 (7.245)

The matrix 5T8 = 5T6
6T7

7T8 provides the spherical wrist’s transformation. 5T8 must
reduce to an identity matrix when the wrist is at the rest position and all the angular
variables are zero:

5T8 = 5T6
6T7

7T8

=


cθ6cθ7cθ8 − sθ6sθ8 −cθ8sθ6 − cθ6cθ7sθ8 cθ6sθ7 0

cθ6sθ8 + cθ7cθ8sθ6 cθ6cθ8 − cθ7sθ6sθ8 sθ6sθ7 0

−cθ8sθ7 sθ7sθ8 cθ7 0

0 0 0 1

 (7.246)

The transformation of the wrist dead frame B5 to the neshin frame B4 and the
transformation of the wrist living frame B8 to the tool frame B9 are just translations
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d5 and d9, respectively:

4T5 =


1 0 0 0

0 1 0 0

0 0 1 d5

0 0 0 1

 (7.247)

8T9 =


1 0 0 0

0 1 0 0

0 0 1 d9

0 0 0 1

 (7.248)

Example 432 Spherical Arm The spherical arm is a multibody that simulates the
spherical coordinate for positioning a point in a 3D space. Figure 7.49 illustrates a
spherical arm. The coordinate frame B0 is the global or base frame of the arm. Link
(1) can turn about z0 and link (2) can turn about z1, which is perpendicular to z0. These
two rotations simulate the two angular motions of the spherical coordinates. The radial
coordinate is simulated by link (3), which has a prismatic joint with link (2). There
is also a takht coordinate frame at the tip point of the arm at which a wrist can be
attached.

Link (1) in Figure 7.49 is an R�R(90), link (2) is also an R�P(90), and link (3) is
an P‖R(0); therefore,

0T1 =


cos θ1 0 sin θ1 0

sin θ1 0 − cos θ1 0

0 1 0 d1

0 0 0 1

 (7.249)

1T2 =


cos θ2 0 sin θ2 0

sin θ2 0 − cos θ2 0

0 1 0 0

0 0 0 1

 (7.250)

2T3 =


1 0 0 0

0 1 0 0

0 0 1 d3

0 0 0 1

 (7.251)

The transformation matrix from B3 to the takht frame B4 is only a translation d4:

3T4 =


1 0 0 0

0 1 0 0

0 0 1 d4

0 0 0 1

 (7.252)
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Figure 7.49 A spherical arm.

The transformation matrix of the takht frame B4 to the base frame B0 is

0T4 = 0T1
1T2

2T3
3T4

=


cθ1cθ2 sθ1 cθ1sθ2 (d3 + d4) (cθ1sθ2)

cθ2sθ1 −cθ1 sθ1sθ2 (d3 + d4) (sθ2sθ1)

sθ2 0 −cθ2 d1 − d3cθ2 − d4cθ2

0 0 0 1

 (7.253)

At the rest position 0T4 reduces to

0T4 =


1 0 0 0
0 −1 0 0
0 0 −1 d1 − d4

0 0 0 1

 (7.254)

As a general recommendation, the setup of the DH coordinate frames is better such
that the overall transformation matrix at the rest position becomes an identity matrix.
If we rearrange the coordinate frame of link (1) to make it an R�R(−90), then

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 d1

0 0 0 1

 (7.255)

and the overall transformation matrix at the rest position becomes an identity matrix.
To make link (1) an R�R(−90), we may reverse the direction of the z1- or x1-axis.

Figure 7.50 illustrates the new arrangement of the coordinate frames. Therefore, the
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Figure 7.50 A spherical arm with the arrangement of coordinate frames such that the overall
transformation matrix reduces to an identity at the rest position.

transformation matrix of the takht frame B4 to the base frame B0 at the rest position
reduces to

0T4 =


1 0 0 0
0 1 0 0
0 0 1 d1 + d4

0 0 0 1

 (7.256)

Example 433 Assembling of a Spherical Wrist and Arm Let us kinematically assem-
ble the spherical wrist of Example 431 to the spherical arm of Example 432. The wrist,
arm, and their associated DH coordinate frames are shown in Figures 7.46 and 7.50,
respectively.

Assembling of multibodies is a kinematic surgery in which during an operation
we attach a multibody to the other. In this example we attach a spherical hand to a
spherical arm to make an arm–hand manipulator.

The takht coordinate frame B4 of the arm and the neshin coordinate frame B4

of the wrist are exactly the same. Therefore, we may assemble the arm and wrist by
matching these two frames and make a combined arm–wrist multibody as is shown
in Figure 7.51. However, in general, the takht and neshin coordinate frames may have
different labels and there may be a constant transformation matrix between them.

The forward kinematics of the tool frame B9 can be found by matrix multiplication:
0T9 = 0T1

1T2
2T3

3T4
4T5

5T6
6T7

7T8
8T9 (7.257)

The matrices i−1Ti are given in Examples 431 and 432.
Although we can eliminate the coordinate frames B3 and B4 to reduce the total

number of frames and simplify the matrix calculations, we prefer to keep them and
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Figure 7.51 Assembling a spherical hand and arm.

simplify the changing process of the wrist. However, if this assembled multibody is
supposed to work for a while, we may do the elimination and simplify the multibody
to the one in Figure 7.52. We should mathematically substitute the eliminated frames
B3 and B4 by a transformation matrix 2T5:

2T5 = 2T3
3T4

4T5 =


1 0 0 0
0 1 0 0
0 0 1 d6

0 0 0 1

 (7.258)

d6 = d3 + d4 + d5 (7.259)
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Figure 7.52 Simplification of the coordinate frames for an assembled spherical hand and arm.
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Now the forward kinematics of the tool frame B9 becomes

0T9 = 0T1
1T2

2T5
5T6

6T7
7T8

8T9 (7.260)

Example 434 � Best Spherical Wrist A spherical wrist is a combination of links and
joints that provides three rotations about three axes intersecting at the wrist point. The
spherical wrist is a practical device for an industrial multibody to adjust and control
the orientation of a tool.

Figure 7.53 illustrates a wrist with an actual spherical joint at the rest position.
The spherical joint is connecting two links: the forearm and the hand . These two links
should be simulated by a wrist with three rotational DOF. The axes of the forearm and
hand are assumed to be colinear at the rest position. The axis of the hand is also called
the gripper axis.

At the wrist point, we may define two coordinate frames. The first one, the wrist dead
frame, is attached to the forearm link, and the second, the wrist living frame, is attached
to the hand link. We also introduce a tool or gripper frame. The tool frame of the wrist
is denoted by three vectors, a ≡ k̂, s ≡ ı̂, n ≡ ̂ . It is set at a symmetric point between
the fingers of an empty hand or at the tip of the tools held by the fingers. The vector n
is called tilt and is the normal vector perpendicular to the fingers or jaws. The vector s
is called twist and the vector a is called turn . The tool frame is shown in Figure 7.53.

To classify the spherical wrists, let us assume that the rotations of a spherical
joint can be decomposed into three rotations about three orthogonal axes. We call the
rotations roll, pitch, and yaw, as shown in Figure 7.53. The roll is any rotation that
turns the gripper about its axis when the wrist is at the rest position. The gripper axis
defines a perpendicular plane to the axis called the gripper wall . The pitch and yaw
are rotations about two perpendicular axes in the gripper wall at the wrist point. We
can consider the first rotation about an axis in the gripper wall as pitch and the rotation
about the axis perpendicular to the first as yaw. The roll, pitch, and yaw rotations are
defined at the rest position of the wrist.

Practically, we provide the roll, pitch, and yaw rotations by introducing two links
and three frames between the dead and living frames. The links will be connected by

Yaw

Pitch

Roll

a

n

s

Gripper axis

Gripper frame

Forearm link

Hand link

Figure 7.53 The roll, pitch, and yaw rotations of a spherical wrist joint.
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three revolute joints. The joint axes must always intersect at the wrist point and be
perpendicular when the wrist is at the rest position. The kinematic analysis of such
wrists should be conducted by attaching a proper DH coordinate frame to each link.
Then the associated DH transformation matrices can be combined to develop the wrist
transformation matrices. Figures 7.46–7.48 show an example of simulating a spherical
wrist, and Example 431 gives the procedure.

We can also analyze a spherical wrist by defining three coordinate frames at the
wrist point and determine their relative transformations. The first orthogonal frame
B0 (x0, y0, z0) is fixed to the forearm and acts as the wrist dead frame such that z0 is
the joint axis of the forearm and a rotating link. The rotating link is the first wrist link
and the joint is the first wrist joint. The directions of the axes x0 and y0 are arbitrary.

The second frame B1 (x1, y1, z1) is defined such that z1 is along the gripper axis at
the rest position and x1 is the axis of the second joint. Frame B1 always turns ϕ about
z0 and θ about x1 relative to B0.

The third frame B2 (x2, y2, z2) is the wrist living frame and is defined such that
z2 is always along the gripper axis. If the third joint is a roll, then z2 is the joint axis;
otherwise the third joint is a yaw and x2 is the joint axis. Therefore, B2 always turns
ψ about z2 or x2 relative to B1.

The coordinate frames B1 and B2 indicate virtual rigid bodies and do not necessarily
indicate actual bodies. Introducing the coordinate frames B1 and B2 simplifies the
spherical wrist kinematics by not seeing the interior links of the wrist.

Considering the definition and rotations of B2 relative to B1 and B1 relative to B0,
there are only three types of practical spherical wrists, as classified in Table 7.9. These
three wrists are shown in Figures 7.54–7.56.

Table 7.9 Spherical Wrist
Classifications

Type Rotation Order

1 Roll–pitch–roll
2 Roll–pitch–yaw
3 Pitch–yaw–roll

x1

θ

z2

x0

z0

B0 B1

B2

ϕ

ψ

Figure 7.54 Spherical wrist of the roll–pitch–roll type.
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Figure 7.55 Spherical wrist of the roll–pitch–yaw type.

–z0
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θ

ϕ

B0

z2
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ψ

Figure 7.56 Spherical wrist of the pitch–yaw–roll type.

Proof : The first rotation is always about a fixed axis on the forearm link. It is a roll if
the joint axis is along the forearm axis, which would also be along the gripper axis at
the rest position. If the first axis of rotation is perpendicular to the forearm axis, then
we may consider the first rotation as a pitch. So far, the first rotation can be a roll or
a pitch.

When the first rotation is a roll, the second rotation is perpendicular to the forearm
axis and is considered a pitch. Now there are two possible situations for the third
rotation: a roll if it is about the gripper axis and a yaw if it is perpendicular to the axis
of the second rotation.

If the first rotation is a pitch, the second rotation can be a roll or a yaw. If it
is a yaw, then the third rotation must be a roll to have independent rotations. If it
is a roll, then the third rotation must be a yaw. The rotations pitch–yaw–roll and
pitch–roll–yaw are not distinguishable, and we may pick pitch–yaw–roll as the only
possible spherical wrist with the first rotation as a pitch. �
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Figure 7.54 illustrates a roll–pitch–yaw, Figure 7.55 a roll–pitch–yaw, and
Figure 7.56 a pitch–yaw–roll spherical wrist.

From a practical point of view, we prefer a roll as the third rotation to have the
best obstacle avoidance and approachability. Therefore, types 1 and 3 are better than
type 2. Furthermore, type 1 is the only wrist that can have two joints with 360 deg
possible rotation. Therefore type 1, roll–pitch–roll, is the best spherical wrist. The
roll–pitch–roll wrist may also be called the Eulerian spherical wrist because it follows
the order of Euler angles Z − x − z.

Example 435 � Type 1, Roll–Pitch–Roll Spherical Wrist Figure 7.54 illustrates a
spherical wrist of type 1, roll–pitch–yaw. Frame B0 indicates its dead coordinate frame
and B2 its living coordinate frame. The transformation matrix 0R1 is a rotation ϕ about
the global axis z0 followed by a rotation θ about the x1-axis:

0R1 = 1RT
0 =

[
Rx1,θ RT

z0,ϕ

]T = [
Rx,θ RT

Z,ϕ

]T

=
1 0 0

0 cos θ sin θ

0 − sin θ cos θ

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

T T

=
cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (7.261)

The transformation matrix 1R2 is a rotation ψ about the local axis z2:

1R2 = 2RT
1 = RT

z2,ψ = RT
z,ψ =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (7.262)

Therefore, the transformation matrix between the living and dead wrist frames is

0R2 = 0R1
1R2 =

[
Rx1,θ RT

z0,ϕ

]T
RT

z2,ψ = Rz0,ϕ RT
x1,θ RT

z2,ψ

= RZ,ϕ RT
x,θ RT

z,ψ (7.263)

=
cψcϕ − cθsψsϕ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ cθcψcϕ − sψsϕ −cϕsθ

sθsψ cψsθ cθ



Example 436 � Type 2, Roll–Pitch–Yaw Spherical Wrist Figure 7.55 illustrates a
spherical wrist of type 2, roll–pitch–yaw. Frame B0 indicates the wrist dead coordinate
frame. The main kinematic disdvantage of this type of spherical wrist is that z1 is not
fixed to the gripper. However, we attach a coordinate frame B2 to the gripper as the
wrist living frame such that z2 is on the gripper axis and x2 is the third joint axis. The
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transformation between B2 and B1 is only a rotation ψ about the x2-axis:

1R2 = RT
x2,ψ = RT

x,ψ =
1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

T

(7.264)

To determine the transformation matrix 0R1, we turn B1 first ϕ deg about the
z0-axis and then θ deg about the x1-axis:

0R1 = 1RT
0 =

[
Rx1,θ RT

z0,ϕ

]T = [
Rx,θ RT

Z,ϕ

]T

=
1 0 0

0 cθ sθ

0 −sθ cθ

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

T T

=
cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (7.265)

Therefore, the transformation matrix between the living and dead wrist frames is

0R2 = 0R1
1R2 =

[
Rx1,θ RT

z0,ϕ

]T
RT

x2,ψ = Rz0,ϕ RT
x1,θ RT

x2,ψ

= RZ,ϕ RT
x,θ RT

x,ψ

=
cϕ sθsψsϕ − cθcψsϕ cθsψsϕ + cψsθsϕ

sϕ cθcψcϕ − cϕsθsψ −cθcϕsψ − cψcϕsθ

0 cθsψ + cψsθ cθcψ − sθsψ

 (7.266)

Example 437 � Type 3, Pitch–Yaw–Roll Spherical Wrist Figure 7.56 illustrates a
spherical wrist of type 3, pitch–yaw–roll. Frame B0 indicates its dead coordinate frame
and B2 its living coordinate frame. The transformation matrix 1R2 is a rotation ψ about
the local z2-axis:

1R2 = 2RT
1 = RT

z2,ψ = RT
z,ψ =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (7.267)

To determine the transformation matrix 0R1, we turn B1 first ϕ deg about the z0-axis
and then θ deg about the x1-axis:

0R1 = 1RT
0 =

[
Rx1,θ RT

z0,ϕ

]T = [
Rx,θ RT

Z,ϕ

]T

=
1 0 0

0 cθ sθ

0 −sθ cθ

cϕ −sϕ 0
sϕ cϕ 0
0 0 1

T T

=
cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (7.268)
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Therefore, the transformation matrix between the living and dead wrist frames is

0R2 = 0R1
1R2 =

[
Rx1,θ RT

z0,ϕ

]T
RT

z2,ψ = Rz0,ϕ RT
x1,θ RT

z2,ψ

= RZ,ϕ RT
x,θ RT

z,ψ

=
cψcϕ − cθsψsϕ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ cθcψcϕ − sψsϕ −cϕsθ

sθsψ cψsθ cθ

 (7.269)

7.5 � ORDER-FREE ROTATION

We introduce a theorem to generalize and simplify the applied rotation transformation
of multibodies. Most industrial multibodies with a common fixed point are similar to
spherical wrists with one, two, or three rotary actuators that can work independently.
Practically, the order of actuation of the motors is not important. The orientation of the
body would be the same no matter which motor acts first. Here is the mathematical
explanation.

Theorem Order-Free Rotations Consider n bodies B1, B2, . . . , Bn with a common
fixed point. The body B1 carries the bodies B2, B3, . . . , Bn and turns α1 about a fixed
axis in G. The body B2 carries the bodies B3, B4, . . . , Bn and turns α2 about a fixed
axis in B1, and so on. The transformation matrix GRn = nRT

G is independent of the
order of rotations α1, α2, . . . , αn.

Proof : Let us consider a global frame G (OXYZ ) and two body frames B1 (Ox1y1z1)

and B2 (Ox2y2z2) with a common origin. The body B1 carries B2 and rotates with
respect to G. The body B2 rotates in B1.

The first rotation α of B1 of such a multibody is always about a globally fixed
axis Gû1. The second motion would then be a rotation β of B2 about a fixed axis 1û2
in B1. However, we may consider the second rotation β about a local axis 2û2 in B2.
A transformation matrix 2R1 for rotation β about a local axis 2û2 relates B2 and B1.
Let us show this rotation matrix by Rβ and call it the β-rotation:

2R1 = R 2û2, β = Rβ (7.270)

To determine a general transformation matrix 1RG for the rotation α, we assume
B1 is on G and B2 is at angle β. We apply a rotation −β about the local axis 2û2 to
bring B2 on B1 and G. Now the axis Gû1 coincides with an axis 2û1 and the rotation
α of B2 is about a local axis. A rotation α of B2 about 2û1 will equivalently rotate
B1 and B2 in G. Then, we apply the rotation α about 2û1 and apply a reverse rotation
β about the local axis 2û2 to remove the effect of the rotation −β about 2û2. Let us
show the transformation matrix 1RG for rotation α by Rα and call it the α-rotation:

1RG = R2û2,β R2û1,α R2û2,−β = Rα (7.271)

The rotations α and β can be interchanged and performed in any order. The final
transformation matrix will not be altered by changing the order of rotations α and β.
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To examine this fact, let us assume that the frames B1 and B2 are on G. Applying the
rotation α and then the rotation β provides the transformation matrix

2RG = Rβ Rα = R2û2,β

[
R2û2,0 R2û1,α R2û2,−0

]
= R2û2,β

[
I R2û1,α I

] = R2û2,β R2û1,α (7.272)

By changing the order of rotation and applying first the rotation β and then α, we find
the same transformation matrix:

2RG = Rα Rβ = [
R2û2,β R2û1,α R2û2,−β

]
R2û2,β

= R2û2,β R2û1,α (7.273)

Now consider 3R2 as a transformation matrix for rotation of B3 about 2û3 in B2 and
2RG as a the matrix for rotation of B2 in G. Employing the same procedure, we can
find the order-free transformation

3RG = 3R2
2RG = 2RG

3R2 (7.274)

We can similarly expand and apply the proof of the theory of order-free rotations
to any number of bodies that are similarly connected. �

Example 438 � Different Order of Rotations in Directional Control Systems
Consider the inspection camera with a direction control system of the SSRMS in
Figure 7.30. The kinematics of the camera as a part of the Space Shuttle manipulator
is analyzed in Examples 416, 417, and 418. To have a directional control system, we
need to control the angles of a flat plate and direct an axis on the plate or its normal
vector to a desired direction.

Figure 7.30 shows that the two motors of the directional control system are
independent. Therefore, we may command motors 1 and 2 to turn in different order or
even together. The final configuration of the camera must be the same if we command
motor 1 to turn α and motor 2 to turn β in any order. To show this fact, we must
define the transformation matrices such that the matrix multiplication is independent
of the order of the matrices.

Consider the camera frame B8 is not coincident with the fixed Sina frame B9. We
may always bring the local z8-axis of B8 on the global z9-axis of B9 by a rotation
−β about the y8-axis. Now rotation α about the globally fixed z9-axis becomes a local
rotation about the z8-axis. A reverse rotation β about the y8-axis eliminates the first
and third rotations and a rotation α about the fixed z9-axis remains:

8R9 = RZ,α = Ry,βRz,αRy,−β

=
cβ 0 −sβ

0 1 0
sβ 0 cβ

cα −sα 0
sα cα 0
0 0 1

c (−β) 0 −s (−β)

0 1 0
s (−β) 0 c (−β)


=

 cαc2β + s2β −cβsα cαcβsβ − cβsβ

cβsα cα sαsβ

cαcβsβ − cβsβ −sαsβ c2β + cαs2β

 (7.275)

It reduces to the principal Rz,α for β = 0.
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Now we may confirm that the order of rotations is not important. First let us apply
a rotation α to the camera frame B8 about the z9-axis from a coincident configuration
with the Sina frame B9 followed by a rotation β about the y8-axis:

8R9 = Ry8,β RT
z9,α

=
cos β 0 − sin β

0 1 0
sin β 0 cos β

cos α − sin α 0
sin α cos α 0

0 0 1

T

=
cos α cos β cos β sin α − sin β

− sin α cos α 0
cos α sin β sin α sin β cos β

 (7.276)

Now we turn the camera frame B8 an angle β from a coincident configuration with the
Sina frame B9 about the y8-axis followed by a rotation α about the z9-axis. However,
the rotation about the z9-axis must be considered as (7.275):

8R9 = RT
z9,α Ry8,β

=
 cαc2β + s2β −cβsα cαcβsβ − cβsβ

cβsα cα sαsβ

cαcβsβ − cβsβ −sαsβ c2β + cαs2β

cβ 0 −sβ

0 1 0
sβ 0 cβ


=

cos α cos β − cos β sin α − sin β

sin α cos α 0
cos α sin β − sin α sin β cos β

 (7.277)

The final rotation matrix (7.277) is the same as (7.276). So, it is immaterial which
motor turns first provided that the correct matrices are used.

Therefore, we may define the transformation matrix between the camera frame B8
and the Sina frame B9 by matrix multiplication in any order,

8R9 = RT
z9,α Ry8,β = Ry8,β RT

z9,α (7.278)

where

RT
z9,α =

 cαc2β + s2β −cβsα cαcβsβ − cβsβ

cβsα cα sαsβ

cαcβsβ − cβsβ −sαsβ c2β + cαs2β

 (7.279)

and

Ry8,β =
cos β 0 − sin β

0 1 0
sin β 0 cos β

 (7.280)

However, to evaluate 8R9, we must substitute the current value of β in RT
z9,α.

Example 439 � Aiming from a Point to the Other Assume that the camera frame
B8 of the directional control system in Example 418 has already been rotated and is
not coincident with the Sina frame B9. If the rotation α1 happened before the rotation
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β1, the rotation matrix between B8 and B9 is

R1 = 8R9 =
cos α1 cos β1 − cos β1 sin α1 − sin β1

sin α1 cos α1 0
cos α1 sin β1 − sin α1 sin β1 cos β1

 (7.281)

otherwise, we may use Equation (7.278) to reverse the order of rotations.
To aim the camera to a new direction, we may turn the camera β2 about y8 and

α2 about z9. The rotation matrix between the camera and the base would then be

8R9 = R1Ry8,β2 RT
z9,α2

= R1Ry8,β2

[
Ry8,β1Rz8,α2Ry8,−β1

]
= Ry8,β1 Rz8,α1 Ry8,β2 Ry8,β1Rz8,α2Ry8,−β1

= Ry8,β1 Rz8,α1 Ry8,β1+β2 Rz8,α2Ry8,−β1 (7.282)

or if we change the order of second rotations β2 and α2 and use Equation (7.275), then

8R9 = R1 RT
z9,α2

Ry8,β2 = R1
[
Ry8,β1+β2 Rz8,α2 Ry8,−β1−β2

]
Ry8,β2

= Ry8,β1 Rz8,α1 Ry8,β1+β2 Rz8,α2 Ry8,−β1−β2 Ry8,β2

= Ry8,β1 Rz8,α1 Ry8,β1+β2 Rz8,α2Ry8,−β1 (7.283)

Example 440 � Spherical Wrist and Order Free Rotations All three types of spher-
ical wrists in Figures 7.54–7.56 will act using three independent rotary actuators. The
independency of the actuators means we can run the three actuators in any arbitrary
order. This freedom requires that the transformation matrix between B0 and B2 be order
free and independent of the order of rotations.

To determine the order-free transformation matrices, let us consider the Eulerian
wrist of Figure 7.57 that is analyzed in Example 431. We assume that none of the
angles is zero, and hence, the coordinate frames B0, B1, and B2 are not coincident.

x1

θ

ϕ

ψ

z0

z2

B0

B2

x0

B1

Figure 7.57 Eulerian spherical wrist or roll–pitch–roll type.
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The rotation ψ of B2 is always about the local z2-axis. This rotation will not move any
axis of B2. Therefore,

2R1 = Rz2,ψ = Rz,ψ =
 cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

 (7.284)

To find the order-free transformation matrix for rotation θ about x1, we turn B2 an
angle −ψ about the local z2 to bring x2 on x1. Now rotation θ about x1 becomes a
local rotation about x2. A reverse rotation ψ about z2 eliminates the first and third
rotations and a rotation θ about x1 remains:

2R1 = Rx1,θ = Rz2,ψRx2,θRz2,−ψ = Rz,ψRx,θRz,−ψ

=
 cψ sψ 0

−sψ cψ 0
0 0 1

1 0 0
0 cθ sθ

0 −sθ cθ

 c (−ψ) s (−ψ) 0
−s (−ψ) c (−ψ) 0

0 0 1


=

 c2ψ + cθs2ψ cθcψsψ − cψsψ sθsψ

cθcψsψ − cψsψ cθc2ψ + s2ψ cψsθ

−sθsψ −cψsθ cθ

 (7.285)

The matrix (7.285) is the order-free transformation for turning θ about x1. We can
examine and check that

2R1 = Rx1,θRz2,ψ = Rz2,ψRx1,θ (7.286)

provided we use (7.285) for Rx1,θ and substitute the current value of ψ before mul-
tiplication. Assuming a rotation ψ about z2 and then a rotation θ about x1, we find

2R1 = Rx1,θRz2,ψ

=
 c2ψ + cθs2ψ cθcψsψ − cψsψ sθsψ

cθcψsψ − cψsψ cθc2ψ + s2ψ cψsθ

−sθsψ −cψsθ cθ

 cψ sψ 0
−sψ cψ 0

0 0 1


=

 cos ψ cos θ sin ψ sin θ sin ψ

− sin ψ cos θ cos ψ cos ψ sin θ

0 − sin θ cos θ

 (7.287)

Now assuming a rotation θ about x1 and then a rotation ψ about z2, we find

2R1 = Rz2,ψRx1,θ

=
 cψ sψ 0

−sψ cψ 0
0 0 1

 c20 + cθs20 cθc0s0 − c0s0 sθs0
cθc0s0 − c0s0 cθc20 + s20 c0sθ

−sθs0 −c0sθ cθ


=

 cos ψ cos θ sin ψ sin θ sin ψ

− sin ψ cos θ cos ψ cos ψ sin θ

0 − sin θ cos θ

 (7.288)

because we should substitute ψ = 0 in Rx1,θ to evaluate Rz2,ψRx1,θ .
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To find the order-free transformation matrix for rotation ϕ about x0, we turn B2 an
angle −ψ about the local z2 to bring x2 on x1. Another rotation −θ about x2 brings z2

on z0. Now rotation ϕ about x0 becomes a local rotation about x2. A reverse rotation
θ about x2 and then ψ about z2 eliminates the first, second, fourth, and fifth rotations
and a rotation ϕ about x0 remains:

1R0 = Rx0,θ = Rz2,ψRx2,θRz2,ϕRx2,−θRz2,−ψ

= Rz,ψRx,θRz,ϕRx,−θRz,−ψ =
r11 r12 r13

r21 r22 r23

r31 r32 r33

 (7.289)

where
r11 = − (1 − cos ϕ) cos2 ψ sin2 θ cos2 θ + 1 (7.290)

r21 = (1 − cos ϕ) sin2 θ cos ψ sin ψ − cos θ sin ϕ (7.291)

r31 = [(1 − cos ϕ) cos θ sin ψ + cos ψ sin ϕ] sin θ (7.292)

r12 = (1 − cos ϕ) sin2 θ cos ψ sin ψ + cos θ sin ϕ (7.293)

r22 = cos ϕ + sin2 θ cos2 ψ (1 − cos ϕ) (7.294)

r32 = [(1 − cos ϕ) cos θ cos ψ − sin ψ sin ϕ] sin θ (7.295)

r13 = [(1 − cos ϕ) cos θ sin ψ − sin ϕ cos ψ] sin θ (7.296)

r23 = [(1 − cos ϕ) cos θ cos ψ + sin ψ sin ϕ] sin θ (7.297)

r33 = cos ϕ + (1 − cos ϕ) cos2 θ (7.298)

The matrix (7.289) is the order-free transformation for turning ϕ about z0. We can
examine and check that the order of rotations ϕ, θ , and ψ are not important and we
have

2R0 = Rx1,θRz2,ψRz0,ϕ = Rz2,ψRz0,ϕRx1,θ

= Rz0,ϕRx1,θRz2,ψ = Rz0,ϕRz2,ψRx1,θ

= Rz2,ψRx1,θRz0,ϕ = Rx1,θRz0,ϕRz2,ψ (7.299)

We just need to substitute the current values of ϕ, θ , and ψ before multiplying any
transformation matrices.

Example 441 � Order-Free Euler Angle Matrix The Euler angle transformation
with the order ϕ, θ, ψ is found in (4.142) as

BRG = Rz,ψRx,θRz,ϕ

=

 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (7.300)
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where

Rz,ϕ =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (7.301)

Rx,θ =
1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 (7.302)

Rz,ψ =
 cos ψ sin ψ 0

− sin ψ cos ψ 0
0 0 1

 (7.303)

These are in-order rotation matrices associated with ϕ, θ, ψ . The rotation ϕ transforms
the global coordinate frame to B ′, rotation θ transforms B ′ to B ′′, and rotation ψ

transforms B ′′ to B.
To make them order free, we should define them as a rotation about a local axis

of the final coordinate frame. The rotation ψ is already about the local z-axis and is
order free. The order-free rotation θ is

Rx,θ = Rz,ψRx,θRz,−ψ

=
 c2ψ + cθs2ψ cθcψsψ − cψsψ sθsψ

cθcψsψ − cψsψ cθc2ψ + s2ψ cψsθ

−sθsψ −cψsθ cθ

 (7.304)

The matrix (7.304) is the order-free transformation for rotation θ about x:
BRG = Rx,θRz,ψ = Rz,ψRx,θ (7.305)

where
BRG = Rx,θRz,ψ

=
 c2ψ + cθs2ψ (cθ − 1) sθsψ

(cθ − 1) cψsψ cθc2ψ + s2ψ cψsθ

−sθsψ −cψsθ cθ

 cψ sψ 0
−sψ cψ 0

0 0 1


=

 cos ψ cos θ sin ψ sin θ sin ψ

− sin ψ cos θ cos ψ cos ψ sin θ

0 − sin θ cos θ

 (7.306)

and
BRG = Rz,ψRx,θ

=
 cψ sψ 0

−sψ cψ 0
0 0 1

 c20 + cθs20 (cθ − 1) c0s0 sθs0
(cθ − 1) c0s0 cθc20 + s20 c0sθ

−sθs0 −c0sθ cθ


=

 cos ψ cos θ sin ψ sin θ sin ψ

− sin ψ cos θ cos ψ cos ψ sin θ

0 − sin θ cos θ

 (7.307)



7.6 � Order-Free Transformation 635

The order-free transformation matrix for rotation ϕ is

Rz,ϕ = Rz,ψRx,θRz,ϕRx,−θRz,−ψ (7.308)

=

r11 r12 r13

r21 r22 r23

r31 r32 r33


where

r11 = − (1 − cos ϕ) cos2 ψ sin2 θ cos2 θ + 1 (7.309)

r21 = (1 − cos ϕ) sin2 θ cos ψ sin ψ − cos θ sin ϕ (7.310)

r31 = [(1 − cos ϕ) cos θ sin ψ + cos ψ sin ϕ] sin θ (7.311)

r12 = (1 − cos ϕ) sin2 θ cos ψ sin ψ + cos θ sin ϕ (7.312)

r22 = cos ϕ + sin2 θ cos2 ψ (1 − cos ϕ) (7.313)

r32 = [(1 − cos ϕ) cos θ cos ψ − sin ψ sin ϕ] sin θ (7.314)

r13 = [(1 − cos ϕ) cos θ sin ψ − sin ϕ cos ψ] sin θ (7.315)

r23 = [(1 − cos ϕ) cos θ cos ψ + sin ψ sin ϕ] sin θ (7.316)

r33 = cos ϕ + (1 − cos ϕ) cos2 θ (7.317)

The matrix (7.308) is the order-free transformation for rotation ϕ about z. Using the
order-free matrices (7.303), (7.304), and (7.308) we can find the Euler angle transfor-
mation matrix (4.142) or (7.304) by rotations ϕ, θ,ψ in any order:

BRG = Rx,θRz,ψRz,ϕ = Rz,ψRz,ϕRx,θ

= Rz,ϕRx,θRz,ψ = Rz,ϕRz,ψRx,θ

= Rz,ψRx,θRz,ϕ = Rx,θRz,ϕRz,ψ (7.318)

Equations (7.309)–(7.317) are the same as (7.290)–(7.298), and it justifies why
we call the spherical wrist of Figure 7.57 a Eulerian wrist.

7.6 � ORDER-FREE TRANSFORMATION

We introduce a theorem to generalize the applied transformation theory of multibodies.
Most of the connected industrial multibodies, such as serial robotic manipulators, are
operated by independent actuators. Practically, the order of action of the actuators is
not important. The position and orientation of the bodies would be the same no matter
which motor acts first. Here is the mathematical explanation.

Theorem Order-Free Transformations Consider n connected bodies B1, B2, . . . , Bn

such that the body B1 carries the bodies B2, B3, . . . , Bn. The body B1 can move with
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respect to G with one DOF that can be a rotation θ1 about a fixed axis in G or a
translation d1 along a fixed axis in G. The body B2 carries the bodies B3, B4, . . . , Bn

and moves with respect to B1 and can be a rotation θ2 about a fixed axis in B1, a
translation d2 along a fixed axis in B1, and so on. The homogeneous transformation
matrix GTn = nT −1

G is independent of the order of motions θ1 or d1, θ2 or d2, . . . , θn

or dn.

Proof : Let us consider a global frame G (OXYZ ) and two body frames B1 (Ox1y1z1)

and B2 (Ox2y2z2). The body B1 carries B2 and moves with respect to G. The body B2
moves in B1.

The transformation 1TG of G to B1 is a rotation 1RG plus a translation 1DG. The
only variable of this transformation is either a rotation α or a translation d1 about or
along a globally fixed axis Gû1:

1TG = 1DG
1RG = 1Dd1

1Rα (7.319)

The second transformation 2T1 of B1 to B2 is a rotation 2R1 plus a translation 2D1.
The only variable of 2T1 is either a rotation β or translation d2 about or along a fixed
axis 1û2 in B1:

2T1 = 2D1
2R1 = 2Dd2

2Rβ = Tβ (7.320)

To make 1TG an order-free transformation, we modify the first motion to be about or
along a local axis 2û2 in B2. To redefine 1TG, we move B2 to B1 by a translation
d2 plus a rotation β, both along and about their associated local axes in B2. Now
the axes of B2 are the same as B1 and 1TG can be performed by a rotation α about
a local axis in B2 plus a translation d1 along a local axis B2. Then, we apply the
inverse rotation β plus an inverse translation d2 about and along their axes to move B2
back to its position. The resultant of these rotations and translations would be an order
free 1TG:

1TG = 2Dd2
2Rβ

2Dd1
2Rα

2R−β
2D−d2 (7.321)

= 2T1
1TG

2T −1
1 = Tα (7.322)

The transformation matrices (7.320) and (7.321) indicate the order-free motions
that can be performed in any order to calculate 1TG. The final transformation matrix
will not be altered by changing the order of motions Tα and Tβ . To examine this fact,
let us assume that the frames B1 and B2 are on G. Applying the motion Tα and then
the motion Tβ provides the transformation matrix

2TG = 2T1
1TG = Tβ Tα

= 2Dd2
2Rβ

[ 2Dd2
2Rβ

1Dd1
1Rα

2R−β
2D−d2

]
= 2Dd2

2Rβ

[ 2Dd2
2Rβ

1Dd1
1Rα

] 2R−β
2D−d2

= 2Dd2

[ 2Dd2
2Rβ

1Dd1
1Rα

] 2D−d2

= 2Dd2
2Rβ

1Dd1
1Rα (7.323)
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By changing the order of motions and applying first the motion Tβ and then Tα , we
find the same transformation matrix:

2TG = 1TG
2T1 = Tα Tβ

= [ 2Dd2
2Rβ

1Dd1
1Rα

2R−β
2D−d2

] 2Dd2
2Rβ

= [ 2Dd2
2Rβ

1Dd1
1Rα

]
I

= 2Dd2
2Rβ

1Dd1
1Rα (7.324)

Now consider 3T2 a transformation matrix for motion of B3 about B2 and 2TG a
matrix for motion of B2 in G. Employing the same procedure, we can find the order-free
transformation matrix.

3TG = 3T2
2TG = 2TG

3T2 (7.325)

We can similarly expand and apply the proof of the theory of order-free transfor-
mations to any number of bodies that are similarly connected. �

Example 442 � Order-Free Transformations of a Planar R‖R Manipulator
Figure 7.58 illustrates an R‖R planar manipulator with two parallel revolute joints and
variables θ1 and θ2. Links (1) and (2) are both R‖R(0) and therefore the transformation
matrices 0T1, 1T2 are

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0

0 0 0 1

 (7.326)

x2

y2

y0

y1

x1

x0

B0

B1

B2
l2

l 1

M1

θ1

θ2M2

Figure 7.58 A 2R or R‖R planar manipulator.
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1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1

 (7.327)

Employing 0T1 and 1T2, we can find the forward kinematics 0T2 only with the assump-
tion that first the grounded actuator M1 acts to change θ1 and then the second motor
M2 acts to change θ2:

0T2 = 0T1
1T2

=


c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1

s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1

 (7.328)

However, the actuators M1 and M2 are independent and may act in any order. To find
the order-free transformations, we redefine the transformation matrices 0T1, 1T2 to go
from lower body to upper body:

1T0 = 0T −1
1 =


cos θ1 sin θ1 0 −l1

− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

 (7.329)

2T1 = 1T −1
2 =


cos θ2 sin θ2 0 −l2

− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

 (7.330)

Using 0T1, 1T2 the forward kinematics of the manipulator can be found as

2T0 = 2T1
1T0 = 0T −1

2

=


cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2

− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1

 (7.331)

We employ the rule (RFDS) of (6.35) to redefine the homogeneous transformation
matrices 0T1, and 1T2. The transformation 2T1 = 2D1

2R1 is made by a rotation θ2 of
B2 about the local axis z2 plus a translation l2 of B2 along the local axis x2:

2T1 = 2D1
2R1 = Dx,l2Rz,θ2

= Rz,α =


1 0 0 −l2
0 1 0 0
0 0 1 0
0 0 0 1




cos θ2 sin θ2 0 0
− sin θ2 cos θ2 0 0

0 0 1 0
0 0 0 1

 (7.332)
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The other transformation 1T0 = 1D0
1R0 is made by a rotation θ1 of B1 about the

local axis z1 plus a translation l1 of B1 along the local axis x1. To redefine 1T0, we
move B2 to B1 by a translation l2 along the local axis x2 plus a rotation θ2 about the
local axis z2. Now the axes of B2 are the same as B1 and 1T0 can be performed by a
rotation θ1 about the local axis z2 plus a translation l1 along the local axis x2. Then, we
apply the inverse rotation θ2 about z2 plus an inverse translation l2 along x2 to move
B2 back to its position. The resultant of these rotations and translations would be 1T0:

1T0 = Dx,l2Rz,θ2Dx,l1Rz2,θ1Rz,−θ2Dx,−l2 = 2T1
1T0

2T −1
1

=


cos θ1 sin θ1 0 l2 cos θ1 − l1 cos θ2 − l2

− sin θ1 cos θ1 0 l1 sin θ2 − l2 sin θ1

0 0 1 0

0 0 0 1

 (7.333)

where

Dx,−l2 =


1 0 0 l2

0 1 0 0

0 0 1 0

0 0 0 1

 (7.334)

Rz,−θ2 =


cos −θ2 sin −θ2 0 0

− sin −θ2 cos −θ2 0 0

0 0 1 0

0 0 0 1

 (7.335)

Rz2,θ1 =


cos θ1 sin θ1 0 0

− sin θ1 cos θ1 0 0

0 0 1 0

0 0 0 1

 (7.336)

Dx,l1 =


1 0 0 −l1

0 1 0 0

0 0 1 0

0 0 0 1

 (7.337)

Rz,θ2 =


cos θ2 sin θ2 0 0

− sin θ2 cos θ2 0 0

0 0 1 0

0 0 0 1

 (7.338)

Dx,l2 =


1 0 0 −l2

0 1 0 0

0 0 1 0

0 0 0 1

 (7.339)
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The matrices (7.330) and (7.333) are order free and we can check the result of
their product with different orders:

2T0 = 1T0
2T1

=


cθ1 sθ1 0 l2cθ1 − l1cθ2 − l2

−sθ1 cθ1 0 l1sθ2 − l2sθ1

0 0 1 0
0 0 0 1




cθ2 sθ2 0 −l2
−sθ2 cθ2 0 0

0 0 1 0
0 0 0 1



=


c (θ1 + θ2) s (θ1 + θ2) 0 −l2 − l1cθ2

−s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ2

0 0 1 0
0 0 0 1

 (7.340)

2T0 = 1T0
2T1

=


cθ2 sθ2 0 −l2

−sθ2 cθ2 0 0
0 0 1 0
0 0 0 1




cθ1 sθ1 0 0cθ1 − l1c0 − 0
−sθ1 cθ1 0 l1s0 − 0sθ1

0 0 1 0
0 0 0 1



=


c (θ1 + θ2) s (θ1 + θ2) 0 −l2 − l1cθ2

−s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ2

0 0 1 0
0 0 0 1

 (7.341)

Example 443 � Order-Free Transformations of an Articulated Manipulator An
articulated manipulator is any serial multibody with three links and three revolute joints
to reach a point in three dimensions. However, an articulated arm is usually referred
to a three-link multibody that is similar to a human hand with a shoulder, arm, and
forearm such as the one shown in Figure 7.59.

z0

x0

Shoulder
joints

Elbow

Wrist point

z1

θ2

θ1

z3
y0

x1

x2

x3

l2

l1

l3

d3

z2

d2

Arm

Forearm
θ3

Figure 7.59 An articulated manipulator.



7.6 � Order-Free Transformation 641

The first link of the arm is an R�R(90) with a distance l1 between x0 and x1, and
therefore,

0T1 =


cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0

0 1 0 l1
0 0 0 1

 (7.342)

1T0 = 0T −1
1 =


cos θ1 sin θ1 0 0

0 0 1 −l1
sin θ1 − cos θ1 0 0

0 0 0 1

 (7.343)

The second link of the arm is an R‖R(90) with a distance d2 between x1 and x2 and a
distance l2 between z1 and z2:

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 d2

0 0 0 1

 (7.344)

2T1 = 1T −1
2 =


cos θ2 sin θ2 0 −l2

− sin θ2 cos θ2 0 0
0 0 1 −d2

0 0 0 1

 (7.345)

The third link is not connected to any other link at its distal end, and we should set
B3 at its proximal end and attach a takht frame at its tip point. We may also attach
only one coordinate frame at the tip point and consider the link as an R�R(90) with a
distance d3 between x2 and x3 and a distance l3 between z2 and z3:

2T3 =


cos θ3 − sin θ3 0 l3 cos θ3

sin θ3 cos θ3 0 l3 sin θ3

0 0 1 d3

0 0 0 1

 (7.346)

3T2 = 2T −1
3 =


cos θ3 sin θ3 0 −l3

− sin θ3 cos θ3 0 0
0 0 1 −d3

0 0 0 1

 (7.347)

The forward kinematics of the manipulator is

0T3 = 0T1
1T2

2T3

=


c (θ2 + θ3) cθ1 −s (θ2 + θ3) cθ1 sθ1

0dx

c (θ2 + θ3) sθ1 −s (θ2 + θ3) sθ1 −cθ1
0dy

s (θ2 + θ3) c (θ2 + θ3) 0 0dz

0 0 0 1

 (7.348)

0dx
0dy
0dz

 =
(l2cθ2 + l3c (θ2 + θ3)) cθ1 + (d2 + d3) sθ1

(l2cθ2 + l3c (θ2 + θ3)) sθ1 − (d3 + d2) cθ1

l1 + l2sθ2 + l3s (θ2 + θ3)

 (7.349)
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or
3T0 = 3T2

2T1
1T0

=


c (θ2 + θ3) cθ1 c (θ2 + θ3) sθ1 s (θ2 + θ3)

3dx

−s (θ2 + θ3) cθ1 −s (θ2 + θ3) sθ1 c (θ2 + θ3)
3dy

sθ1 −cθ1 0 3dz

0 0 0 1

 (7.350)

3dx
3dy
3dz

 =
−l1s (θ2 + θ3) − l2cθ3 − l3

−l1c (θ2 + θ3) + l2sθ3

−d2 − d3

 (7.351)

To determine the order-free transformations 3T2, 2T1, and 1T0, we begin with the
final coordinate frame B3. The transformation 3T2 is already a motion about and along
the axes of B3. The order-free transformation of the second matrix is

2T1 = 3T2
2T1

3T −1
2 = 3T2

2T1
2T3

=


cos θ2 sin θ2 0 l3 cos θ2 − l2 cos θ3 − l3

− sin θ2 cos θ2 0 l2 sin θ3 − l3 sin θ2

0 0 1 −d2

0 0 0 1

 (7.352)

We may check and see that

3T1 = 3T2
2T1 = 2T1

3T2

=


cos (θ2 + θ3) sin (θ2 + θ3) 0 −l3 − l2 cos θ3

− sin (θ2 + θ3) cos (θ2 + θ3) 0 l2 sin θ3

0 0 1 −d2 − d3

0 0 0 1

 (7.353)

However, when 2T1 is the first motion, we must substitute the parameters l3 and θ3 of
the second motion equal to zero.

The order-free transformation of the third matrix is

1T0 = 3T2
2T1

1T0
2T −1

1
3T −1

2 = 3T2
2T1

1T0
1T2

2T3 (7.354)

= 1

2


cγ + cθ1 sγ + sθ1 2s (θ2 + θ3)

1dx

sγ − sθ1 cθ1 − cγ 2c (θ2 + θ3)
1dy

2s (θ1 − θ2 − θ3) −2c (θ1 − θ2 − θ3) 0 1dz

0 0 0 1


γ = θ1 − 2θ2 − 2θ3 (7.355)

where
1dx = 2 (d2 + d3 − l1) sin (θ2 + θ3) + l3 cos θ1 − 2l2 cos θ3 − 2l3

+ (l2 + l3) cos (θ1 − 2θ2 − 2θ3) + l2 cos (θ1 + θ3) (7.356)



7.7 � Forward Kinematics by Screw 643

1dy = 2 (d2 + d3 − l1) cos (θ2 + θ3) − l3 sin θ1 + 2l2 sin θ3

+ (l2 + l3) sin (θ1 − 2θ2 − 2θ3) − l2 sin (θ1 + θ3) (7.357)
1dz = 2[l3 sin(θ1 − θ2 − θ3) − d3 − d2 + l2 sin(θ1 − θ2)] (7.358)

We may check and see that the transformation 3T0 = 3T2
2T1

1T0 can be found by
multiplying 3T2, 2T1, 1T0 in any order:

3T0 = 3T2
2T1

1T0 = 2T1
3T2

1T0

= 3T2
1T0

2T1 = 1T0
3T2

2T1

= 2T1
1T0

3T2 = 1T0
2T1

3T2 (7.359)

It indicates that we can run the three motors of the manipulator with any arbitrary
order. As long as the associated angles of rotation of the motors remain the same, the
final configuration of the manipulator would be the same.

7.7 � FORWARD KINEMATICS BY SCREW

It is easier to use screws in forward kinematics and represent a transformation matrix
between two adjacent coordinate frames Bi and Bi−1 that are set up according to DH
rules. We can move Bi to Bi−1 by a central screw š(ai , αi, ı̂i−1) followed by another
central screw š(di , θi, k̂i−1):

i−1Ti = š(di , θi, k̂i−1) š(ai, αi, ı̂i−1)

=


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (7.360)

Proof : The central screw š(ai , αi, ı̂i−1) is given as

š(ai, αi, ı̂i−1) = D(ai, ı̂i−1)R(ı̂i−1, αi) = Dxi−1,ai
Rxi−1,αi

=


1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cos αi − sin αi 0

0 sin αi cos αi 0

0 0 0 1



=


1 0 0 ai

0 cos αi − sin αi 0

0 sin αi cos αi 0

0 0 0 1

 (7.361)
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and the central screw š(di, θi, k̂i−1) as

š(di, θi, k̂i−1) = D(di, k̂i−1)R(k̂i−1, θi) = Dzi−1,di
Rzi−1,θi

=


1 0 0 0
0 1 0 0
0 0 1 di

0 0 0 1




cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1



=


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di

0 0 0 1

 (7.362)

Therefore, the transformation matrix i−1Ti made by the two central screws would be

i−1Ti = š(di, θi, k̂i−1) š(ai, αi, ı̂i−1)

=


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 cos αi − sin αi 0
0 sin αi cos αi 0
0 0 0 1



=


cos θi − cos αi sin θi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (7.363)

The resultant transformation matrix i−1Ti is equivalent to a general screw whose
parameters can be found based on Equations (6.248) and (6.249).

The twist of the screw, φ, can be computed based on Equation (6.252):

cos φ = 1
2 [tr

(
GRB

) − 1]

= 1
2 (cos θi + cos θi cos αi + cos αi − 1) (7.364)

The axis of the screw, û, can be found by using Equation (6.253):

ũ = 1

2 sin φ

(
GRB − GRT

B

)
= 1

2sφ

cθi −cαisθi sθisαi

sθi cθicαi −cθisαi

0 sαi cαi

 −
 cθi sθi 0

−cαisθi cθicαi sαi

sθisαi −cθisαi cαi



= 1

2sφ

 0 −sθi − cαisθi sθisαi

sθi + cαisθi 0 −sαi − cθisαi

−sθisαi sαi + cθisαi 0

 (7.365)
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and therefore,

û = 1

2sφ

sin αi + cos θi sin αi

sin θi sin αi

sin θi + cos αi sin θi

 (7.366)

The translation parameter h and the position vector of a point on the screw axis,
for instance, [0, yi−1, zi−1], can be found based on Equation (6.256): h

yi−1

yi−1

 =
u1 −r12 −r13

u2 1 − r22 −r23

u3 −r32 1 − r33

−1 r14

r24

r34



= 1

2sφ

sαi + cθisαi −sθi cαi sθi sαi

sθisαi 1 − cθi cαi −cθi sαi

sθi + cαisθi sαi cαi

−1 ai cθi

ai sθi

di

 (7.367)

�

Example 444 � Classification of Industrial Links by Screw As explained in Example
404 and Appendix D, there are 12 different configurations that are mostly used for
industrial links. Each type has its own class of geometric configuration and transforma-
tion. Each class is identified by its joints at both ends and has its own transformation
matrix to go from the distal joint coordinate frame Bi to the proximal joint coordinate
frame Bi−1. The transformation matrix of each class depends solely on the proxi-
mal joint and the angle between the z-axes. The screw expression for two arbitrary
coordinate frames is

i−1Ti = š(di , θi, k̂i−1) š(ai, αi, ı̂i−1) (7.368)

where
š(di, θi, k̂i−1) = D(di, k̂i−1)R(k̂i−1, θi) (7.369)

š(ai , αi, ı̂i−1) = D(ai, ı̂i−1)R(ı̂i−1, αi) (7.370)

The frame transformations for each class of the industrial links can be expressed by
screws as shown in Table 7.10.

As an example, let us examine the first class and find the same result as Equation
(D.1) for di = 0:

i−1Ti = š(0, θi, k̂i−1) š(ai, 0, ı̂i−1)

= D(0, k̂i−1)R(k̂i−1, θi)D(ai, ı̂i−1)R(ı̂i−1, 0)

=


cos θi − sin θi 0 0
sin θi cos θi 0 0

0 0 1 0
0 0 0 1




1 0 0 ai

0 1 0 0
0 0 1 0
0 0 0 1



=


cos θi − sin θi 0 ai cos θi

sin θi cos θi 0 ai sin θi

0 0 1 0
0 0 0 1

 (7.371)



646 Multibody Kinematics

Table 7.10 Screw Transformation of Industrial Links

No. Type of Link i−1Ti =
1 R‖R(0) or R‖P(0) š(0, θi , k̂i−1) š(ai, 0, ı̂i−1)

2 R‖R(180) or R‖P(180) š(0, θi , k̂i−1) š(ai, 2π, ı̂i−1)

3 R⊥R(90) or R⊥P(90) š(0, θi , k̂i−1) š(ai, π, ı̂i−1)

4 R⊥R(−90) or R⊥P(−90) š(0, θi , k̂i−1) š(ai,−π, ı̂i−1)

5 R�R(90) or R�P(90) š(0, θi , k̂i−1) š(0, π, ı̂i−1)

6 R�R(−90) or R�P(−90) š(0, θi , k̂i−1) š(0,−π, ı̂i−1)

7 P‖R(0) or P‖P(0) š(di, 0, k̂i−1) š(ai, 0, ı̂i−1)

8 P‖R(180) or P‖P(180) š(di, 0, k̂i−1) š(ai, 2π, ı̂i−1)

9 P⊥R(90) or P⊥P(90) š(di, 0, k̂i−1) š(ai, π, ı̂i−1)

10 P⊥R(−90) or P⊥P(−90) š(di, 0, k̂i−1) š(ai, −π, ı̂i−1)

11 P�R(90) or P�P(90) š(di, 0, k̂i−1) š(0, π, ı̂i−1)

12 P�R(−90) or P�P(−90) š(di, 0, k̂i−1) š(0,−π, ı̂i−1)

Example 445 � Spherical Arm Forward Kinematics Based on Screws Consider
the spherical arm in Figure 7.50. The classes of links for the arm are indicated in
Table 7.11:

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 d1

0 0 0 1

 (7.372)

1T2 =


cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0

0 1 0 0
0 0 0 1

 (7.373)

2T3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 (7.374)

3T4 =


1 0 0 0
0 1 0 0
0 0 1 d4

0 0 0 1

 (7.375)

Therefore, the configuration of the takht frame B4 of the spherical arm in the base
frame is

0T4 = 0T1
1T2

2T3
3T4

= š(d1, θ1, k̂0) š(0, −π, ı̂0) š(0, θ2, k̂1) š(0, π, ı̂1)

×š(d3, 0, k̂2) š(0, 0, ı̂2) š(d4, 0, k̂3) š(0, 0, ı̂3) (7.376)
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Table 7.11 Screw Transformation for Spherical Arm
Shown in Figure 7.50

Link No. Class Screw Transformation

1 R�R(−90) 0T1 = š(d1, θ1, k̂0) š(0,−π, ı̂0)

2 R�P(90) 1T2 = š(0, θ2, k̂1) š(0, π, ı̂1)

3 P‖R(0) 2T3 = š(d3, 0, k̂2) š(0, 0, ı̂2)

4 R‖R(0) 3T4 = š(d4, 0, k̂3) š(0, 0, ı̂3)

Substituting the associated matrices and multiplying provide the forward kinematics
for the takht frame of the arm in the base frame:

0T4 = 0T1
1T2

2T3
3T4

=


cθ1cθ2 −sθ1 cθ1sθ2 (d3 + d4) cθ1sθ2

cθ2sθ1 cθ1 sθ1sθ2 (d3 + d4) sθ1sθ2

−sθ2 0 cθ2 d1 + d3cθ2 + d4cθ2

0 0 0 1

 (7.377)

Example 446 � Spherical Wrist Forward Kinematics by Screws Consider the spher-
ical wrist in Figure 7.46. The classes of links for the wrist are indicated in Table 7.12.
Therefore, the transformation of the spherical wrist 7T8 would be

7T8 = 5T6
6T7

7T8

= š(0, θ6, k̂5) š(0, −π, ı̂5) š(0, θ7, k̂6) š(0, π, ı̂6) š(0, θ8, k̂7) š(0, 0, ı̂7) (7.378)

Substituting the associated matrices and multiplying provide the same transformation
as (7.246).

Table 7.12 Screw Transformation for Spherical Wrist
Shown in Figure 7.46

Link No. Class Screw Transformation

6 R�R(−90) 5T6 = š(0, θ6, k̂5) š(0,−π, ı̂5)

7 R�R(−90) 6T7 = š(0, θ7, k̂6) š(0, π, ı̂6)

8 R�R(0) 7T8 = š(0, θ8, k̂7) š(0, 0, ı̂7)

Example 447 � Assembled Spherical Arm–Wrist Kinematics by Screws Consider
the assembled spherical arm–wrist in Figure 7.52. The classes of links for the arm–wrist
assembly are indicated in Table 7.13. Assembling the wrist of Figure 7.46 and arm of
Figure 7.50 eliminates the coordinate frames B3 and B4. The number of links would
then be 1,2,5,6,7,8. Link (1) is the trunk link R�R(−90) that holds the manipulator



648 Multibody Kinematics

Table 7.13 Screw Transformation for Spherical
Arm–Wrist Assembly Shown in Figure 7.52

Link No. Class Screw transformation

1 R�R(−90) 0T1 = š(d1, θ1, k̂0) š(0, −π, ı̂0)

2 R�P(90) 1T2 = š(0, θ2, k̂1) š(0, π, ı̂1)

5 P‖R(0) 2T3 = š(d6, 0, k̂2) š(0, 0, ı̂2)

6 R�R(−90) 5T6 = š(0, θ6, k̂5) š(0, −π, ı̂5)

7 R�R(−90) 6T7 = š(0, θ7, k̂6) š(0, π, ı̂6)

8 R�R(0) 7T8 = š(0, θ8, k̂7) š(0, 0, ı̂7)

9 R‖R(0) 8T9 = š(d9, 0, k̂8) š(0, 0, ı̂8)

on the ground and turns the arm about the global z0-axis. Link (2) is the box link
R�P(90) that holds and turns other links about the z1-axis. Link (5) is the last link
of the arm P‖R(0) and has the wrist attached to its tip point. Links (6), (7), and (8)
are the three links of the wrist. Link (8) is the last link of the manipulator that holds
the gripper. The coordinate frame B9 is a Sina frame to indicate the gripper coordinate
frame:

d6 = d3 + d4 + d5 (7.379)

Example 448 � Plücker Coordinate of a Central Screw Using Plücker coordinates
we can define a central screw as

š(h, φ, û) =
[
φû

hû

]
(7.380)

which is equal to [
φû

hû

]
= D(hû) R(û, φ) (7.381)

Therefore, the central screw š(ai , αi, ı̂i−1) can be expressed by a Plücker coordi-
nate:

š(ai, αi, ı̂i−1) =
[
αi ı̂i−1

ai ı̂i−1

]
= D(ai, ı̂i−1)R(ı̂i−1, αi) (7.382)

Similarly, the central screw š(di , θi, k̂i−1) can be expressed by a Plücker coordinate:

š(di , θi, k̂i−1) =
[
θi k̂i−1

di k̂i−1

]
= D(di, k̂i−1)R(k̂i−1, θi) (7.383)

Example 449 � Intersecting Two Central Screws Two lines (and therefore two
screws) are intersecting if their reciprocal product is zero. We can check that the
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reciprocal product of the intersecting screws š(ai, αi, ı̂i−1) and š(di , θi, k̂i−1) is zero:

š(di, θi, k̂i−1) × š(ai, αi, ı̂i−1) =
[
θi k̂i−1

di k̂i−1

]
⊗

[
αi ı̂i−1

ai ı̂i−1

]
= θi k̂i−1 · ai ı̂i−1 + αi ı̂i−1 · θi k̂i−1

= 0 (7.384)

7.8 � CASTER THEORY IN VEHICLES

The forward and assembling kinematics of multibodies can be used to derive the kine-
matic information of an interested multibody system. The kinematics of a steerable
wheel of a vehicle is a good example of an applied mechanical multibody with interest-
ing kinematic behavior. We use the wheel–vehicle system to show how the multibody
kinematics can produce new information and ideas. We employ a steerable wheel of
the vehicle to apply the multibody kinematics and develop a theory, which we call
caster theory , to be used in the design of the vehicle’s suspension.

The steering axis of a wheel should ideally pass through the center of the tireprint
and be perpendicular to the ground plane. However, due to error, physical constraints,
or design purposes, the steering axis of a steerable wheel may have any angle and
be at any location with respect to the wheel–body coordinate frame C (xc, yc, zc).
The wheel–body frame C is a fixed frame to the vehicle and parallel to the vehicle
coordinate frame B. The frame C is at the center of the wheel when the wheel is at
the rest position and does not follow any motion of the wheel.

Figure 7.60 illustrates the front and side views of a wheel and its steering axis. The
steering axis has angle ϕ with the (yc, zc)-plane and angle θ with the (xc, zc)-plane.
The angles ϕ and θ are measured about the yc- and xc-axes, respectively. The angle
ϕ is called the caster angle, and the angle θ is called the lean angle. The steering
axis of the wheel in Figure 7.60 has positive caster and lean angles. The steering

zc

θ
ϕ

Front view Side view

yc

Steering axis

Steering axis

xc

zc

sb sa

Rw

Figure 7.60 The front and side views of a wheel and its steering axis.
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axis intersects the ground plane at a point that has coordinates (sa, sb, −Rw) in the
wheel–body coordinate frame C.

Let us indicate the steering axis by a vector û. The components of û are functions
of the caster and lean angles:

Cû =
u1

u2

u3

 = 1√
cos2 ϕ + cos2 θ sin2 ϕ

 cos θ sin ϕ

− cos ϕ sin θ

cos θ cos ϕ

 (7.385)

The location vector Cs indicates the position vector of the intersection point of û and
the ground plane. The components of Cs are

Cs =
 sa

sb

−Rw

 (7.386)

We can express the rotation of the wheel about the steering axis û by a zero-pitch
screw motion š:

CTW = CšW (0, δ, û, s)

=
[

CRW
Cs − CRW

Cs
0 1

]
=

[
CRW

CdW

0 1

]
(7.387)

Proof : The steering axis is at the intersection of the caster plane πC and the lean
plane πL, both expressed in the wheel–body coordinate frame. The two planes can be
indicated by their normal unit vectors n̂1 and n̂2:

Cn̂1 =
 0

cos θ

sin θ

 Cn̂2 =
− cos ϕ

0
sin ϕ

 (7.388)

The unit vector û on the intersection of the caster and lean planes can be found by

û = n̂1 × n̂2∣∣n̂1 × n̂2
∣∣ (7.389)

where

n̂1 × n̂2 =
 cos θ sin ϕ

− cos ϕ sin θ

cos θ cos ϕ

 (7.390)

∣∣n̂1 × n̂2
∣∣ =

√
cos2 ϕ + cos2 θ sin2 ϕ (7.391)

and therefore,

Cû =
u1

u2

u3

 =



cos θ sin ϕ√
cos2 ϕ + cos2 θ sin2 ϕ

− cos ϕ sin θ√
cos2 ϕ + cos2 θ sin2 ϕ

cos θ cos ϕ√
cos2 ϕ + cos2 θ sin2 ϕ


(7.392)
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The intersection point of the steering axis and the ground plane defines the location
vector s:

Cs =
 sa

sb

−Rw

 (7.393)

The components sa and sb are called the forward and lateral steering locations , respec-
tively.

Using the axis–angle of rotation (û, δ) and the location vector s, we can define
the steering process as a screw motion š with zero pitch. Employing Equations
(6.245)–(6.249), we find the transformation screw for the wheel frame W to the
wheel–body frame C:

CTW = CšW (0, δ, û, s)

=
[

CRW
Cs − CRW

Cs
0 1

]
=

[
CRW

Cd
0 1

]
(7.394)

CRW = I cos δ + ûûT vers δ + ũ sin δ (7.395)
CdW = [(I − ûûT) vers δ − ũ sin δ] Cs (7.396)

ũ =
 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (7.397)

vers δ = 1 − cos δ (7.398)

Direct substitution shows that

CRW =
 u2

1 vers δ + cδ u1u2 vers δ − u3sδ u1u3 vers δ + u2sδ

u1u2 vers δ + u3sδ u2
2 vers δ + cδ u2u3 vers δ − u1sδ

u1u3 vers δ − u2sδ u2u3 vers δ + u1sδ u2
3 vers δ + cδ

 (7.399)

CdW =
(s1 − u1 (s3u3 + s2u2 + s1u1)) vers δ + (s2u3 − s3u2) sin δ

(s2 − u2 (s3u3 + s2u2 + s1u1)) vers δ + (s3u1 − s1u3) sin δ

(s3 − u3 (s3u3 + s2u2 + s1u1)) vers δ + (s1u2 − s2u1) sin δ

 (7.400)

The vector CdW indicates the position of the wheel center with respect to the
wheel–body frame.

The matrix CTW is the homogeneous transformation from the wheel frame W to
the wheel–body frame C when the wheel is steered by the angle δ about the steering
axis û. �

Example 450 � Zero Steer Angle To examine the screw transformation, we check
the zero steering. Substituting δ = 0 simplifies the steering transformation matrix CRW

to [I] and the position vector CdW to 0:

CRW =
1 0 0

0 1 0
0 0 1

 CdW=
0

0
0

 (7.401)
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It shows that at zero steering the wheel frame W and wheel–body frame C are
coincident.

Example 451 � Zero Lean and Caster Angles Consider an ideal wheel with a
steering axis coincident with zw. Such a wheel has no lean or caster angle. When the
wheel is steered by an angle δ, we can find the coordinates of a wheel point P in the
wheel–body coordinate frame using the transformation method. Figure 7.61 illustrates
a 3D view of such a wheel. The top view of the wheel in Figure 7.62 indicates the
relative orientation of the tire frame T , wheel frame W , and wheel–body frame C.

xt

yt

y

zt

x
T

W

xw

zw

δ

yw

Steer angle

δ

C

Figure 7.61 A 3D illustration of a steered wheel with a steering axis coincident with zw.

Consider a point P in the wheel coordinate frame at W rP = [
xw, yw, zw

]T
. The

position vector of P in the wheel–body coordinate frame C is

CrP = CRW
W rP = Rz,δ

W rP

=
cos δ − sin δ 0

sin δ cos δ 0
0 0 1

xw

yw

zw

 =
xw cos δ − yw sin δ

yw cos δ + xw sin δ

zw

 (7.402)

We assumed that the wheel–body coordinate frame C is installed at the center of the
wheel and is parallel to the vehicle coordinate frame B. Therefore, the transformation
from frame W to frame C is a rotation δ about the wheel–body z-axis. There would
be no camber angle when the lean and caster angles are zero and steer axis is about
the zw-axis.
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xxt
δ

xw

yt yw

y

C

T

W

Figure 7.62 Top view of a steered wheel with a steering axis coincident with zw.

Example 452 � Zero Lean, Zero Lateral Location The case of zero lean, θ = 0, and
zero lateral location, sb = 0, is important in the caster dynamics of bikes, motorcycles,
and bicycle models of vehicles. The screw transformation CšW (0, δ, û, s) for this case
will be simplified to

CTW = CšW (0, δ, û, s) =
[

CRW
Cd

0 1

]
(7.403)

Cû =
u1

u2

u3

 =
sin ϕ

0
cos ϕ

 (7.404)

Cs =
 sa

0
−Rw

 (7.405)

CRW =
sin2 ϕ vers δ + cos δ − cos ϕ sin δ sin ϕ cos ϕ vers δ

cos ϕ sin δ cos δ − sin ϕ sin δ

sin ϕ cos ϕ vers δ sin ϕ sin δ cos2 ϕ vers δ + cos δ

 (7.406)

Cd =


cos ϕ (sa cos ϕ + Rw sin ϕ) vers δ

− (sa cos ϕ + Rw sin ϕ) sin δ

−1

2
(Rw − Rw cos 2ϕ + sa sin 2ϕ) vers δ

 (7.407)
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Example 453 � Position of Tireprint Center Let us show the position vector of the
center of a tireprint in the wheel coordinate frame by rT :

W rT =
 0

0
−Rw

 (7.408)

If we assume the width of the tire is zero and substitute the tire with the equivalent
disc, then the center of the tireprint of the steered wheel would be at

CrT = CTW
W rT =

xT

yT

zT

 (7.409)

where
xT = (

1 − u2
1

)
(1 − cos δ) sa + [u3 sin δ − u1u2 (1 − cos δ)] sb (7.410)

yT = − [u3 sin δ + u1u2 (1 − cos δ)] sa + (
1 − u2

2

)
(1 − cos δ) sb (7.411)

zT = [u2 sin δ − u1u3 (1 − cos δ)] sa

− [u1 sin δ + u2u3 (1 − cos δ)] sb − Rw (7.412)

or

xT = sb

(
cos θ cos ϕ sin δ√

cos2 θ sin2 ϕ + cos2 ϕ
+ 1

4

sin 2θ sin 2ϕ (1 − cos δ)

cos2 θ sin2 ϕ + cos2 ϕ

)

+ sa

(
1 − cos2 θ sin2 ϕ

cos2 θ sin2 ϕ + cos2 ϕ

)
(1 − cos δ) (7.413)

yT = −sa

(
cos θ cos ϕ sin δ√

cos2 θ sin2 ϕ + cos2 ϕ
− 1

4

sin 2θ sin 2ϕ (1 − cos δ)

cos2 θ sin2 ϕ + cos2 ϕ

)

+ sb

(
1 − cos2 ϕ sin2 θ

cos2 θ sin2 ϕ + cos2 ϕ

)
(1 − cos δ) (7.414)

zT = −Rw − sb cos θ sin ϕ + sa cos ϕ sin θ√
cos2 θ sin2 ϕ + cos2 ϕ

sin δ

+ 1

2

sb cos2 ϕ sin 2θ − sa cos2 θ sin 2ϕ

cos2 θ sin2 ϕ + cos2 ϕ
(1 − cos δ) (7.415)

Example 454 � Wheel Center Vertical Displacement We can use the zT component
of CrT in (7.412) or (7.415) to determine the height that the center of the tireprint will
move in the vertical direction when the wheel is steered. If the steer angle is zero,
δ = 0, then

zT = −Rw (7.416)
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Because the center of the tireprint is assumed to be on the ground, the height that the
center of the wheel will drop during steering is given as

H = −Rw − zT

= sb cos θ sin ϕ + sa cos ϕ sin θ√
cos2 θ sin2 ϕ + cos2 ϕ

sin δ

− 1

2

sb cos2 ϕ sin 2θ − sa cos2 θ sin 2ϕ

cos2 θ sin2 ϕ + cos2 ϕ
(1 − cos δ) (7.417)

The zT -coordinate of the tireprint may be simplified for different designs:

1. If the lean angle is zero, θ = 0, then

zT = −Rw − 1
2sa sin 2ϕ (1 − cos δ) − sb sin ϕ sin δ (7.418)

2. If the lean angle and lateral location are zero, θ = 0, sb = 0, then

zT = −Rw − 1
2sa sin 2ϕ (1 − cos δ) (7.419)

In this case, the wheel center drop may be expressed by the dimensionless
equation

H

sa

= 1

2
sin 2ϕ (1 − cos δ) (7.420)

Figure 7.63 illustrates the wheel drop parameter H/sa at zero lean angle θ = 0
and zero lateral location sb = 0 for various caster angles ϕ and various steer
angles δ.

δ[deg]

0.001

0

−0.001

−0.002

−0.003

−0.004

−0.005
−10 −8 −6 −4 −2 0 2 4 6 8 10

H
sb

ϕ = 5°

ϕ = −5°

ϕ = −10°
ϕ = −15°
ϕ = −20°

θ = 0 ϕ = 0
sb = 0

Figure 7.63 H/sa for caster angles ϕ = 5 deg 0, −5 deg, −10 deg, −15 deg, −20 deg and steer
angles in the range −10 deg < δ < 10 deg.
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3. If the caster angle is zero, ϕ = 0, then

zT = −Rw + 1
2 sb sin 2θ (1 − cos δ) − sa sin θ sin δ (7.421)

4. If the caster angle and lateral location are zero, ϕ = 0, sb = 0, then

zT = −Rw − sa sin θ sin δ (7.422)

In this case, the wheel center drop may be expressed by the dimensionless
equation

H

sa

= − sin θ sin δ (7.423)

Figure 7.64 illustrates H/sa at zero caster angle ϕ = 0 and zero lateral location
sb = 0 for various lean angles θ and various steer angles δ.

Comparison of Figures 7.63 and 7.64 shows that the lean angle θ has much
more effect on the wheel center drop than the caster angle ϕ.

5. If the lateral location is zero, sb = 0, then

zT = −Rw − sa

cos ϕ sin θ√
cos2 θ sin2 ϕ + cos2 ϕ

sin δ

− 1

2
sa

cos2 θ sin 2ϕ

cos2 θ sin2 ϕ + cos2 ϕ
(1 − cos δ) (7.424)

and the wheel center drop H may be expressed by the dimensionless equation

H

sa

= −1

2

cos2 θ sin2 ϕ (1 − cos δ)

cos2 θ sin2 ϕ + cos2 ϕ
− cos ϕ sin θ sin δ√

cos2 θ sin2 ϕ + cos2 ϕ
(7.425)
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0

0.004
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−0.002
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−0.004
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ϕ = 0 θ = 20°
θ = 15°
θ = 10°

θ = 5°

θ = −5°

θ = 0

sb = 0

Figure 7.64 H/sa for lean angles θ = 5 deg 0, −5 deg, −10 deg, −15 deg, −20 deg and steer
angles in the range −10 deg < δ < 10 deg.
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Example 455 � Position of the Wheel Center As given in Equation (7.400), the
wheel center is at CdW with respect to the wheel–body frame C:

CdW =
xW

yW

zW

 (7.426)

Substituting for û and s from (7.385) and (7.386) in (7.400) provides the coordinates
of the wheel center in the wheel–body frame as

xW = [sa − u1 (−Rwu3 + sbu2 + sau1)] (1 − cos δ)

+ (sbu3 + Rwu2) sin δ (7.427)

yW = [sb − u2 (−Rwu3 + sbu2 + sau1)] (1 − cos δ)

− (Rwu1 + sau3) sin δ (7.428)

zW = [−Rw − u3 (−Rwu3 + sbu2 + sau1)] (1 − cos δ)

+ (sau2 − sbu1) sin δ (7.429)

or
xW = sa (1 − cos δ)

+
( 1

2Rw sin 2ϕ − sa sin2 ϕ
)

cos2 θ + 1
4sb sin 2θ sin 2ϕ

cos2 ϕ + cos2 θ sin2 ϕ
(1 − cos δ)

+ sb cos θ − Rw sin θ√
cos2 ϕ + cos2 θ sin2 ϕ

cos ϕ sin δ (7.430)

yW = sb (1 − cos δ)

−
1
2

(
Rw sin 2θ + sb sin2 θ

)
cos2 ϕ − 1

4sa sin 2θ sin 2ϕ

cos2 ϕ + cos2 θ sin2 ϕ
(1 − cos δ)

− Rw sin ϕ + sa cos ϕ√
cos2 ϕ + cos2 θ sin2 ϕ

cos θ sin δ (7.431)

zW = −Rw (1 − cos δ)

+
(
Rw cos2 θ + 1

2 sb sin 2θ
)

cos2 ϕ − 1
2sa cos2 θ sin 2ϕ

cos2 ϕ + cos2 θ sin2 ϕ
(1 − cos δ)

− sa cos ϕ sin θ + sb cos θ sin ϕ√
cos2 ϕ + cos2 θ sin2 ϕ

sin δ (7.432)

The zW -coordinate indicates how the center of the wheel will move in the vertical
direction with respect to the wheel–body frame when the wheel is steering. It shows
that zW = 0 as long as δ = 0.
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The zW -coordinate of the wheel center may be simplified for different designs:

1. If the lean angle is zero, θ = 0, then

zW = −Rw

(
1 − cos2 ϕ

)
(1 − cos δ) − sb sin ϕ sin δ

− 1
2 sa sin 2ϕ (1 − cos δ) (7.433)

2. If the lean angle and lateral location are zero, θ = 0, sb = 0, then

zW = −Rw

(
1 − cos2 ϕ

)
(1 − cos δ) − 1

2sa sin 2ϕ (1 − cos δ) (7.434)

3. If the caster angle is zero, ϕ = 0, then

zW = −Rw

(
1 − cos2 θ

)
(1 − cos δ) − sa sin θ sin δ

+ 1
2 sb sin 2θ (1 − cos δ) (7.435)

4. If the caster angle and lateral location are zero, ϕ = 0, sb = 0, then

zW = −Rw

(
1 − cos2 θ

)
(1 − cos δ) − sa sin θ sin δ (7.436)

5. If the lateral location is zero, sb = 0, then

zW = −Rw (1 − cos δ) − sa cos ϕ sin θ√
cos2 ϕ + cos2 θ sin2 ϕ

sin δ

+
Rw cos2 θ cos2 ϕ − 1

2
sa cos2 θ sin 2ϕ

cos2 ϕ + cos2 θ sin2 ϕ
(1 − cos δ) (7.437)

In each of the above designs, the height of the wheel center with respect to the
ground level can be found by adding H to zW . The equations for calculating H are
found in Example 454.

Example 456 � Camber Angle Having nonzero lean and caster angles causes a
camber angle γ for a steered wheel. To find the camber angle of a steered wheel, we
may determine the angle between the camber line and the vertical direction zc. The
camber line is the line connecting the wheel center and the center of the tireprint.

The coordinates of the center of the tireprint (xT , yT , zT ) are given in Equations
(7.412)–(7.415), and the coordinates of the wheel center (xW , yW , zW ) are given
in Equations (7.430)–(7.432). Let us indicate the line connecting (xT , yT , zT ) to
(xW , yW , zW ) by a unit vector l̂c:

l̂c = (xW − xT ) Î + (yW − yT ) Ĵ + (zW − zT ) K̂√
(xW − xT )2 + (yW − yT )2 + (zW − zT )2

(7.438)

in which Î , Ĵ , K̂ are the unit vectors of the wheel–body coordinate frame C.
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The camber angle is the angle between l̂c and K̂ , which can be found by the inner
vector product:

γ = cos−1
(
l̂c · K̂

)
= cos−1 (zW − zT )√

(xW − xT )2 + (yW − yT )2 + (zW − zT )2
(7.439)

As a special case, let us determine the camber angle when the lean angle and
lateral location are zero, θ = 0, sb = 0. In this case, we have

xT = sa

(
1 − sin2 ϕ

)
(cos δ − 1) (7.440)

yT = −sa cos ϕ sin δ (7.441)

zT = zT = −Rw − 1
2sa sin 2ϕ (1 − cos δ) (7.442)

xW = [sa + 1
2Rw sin 2ϕ − sa sin2 ϕ] (1 − cos δ) (7.443)

yW = sb (1 − cos δ) − Rw sin ϕ + sa cos ϕ sin δ (7.444)

zW = [Rw

(
cos2 ϕ − 1

) − 1
2 sa sin 2ϕ] (1 − cos δ) (7.445)

The lateral force of a tire is a function of sideslip and camber angles. The camber
angle can provide a significant effect on the stability of a vehicle to increase the lateral
and required force to keep the vehicle on the road. When the suspension and steering
mechanisms of a vehicle are designed, Equation (7.439) is the required formula to
calculate the camber angle of the tire during steering.

Example 457 � Application of Caster Theory The lateral force of a tire is propor-
tional to the sideslip angle α and camber angle γ :

Fy = −Cα α − Cγ γ (7.446)

The definition and a sample of the behavior of the camber and sideslip angles are
indicated in Figures 7.65 and 7.66. Both camber and sideslip coefficients Cα and Cγ

are proportional to the normal load Fz on the tire. Increasing Fz will increase Cα and Cγ .
By steering a tire, we change the direction of the tire coordinate frame with respect

to the wheel–body frame and produce a sideslip angle α. However, the camber angle
is produced by the suspension mechanism and the steering axis configuration.

Let us concentrate on the steering axis kinematics. A simple practical steering axis
has no lean angle and has a constant lateral location:

θ = 0 sb = const (7.447)

We introduce the idea of having a variable and controllable caster angle ϕ. A variable
caster angle mechanism gives us the ability to adjust the camber angle to produce
the required lateral force when the sideslip angle cannot be increased or decreased.
As long as the left and right wheels are steering together according to a kinematic
condition such as Ackerman, the sideslip angle of the inner wheel cannot be increased
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Figure 7.65 Top view of a tire and the generated sideslip force due to sideslip angle α.
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Figure 7.66 Front view of a cambered tire and the generated camber force due to camber
angle γ .

independently to alter the reduced lateral force because of weight transfer and lowering
the normal load Fz. A variable caster mechanism can adjust the caster angle of the
wheels to achieve their top capacity and maximum lateral force, if needed. Such a
mechanism will increase the stability and maneuverability of the vehicles.

Figure 7.67 depicts a mechanism to illustrate the variable caster angle idea. We
may keep any point of the steering axis stationary with respect to the vehicle body and
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Figure 7.67 A variable caster angle mechanism.

make the steering axis turn about the point. As a sample design we may keep the point
on the center of the wheel motionless with respect to the vehicle body. The upper and
lower joints of the steering axis of such a design will turn on circles about the wheel
center. The longitudinal location sa of this design would be a function of the caster
angle ϕ:

sa = −Rw tan ϕ (7.448)

The camber–caster relationship of this steerable wheel is

cos γ = zW − zT√
(xW − xT )2 + (yW − yT )2 + (zW − zT )2

(7.449)

where
xT = −Rw (1 − cos δ) cos ϕ sin ϕ + sb cos ϕ sin δ (7.450)

yT = sb (1 − cos δ) + Rw sin ϕ sin δ (7.451)

zT = Rw sin2 ϕ (1 − cos δ) − Rw − sb sin δ sin ϕ (7.452)

xW = sb cos ϕ sin δ (7.453)

yW = sb (1 − cos δ) (7.454)

zW = −sb sin δ sin ϕ (7.455)

Substituting Equations (7.450)–(7.455) in to (7.449) and simplifying provide an applied
equation to calculate the camber angle γ as a function of the caster and steer angles ϕ

and δ:
cos γ = cos δ + (1 − cos δ) cos2 ϕ

= cos δ sin2 ϕ + cos2 ϕ (7.456)

Figure 7.68 illustrates the behavior of γ as a function of ϕ and δ.
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Figure 7.68 Behavior of camber angle γ as a function of caster and steer angles ϕ and δ.

7.9 INVERSE KINEMATICS

The determination of joint variables of a multibody to be at a specific position and
orientation is called inverse kinematics . Mathematically, inverse kinematics involves
searching for the elements of the joint variable vector q when transformation matrices
are given as functions of the joint variables q1, q2, q3, . . . :

0Tn = 0T1(q1)
1T2(q2)

2T3(q3)
3T4(q4) . . . n−1Tn(qn) (7.457)

Computer-controlled multibodies are usually actuated in the joint variable space;
however, positions and orientations are usually expressed in the Cartesian coordinate
frame. Therefore, carrying kinematic information back and forth between the joint space
and Cartesian space is necessary in multibody applications. To control the configura-
tion of a multibody to reach a position, we must solve the inverse kinematics of the
multibody. Therefore, we need to know the required values of the joint variables to
reach a desired point in a desired orientation.

Consider a multibody with n prismatic or revolute joints. Such a multibody has
n DOF. To have a multibody capable of reaching a particular point at a particular
orientation, the multibody needs six DOF, three to position the point and three to
adjust the orientation. The result of forward kinematics of such a six-DOF multibody
is a 4 × 4 transformation matrix

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=
[

0R6
0d6

0 1

]
=


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 (7.458)

The 12 elements of 0T6 are trigonometric functions of six unknown joint variables.
However, because the upper left 3 × 3 submatrix of (7.458) is a rotation matrix, only
three elements of them are independent. This is because of the orthogonality condition
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(4.276). Therefore, only 6 equations of the 12 equations of (7.458) are independent.
Theoretically, we should be able to use the 6 independent equations and determine the
6 joint variables.

Trigonometric functions inherently provide multiple solutions. Therefore, we
expect multiple inverse kinematic solutions and hence multiple configurations for the
multibody.

It is possible to decouple the inverse kinematics problem into two subproblems,
known as inverse-position and inverse-orientation kinematics. The practical conse-
quence decoupling is to break the inverse kinematic problem into two independent
problems, each with only three unknown parameters. Following the decoupling princi-
ple, the overall transformation matrix of a multibody can be decomposed to a translation
and a rotation:

0T6 = 0D6
0R6

=
[

0R6
0d6

0 1

]
=

[
I 0d6

0 1

] [
0R6 0

0 1

]
(7.459)

The translation matrix 0D6 can be solved for the position variables, and the rotation
matrix 0R6 can be solved for the orientation variables.

Proof : The six-DOF multibodies are similar to robotic manipulators that have a spheri-
cal wrist and an arm. The wrist has three revolute joints with intersecting and orthogonal
axes at the wrist point. Taking advantage of having a spherical wrist, we can decouple
the kinematics of the wrist and arm by decomposing the overall forward kinematics
transformation matrix 0T6 into the wrist orientation and wrist position:

0T6 = 0T3
3T6 =

[
0R3

0d6

0 1

] [
3R6 0

0 1

]
(7.460)

The wrist orientation matrix is

3R6 = 0RT
3

0R6 = 0RT
3

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (7.461)

and the wrist position vector is

0d6 =

r14

r24

r34

 (7.462)

The wrist position vector only includes the arm joint variables. Therefore, to solve the
inverse kinematics of such an arm, we must solve 0T3 for the position of the wrist
point and then solve 3T6 for the orientation of the wrist. The components of the wrist
position vector 0d6 = dw provides three equations for the three unknown arm joint
variables. By solving the arm’s joint variables from dw, we also know the matrix 3R6.
Then, the wrist orientation matrix 3R6 can be solved for the wrist joint variables.

If we include the gripper coordinate frame in forward kinematics, the decomposi-
tion must be done according to the following equation to exclude the effect of gripper
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distance d6 from the wrist–arm kinematics:

0T7 = 0T3
3T7 = 0T3

3T6
6T7

=
[

0R3 dw

0 1

] [
3R6 0

0 1

]I
0
0
d6

0 1

 (7.463)

In this case, inverse kinematics starts from determination of 0T6, which can be found by

0T6 = 0T7
6T −1

7

= 0T7


1 0 0 0
0 1 0 0
0 0 1 d6

0 0 0 1


−1

= 0T7


1 0 0 0
0 1 0 0
0 0 1 −d6

0 0 0 1

 (7.464)

�

Example 458 Inverse Kinematics and Multiple Solutions A 2R planar manipulator
has two links of R‖R and coordinate frames as shown in Figure 7.69(a).

Using the transformation matrix of two links R‖R(0), we find the forward kine-
matics of the manipulator as

0T2 = 0T1
1T2

=


c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)

s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

 (7.465)

The position of the tip point of the manipulator is at[
X

Y

]
=

[
l1 cos θ1 + l2 cos (θ1 + θ2)

l1 sin θ1 + l2 sin (θ1 + θ2)

]
(7.466)

We should be able to use these two equations and determine the required angles θ1, θ2

for a given value of X and Y .
To find θ2, we use

X2 + Y 2 = l2
1 + l2

2 − 2l1l2 cos θ2 (7.467)

and solve for θ2:

cos θ2 = X2 + Y 2 − l2
1 − l2

2

−2l1l2
(7.468)

However, as a general recommendation, we should avoid using arcsin and arccos
because of inaccuracy. So, we employ the half-angle formula

tan2 θ

2
= 1 − cos θ

1 + cos θ
(7.469)
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Figure 7.69 Illustration of a 2R planar manipulator in two possible configurations: (a) elbow
up and (b) elbow down.

to find θ2 using an atan2 function:

θ2 = ±2atan2

√
(l1 + l2)

2 − (X + Y )2(
X2 + Y 2

) − (
l2
1 + l2

2

) (7.470)

The ± is used because of the square root, and it generates two solutions. These two solu-
tions are called elbow-up and elbow-down configurations, as shown in Figures 7.69(a)
and (b).

Having θ2, we can determine the first joint variable θ1 from

θ1 = atan2
X (l1 + l2 cos θ2) + Y l2 sin θ2

Y (l1 + l2 cos θ2) − Xl2 sin θ2
(7.471)

We will find a θ1 for every value of θ2. The associated angles determine the inverse
kinematics of the elbow-up and elbow-down configurations.

Example 459 � Function arctan2(y/x) = atan2(y, x) In the kinematics of multi-
bodies, especially in solving inverse kinematics problems, we need to find an angle
based on the sin and cos functions of the angle. The regular arctan cannot show the
effect of the individual sign for the numerator and denominator. It always represents
an angle in the first or fourth quadrant. To overcome this problem and determine the
angle in the correct quadrant, we should employ the atan2 function:

atan2(y, x) =



sgny tan−1
∣∣∣y
x

∣∣∣ if x > 0, y �= 0
π

2
sgny if x = 0, y �= 0

sgny
(
π − tan−1

∣∣∣y
x

∣∣∣) if x < 0, y �= 0

π − πsgnx if x �= 0, y = 0

(7.472)
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where sgn represents the signum function:

sgn(x) =
 1 if x > 0

0 if x = 0
−1 if x < 0

(7.473)

We recommend using atan2(y, x) wherever arctan (y/x) is needed.

Example 460 Inverse kinematics of an Articulated Arm An articulated arm is any
arm made by three links and three revolute joints to reach a point in three dimensions.
However, an articulated arm is usually referred to a three-link multibody with base,
shoulder, and elbow joints such as the one shown in Figure 7.70.

z0

x0

θ1Base
joint

Elbow joint

Wrist point

z1
z3

y0

x1

x2

x3

θ2

Trunk

l2

l1

l3

d3

θ3
z2

d2 Shoulder
joint

Figure 7.70 An articulated arm.

The first link of the arm is an R�R(90) with a distance l1 between x0 and x1. The
transformation matrix of the first coordinate frame is

0T1 =


cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0

0 1 0 l1
0 0 0 1

 (7.474)

The second link of the arm is an R‖R(90) with a distance d2 between x1 and x2 and
a distance l2 between z1 and z2. The transformation matrix of the second coordinate
frame is

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 d2

0 0 0 1

 (7.475)
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Because the third link is not connected to the other link at its distal end, we should
set B3 at its proximal end and attach a takht frame at its tip point. For simplicity, we
may also attach only one coordinate frame at the tip point and consider the link as an
R�R(90) with a distance d3 between x2 and x3 and a distance l3 between z2 and z3.
The transformation matrix of the third coordinate frame is

2T3 =


cos θ3 − sin θ3 0 l3 cos θ3

sin θ3 cos θ3 0 l3 sin θ3

0 0 1 d3

0 0 0 1

 (7.476)

The forward kinematics of the takht frame B3 in the base frame is

0T3 = 0T1
1T2

2T3

=


cos (θ2 + θ3) cos θ1 − sin (θ2 + θ3) cos θ1 sin θ1 dx

cos (θ2 + θ3) sin θ1 − sin (θ2 + θ3) sin θ1 − cos θ1 dy

sin (θ2 + θ3) cos (θ2 + θ3) 0 dz

0 0 0 1

 (7.477)

dx

dy

dz

 =
(l2 cos θ2 + l3 cos (θ2 + θ3)) cos θ1 + (d2 + d3) sin θ1

(l2 cos θ2 + l3 cos (θ2 + θ3)) sin θ1 − (d3 + d2) cos θ1

l1 + l2 sin θ2 + l3 sin (θ2 + θ3)

 (7.478)

The vector 0d3 = [
dx dy dz

]
indicates the tip point of the arm in the base coor-

dinate frame. At the rest position the matrix 0T3 reduces to

0T3 =


1 0 0 l2 + l3

0 0 −1 −d2 − d3

0 1 0 l1

0 0 0 1

 (7.479)

The inverse kinematic problem of the arm is looking for the required angles
θ1, θ2, θ3 for a given position vector 0d3. There is no standard or unique method of
solution. So, the engineer may develop a method based on his or her experience and
preference. However, because there is not a very wide variety of industrial arms, most
practical arms have already been analyzed and an applied solution of their inverse
kinematic problems has been developed.

To find θ1, we can use

dx sin θ1 − dy cos θ1 = d2 + d3 (7.480)

which provides

θ1 = 2atan2
dx ±

√
d2

x + d2
y − (d2 + d3)

2

d2 + d3 − dy

(7.481)

Equation (7.481) has two solutions for d2
x + d2

y >(d2 + d3)
2, one solution for d2

x +
d2

y = (d2 + d3)
2 , and no real solution for d2

x + d2
y < (d2 + d3)

2.
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To find θ2, we can combine the first two elements of 0d3,

l3 cos (θ2 + θ3) = ±
√

d2
x + d2

y − (d2 + d3)
2 − l2 cos θ2 (7.482)

and substitute the result in the third element of 0d3 to find

l2
3 =

(
±
√

d2
x + d2

y − (d2 + d3)
2 − l2 cos θ2

)2

+ (dz − l1 − l2 sin θ2)
2 (7.483)

This equation can be rearranged to the form

a cos θ2 + b sin θ2 = c (7.484)

where
a = −2l2

√
d2

x + d2
y − (d2 + d3)

2 (7.485)

b = 2l2 (l1 − dz) (7.486)

c = d2
x + d2

y + (l1 − dz)
2 − (d2 + d3)

2 + l2
2 − l2

3 (7.487)

with two solutions

θ2 =


atan2

(
c

r
,±

√
1 − c2

r2

)
− atan2(a, b) (7.488)

atan2
(c

r
,±

√
r2 − c2

)
− atan2(a, b) (7.489)

where
r2 = a2 + b2 (7.490)

Having the angle θ2, we can determine the angle θ3 from the third element of 0d3:

θ3 = arcsin

(
dz − l1 − l2 sin θ2

l3

)
− 2θ2 (7.491)

Example 461 � Solution of Equation a cos θ + b sin θ = c The first type of trigono-
metric equation,

a cos θ + b sin θ = c (7.492)

can be solved by introducing two new variables r and φ such that

a = r sin φ (7.493)

b = r cos φ (7.494)

and
r =

√
a2 + b2 (7.495)

φ = atan2(a, b) (7.496)

Substituting the new variables shows that

sin(φ + θ) = c

r
(7.497)



7.9 Inverse Kinematics 669

cos(φ + θ) = ±
√

1 − c2

r2
(7.498)

Hence, the solutions of the problem are

θ = atan2

(
c

r
,±

√
1 − c2

r2

)
− atan2(a, b) (7.499)

and

θ = atan2
(c

r
,±

√
r2 − c2

)
− atan2(a, b) (7.500)

Therefore, the equation a cos θ + b sin θ = c has two solutions if r2 = a2 + b2

>c2, one solution if r2 = c2, and no solution if r2 < c2.

Example 462 Numeric Inverse Kinematics of an Articulated Arm Let us assume the
following data for the arm of Example 460:

l1 =0.5 m l2 = 1.0 m l3 = 1.2 m
d2 =0.3 m d3 = 0.15 m

(7.501)

The forward kinematics of B3 in the global frame B0 would be

0T3 = 0T1
1T2

2T3

=


cos (θ2 + θ3) cos θ1 − sin (θ2 + θ3) cos θ1 sin θ1 dx

cos (θ2 + θ3) sin θ1 − sin (θ2 + θ3) sin θ1 − cos θ1 dy

sin (θ2 + θ3) cos (θ2 + θ3) 0 dz

0 0 0 1

 (7.502)

dx

dy

dz

 =
(cos θ2 + 1.2 cos (θ2 + θ3)) cos θ1 + 0.45 sin θ1

(cos θ2 + 1.2 cos (θ2 + θ3)) sin θ1 − 0.45 cos θ1

0.5 + sin θ2 + 1.2 sin (θ2 + θ3)

 (7.503)

Let us assume the tip point is at

0d3 =
dx

dy

dz

 =
1.8

0.5
0.8

 (7.504)

and the arm is in an elbow-up configuration.
The angle θ1 would be

θ1 = 2atan2
dx −

√
d2

x + d2
y − (d2 + d3)

2

d2 + d3 − dy

= 2atan2
1.8 − √

1.82 + 0.52 − 0.452

0.45 − 0.5

= 0.514 22 rad ≈ 29.463 deg (7.505)
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The angle θ2 can be found from

a cos θ2 + b sin θ2 = c (7.506)

where
a = −2l2

√
d2

x + d2
y − (d2 + d3)

2 = −3.626 3 (7.507)

b = 2l2 (l1 − dz) = −0.6 (7.508)

c = d2
x + d2

y + (l1 − dz)
2 − (d2 + d3)

2 + l2
2 − l2

3 = 2.9375 (7.509)

Therefore,

θ2 =
{

2.660 7 rad ≈ 152.45 deg
−2.332 8 rad ≈ −133.66 deg

(7.510)

The positive value of θ2 belongs to the desired elbow-up configuration.
The associated angle θ3 is given as

θ3 = arcsin

(
dz − l1 − l2 sin θ2

l3

)
− 2θ2

= arcsin

(
0.8 − 0.5 − sin 2.660 7

1.2

)
− 2 × 2.6607

= −5.4573 rad ≈ −312.68 deg (7.511)

Example 463 Inverse Kinematics of a Spherical Wrist The forward kinematics of
the spherical wrist of Figure 7.46 is

5T8 = 5T6
6T7

7T8

=


cθ6cθ7cθ8 − sθ6sθ8 −cθ8sθ6 − cθ6cθ7sθ8 cθ6sθ7 0
cθ6sθ8 + cθ7cθ8sθ6 cθ6cθ8 − cθ7sθ6sθ8 sθ6sθ7 0

−cθ8sθ7 sθ7sθ8 cθ7 0
0 0 0 1

 (7.512)

where B5 is a fixed coordinate frame with respect to the wrist, while the gripper of the
wrist is fixed in frame B8. Numerically,

5T8 =


r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 (7.513)

and we should be able to determine the angles θ6, θ7, θ8:

θ6 = arctan
r23

r13
(7.514)

θ7 = arccos r33 (7.515)

θ8 = − arctan
r32

r31
(7.516)
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Example 464 Inverse Kinematics of an Articulated Manipulator An articulated
manipulator is made by assembling a spherical wrist and an articulated arm. Figure 7.71
illustrates an articulated manipulator symbolically along with a new set of DH coordi-
nate frames. Installing the base coordinate frame B0 such that x0 and z1 are colinear
simplifies the transformation matrices.

z0

Base

Shoulder

Elbow

Forearm

z1

z5

z4

z6

x3

z3

x5
x6

x4

z7

x7

y7

d6

Gripper

l2

Wrist point

y2

x0

z2

d2

l3

y1

θ1

θ2

θ3
θ5

θ4

θ6

Figure 7.71 An articulated manipulator with 6 DOF.

The class of the links of the manipulator and the transformation matrices i−1Ti for
this setup of the coordinate frames are

1 R�R(90)

2 R‖R(0)

3 R�R(90)

4 R�R(−90)

5 R�R(90)

6 R‖R(0)

0T1 =


cos θ1 0 sin θ1 0
sin θ1 0 − cos θ1 0

0 1 0 0
0 0 0 1

 (7.517)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 d2

0 0 0 1

 (7.518)

2T3 =


cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0

0 1 0 0
0 0 0 1

 (7.519)
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3T4 =


cos θ4 0 − sin θ4 0
sin θ4 0 cos θ4 0

0 −1 0 l3
0 0 0 1

 (7.520)

4T5 =


cos θ5 0 sin θ5 0
sin θ5 0 − cos θ5 0

0 1 0 0
0 0 0 1

 (7.521)

5T6 =


cos θ6 − sin θ6 0 0
sin θ6 cos θ6 0 0

0 0 1 0
0 0 0 1

 (7.522)

The gripper is at a distance d6 from the wrist point and is parallel to B6:

6T7 =


1 0 0 0
0 1 0 0
0 0 1 d6

0 0 0 1

 (7.523)

The gripper transformation matrix in the base coordinate frame is

0T7 = 0T1
1T2

2T3
3T4

4T5
5T6

6T7 = 0T3
3T6

6T7

=


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 (7.524)

where

0T3 =


cθ1c(θ2 + θ3) sθ1 cθ1s(θ2 + θ3) l2cθ1cθ2 + d2sθ1

sθ1c(θ2 + θ3) −cθ1 sθ1s(θ2 + θ3) l2cθ2sθ1 − d2cθ1

s(θ2 + θ3) 0 −c(θ2 + θ3) l2sθ2

0 0 0 1

 (7.525)

3T6 =


cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ5cθ6sθ4 + cθ4sθ6 cθ4ccθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 l3
0 0 0 1

 (7.526)

and

t11 = cθ1[c (θ2 + θ3) (cθ4cθ5cθ6 − sθ4sθ6) − cθ6sθ5s (θ2 + θ3)]

+ sθ1 (cθ4sθ6 + cθ5cθ6sθ4) (7.527)

t21 = sθ1[c (θ2 + θ3) (−sθ4sθ6 + cθ4cθ5cθ6) − cθ6sθ5s (θ2 + θ3)]

− cθ1 (cθ4sθ6 + cθ5cθ6sθ4) (7.528)

t31 = s (θ2 + θ3) (cθ4cθ5cθ6 − sθ4sθ6) + cθ6sθ5c (θ2 + θ3) (7.529)
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t12 = cθ1[sθ5sθ6s (θ2 + θ3) − c (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6)]

+ sθ1 (cθ4cθ6 − cθ5sθ4sθ6) (7.530)

t22 = sθ1[sθ5sθ6s (θ2 + θ3) − c (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6)]

+ cθ1 (−cθ4cθ6 + cθ5sθ4sθ6) (7.531)

t32 = −sθ5sθ6c (θ2 + θ3) − s (θ2 + θ3) (cθ6sθ4 + cθ4cθ5sθ6) (7.532)

t13 = sθ1sθ4sθ5 + cθ1[cθ5s (θ2 + θ3) + cθ4sθ5c (θ2 + θ3)] (7.533)

t23 = −cθ1sθ4sθ5 + sθ1[cθ5s (θ2 + θ3) + cθ4sθ5c (θ2 + θ3)] (7.534)

t33 = cθ4sθ5s (θ2 + θ3) − cθ5c (θ2 + θ3) (7.535)

t14 = d6{sθ1sθ4sθ5 + cθ1[cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)]}
+ l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2 (7.536)

t24 = d6{−cθ1sθ4sθ5 + sθ1[cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)]}
+ sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1 (7.537)

t34 = d6[cθ4sθ5s (θ2 + θ3) − cθ5c (θ2 + θ3)]

+ l2sθ2 + l3c (θ2 + θ3) (7.538)

The inverse kinematic problem of the manipulator starts with the wrist position vector
0d, which is

[
t14 t24 t34

]T
of 0T7 for d6 = 0:

0d =
cθ1[l3s (θ2 + θ3) + l2cθ2] + d2sθ1

sθ1[l3s (θ2 + θ3) + l2cθ2] − d2cθ1

l3c (θ2 + θ3) + l2sθ2

 =
dx

dy

dz

 (7.539)

We must theoretically be able to solve Equation (7.539) for the three joint variables
θ1, θ2, and θ3. It can be seen that

dx sin θ1 − dy cos θ1 = d2 (7.540)
which provides

θ1 = 2atan2

(
dx ±

√
d2

x + d2
y − d2

2 , d2 − dy

)
(7.541)

Combining the first two elements of 0d gives

l3 sin (θ2 + θ3) = ±
√

d2
x + d2

y − d2
2 − l2 cos θ2 (7.542)

then, using the third element of 0d provides

l2
3 =

(
±
√

d2
x + d2

y − d2
2 − l2 cos θ2

)2

+ (dz − l2 sin θ2)
2 (7.543)

which can be rearranged to following form

a cos θ2 + b sin θ2 = c (7.544)
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where
a = 2l2

√
d2

x + d2
y − d2

2 (7.545)

b = 2l2dz (7.546)

c = d2
x + d2

y + d2
z − d2

2 + l2
2 − l2

3 (7.547)

The solutions for θ2 are

θ2 =


atan2

(
c

r
,±

√
1 − c2

r2

)
− atan2(a, b) (7.548)

atan2
(c

r
,±

√
r2 − c2

)
− atan2(a, b) (7.549)

where
r2 = a2 + b2 (7.550)

Summing the squares of the elements of 0d gives

d2
x + d2

y + d2
z = d2

2 + l2
2 + l2

3 + 2l2l3 sin (2θ2 + θ3) (7.551)

which provides

θ3 = arcsin

(
d2

x + d2
y + d2

z − d2
2 − l2

2 − l2
3

2l2l3

)
− 2θ2 (7.552)

Having θ1, θ2, and θ3 means we can find the position of the wrist point in space.
However, because the joint variables in 0T3 and 3T6 are independent, we should find
the orientation of the gripper by solving 3T6 or 3R6 for θ4, θ5, and θ6:

3R6 =
cθ4cθ5cθ6 − sθ4sθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5

cθ5cθ6sθ4 + cθ4sθ6 cθ4ccθ6 − cθ5sθ4sθ6 sθ4sθ5

−cθ6sθ5 sθ5sθ6 cθ5


=

s11 s12 s13

s21 s22 s23

s31 s32 s33

 (7.553)

The angles θ4, θ5, and θ6 can be found by examining elements of 3R6:

θ4 = atan2 (s23, s13) (7.554)

θ5 = atan2

(√
s2

13 + s2
23, s33

)
(7.555)

θ6 = atan2 (s32, −s31) (7.556)

Example 465 � Inverse-Transformation Technique Assume we have the transfor-
mation matrix 0T6 indicating the global position and the orientation of the gripper
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of a six-DOF multibody in the base frame B0. Furthermore, assume the geometry
and individual transformation matrices 0T1(q1), 1T2(q2), 2T3(q3), 3T4(q4), 4T5(q5), and
5T6(q6) are given as functions of joint variables qi, i = 1, 2, 3, . . . , 6.

The forward kinematics of the multibody is

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6 =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 (7.557)

We can solve the inverse kinematics problem by solving the following equations for
the unknown joint variables:

1T6 = 0T −1
1

0T6 (7.558)

2T6 = 1T −1
2

0T −1
1

0T6 (7.559)

3T6 = 2T −1
3

1T −1
2

0T −1
1

0T6 (7.560)

4T6 = 3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6 (7.561)

5T6 = 4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6 (7.562)

I = 5T −1
6

4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6 (7.563)

Proof : Let us multiply both sides of the transformation matrix 0T6 in Equation (7.557)
by 0T −1

1 to obtain 1T6:

0T −1
1

0T6 = 0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

) = 1T6 (7.564)

Remembering that the matrix 0T −1
1 is the mathematical inverse of the 4 × 4 matrix

0T1, and not an inverse transformation, we must calculate 0T −1
1 by mathematical matrix

inversion.
The left-hand side of Equation (7.564) is a function of the first joint variable q1.

However, the elements of the matrix 1T6 on the right-hand side are either zero, constant,
or functions of the other joint variables q2, q3, q4, q5, and q6. The zero or constant
elements on the right-hand side provide an equation for the single unknown variable q1.

Then, we multiply both sides of (7.564) by 1T −1
2 to obtain 2T6:

1T −1
2

0T −1
1

0T6 = 1T −1
2

0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

)
= 2T6 (7.565)

The left-hand side of this equation is a function of the second joint variable q2, while
the elements of the matrix 2T6 on the right hand side are either zero, constant, or
functions of the rest of the joint variables q3, q4, q5, and q6. Equating the associated
element with constant or zero elements on the right-hand side provides the required
algebraic equation to solve for q2.
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Following this procedure, we can find the joint variables q3, q4, q5, and q6 by
using the following equalities respectively:

2T −1
3

1T −1
2

0T −1
1

0T6

= 2T −1
3

1T −1
2

0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

)
= 3T6 (7.566)

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6

= 3T −1
4

2T −1
3

1T −1
2

0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

)
= 4T6 (7.567)

4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6

= 4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

)
= 5T6 (7.568)

5T −1
6

4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6

= 5T −1
6

4T −1
5

3T −1
4

2T −1
3

1T −1
2

0T −1
1

(0T1
1T2

2T3
3T4

4T5
5T6

)
= I (7.569)

The inverse-transformation technique is sometimes called the Pieper tech-
nique. �

Example 466 Inverse Kinematics of a 2R Arm The forward kinematics of a planar
2R manipulator with two links of R‖R that is shown in Figure 7.69 is given as

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1

 (7.570)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1

 (7.571)

0T2 = 0T1
1T2 =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1



=


c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)

s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

 (7.572)
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Let us assume that the matrix 0T2 = [
rij

]
is given. To determine the required angles

for a given
[
rij

]
, we can multiply 0T −1

1 to
[
rij

]
and search for constant elements:

0T −1
1

[
rij

] = 1T2 (7.573)
r11cθ1 + r21sθ1 r12cθ1 + r22sθ1 r13cθ1 + r23sθ1 r14cθ1 − l1 + r24sθ1

r21cθ1 − r11sθ1 r22cθ1 − r12sθ1 r23cθ1 − r13sθ1 r24cθ1 − r14sθ1

r31 r32 r33 r34

0 0 0 1



=


cθ2 −sθ2 0 l2cθ2

sθ2 cθ2 0 l2sθ2

0 0 1 0
0 0 0 1

 (7.574)

The elements (1, 2) provide an equation

r13 cos θ1 + r23 sin θ1 = 0 (7.575)

that can be solved for θ1:
θ1 = arctan

r13

−r23
(7.576)

Let us use the elements (2, 1) and determine θ2:

θ2 = arcsin (r21 cos θ1 − r11 sin θ1) (7.577)

Example 467 Inverse Kinematics of a Spherical Robot A spherical robot and its link
numbers and link coordinate frames are shown in Figure 7.72. The robot as a multi-
body is made by assembling a spherical wrist and a spherical arm. The transformation
matrices of the multibody are

0T1 =


cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 0
0 0 0 1

 1T2 =


cθ2 0 sθ2 0
sθ2 0 −cθ2 0
0 1 0 l2
0 0 0 1

 (7.578)

2T3 =


1 0 0 0
0 1 0 0
0 0 1 d3

0 0 0 1

 3T4 =


cθ4 0 −sθ4 0
sθ4 0 cθ4 0
0 −1 0 0
0 0 0 1

 (7.579)

4T5 =


cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 0
0 0 0 1

 5T6 =


cθ6 −sθ6 0 0
sθ6 cθ6 0 0
0 0 1 0
0 0 0 1

 (7.580)

The position and orientation of the wrist for a set of joint variables are the solution of
the forward kinematics problem. Therefore, we assume that the matrix 0T6 = [

rij

]
is
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Figure 7.72 A spherical robot made of a spherical manipulator attached to a spherical wrist.

given numerically as

0T6 = 0T1
1T2

2T3
3T4

4T5
5T6

=


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 (7.581)

Multiplying both sides of (7.581) by 0T −1
1 provides

0T −1
1

0T6 =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

0 0 0 1



=


cθ1 sθ1 0 0
0 0 −1 0

−sθ1 cθ1 0 0
0 0 0 1




r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 (7.582)

where, for i = 1, 2, 3, 4,
f1i = r1i cos θ1 + r2i sin θ1 (7.583)

f2i = −r3i (7.584)

f3i = r2i cos θ1 − r1i sin θ1 (7.585)
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On the other hand, based on the given transformation matrices,

1T6 = 1T2
2T3

3T4
4T5

5T6

=


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

0 0 0 1

 (7.586)

where
f11 = −cθ2sθ4sθ6 + cθ6 (−sθ2sθ5 + cθ2cθ4cθ5) (7.587)

f21 = −sθ2sθ4sθ6 + cθ6 (cθ2sθ5 + cθ4cθ5sθ2) (7.588)

f31 = cθ4sθ6 + cθ5cθ6sθ4 (7.589)

f12 = −cθ2cθ6sθ4 − sθ6 (−sθ2sθ5 + cθ2cθ4cθ5) (7.590)

f22 = −cθ6sθ2sθ4 − sθ6 (cθ2sθ5 + cθ4cθ5sθ2) (7.591)

f32 = cθ4cθ6 − cθ5sθ4sθ6 (7.592)

f13 = cθ5sθ2 + cθ2cθ4sθ5 (7.593)

f23 = −cθ2cθ5 + cθ4sθ2sθ5 (7.594)

f33 = sθ4sθ5 (7.595)

f14 = d3sθ2 (7.596)

f24 = −d3cθ2 (7.597)

f34 = l2. (7.598)

The only constant element of the matrix (7.586) is f34 = l2; therefore,

r24 cos θ1 − r14 sin θ1 = l2 (7.599)

This is the first kind of trigonometric equation that frequently appears in multibody
inverse kinematics. The equation has a standard method of solution. We assume

r14 = r cos φ r24 = r sin φ (7.600)

where

r =
√

r2
14 + r2

24 φ = tan−1 r24

r14
(7.601)

and therefore, Equation (7.599) becomes

l2

r
= sin φ cos θ1 − cos φ sin θ1 = sin(φ − θ1) (7.602)

showing that

±
√

1 − (l2/r)2 = cos(φ − θ1) (7.603)
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Therefore, the solution of Equation (7.599) for θ1 is

θ1 = arctan
r24

r14
− arctan

l2

±
√

r2 − l2
2

(7.604)

The minus sign is associated with a left-shoulder configuration as shown in
Figure 7.73, and the plus sign is associated with the right-shoulder configuration of
Figure 7.72.

The elements f14 and f24 of matrix (7.586) are functions of θ1 and θ2:

f14 = d3 sin θ2 = r14 cos θ1 + r24 sin θ1 (7.605)

f24 = −d3 cos θ2 = −r34 (7.606)

Having θ1, we can determine θ2 as a function of θ1:

θ2 = tan−1 r14 cos θ1 + r24 sin θ1

r34
(7.607)

where θ1 must be substituted from (7.604).
The next step is to multiply 1T −1

2 by 0T −1
1

0T6 and determine the third joint vari-
able d3:

1T −1
2

0T −1
1

0T6 = 2T6 (7.608)

z2

z0

z3

z6

z7

x2

x1

x0

x3

x7

z5

x5

θ1

θ2

l2

z4
x4

d3

θ5

θ4

l 6

θ6
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Figure 7.73 Left-shoulder configuration of a spherical robot.
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where

2T6 =


−sθ4sθ6 + cθ4cθ5cθ6 −cθ6sθ4 − cθ4cθ5sθ6 cθ4sθ5 0
cθ4sθ6 + cθ5cθ6sθ4 cθ4cθ6 − cθ5sθ4sθ6 sθ4sθ5 0

−cθ6sθ5 sθ5sθ6 cθ5 d3

0 0 0 1

 (7.609)

Employing the elements of the matrices on both sides of Equation (7.608) shows that
we can use the element (3,4) to find d3:

d3 = r34 cos θ2 + r14 cos θ1 sin θ2 + r24 sin θ1 sin θ2 (7.610)

There is no other element in Equation (7.608) that is a function of a single variable.
Therefore, we move to the next step to find θ4. However, 2T −1

3
1T −1

2
0T −1

1
0T6 = 3T6

provides no new equation. So, we move another step and find

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6 = 4T6 (7.611)

where

4T6 =


cos θ5 cos θ6 − cos θ5 sin θ6 sin θ5 0
cos θ6 sin θ5 − sin θ5 sin θ6 − cos θ5 0

sin θ6 cos θ6 0 0
0 0 0 1

 (7.612)

The left-hand side of (7.611) shows that

3T −1
4

2T −1
3

1T −1
2

0T −1
1

0T6 =


g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

0 0 0 1

 (7.613)

where, for i = 1, 2, 3, 4,

g1i = −r3icθ4sθ2 + r2i (cθ1sθ4 + cθ2cθ4sθ1) + r1i (−sθ1sθ4 + cθ1cθ2cθ4) (7.614)

g2i = d3δ4i − r31cθ2 − r11cθ1sθ2 − r21sθ1sθ2 (7.615)

g3i = r31sθ2sθ4 + r21 (cθ1cθ4 − cθ2sθ1sθ4) + r11 (−cθ4sθ1 − cθ1cθ2sθ4) (7.616)

The symbol δ4i indicates the Kronecker delta:

δ4i =
{

1 i = 4
0 i �= 4

(7.617)

Both sides of Equation (7.613) indicate that we can find θ4 by equating the elements
(3,3), θ5 by equating the elements (1,3) or (2,3), and θ6 by equating the elements (3,1)
or (3,2). The elements (3, 3) provide the equation

r13 (−cθ4sθ1 − cθ1cθ2sθ4) + r23 (cθ1cθ4 − cθ2sθ1sθ4) + r33sθ2sθ4 = 0 (7.618)

which we can solve for θ4:

θ4 = arctan
−r13sθ1 + r23cθ1

cθ2 (r13cθ1 + r23sθ1) − r33sθ2
(7.619)
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Based on the plus sign of θ1 in Equation (7.604), we find the associated θ4 as

θ4 = π

2
+ arctan

−r13sθ1 + r23cθ1

cθ2 (r13cθ1 + r23sθ1) − r33sθ2
(7.620)

Now we use both of the elements (1, 3) and (2, 3),

sin θ5 = r23 (cos θ1 sin θ4 + cos θ2 cos θ4 sin θ1) − r33 cos θ4 sin θ2

+ r13 (cos θ1 cos θ2 cos θ4 − sin θ1 sin θ4) (7.621)

− cos θ5 = −r33 cos θ2 − r13 cos θ1 sin θ2 − r23 sin θ1 sin θ2 (7.622)

to find θ5:

θ5 = arctan
sin θ5

cos θ5
(7.623)

Finally, θ6 can be found from the elements (3, 1) and (3, 2):

sin θ6 = r31 sin θ2 sin θ4 + r21 (cos θ1 cos θ4 − cos θ2 sin θ1 sin θ4)

+ r11 (− cos θ4 sin θ1 − cos θ1 cos θ2 sin θ4) (7.624)

cos θ6 = r32 sin θ2 sin θ4 + r22 (cos θ1 cos θ4 − cos θ2 sin θ1 sin θ4)

+ r12 (− cos θ4 sin θ1 − cos θ1 cos θ2 sin θ4) (7.625)

θ6 = arctan
sin θ6

cos θ6
(7.626)

Example 468 Inverse Kinematics of Euler Angle Transformation Matrix The Euler
angle transformation matrix is

GRB = [
Az,ψ Ax,θ Az,ϕ

]T = RZ,ϕ RX,θ RZ,ψ

=
cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ


=

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (7.627)

Having GRB we should be able to determine the Euler angles ϕ, θ,ψ . Premultiplying
GRB by R−1

Z,ϕ gives

R−1
Z,ϕ

GRB = RX,θ RZ,ψ

=
r11cϕ + r21sϕ r12cϕ + r22sϕ r13cϕ + r23sϕ

r21cϕ − r11sϕ r22cϕ − r12sϕ r23cϕ − r13sϕ

r31 r32 r33
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=

 cos ψ − sin ψ 0

cos θ sin ψ cos θ cos ψ − sin θ

sin θ sin ψ sin θ cos ψ cos θ

 (7.628)

Equating the elements (1, 3) of both sides,

r13 cos ϕ + r23 sin ϕ = 0 (7.629)

can be used to determine ϕ:

ϕ = atan2 (r13, −r23) (7.630)

Having ϕ helps us to find ψ by using elements (1, 1) and (1, 2):

cos ψ = r11 cos ϕ + r21 sin ϕ (7.631)

− sin ψ = r12 cos ϕ + r22 sin ϕ (7.632)

therefore,

ψ = arctan
−r12 cos ϕ − r22 sin ϕ

r11 cos ϕ + r21 sin ϕ
(7.633)

Let us multiply GRB by R−1
Z,ψ :

GRB R−1
Z,ψ = RZ,ϕ RX,θ

=

r11cψ − r12sψ r12cψ + r11sψ r13

r21cψ − r22sψ r22cψ + r21sψ r23

r31cψ − r32sψ r32cψ + r31sψ r33



=

cos ϕ − cos θ sin ϕ sin θ sin ϕ

sin ϕ cos θ cos ϕ − cos ϕ sin θ

0 sin θ cos θ

 (7.634)

The elements (1, 1) on both sides result in an equation to find ψ :

r31 cos ψ − r31 sin ψ = 0 (7.635)

ψ = arctan (r31, r31) (7.636)

Finally, we can find θ by using elements (3, 2) and (3, 3),

r32 cos ψ + r31 sin ψ = sin θ (7.637)

r33 = cos θ (7.638)

which gives

θ = arctan
r32 cos ψ + r31 sin ψ

r33
(7.639)
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KEY SYMBOLS

a kinematic link length
a, b, c coefficients of trigonometric equation
ai, αi, di, θi DH parameters of link i

a turn vector of end-effector frame
ã skew-symmetric matrix of the vector a
A transformation matrix of rotation about a local axis
B body coordinate frame, local coordinate frame
c cosine, constant coefficient
C wheel–body coordinate frame, cylindrical joint
Cα sideslip coefficient
Cγ camber stiffness
d joint distance, distance between two points
dx, dy, dz elements of d
d translation vector, displacement vector
dwrist wrist position vector
D displacement transformation matrix
DH Denavit–Hartenberg
DOF degree of freedom
êϕ, êθ , êψ coordinate axes of E, local roll–pitch–yaw coordinate axes
E Eulerian local frame
f number of DOF
fij element of row i and column j of a matrix
F, F force
Fx longitudinal force, forward force
Fy lateral force
gij element of row i and column j of a matrix
G,0 global coordinate frame, fixed coordinate frame
h,H height
I = [I ] identity matrix
ı̂, ̂ , k̂ local coordinate axes unit vectors
ı̃, ̃ , k̃ skew symmetric matrices of the unit vector ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axes unit vectors
j number of joints
J Jacobian
l length
n number of links of a robot, number of joint variables
n̂ unit vector
O common origin of B and G

Oϕθψ Euler angle frame
p pitch of a screw
P prismatic joint, a body point, a fixed point in B

q joint variable
q joint variable vector
Q transformation matrix of rotation about a global axis
r position vector
rij element of row i and column j of a matrix
R revolute joint, radius of a circle, rotation transformation matrix
Rw wheel radius
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R set of real numbers
s sine, a member of S

š screw
S screw joint, a set
t time
T homogeneous transformation matrix, tool frame,

time coordinate frame
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T set of nonlinear algebraic equations of q
û unit vector on axis of rotation
ũ skew-symmetric matrix of the vector û

v velocity vector
W wheel coordinate frame
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α sideslip angle
α, β, γ rotation angles about global axes
γ camber angle
δ deflection
δij Kronecker’s delta
ϕ, θ, ψ rotation angles about local axes, Euler angles
ωx, ωy, ωz angular velocity components
ω angular velocity vector
� speed ratio

Symbol
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
⊗ screw reiprocal product
≡ equivalent
� orthogonal
(i) link number i

‖ parallel sign
⊥ perpendicular
× vector cross product
DH Denavit-Hartenberg
DOF degree of freedom
R1 1 rotational freedom joint
R2 2 rotational freedom joint
R1T 1 1 rotational and 1 translational freedom joint
R2T 1 2 rotational and 1 translational freedom joint
R1T 2 1 rotational and 2 translational freedom joint
R3T 1 3 rotational and 1 translational freedom joint
R2T 2 2 rotational and 2 translational freedom joint
R3T 2 3 rotational and 2 translational freedom joint
T 1 1 translational freedom joint
sgn signum function
S screw joint
SSRMS space station remote manipulator system
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EXERCISES

1. A 4R Planar Manipulator For the 4R planar manipulator, shown in Figure 7.74, find:

(a) DH table

(b) Link-type table

(c) Individual frame transformation matrices i−1Ti , i = 1, 2, 3, 4

(d) Global coordinates of the end effector

(e) Orientation of the end effector ϕ

x2
y2

y0

y1

x1

y3

x0

x4
y4

x3

θ1

θ2

l1

l 2

l3

l 4

θ3

θ4

ϕ

Figure 7.74 A 4R planar manipulator.

2. DH Coordinate Frame for Connected Links

(a) Set up the required link coordinate frames for the manipulators in Figure 7.75(a) and
(b) using l1, l2, l3 for the length of the links.

(b) Determine the forward kinematics transformation matrix of the manipulator in
Figures 7.75(a) and (b) and find their rest positions.

(c) Determine the global coordinates of the tip point of the manipulator in Figures 7.75(a)
and (b) at the position shown.

(a) (b)

Figure 7.75 Two manipulators that are made by connecting industrial links.
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3. Frame at Center Attach a link’s coordinate frame at the geometric center of the link,
ai/2. Using the rigid-motion and homogeneous matrices, and develop the transformation
matrices 0T1, 1T2, and 0T2 for the manipulator of Figure 7.76.

x2

y2

y0

x1

a 1

y1

x0

a2

θ1

θ2

Figure 7.76 A 2R planar manipulator with a coordinate frame at the geometric center of each
link.

4. Free Coordinate Frame Determine the link’s transformation matrices 1T2, 2T3, and 1T3

for the planar Cartesian manipulator shown in Figure 7.77. The coordinate frames are not
based on DH rules.

z2

x3

x1

x2

z3

z1

d2

d3

Figure 7.77 A two-DOF Cartesian manipulator.
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5. � Manipulator Design Use industrial links and make a manipulator that:

(a) Has three prismatic joints and reaches every point in a three-dimensional Cartesian
space.

(b) Has two prismatic joints and one revolute joint and reaches every point in a three-
dimensional Cartesian space.

(c) Has one prismatic joint and two revolute joints and reaches every point in a three-
dimensional Cartesian space.

(d) Has three revolute joints and reaches every point in a three-dimensional Cartesian
space.

6. � Special Manipulator Design Use industrial links and make a manipulator with three
DOF such that:

(a) The tip point of the manipulator traces a circular path about a center point when two
joints are locked.

(b) The tip point of the manipulator traces a circular path about the origin of the global
frame when two joints are locked.

(c) The tip point of the manipulator traces a straight path when two joints are locked.

(d) The tip point of the manipulator traces a straight path passing through the origin of
the global frame.

7. 3R Planar Manipulator Inverse Kinematics Consider an R‖R‖R planar manipulator
with the following transformation matrices. Solve the inverse kinematics and find θ1, θ2,
θ3 for given coordinates x0, y0 of the tip point and a given value of ϕ:

2T3 =


cos θ3 − sin θ3 0 l3 cos θ3

sin θ3 cos θ3 0 l3 sin θ3

0 0 1 0
0 0 0 1



1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1



0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1


8. 2R Manipulator Tip Point on a Horizontal Path Consider an elbow-up planar 2R

manipulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5)

to P2 (−1, 1.5).

(a) Divide the Cartesian path in 10 equal sections and determine the joint variables at the
11 points.

(b) � Calculate the joint variable θ1 at P1 and at P2. Divide the range of θ1 into 10 equal
sections and determine the coordinates of the tip point at the 11 values of θ1.

(c) � Calculate the joint variable θ2 at P1 and at P2. Divide the range of θ1 into 10 equal
sections and determine the coordinates of the tip point at the 11 values of θ2.
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9. 2R Manipulator Tip Point on a Tilted Path Consider an elbow-up planar 2R manip-
ulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5) to
P2 (−1, 1).

(a) Divide the Cartesian path into 10 equal sections and determine the joint variables at
the 11 points.

(b) � Calculate the joint variable θ1 at P1 and at P2. Divide the range of θ1 into 10 equal
sections and determine the coordinates of the tip point at the 11 values of θ1.

(c) � Calculate the joint variable θ2 at P1 and at P2. Divide the range of θ1 into 10 equal
sections and determine the coordinates of the tip point at the 11 values of θ2.

10. 2R Manipulator Motion on a Horizontal Path Consider an elbow-up planar 2R manip-
ulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5) to
P2 (−1, 1.5) according to the following functions of time:

X = 1 − 6t2 + 4t3 Y = 1.4

(a) Calculate and plot θ1 and θ2 as functions of time if the time of motion is 0 ≤ t ≤ 1.

(b) � Calculate and plot θ̇1 and θ̇2 as functions of time.

(c) � Calculate and plot θ̈1 and θ̈2 as functions of time.

(d) � Calculate and plot
...
θ 1 and

...
θ 2 as functions of time.

11. 2R Manipulator Motion on a Horizontal Path Consider a planar elbow-up 2R manip-
ulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5) to
P2 (−1, 1.5) with a constant speed:

X = 1 − vt Y = 1.5

(a) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.

(b) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 5.

(c) Calculate v and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 10.

(d) � Plot θ1 and θ2 as functions of v at point (0, 1.5).

12. 2R Manipulator Motion on a Horizontal Path Consider a planar elbow-up 2R manip-
ulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5) to
P2 (−1, 1.5) with a constant acceleration:

X = 1 − 1
2 at2 Y = 1.5

(a) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.

(b) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 5.

(c) Calculate a and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 10.

(d) � Plot θ1 and θ2 as functions of a at point (0, 1.5).

13. � 2R Manipulator Kinematics on a Tilted Path Consider a planar elbow-up 2R manip-
ulator with l1 = l2 = 1. The tip point is moving on a straight line from P1 (1, 1.5) to
P2 (−1, 1.5) with a constant speed:

X = 1 − vt Y = 1.5

(a) Calculate and plot θ1 and θ2 if the time of motion is 0 ≤ t ≤ 1.

(b) Calculate and plot θ̇1 and θ̇2 as functions of time.

(c) Calculate and plot θ̈1 and θ̈2 as functions of time.

(d) Calculate and plot
...
θ 1 and

...
θ 2 as functions of time.
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14. Acceptable Lengths of a 2R Planar Manipulator The tip point of a 2R planar manip-
ulator is at (1, 1.1).

(a) Assume l1 = 1. Plot θ1 and θ2 versus l2 and determine the range of possible l2 for the
elbow-up configuration.

(b) Assume l2 = 1. Plot θ1 and θ2 versus l1 and determine the range of possible l1 for the
elbow-up configuration.

(c) Assume l1 = 1. Plot θ1 and θ2 versus l2 and determine the range of possible l2 for the
elbow-down configuration.

(d) Assume l2 = 1. Plot θ1 and θ2 versus l1 and determine the range of possible l1 for the
elbow-down configuration.

15. SCARA Robot Inverse Kinematics Consider an R‖R‖R‖P robot with the following
transformation matrices. Solve the inverse kinematics and find θ1, θ2, θ3 and d for a
given 0T4:

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1



1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1



2T3 =


cos θ3 − sin θ3 0 0
sin θ3 cos θ3 0 0

0 0 1 0
0 0 0 1

 3T4 =


1 0 0 0
0 1 0 0
0 0 1 d

0 0 0 1


0T4 = 0T1

1T2
2T3

3T4

=


cθ123 −sθ123 0 l1cθ1 + l2cθ12

sθ123 cθ123 0 l1sθ1 + l2sθ12

0 0 1 d

0 0 0 1


θ123 = θ1 + θ2 + θ3 θ12 = θ1 + θ2

16. R�R‖R Articulated Arm Inverse Kinematics Consider a three-DOF R�R‖R manipu-
lator. Use the following transformation matrices and solve the inverse kinematics for θ1,
θ2, θ3:

0T1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 d1

0 0 0 1



1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 d2

0 0 0 1
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2T3 =


cos θ3 0 sin θ3 0
sin θ3 0 − cos θ3 0

0 1 0 0
0 0 0 1


17. � Space Station Remote Manipulator System Inverse Kinematics The forward kine-

matics of the SSRMS provides the following transformation matrices. Solve the inverse
kinematics for the SSRMS:

0T1 =


cθ1 0 −sθ1 0
sθ1 0 cθ1 0
0 −1 0 d1

0 0 0 1

 1T2 =


cθ2 0 −sθ2 0
sθ2 0 cθ2 0
0 −1 0 d2

0 0 0 1



2T3 =


cθ3 −sθ3 0 a3cθ3

sθ3 cθ3 0 a3sθ3

0 0 1 d3

0 0 0 1

 3T4 =


cθ4 −sθ4 0 a4cθ4

sθ4 cθ4 0 a4sθ4

0 0 1 d4

0 0 0 1



4T5 =


cθ5 0 sθ5 0
sθ5 0 −cθ5 0
0 1 0 d5

0 0 0 1

 5T6 =


cθ6 0 −sθ6 0
sθ6 0 cθ6 0
0 −1 0 d6

0 0 0 1



6T7 =


cθ7 −sθ7 0 0
sθ7 cθ7 0 0
0 0 1 d7

0 0 0 1


Hint : This robot is a one-DOF redundant robot. It has seven joints, which is one more
than the required six DOF to reach a point at a desired orientation. To solve the inverse
kinematics of this robot, we need to introduce one extra condition among the joint variables
or assign a value to one of the joint variables.

(a) Assume θ1 = 0 and 1T7 is given. Determine θ2, θ3, θ4, θ5, θ6, θ7.

(b) Assume θ2 = 0 and 1T7 is given. Determine θ1, θ3, θ4, θ5, θ6, θ7.

(c) Assume θ3 = 0 and 1T7 is given. Determine θ1, θ2, θ4, θ5, θ6, θ7.

(d) Assume θ5 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ6, θ7.

(e) Assume θ6 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ5, θ7.

(f) Assume θ7 = 0 and 1T7 is given. Determine θ1, θ2, θ3, θ4, θ5, θ6.

(g) Determine θ1, θ2, θ3, θ4, θ5, θ6, θ7 such that f is minimized:

f = θ1 + θ2 + θ3 + θ4 + θ5 + θ6 + θ7





Part III

Derivative Kinematics

Derivative kinematics explains how the derivatives of vectors are calculated and how
they are related to each other.

The simple and mixed forms of the first- and second-derivative transformation
formulas for a general vector B	 are

Gd

dt
B	 =

Bd

dt
B	 + B

GωB × B	

B
A	̇ = B

C	̇ + (
B
AωB − B

CωB

) × B	
Gd

dt

Gd

dt
B	 =

Bd

dt

Bd

dt
B	 + B

GαB × B	

+2B
GωB ×

(
Bd

dt
B	 + B

GωB × B	
)

B
A	̈ = B

C	̈ + (
B
AαB − B

CαB

) × B	 + 2
(
B
AωB − B

CωB

) × B	̇

+B
AωB × (

B
AωB × B	

) − B
CωB × (

B
CωB × B	

)
and are the keys for relating the derivative of vectorial characteristics in different
coordinate frames.

The geometric transformation formula

Gr = GRB
Br

is not generally correct for nonposition vectors,

dn

dtn
Gr �= GRB

dn

dtn
Br n = 1, 2, 3, . . .

unless the B- and G-frames are fixed relatively.





8

Velocity Kinematics

The angular velocity of a rigid body is the instantaneous rotation of the body with
respect to another body. It can be indicated by a vectorial quantity. We review angular
velocity calculus to study the time rate of rigid-body motions.

8.1 ANGULAR VELOCITY

Consider a rotating rigid body B(Oxyz) with a fixed point O in a reference frame
G(OXYZ), as shown in Figure 8.1. We express the motion of the body by a time-
varying rotation transformation matrix between B and G to transform the instantaneous
coordinates of body points to their coordinates in the global frame:

Gr(t) = GRB(t)Br (8.1)

The velocity of a body point in the global frame is

Gv(t) = Gṙ(t) = GṘB(t)Br = Gω̃B
Gr(t) = GωB × Gr(t) (8.2)

where GωB is the angular velocity vector of B with respect to G. It is equal to a
rotation with angular speed φ̇ about an instantaneous axis of rotation û:

ω =
 ω1

ω2

ω3

 = φ̇ û (8.3)

The angular velocity vector is associated with a skew-symmetric matrix Gω̃B called
the angular velocity matrix ,

ω̃ =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (8.4)

where
Gω̃B = GṘB

GRT
B = φ̇ ũ (8.5)

The B-expression of the angular velocity is similarly defined:

B
Gω̃B = GRT

B
GṘB (8.6)

Employing the global and body expressions of the angular velocity of the body relative
to the global coordinate frame, Gω̃B and B

Gω̃B , we determine the global and body

695
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X
Y

Z

x

y

G

B

z

rP

P

vP

Figure 8.1 A rotating rigid body B(Oxyz) with a fixed point O in a global frame G(OXYZ).

expressions of the velocity of a body point as

G
GvP = G

GωB × GrP (8.7)

B
GvP = B

GωB × BrP (8.8)

The G-expression Gω̃B and B-expression B
Gω̃B of the angular velocity matrix can

be transformed to each other using the rotation matrix GRB :

Gω̃B = GRB
B
Gω̃B

GRT
B (8.9)

B
Gω̃B = GRT

B
G
Gω̃B

GRB (8.10)

They are also related to each other directly as

Gω̃B
GRB = GRB

B
Gω̃T

B (8.11)

GRT
BGω̃B = B

Gω̃B
GRT

B (8.12)

The relative angular velocity vectors of relatively moving rigid bodies can be done
only if all the angular velocities are expressed in one coordinate frame:

0ωn = 0ω1 + 0
1ω2 + 0

2ω3 + · · · + 0
n−1ωn =

n∑
i=1

0
i−1ωi (8.13)

The inverses of the angular velocity matrices Gω̃B and B
Gω̃B are

Gω̃−1
B = GRB

GṘ−1
B (8.14)

B
Gω̃−1

B = GṘ−1
B

GRB (8.15)

Proof : Consider a rigid body with a fixed point O and an attached frame B(Oxyz) as
shown in Figure 8.2. The body frame B is initially coincident with the global frame G.
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X
Y

Z

x

y

G

B
z

P

rP

Figure 8.2 A body fixed point P at Br in the rotating body frame B.

Therefore, the position vector of a body point P at the initial time t = t0 is

Gr(t0) = Br (8.16)

and at any other time is found by the associated transformation matrix GRB(t):

Gr(t) = GRB(t)Br = GRB(t)Gr(t0) (8.17)

The global time derivative of Gr is

Gv = Gṙ =
Gd

dt
Gr(t) =

Gd

dt

[
GRB(t)Br

] =
Gd

dt

[
GRB(t)Gr(t0)

]
= GṘB(t)Gr(t0) = GṘB(t)Br (8.18)

Eliminating Br between (8.17) and (8.18) determines the velocity of the global point
in the global frame:

Gv = GṘB(t) GRT
B(t) Gr(t) (8.19)

We denote the coefficient of Gr(t) by

Gω̃B = GṘB
GRT

B (8.20)

and rewrite Equation (8.19) as

Gv = Gω̃B
Gr(t) (8.21)

or equivalently as

Gv = GωB × Gr(t) (8.22)

where GωB is the instantaneous angular velocity of the body B relative to the global
frame G as seen from the G-frame.
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Transforming Gv to the body frame provides the body expression of the velocity
vector:

B
GvP = GRT

B
Gv = GRT

B Gω̃B
Gr = GRT

B
GṘB

GRT
B

Gr

= GRT
B

GṘB
Br (8.23)

We denote the coefficient of Br by

B
Gω̃B = GRT

B
GṘB (8.24)

and rewrite Equation (8.23) as

B
GvP = B

Gω̃B
BrP (8.25)

or equivalently as

B
GvP = B

GωB × BrP (8.26)

where B
GωB is the instantaneous angular velocity of B relative to the global frame G

as seen from the B-frame.
The time derivative of the orthogonality condition, GRB

GRT
B = I, introduces an

important identity,

GṘB
GRT

B + GRB
GṘT

B = 0 (8.27)

which can be used to show that the angular velocity matrix Gω̃B = [GṘB
GRT

B ] is skew
symmetric:

GRB
GṘT

B = [
GṘB

GRT
B

]T
(8.28)

Generally speaking, an angular velocity vector is the instantaneous rotation of a
coordinate frame A with respect to another frame B that can be expressed in or seen
from a third coordinate frame C. We indicate the first coordinate frame A by a right
subscript, the second frame B by a left subscript, and the third frame C by a left
superscript, C

BωA. If the left super- and subscripts are the same, we only show the
subscript.

We can transform the G-expression of the global velocity of a body point P , GvP ,
and the B-expression of the global velocity of the point P , B

GvP , to each other using a
rotation matrix:

B
GvP = BRG

GvP = BRG Gω̃B
GrP = BRG Gω̃B

GRB
BrP

= BRG
GṘB

GRT
B

GRB
BrP = BRG

GṘB
BrP

= GRT
B

GṘB
BrP = B

Gω̃B
BrP = B

GωB × BrP (8.29)

GvP = GRB
B
GvP = GRB

B
Gω̃B

BrP = GRB
B
Gω̃B

GRT
B

GrP

= GRB
GRT

B
GṘB

GRT
B

GrP = GṘB
GRT

B
GrP

= Gω̃B
GrP = GωB × GrP = GRB

(
B
GωB × BrP

)
(8.30)
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From the definitions of Gω̃B and B
Gω̃B in (8.20) and (8.24) and comparing with (8.29)

and (8.30), we are able to transform the two angular velocity matrices by

Gω̃B = GRB
B
Gω̃B

GRT
B (8.31)

B
Gω̃B = GRT

B Gω̃B
GRB (8.32)

and derive the following useful equations:

GṘB = Gω̃B
GRB (8.33)

GṘB = GRB
B
Gω̃B (8.34)

Gω̃B
GRB = GRB

B
Gω̃B (8.35)

The angular velocity of B in G is negative of the angular velocity of G in B if
both are expressed in the same coordinate frame:

G
Gω̃B = −G

B ω̃G
G
GωB = −G

BωG (8.36)

B
Gω̃B = −B

Bω̃G
B
GωB = −B

BωG (8.37)

The vector GωB can always be expressed in the natural form

GωB = ωû (8.38)

with the magnitude ω and a unit vector û parallel to GωB that indicates the instantaneous
axis of rotation .

Using the Rodriguez rotation formula (5.4) we can show that

Ṙû,φ = φ̇ ũ Rû,φ (8.39)
and therefore,

ω̃ = φ̇ ũ (8.40)
or equivalently

Gω̃B = lim
φ→0

Gd

dt
Rû,φ = lim

φ→0

Gd

dt

(−ũ2 cos φ + ũ sin φ + ũ2 + I
)

= φ̇ ũ (8.41)

and therefore,
ω = φ̇ û (8.42)

To show the addition of relative angular velocities in Equation (8.13), we start
from a combination of rotations

0R2 = 0R1
1R2 (8.43)

and take a time derivative:

0Ṙ2 = 0Ṙ1
1R2 + 0R1

1Ṙ2 (8.44)
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Substituting the derivative of the rotation matrices with

0Ṙ2 = 0ω̃2
0R2 (8.45)

0Ṙ1 = 0ω̃1
0R1 (8.46)

1Ṙ2 = 1ω̃2
1R2 (8.47)

results in
0ω̃2

0R2 = 0ω̃1
0R1

1R2 + 0R11ω̃2
1R2

= 0ω̃1
0R2 + 0R11ω̃2

0RT
1

0R1
1R2

= 0ω̃1
0R2 + 0

1ω̃2
0R2 (8.48)

where
0R11ω̃2

0RT
1 = 0

1ω̃2 (8.49)

Therefore, we find
0ω̃2 = 0ω̃1 + 0

1ω̃2 (8.50)

which indicates that two angular velocities may be added when they are expressed in
the same frame:

0ω2 = 0ω1 + 0
1ω2 (8.51)

The expansion of this equation for any number of angular velocities would be
Equation (8.13).

Employing the relative angular velocity formula (8.51), we can find the relative
velocity formula of a point P in B2 at 0rP :

0v2 = 0ω2
0rP = (

0ω1 + 0
1ω2

) 0rP = 0ω1
0rP + 0

1ω2
0rP

= 0v1 + 0
1v2 (8.52)

The angular velocity matrices Gω̃B and B
Gω̃B are skew symmetric and not invertible.

However, we can define their inverse by the rules

Gω̃−1
B = GRB

GṘ−1
B (8.53)

B
Gω̃−1

B = GṘ−1
B

GRB (8.54)

to get
Gω̃−1

B Gω̃B = Gω̃BGω̃−1
B = [I] (8.55)

B
Gω̃−1

B
B
Gω̃B = B

Gω̃B
B
Gω̃−1

B = [I] (8.56)

�

Example 469 Rotation of a Body Point about a Global Axis Consider a rigid body
is turning about the Z-axis with a constant angular speed α̇ = 10 deg/s. The global
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velocity of a body point at P (5,30,10) when the body is at α = 30 deg is

GvP = GṘB(t)BrP

=
Gd

dt

cos α − sin α 0
sin α cos α 0

0 0 1

 5
30
10


= α̇

− sin α − cos α 0
cos α − sin α 0
0 0 0

 5
30
10



= 10π

180

− sin 1
6π − cos 1

6π 0

cos 1
6π − sin 1

6π 0

0 0 0


 5

30
10

 =
−4.97

−1.86
0

 (8.57)

The point P is now at

GrP = GRB
BrP

=

cos 1
6π − sin 1

6π 0

sin 1
6π cos 1

6π 0

0 0 1


 5

30
10

 =
−10.67

28.48
10

 (8.58)

Example 470 Rotation of a Global Point about a Global Axis A body point P

at BrP = [5, 30, 10]T is turned α = 30 deg about the Z-axis. The global position of
P is at

GrP = GRB
BrP

=

cos 1
6π − sin 1

6π 0

sin 1
6π cos 1

6π 0

0 0 1


 5

30
10

 =
−10.67

28.48
10

 (8.59)

If the body is turning with a constant angular speed α̇ = 10 deg/s, the global velocity
of the point P would be

GvP = GṘB
GRT

B
GrP

= 10π

180


−s 1

6π −c 1
6π 0

c 1
6π −s 1

6π 0

0 0 0




c 1
6π −s 1

6π 0

s 1
6π c 1

6π 0

0 0 1


T −10.67

28.48
10



=
−4.97

−1.86
0

 (8.60)
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Example 471 Principal Angular Velocities The principal rotational matrices about
the axes X, Y , and Z are

RX,γ =
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

 (8.61)

RY,β =
 cos β 0 sin β

0 1 0
− sin β 0 cos β

 (8.62)

RZ,α =
cos α − sin α 0

sin α cos α 0
0 0 1

 (8.63)

So, their time derivatives are

ṘX,γ = γ̇

0 0 0
0 − sin γ − cos γ

0 cos γ − sin γ

 (8.64)

ṘY,β = β̇

− sin β 0 cos β

0 0 0
− cos β 0 − sin β

 (8.65)

ṘZ,α = α̇

− sin α − cos α 0
cos α − sin α 0
0 0 0

 (8.66)

Therefore, the principal angular velocity matrices about axes X, Y , and Z are

ω̃X = ṘX,γ RT
X,γ = γ̇

0 0 0
0 0 −1
0 1 0

 (8.67)

ω̃Y = ṘY,βRT
Y,β = β̇

 0 0 1
0 0 0

−1 0 0

 (8.68)

ω̃Z = ṘZ,αRT
Z,α = α̇

0 −1 0
1 0 0
0 0 0

 (8.69)
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which are equivalent to
ω̃X = γ̇ Ĩ (8.70)

ω̃Y = β̇J̃ (8.71)

ω̃Z = α̇K̃ (8.72)

and therefore the principal angular velocity vectors are

ωX = ωX Î = γ̇ Î (8.73)

ωY = ωY Ĵ = β̇Ĵ (8.74)

ωZ = ωZ K̂ = α̇K̂ (8.75)

Using the same technique, we can find the following principal angular velocity
matrices about the local axes:

B
Gω̃x = RT

x,ψ Ṙx,ψ = ψ̇

0 0 0
0 0 −1
0 1 0

 = ψ̇ ı̃ (8.76)

B
Gω̃y = RT

y,θ Ṙy,θ = θ̇

 0 0 1
0 0 0

−1 0 0

 = θ̇ ̃ (8.77)

B
Gω̃z = RT

z,ϕṘz,ϕ = ϕ̇

0 −1 0
1 0 0
0 0 0

 = ϕ̇ k̃ (8.78)

Example 472 Time Derivative of Elements of GRB Expansion of Equation (8.33)
yields

GṘB = Gω̃B
GRB (8.79)

and shows how the time derivative of each element of GRB is related to components
of GωB and elements of GRB :ṙ11 ṙ12 ṙ13

ṙ21 ṙ22 ṙ23

ṙ31 ṙ32 ṙ33

 =
 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

r11 r12 r13

r21 r22 r23

r31 r32 r33


=

ωY r31 − ωZr21 ωY r32 − ωZr22 ωY r33 − ωZr23

ωZr11 − ωXr31 ωZr12 − ωXr32 ωZr13 − ωXr33

ωXr21 − ωY r11 ωXr22 − ωY r12 ωXr23 − ωY r13

 (8.80)

Expansion of Equation (8.34) yields

GṘB = GRB
B
Gω̃B (8.81)
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and shows how the elements of GṘB are related to components of B
GωB and elements

of GRB :ṙ11 ṙ12 ṙ13

ṙ21 ṙ22 ṙ23

ṙ31 ṙ32 ṙ33

 =
r11 r12 r13

r21 r22 r23

r31 r32 r33

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


=

ωzr12 − ωyr13 ωxr13 − ωzr11 ωyr11 − ωxr12

ωzr22 − ωyr23 ωxr23 − ωzr21 ωyr21 − ωxr22

ωzr32 − ωyr33 ωxr33 − ωzr31 ωyr31 − ωxr32

 (8.82)

Employing these expanded forms, we may determine the angular velocity when a
rotation transformation matrix GRB is given. As an example, assume the following
matrix is known:

GRB =
cos θ cos ϕ − sin ϕ cos ϕ sin θ

cos θ sin ϕ cos ϕ sin θ sin ϕ

− sin θ 0 cos θ

 (8.83)

A time derivative yields

GṘB =
−θ̇cϕsθ − ϕ̇cθsϕ −ϕ̇cϕ θ̇cθcϕ − ϕ̇sθsϕ

ϕ̇cθcϕ − θ̇ sθsϕ −ϕ̇sϕ θ̇cθsϕ + ϕ̇cϕsθ

−θ̇ cθ 0 −θ̇ sθ

 (8.84)

Let us use any set of three independent elements of GṘB to determine components
of GωB :

ṙ11 = ωY r31 − ωZr21 = −θ̇ cos ϕ sin θ − ϕ̇ cos θ sin ϕ (8.85)

ṙ21 = ωZr11 − ωXr31 = ϕ̇ cos θ cos ϕ − θ̇ sin θ sin ϕ (8.86)

ṙ12 = ωY r32 − ωZr22 = −ϕ̇ cos ϕ (8.87)

Writing these in the matrix formṙ11

ṙ21

ṙ12

 =
 0 r31 −r21

−r31 0 r11

0 r32 −r22

ωX

ωY

ωZ

 (8.88)

provides the solutions ωX

ωY

ωZ

 =
 0 r31 −r21

−r31 0 r11

0 r32 −r22

−1 ṙ11

ṙ21

ṙ12


=

−θ̇ sin ϕ

θ̇ cos ϕ

ϕ̇

 (8.89)
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Example 473 Decomposition of an Angular Velocity Vector Every angular veloc-
ity can be decomposed to three principal angular velocity vectors by employing the
orthogonality condition of the coordinate frame (3.1):

GωB =
(

GωB · Î
)

Î +
(

GωB · Ĵ
)

Ĵ +
(

GωB · K̂
)

K̂

= ωX Î + ωY Ĵ + ωZ K̂ = γ̇ Î + β̇Ĵ + α̇K̂

= ωX + ωY + ωZ (8.90)

Example 474 � Relative Angular Velocity The relative angular velocity formulas
(8.51) and (8.13), repeated here as

0ω2 = 0ω1 + 0
1ω2 (8.91)

0ωn = 0ω1 + 0
1ω2 + 0

2ω3 + · · · + 0
n−1ωn =

n∑
i=1

0
i−1ωi (8.92)

are correct if and only if all of the angular velocities are expressed in the B0-frame.
Therefore, any equation of the form

0ω2 �= 0ω1 + 1ω2 (8.93)

ω0 �= ω1 + ω2 (8.94)

0ω3 �= 0ω1 + 0ω2 (8.95)

is wrong or is not completely expressed.

Example 475 A Rotating Cone Figure 8.3 illustrates a cone of mass m that has
angular speeds ψ̇ about the z-axis and ϕ̇ about the Y -axis. It moves such that the
z-axis remains in the (X, Z)-plane. The transformation matrix between frames G and
B is

BRG = Rz,ψRy,ϕ

=
 cos ψ cos ϕ sin ψ − cos ψ sin ϕ

− cos ϕ sin ψ cos ψ sin ψ sin ϕ

sin ϕ 0 cos ϕ

 (8.96)

So, the rotation ϕ̇ about the Y -axis can be found in the B-frame:

BRG

0
ϕ̇

0

 =
 ϕ̇ sin ψ

ϕ̇ cos ψ

0

 (8.97)

Therefore, the angular velocity of the cone is

B
GωB = ϕ̇ sin ψ ı̂ + ϕ̇ cos ψ ̂ + ψ̇ k̂ (8.98)
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Figure 8.3 A rotating cone with angular speeds ψ̇ about the z-axis and ϕ̇ about the x-axis.

Example 476 Angular Velocity in Terms of Euler Frequencies The angular velocity
vector can be expressed by Euler frequencies as described in Chapter 4:

B
GωB = ωxı̂ + ωŷ + ωzk̂ = ϕ̇êϕ + θ̇ êθ + ψ̇ êψ

= ϕ̇

sin θ sin ψ

sin θ cos ψ

cos θ

 + θ̇

 cos ψ

− sin ψ

0

 + ψ̇

0
0
1



=
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1


 ϕ̇

θ̇

ψ̇

 (8.99)

Therefore, the G-expression of the angular velocity in terms of Euler frequencies is

GωB = BR−1
G

B
GωB = BR−1

G

ϕ̇ sin θ sin ψ + θ̇ cos ψ

ϕ̇ sin θ cos ψ − θ̇ sin ψ

ϕ̇ cos θ + ψ̇



=
0 cos ϕ sin θ sin ϕ

0 sin ϕ − cos ϕ sin θ

1 0 cos θ


 ϕ̇

θ̇

ψ̇

 (8.100)

where BR−1
G is the inverse of the Euler transformation matrix:

BR−1
G =

cϕcψ − cθsϕsψ −cϕsψ − cθcψsϕ sθsϕ

cψsϕ + cθcϕsψ −sϕsψ + cθcϕcψ −cϕsθ

sθsψ sθcψ cθ

 (8.101)
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Example 477 � Angular Velocity and Decomposed Euler Matrix Because GRB is
a combination of principal rotation matrices in terms of Euler angles, we may use the
decomposed form to determine GṘB and Gω̃B :

GṘB = d

dt

(
RT

z,ϕRT
x,θR

T
z,ψ

) = d

dt

(
RZ,ϕRX,θRZ,ψ

)
= ṘZ,ϕRX,θRZ,ψ + RZ,ϕṘX,θRZ,ψ + RZ,ϕRX,θ ṘZ,ψ

= ϕ̇K̂RZ,ϕRX,θRZ,ψ + θ̇RZ,ϕÎRX,θRZ,ψ + ψ̇RZ,ϕRX,θ K̂RZ,ψ (8.102)

Gω̃B = GṘB
GRT

B = GṘB

(
RT

Z,ψRT
X,θR

T
Z,ϕ

)
= ϕ̇K̂ + θ̇RZ,ϕÎRT

Z,ϕ + ψ̇RZ,ϕRX,θ K̂RT
X,θR

T
Z,ϕ (8.103)

Expanding Gω̃B provides the following equation, consistent with Equation (8.99):

Gω̃B = ϕ̇

0 −1 0
1 0 0
0 0 0

 + θ̇

 0 0 sin ϕ

0 0 − cos ϕ

− sin ϕ cos ϕ 0


+ ψ̇

 0 − cos θ − cos ϕ sin θ

cos θ 0 − sin θ sin ϕ

cos ϕ sin θ sin θ sin ϕ 0

 (8.104)

Example 478 Angular Velocity in Terms of Rotation Frequencies Appendices A and
B show the 12 global and 12 local axis triple rotations. Using those equations, we are
able to find the angular velocity of a rigid body in terms of rotation frequencies. As
an example, consider the Euler angle transformation matrix in case 9 of Appendix B:

BRG = Rz,ψRx,θRz,ϕ (8.105)

The angular velocity matrix is then equal to

Bω̃G = BṘG
BRT

G

=
(

ϕ̇ Rz,ψRx,θ

dRz,ϕ

dϕ
+ θ̇ Rz,ψ

dRx,θ

dθ
Rz,ϕ + ψ̇

dRz,ψ

dψ
Rx,θRz,ϕ

)
× (

Rz,ψRx,θRz,ϕ

)T

= ϕ̇ Rz,ψRx,θ

dRz,ϕ

dϕ
RT

z,ϕRT
x,θR

T
z,ψ + θ̇ Rz,ψ

dRx,θ

dθ
RT

x,θR
T
z,ψ

+ ψ̇
dRz,ψ

dψ
RT

z,ψ (8.106)
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which, in matrix form, is

Bω̃G = ϕ̇

 0 cos θ − sin θ cos ψ

− cos θ 0 sin θ sin ψ

sin θ cos ψ − sin θ sin ψ 0



+ θ̇

 0 0 sin ψ

0 0 cos ψ

− sin ψ − cos ψ 0

 + ψ̇

 0 1 0

−1 0 0

0 0 0

 (8.107)

or

Bω̃G =

 0 ψ̇ + ϕ̇cθ θ̇sψ − ϕ̇sθcψ

−ψ̇ − ϕ̇cθ 0 θ̇cψ + ϕ̇sθsψ

−θ̇ sψ + ϕ̇sθcψ −θ̇ cψ − ϕ̇sθsψ 0

 (8.108)

The associated angular velocity vector is

BωG = −

 θ̇ cψ + ϕ̇sθsψ

−θ̇ sψ + ϕ̇sθcψ

ψ̇ + ϕ̇cθ



= −

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1


 ϕ̇

θ̇

ψ̇

 (8.109)

However,

B
Bω̃G = −B

Gω̃B (8.110)

B
BωG = −B

GωB (8.111)

and therefore,

B
GωB =

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1


 ϕ̇

θ̇

ψ̇

 (8.112)

Example 479 � Gω̃B = GRB
B
Gω̃B

GRT
B Is Equivalent to GωB = GRB

B
GωB The vec-

torial expression of an angular velocity can be expressed in any coordinate frame by
employing a coordinate transformation matrix. Therefore, we must have

GωB = GRB
B
GωB (8.113)
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which is equivalent to

Gω̃B = GRB
B
Gω̃B

GRT
B (8.114)

To show this fact, let us multiply Gω̃B by an arbitrary vector Gr and show it is equal
to GωB × Gr:

GRB
B
Gω̃B

GRT
B

Gr = GRB
B
Gω̃B

BRG
Gr = GRB

B
Gω̃B

Br

= GRB

(
B
GωB × Br

) = GωB × Gr (8.115)

Example 480 � Coordinate Transformation of Angular Velocity The angular veloc-
ity 1ω2 of coordinate frame B2 with respect to B1 and expressed in B1 can be expressed
in the base coordinate frame B0 according to

0R11ω̃2
0RT

1 = 0
1ω̃2 (8.116)

To show this equation, it is enough to apply both sides on an arbitrary vector 0r:

0R11ω̃2
0RT

1
0r = 0

1ω̃2
0r (8.117)

The left-hand side would be

0R11ω̃2
0RT

1
0r = 0R11ω̃2

1R0
0r = 0R11ω̃2

1r

= 0R1
(

1ω2 × 1r
) = 0

1ω2 × 0r (8.118)

which is equal to the right-hand side:

0
1ω̃2

0r = 0
1ω2 × 0r (8.119)

Example 481 � Time Derivative of Unit Vectors Using Equation (8.7) we can define
the time derivative of the unit vectors of a body coordinate frame B(ı̂, ̂ , k̂) rotating
in the global coordinate frame G(Î , Ĵ , K̂):

Gdı̂

dt
= B

GωB × ı̂ (8.120)

Gd̂

dt
= B

GωB × ̂ (8.121)

Gdk̂

dt
= B

GωB × k̂ (8.122)
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Example 482 � Angular Velocity in Natural Coordinate Frame ût , ûn, ûb The time
derivatives of the unit vectors ût , ûn, ûb of the natural coordinate frame N

(
ût , ûn, ûb

)
are

dût

dt
= ṡ

ρ
ûn (8.123)

dûn

dt
= − ṡ

ρ
ût + ṡ

σ
ûb (8.124)

dûb

dt
= − ṡ

σ
ûn (8.125)

Using Equation (8.7) we can determine the angular velocity vector in the natural coor-
dinate frame:

dût

dt
= N

GωN × ût (8.126)

dûn

dt
= N

GωN × ûn (8.127)

dûb

dt
= N

GωN × ûb (8.128)

N
GωN = ωt ût + ωnûn + ωbûb = ṡ

σ
ût + ṡ

ρ
ûb (8.129)

Example 483 � Derivative of a Quaternion Consider a quaternion q as a function
of a scalar parameter s:

p = p0 (s) + p (s)

= p0 (s) + p1 (s) i + p2 (s) j + p3 (s) k (8.130)

The derivative of q with respect to s is

dq

ds
= dp0

ds
+ dp1

ds
i + dp2

ds
j + dp3

ds
k (8.131)

If the parameter s is time t , we have

dq

dt
= dp0

dt
+ dp1

dt
i + dp2

dt
j + dp3

dt
k (8.132)

Let us show the position vector of a moving particle by a quaternion as

←→r = t + r (t) = t + r1 (t) i + r2 (t) j + r3 (t) k (8.133)
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The velocity and acceleration vectors of the particle are

←→v =
(

d

dt
+ 0

)
(t + r) = 1 + v (t) (8.134)

←→a =
(

d

dt
+ 0

)
(1 + v) = 0 + a (t) (8.135)

Example 484 � Angular Velocity, Quaternions, and Euler Parameters We may also
express the angular velocity vector by quaternions and Euler parameters. Let us use
the orthogonality property of a unit quaternion

ee−1 = ee∗ = 1 (8.136)

to determine
ėe∗ + eė∗ = 0 (8.137)

Starting from the unit quaternion representation of a finite rotation

Gr = e (t) Br e∗ (t) = e (t) Br e−1 (t) (8.138)

where
e = e0 + e e∗ = e−1 = e0 − e (8.139)

we can find
Gṙ = ė Br e∗ + e Br ė∗ = ė e∗Gr + Gr e ė∗

= 2ė e∗Gr (8.140)

and therefore the angular velocity in terms of the rotation quaternion is

GωB = 2ė e∗ (8.141)

We may expand this equation using quaternion products to find the angular velocity
components based on Euler parameters and show that GωB is a vector:

GωB = 2ė e∗ = 2 (ė0 + ė) (e0 − e)

= 2 (ė0e0 + e0ė − ė0e + ė · e − ė × e)

= 2


0

e0ė1 − e1ė0 + e2ė3 − e3ė2

e0ė2 − e2ė0 − e1ė3 + e3ė1

e0ė3 + e1ė2 − e2ė1 − e3ė0

 (8.142)

It can be rearranged in matrix form as
0

ωX

ωY

ωZ

 = 2


ė0 −ė1 −ė2 −ė3

ė1 ė0 −ė3 ė2

ė2 ė3 ė0 −ė1

ė3 −ė2 ė1 ė0




e0

−e1

−e2

−e3

 (8.143)
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The scalar component of the angular velocity quaternion is zero because

ė0e0 + ė · e = ė0e0 + e1ė1 + e2ė2 + e3ė3 = 0 (8.144)

We can also define an angular velocity quaternion

←→
GωB = 2

←→̇
e

←→
e∗ (8.145)

to be used for definition of the derivative of a rotation quaternion:
←→̇
e = 1

2
←→
GωB

←→e (8.146)


ė0 −ė1 −ė2 −ė3

ė1 ė0 −ė3 ė2

ė2 ė3 ė0 −ė1

ė3 −ė2 ė1 ė0

 = 1

2


0 −ωX −ωY −ωZ

ωX 0 −ωZ ωY

ωY ωZ 0 −ωX

ωZ −ωY ωX 0




e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0


(8.147)

where

ė0 = −ωXe1 − ωY e2 − ωZe3 (8.148)

ė1 = ωXe0 + ωY e3 − ωZe2 (8.149)

ė2 = ωY e0 − ωXe3 + ωZe1 (8.150)

ė3 = ωXe2 − ωY e1 + ωZe0 (8.151)

A coordinate transformation can transform the angular velocity into a body coordinate
frame:

B
GωB = e∗ G

GωB e = 2e∗ ė (8.152)

= 2


e0 e1 e2 e3

−e1 e0 e3 −e2

−e2 −e3 e0 e1

−e3 −e2 e1 e0




ė0

ė1

ė2

ė3

 (8.153)

and therefore,
←→
B
G ωB = 2

←→
e∗ ←→̇

e (8.154)

←→̇
e = 1

2
←→e

←→
B
G ωB (8.155)


ė0 −ė1 −ė2 −ė3

ė1 ė0 −ė3 ė2

ė2 ė3 ė0 −ė1

ė3 −ė2 ė1 ė0

 = 1

2


e0 −e1 −e2 −e3

e1 e0 −e3 e2

e2 e3 e0 −e1

e3 −e2 e1 e0




0 −ωx −ωy −ωz

ωx 0 −ωz ωy

ωy ωz 0 −ωx

ωz −ωy ωx 0


(8.156)
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where

ė0 = −ωxe1 − ωye2 − ωze3 (8.157)

ė1 = ωxe0 − ωye3 + ωze2 (8.158)

ė2 = ωye0 + ωxe3 − ωze1 (8.159)

ė3 = ωye1 − ωxe2 + ωze0 (8.160)

Example 485 � Differential of Euler Parameters The rotation matrix GRB based on
Euler parameters is given in Equation (5.109) as

GRB =

e2
0 + e2

1 − e2
2 − e2

3 2 (e1e2 − e0e3) 2 (e0e2 + e1e3)

2 (e0e3 + e1e2) e2
0 − e2

1 + e2
2 − e2

3 2 (e2e3 − e0e1)

2 (e1e3 − e0e2) 2 (e0e1 + e2e3) e2
0 − e2

1 − e2
2 + e2

3


=

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (8.161)

The individual parameters can be found from any set of Equations (5.114)–(5.117).
The first set indicates that

e0 = ±1

2

√
1 + r11 + r22 + r33 (8.162)

e1 = 1

4

r32 − r23

e0
(8.163)

e2 = 1

4

r13 − r31

e0
(8.164)

e3 = 1

4

r21 − r12

e0
(8.165)

and therefore,

ė0 = ṙ11 + ṙ22 + ṙ33

8e0
(8.166)

ė1 = 1

4e2
0

[(ṙ32 − ṙ23)e0 − (r32 − r23)ė0] (8.167)

ė2 = 1

4e2
0

[(ṙ13 − ṙ31)e0 − (r13 − r31)ė0] (8.168)

ė3 = 1

4e2
0

[(ṙ21 − ṙ12)e0 − (r21 − r12)ė0] (8.169)

We may use the differential of the transformation matrix

GṘB = Gω̃B
GRB
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to show that

ė0 = 1
2 (−e1ω1 − e2ω2 − e3ω3) (8.170)

ė1 = 1
2 (e0ω1 + e2ω3 − e3ω2) (8.171)

ė2 = 1
2 (e0ω2 − e1ω3 − e3ω1) (8.172)

ė3 = 1
2 (e0ω3 + e1ω2 − e2ω1) (8.173)

Similarly we can find ė1, ė2, and ė3 and set up the final result in matrix form as
ė0

ė1

ė2

ė3

 = 1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0




e0

e1

e2

e3

 (8.174)

or 
ė0

ė1

ė2

ė3

 = 1

2


e0 −e3 −e2 −e1

e1 e0 −e3 e2

e2 e1 e0 −e3

e3 −e2 e1 e0




0
ω1

ω2

ω3

 (8.175)

Example 486 � Elements of the Angular Velocity Matrix Employing the permuta-
tion symbol introduced in (1.126), we can find the elements of the angular velocity
matrix ω̃ when the angular velocity vector ω = [ω1, ω2, ω3]T is given:

ω̃ij = εijk ωk (8.176)

Example 487 � Kinematic Differential Equation Consider a variable rotation matrix
GRB(t) between frames B and G and a time derivative from the rotation transformation
equation:

Gr(t) = GRB(t)Gr(0) (8.177)
Gd

dt
Gr(t) = GṘB(t)Gr(0) (8.178)

If we define GṘB(t) as

GṘB(t) = GṘB(0) GRB(t) (8.179)

then we find the following equation, called a first-order vectorial kinematic differential
equation:

Gd

dt
Gr(t) = GṘB(0) GRB(t)Gr(0) = GṘB(0)Gr(t) (8.180)
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We should be able to determine the solution of this equation in series form:

Gr(t) = Gr(0) +
GdGr(0)

dt
t + 1

2!

Gd2Gr(0)

dt2
t2 + · · · (8.181)

Substituting the higher derivatives as

Gd2

dt2
Gr(t) = GṘ2

B(0)Gr(t) (8.182)

Gd3

dt3
Gr(t) = GṘ3

B(0)Gr(t) (8.183)

the series solution simplifies to an exponential solution:

Gr(t) =
(

I + GṘB(0) t + 1

2!
GṘ2

B(0) t2 + · · ·
)

Gr(0)

= e
GṘB(0) t Gr(0) (8.184)

Example 488 � Differential Equation for Rotation Matrix Equation (8.33) for defin-
ing the angular velocity matrix may be written as a first-order differential equation

d

dt
GRB − Gω̃B

GRB = 0 (8.185)

The solution of the equation confirms the exponential definition of the rotation
matrix as

GRB (t) = GRB (0) eω̃t (8.186)

or

ω̃t = φ̇ ũ = ln GRB (t) − ln GRB (0) (8.187)

Example 489 � Alternative Definition of Angular Velocity Vector The angular veloc-
ity vector of a rigid body B(ı̂, ̂ , k̂) in global frame G(Î , Ĵ , K̂) can also be defined as

B
GωB = ı̂

(
Gd̂

dt
· k̂

)
+ ̂

(
Gdk̂

dt
· ı̂
)

+ k̂

(
Gdı̂

dt
· ̂

)
(8.188)

To prove (8.188), consider a body coordinate frame B moving with a fixed point
in the global frame G, as shown in Figure 8.4. In order to describe the motion of the
body, it is sufficient to express the motion of the local unit vectors ı̂, ̂ , k̂. Let rP be
the position vector of a fixed body point P . Then, BrP is a B-vector with constant
components:

BrP = xı̂ + ŷ + zk̂ (8.189)
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Figure 8.4 A body coordinate frame moving with a fixed point in the global coordinate frame.

When the body moves, the unit vectors ı̂, ̂ , k̂ move relative to the global coordinate
frame. Therefore, the vector of differential displacement dr is

drP = x dı̂ + y d̂ + z dk̂ (8.190)

The differential drP is the B-expression of the infinitesimal displacement as seen from
the G-frame. Using the orthogonality condition (3.1), we can also express drP as

drP = (
drP · ı̂) ı̂ + (

drP · ̂) ̂ +
(
drP · k̂

)
k̂ (8.191)

Substituting (8.190) in the right-hand side of (8.191) results in

drP =
(
xı̂ · dı̂ + yı̂ · d̂ + zı̂ · dk̂

)
ı̂ +

(
x̂ · dı̂ + ŷ · d̂ + ẑ · dk̂

)
̂

+
(
xk̂ · dı̂ + yk̂ · d̂ + zk̂ · dk̂

)
k̂ (8.192)

Employing the unit vector relationships

̂ · dı̂ = −ı̂ · d̂ k̂ · d̂ = −̂ · dk̂ ı̂ · dk̂ = −k̂ · dı̂ (8.193)

ı̂ · dı̂ = ̂ · d̂ = k̂ · dk̂ = 0 (8.194)

ı̂ · ̂ = ̂ · k̂ = k̂ · ı̂ = 0 (8.195)

ı̂ · ı̂ = ̂ · ̂ = k̂ · k̂ = 1 (8.196)

drP reduces to

drP =
(
zı̂ · dk̂ − ŷ · dı̂

)
ı̂ +

(
x̂ · dı̂ − zk̂ · d̂

)
̂

+
(
yk̂ · d̂ − xı̂ · dk̂

)
k̂ (8.197)

This equation can be rearranged to be expressed as a vector product

drP =
[
(k̂ · d̂ )ı̂ + (ı̂ · dk̂)̂ + (̂ · dı̂)k̂

]
×

(
xı̂ + ŷ + zk̂

)
(8.198)
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or

B
GṙP =

[(
k̂ ·

Gd̂

dt

)
ı̂ +

(
ı̂ ·

Gdk̂

dt

)
̂ +

(
̂ ·

Gdı̂

dt

)
k̂

]

×
(
xı̂ + ŷ + zk̂

)
(8.199)

Comparing this result with

B
GṙP = B

GωB × BrP (8.200)

shows that

B
GωB = ı̂

(
Gd̂

dt
· k̂

)
+ ̂

(
Gdk̂

dt
· ı̂
)

+ k̂

(
Gdı̂

dt
· ̂

)
(8.201)

Example 490 � Alternative Proof for Angular Velocity Definition (8.188) The angu-
lar velocity definition presented in Equation (8.188) can also be shown by direct
substitution for GRB in the angular velocity matrix B

Gω̃B :

B
Gω̃B = GRT

B
GṘB (8.202)

Therefore,

B
Gω̃B =

 ı̂ · Î ı̂ · Ĵ ı̂ · K̂
̂ · Î ̂ · Ĵ ̂ · K̂
k̂ · Î k̂ · Ĵ k̂ · K̂

 ·
Gd

dt

 Î · ı̂ Î · ̂ Î · k̂
Ĵ · ı̂ Ĵ · ̂ Ĵ · k̂

K̂ · ı̂ K̂ · ̂ K̂ · k̂



=


ı̂ ·

Gdı̂

dt
ı̂ ·

Gd̂

dt
ı̂ ·

Gdk̂

dt

̂ ·
Gdı̂

dt
̂ ·

Gd̂

dt
̂ ·

Gdk̂

dt

k̂ ·
Gdı̂

dt
k̂ ·

Gd̂

dt
k̂ ·

Gdk̂

dt

 (8.203)

which shows that

B
GωB =



Gd̂

dt
· k̂

Gdk̂

dt
· ı̂

Gdı̂

dt
· ̂

 (8.204)

Example 491 � Another Proof for Angular Velocity Definition (8.188) Let us show
the angular velocity B

GωB by using the orthogonality condition:

B
GωB = (

B
GωB · ı̂) ı̂ + (

B
GωB · ̂) ̂ +

(
B
GωB · k̂

)
k̂ (8.205)
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We substitute the unit vectors of the body coordinate frame with a cross product,

B
GωB =

(
B
GωB · ̂ × k̂

)
ı̂ +

(
B
GωB · k̂ × ı̂

)
̂ + (

B
GωB · ı̂ × ̂

)
k̂ (8.206)

and interchange the dot and cross products,

B
GωB =

(
B
GωB × ̂ · k̂

)
ı̂ +

(
B
GωB × k̂ · ı̂

)
̂ + (

B
GωB × ı̂ · ̂) k̂ (8.207)

Knowing that

B
GωB × ̂ =

Gd̂

dt
B
GωB × k̂ =

Gdk̂

dt
B
GωB × ı̂ =

Gdı̂

dt
(8.208)

we can write the angular velocity as defined in Equation (8.188):

B
GωB = ı̂

(
Gd̂

dt
· k̂

)
+ ̂

(
Gdk̂

dt
· ı̂

)
+ k̂

(
Gdı̂

dt
· ̂

)
(8.209)

8.2 TIME DERIVATIVE AND COORDINATE FRAMES

The time derivative of a vector depends on the coordinate frame in which we are taking
the derivative. Consider an orthogonal global frame G(OXYZ) and an orthogonal body
frame B(Oxyz) that is fixed at the point O. When a vector is expressed in the B-frame,
we call it a B-vector, and similarly, when a vector is expressed in the G-frame, we call
it a G-vector. The first time derivative of a vector r in G is called the G-derivative
and is denoted by Gṙ,

Gd

dt
r = Gṙ (8.210)

and the first time derivative of r in the body frame B is called the B-derivative and is
denoted by B ṙ,

Bd

dt
r = B ṙ (8.211)

The left superscript on the derivative symbol indicates the coordinate frame in which
the derivative is taken. The unit vectors of the derivative frame are considered con-
stant. Therefore, the derivative of the G-vector, Gr = XÎ + Y Ĵ + ZK̂ in G, and the
derivative of the B-vector, Br = xı̂ + ŷ + zk̂ in B, are given as

Gd

dt
Gr = Gv = Gṙ = Ẋ Î + Ẏ Ĵ + Ż K̂ (8.212)

Bd

dt
Br = Bv = B ṙ = ẋ ı̂ + ẏ ̂ + ż k̂ (8.213)

The derivative of a vector in the same frame in which it is expressed is called a simple
derivative.
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It is also possible to find the G-derivative of Br and the B-derivative of Gr. The
derivative of a vector in a frame other than the frame in which it is expressed is called
a mixed derivative. We define the G-derivative of a body vector Br by

Gd

dt
Br = B

GωB × Br = B
Gv (8.214)

and call B
Gv the B-expression of the G-velocity. Similarly, the B-derivative of a global

vector Gr is given as

Bd

dt
Gr = −GωB × Gr = G

Bv (8.215)

and we call G
Bv the G-expression of the B-velocity.

Whenever it is clear that we are working with velocity vectors, we may use the
signs B

Gv and G
Bv, which are short notations for (Gd/dt)Br and (Bd/dt)Gr, respectively.

The left superscript of B
Gv indicates the frame in which v is expressed and the left

subscript indicates the frame in which the derivative is taken. If the left superscript and
subscript of a derivative vector are the same, we only keep the superscript. To read B

Gv
and G

Bv, we may use the expressions G-velocity of a B-vector for B
Gv and B-velocity of

a G-vector for G
Bv.

When the interested point P is not a fixed point in B, then, P is moving in frame
B and BrP = BrP (t) is not a constant vector. The G-derivative of Br (t) is defined by

Gd

dt
Br (t) = B

Gv = B
Gṙ =

Bd

dt
Br + B

GωB × Br

= Bv + B
GωB × Br (8.216)

and the B-derivative of Gr (t) is defined by

Bd

dt
Gr (t) = G

Bv = G
Bṙ =

Gd

dt
Gr (t) − GωB × Gr

= Gv − GωB × Gr (8.217)

The G-derivative of a B-vector is a B-vector and the B-derivative of a G-vector is a
G-vector.

Proof : Let G(OXYZ) with unit vectors Î , Ĵ , and K̂ be the global coordinate frame,
and let B(Oxyz) with unit vectors ı̂, ̂ , and k̂ be a body coordinate frame. The position
vector of a moving point P , as shown in Figure 8.5, can be expressed in the body and
global frames:

Br (t) = x (t) ı̂ + y (t) ̂ + z (t) k̂ (8.218)
Gr (t) = X (t) Î + Y (t) Ĵ + Z (t) K̂ (8.219)
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Figure 8.5 A moving body point P at Br(t) in the rotating body frame B.

The time derivatives of Br = BrP in B and Gr = GrP in G are

Bd

dt
Br = Bv = B ṙ = ẋ ı̂ + ẏ ̂ + ż k̂ (8.220)

Gd

dt
Gr = Gv = Gṙ = Ẋ Î + Ẏ Ĵ + Ż K̂ (8.221)

because the unit vectors of B in Equation (8.218) and the unit vectors of G in Equation
(8.219) are considered constant.

To determine the general mixed derivative (8.216), we use Equations
(8.120)–(8.122) to find the G-derivative of the B-vector Br and determine the
B-expression of the G-velocity B

Gv:

Gd

dt
Br =

Gd

dt

(
xı̂ + ŷ + zk̂

)
= ẋ ı̂ + ẏ ̂ + ż k̂ + x

Gdı̂

dt
+ y

Gd̂

dt
+ z

Gdk̂

dt

= ẋ ı̂ + ẏ ̂ + ż k̂ + x
(
B
GωB × ı̂

) + y
(
B
GωB × ̂

) + z
(

B
GωB × k̂

)
= ẋ ı̂ + ẏ ̂ + ż k̂ + B

GωB ×
(
xı̂ + ŷ + zk̂

)
=

Bd

dt
Br + B

GωB × Br = Bv + B
GωB × Br (8.222)

We achieved this result because the x-, y-, and z-components of BrP are scalar. Scalars
are invariant with respect to coordinate frame transformations. Therefore, if x is a scalar,
then

Gd

dt
x =

Bd

dt
x = ẋ (8.223)
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The B-derivative of GrP can be found similarly:

Bd

dt
Gr =

Bd

dt

(
XÎ + Y Ĵ + ZK̂

)
= Ẋ Î + Ẏ Ĵ + Ż K̂ + X

BdÎ

dt
+ Y

BdĴ

dt
+ Z

BdK̂

dt

= ẊÎ + Ẏ Ĵ + ŻK̂

+ X
(

G
BωG × Î

)
+ Y

(
G
BωG × Ĵ

)
+ Z

(
G
BωG × K̂

)
= ẊÎ + Ẏ Ĵ + ŻK̂ + G

BωG ×
(
XÎ + Y Ĵ + ZK̂

)
=

Gd

dt
Gr + G

BωG × Gr = Gv + G
BωG × Gr

= Gv − GωB × Gr (8.224)

The angular velocity of B relative to G is a vector quantity and can be expressed in
either frames,

G
GωB = ωX Î + ωY Ĵ + ωZ K̂ (8.225)

B
GωB = ωxı̂ + ωŷ + ωzk̂ (8.226)

or be transformed from one frame to the other according to (8.9) and (8.10).
Using Equations of simple and mixed derivatives (8.212)–(8.217), we define the

simple integrals as

G

∫
Gvdt = G

∫ (
Ẋ Î + Ẏ Ĵ + Ż K̂

)
dt = X ı̂ + Y ̂ + Z k̂ (8.227)

B

∫
Bvdt = B

∫ (
ẋ ı̂ + ẏ ̂ + ż k̂

)
dt = x ı̂ + y ̂ + z k̂ (8.228)

Similarly, the mixed integrals of a body vector are

G

∫
B
Gv dt = Br = B

Gω̃T
B

B
Gv (8.229)

B

∫
G
Bvdt = Gr = −Gω̃T

B
G
Bv (8.230)

If the point P is moving in B, then the mixed integrals would be

G

∫
B
Gv dt = Br = B

Gω̃T
B

(
B
Gv− Bv

)
Gd

dt
Br (t) = B

Gv = B
Gṙ =

Bd

dt
Br + B

GωB × Br

= Bv + B
GωB × Br (8.231)
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Bd

dt
Gr (t) = G

Bv = G
Bṙ =

Gd

dt
Gr (t) − GωB × Gr

= Gv − GωB × Gr (8.232)

�

Example 492 Time Derivative of a Moving Point in B Consider a local frame
B rotating in G about the Z-axis with angular velocity α̇ and a moving point at
BrP (t) = t ı̂. The global position vector of the point is

GrP = GRB
BrP = RZ,α(t)BrP =

cos α − sin α 0
sin α cos α 0

0 0 1

t

0
0


= t cos αÎ + t sin αĴ (8.233)

The angular velocity matrix is

Gω̃B = GṘB
GRT

B = α̇K̃ (8.234)

which gives

GωB = α̇K̂ (8.235)

It can also be verified that

B
Gω̃B = GRT

B
G
Gω̃B

GRB = α̇k̃ (8.236)

and therefore,

B
GωB = α̇k̂ (8.237)

Now we can find the following simple derivatives:

Bd

dt
BrP = B ṙP = ı̂

Gd

dt
GrP = GṙP (8.238)

= (cos α − t α̇ sin α) Î + (sin α + t α̇ cos α) Ĵ (8.239)

For the mixed derivatives we start with

Gd

dt
BrP =

Bd

dt
BrP + B

GωB × BrP

=
1

0
0

 + α̇

0
0
1

 ×
t

0
0

 =
 1

t α̇

0


= ı̂ + t α̇̂ = B

GṙP (8.240)



8.2 Time Derivative and Coordinate Frames 723

which is the B-expression of the G-velocity of P . We may, however, transform
B
GṙP to the global frame and find the global velocity expressed in G as given in
Equation (8.239):

GṙP = GRB
B
GṙP

=
cos α − sin α 0

sin α cos α 0
0 0 1

 1
t α̇

0

 =
cos α − t α̇ sin α

sin α + t α̇ cos α

0


= (cos α − t α̇ sin α) Î + (sin α + t α̇ cos α) Ĵ (8.241)

The next mixed derivative is

Bd

dt
GrP = GṙP − GωB × GrP

=
cos α − t α̇ sin α

sin α + t α̇ cos α

0

 − α̇

0
0
1

 ×
t cos α

t sin α

0


=

cos α

sin α

0

 = (cos α) Î + (sin α) Ĵ = G
BṙP (8.242)

which is the G-expression of the B-velocity of P . To express this velocity in B we
apply a frame transformation and find the same result as (8.238):

B ṙP = GRT
B

G
BṙP

=
cos α − sin α 0

sin α cos α 0
0 0 1

T cos α

sin α

0

 =
1

0
0

 = ı̂ (8.243)

Sometimes it is applied more if we transform the vector to the same frame in which
we are taking the derivative and then apply the differential operator. Therefore,

Gd

dt
BrP =

Gd

dt

(
GRB

BrP

)
=

Gd

dt

t cos α

t sin α

0

 =
cos α − t α̇ sin α

sin α + t α̇ cos α

0

 (8.244)

and

Bd

dt
GrP =

Bd

dt

(
GRT

B
GrP

) =
Bd

dt

t

0
0

 =
1

0
0

 (8.245)
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Example 493 Orthogonality of Position and Velocity Vectors The velocity vector of
a fixed body point is perpendicular to the vector:

dr
dt

· r = 0 (8.246)

To show this property, we may take a derivative from

r · r = r2 (8.247)

and find
d

dt
(r · r) = dr

dt
· r + r · dr

dt
= 2

dr
dt

· r = 0 (8.248)

Equation (8.246) is correct in every coordinate frame and for every constant-length
vector as long as the vector and the derivative are expressed in the same coordinate
frame.

Example 494 � Simple Derivative Transformation Formula The B-expression of
the G-velocity of a fixed point in the body coordinate frame B(Oxyz) can be found
by Equation (8.214). Now consider a point P that can move in B(Oxyz). In this case,
the body position vector BrP is not constant, and therefore, the B-expression of the
G-velocity of such a point is (8.216):

Gd

dt
BrP = B

GṙP =
Bd

dt
BrP + B

GωB × BrP (8.249)

Sometimes the result of Equation (8.249) is used to define the transformation of the
differential operator on a B-vector B	 from the body to the global coordinate frame:

Gd

dt
B	 = B

G	̇ =
Bd

dt
B	 + B

GωB × B	 (8.250)

However, special attention must be paid to the coordinate frame in which the vector
B	 and the final result are expressed. The final result is B

G	̇, showing the global (G)

time derivative expressed in the body frame (B) or simply the B-expression of the G-
derivative of B	. The vector B	 may be any vector quantity such as position, velocity,
angular velocity, momentum, angular momentum, a time-varying force vector.

Equation (8.250) is called a simple derivative transformation formula and relates
the derivative of a B-vector as it would be seen from the G-frame to its derivative as
seen from the B-frame. The derivative transformation formula (8.250) is more general
and can be applied to every vector for derivative transformation between every two
relatively moving coordinate frames.

Example 495 � Mixed Derivative Transformation Formula Consider three rela-
tively rotating coordinate frames A, B, and C, as shown in Figure 8.6. The B-expression
of the A-velocity of a moving point P in the body coordinate frame B(Oxyz) is

Ad

dt
BrP = B

AvP =
Bd

dt
BrP + B

AωB × BrP (8.251)
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Figure 8.6 Three relatively rotating coordinate frames A, B, and C.

and the B-expression of the C-velocity of a moving point in the body coordinate frame
B(Oxyz) is

Cd

dt
BrP = B

CvP =
Bd

dt
BrP + B

CωB × BrP (8.252)

Combining Equations (8.251) and (8.252), we find

B
AvP − B

AωB × BrP = B
CvP − B

CωB × BrP (8.253)

Rearranging (8.253) and changing the frame C in which we have taken a derivative of
BrP to the frame A in which we need the derivative to be taken yield

B
AvP = B

CvP + (
B
AωB − B

CωB

) × BrP (8.254)

We may equivalently show it as

B
A	̇ = B

C	̇ + (
B
AωB − B

CωB

) × B	 (8.255)

Equation (8.255) is called the mixed-derivative transformation formula . It presents the
method used to change the frame in which the derivative of a vector B	 is taken. Inter-
estingly, mixed-derivative transformation does not involve local derivatives directly.

The mixed-derivative transformation formula (8.255) is more general than the
simple-derivative transformation formula (8.250). Equation (8.250) is a special case
of (8.255) when B ≡ C or B

CωB = 0.

Example 496 � Acceleration of a Body Point in the Global Frame The angular
acceleration vector of a rigid body B(Oxyz) in the global frame G(OXYZ) is denoted
by GαB and is defined as the global time derivative of GωB :

GαB =
Gd

dt
GωB (8.256)
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Using this definition, the acceleration of a fixed body point in the global frame is

GaP =
Gd

dt

(
GωB × GrP

) = GαB × GrP + GωB × (GωB × GrP )

= GαB × GrP − Gω2
B

GrP (8.257)

The first term is perpendicular to GrP and may be called tangential acceleration. The
second term is in the direction of −GrP and may be called centripetal acceleration .

Example 497 � Second Derivative In general, d r/dt is a variable vector in G(OXYZ)
and in any other coordinate frame such as B(Oxyz). Therefore, it can be differentiated
in either coordinate frames G or B. However, the order of differentiating is important
because

Bd

dt

Gdr
dt

�=
Gd

dt

Bdr
dt

(8.258)

As an example, consider a rotating body coordinate frame about the Z-axis and a
variable G-vector as

Gr = t Î (8.259)

The G-derivative of Gr is

Gdr
dt

= Gṙ = Î (8.260)

We can transform this vector to the B-frame to calculate B
G ṙ:

B

(
Gdr
dt

)
= B

Gṙ = RT
Z,ϕ

Gṙ = RT
Z,ϕ

[
Î
]

=
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

1
0
0

 = cos ϕı̂ − sin ϕ̂ (8.261)

So far, the first derivative of the G-vector Gr is calculated in both frames G and B.
A B-derivative of B

Gṙ provides

Bd

dt
B
Gṙ = B

B
B
Gr̈ = −ϕ̇ sin ϕı̂ − ϕ̇ cos ϕ̂ (8.262)

where B
B

B
Gr̈ is the B-expression of the B-derivative of B

Gṙ, which is the B-expression
of the G-derivative of r. Let us transform B

B
B
Gr̈ to the G-frame and determine the

G-expression of the B-derivative of B
Gṙ:

G

(
Bd

dt
B
Gṙ

)
= G

B
B
Gr̈ = RZ,ϕ

(
Bd

dt
B
Gṙ

)
= −ϕ̇Ĵ (8.263)
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Now, we begin with the B-expression of the vector

Br = RT
Z,ϕ

[
t Î
]

= t cos ϕı̂ − t sin ϕ̂ (8.264)

and take a B-derivative

Bdr
dt

= B ṙ = (−t ϕ̇ sin ϕ + cos ϕ) ı̂ − (sin ϕ + t ϕ̇ cos ϕ) ̂ (8.265)

and transform it to the G-frame:

G

(
Bdr
dt

)
= G

Bṙ = RZ,ϕ
B ṙ

=

cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1


−t ϕ̇ sin ϕ + cos ϕ

− sin ϕ − t ϕ̇ cos ϕ

0


= Î − t ϕ̇Ĵ (8.266)

A G-derivative of G
Bṙ is the G-expression of the G-derivative of G

Bṙ, which is the
G-expression of the B-derivative of r:

Gd

dt
G
Bṙ = G

G
G
B r̈ = − (ϕ̇ + t ϕ̈) Ĵ (8.267)

Equations (8.261) and (8.266) indicate that

B
Gṙ �= G

Bṙ (8.268)

and Equations (8.262) and (8.263) show that

Bd

dt
B
Gṙ �=

Gd

dt
G
B ṙ (8.269)

8.3 MULTIBODY VELOCITY

Consider a rigid body with an attached local coordinate frame B (oxyz) moving freely
in a fixed global coordinate frame G(OXYZ), as shown in Figure 8.7. The rigid body can
rotate in the global frame, while the origin of the body frame B can translate relative
to the origin of G. The coordinates of a body point P in local and global frames are
related by the motion kinematic equation

GrP = GRB
BrP + GdB (8.270)

where GdB indicates the position of the moving origin o relative to the fixed
origin O.
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Figure 8.7 A rigid body with an attached coordinate frame B (oxyz) moving freely in a global
coordinate frame G(OXYZ).

The velocity of the point P in G is

GvP = GṙP = GṘB
BrP + GḋB = Gω̃B

G
BrP + GḋB

= Gω̃B

(
GrP − GdB

) + GḋB

= GωB × (
GrP − GdB

) + GḋB (8.271)

If we have multibodies, we may need to determine the velocity of every body
relatively and individually in every coordinate frame. As an example, let us consider
a global frame G and two frames B1 and B2, as shown in Figure 8.8. Assume that we
can determine the kinematics of B1 relative to G and the kinematics of B2 relative to
B1. The point P is a fixed point in B2, so the time derivative of 2rP in B2 is zero.
Because B2 is moving relative to B1, the time derivative of 1rP in B1 is a combination
of the rotational component due to rotation of B2 relative to B1 and the component
due to translational velocity of B2 relative to B1. The velocity of point P in the base
frame G is a combination of the velocity of B2 relative to B1 plus the velocity of B1

relative to G = B0. Such a combination of velocities is called relative velocity . The
velocity combination is allowed only if all the velocity vectors are expressed in the
same frame. The global frame is usually the best choice:

0v = 0v1 + 0
1v2 + 0

2vP

= 0ḋ1 + 0
0ω1 × 0

1d2 + 0R1
1ḋ2 + 0

0ω2 × 0
2rP (8.272)

Proof : Direct differentiating shows that

GvP =
Gd

dt
GrP = GṙP =

Gd

dt

(
GRB

BrP + GdB

)
= GṘB

BrP + GḋB (8.273)
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Figure 8.8 A rigid-body coordinate frame B2 is moving in a frame B1 that is moving in the
base coordinate frame B0.

where substituting the B-vector BrP from (8.270) provides

GvP = GṘB
GRT

B

(
GrP − GdB

) + GḋB = Gω̃B

(
GrP − GdB

) + GḋB

= GωB × (
GrP − GdB

) + GḋB (8.274)

Using the relative-position vector, we can write this equation more simply as

GvP = GωB × G
BrP + GḋB (8.275)

For the multibodies of Figure 8.8, we first determine the global position vector of the
body point P :

0rP = 0d1 + 0
1d2 + 0

2rP = 0d1 + 0R1
1d2 + 0R2

2rP (8.276)

Then, the G-velocity of point P can be found by taking a G-derivative of this equation.
The combination of the relative velocities will be determined by the G-derivative:

0ṙP = 0ḋ1 + (0Ṙ1
1d2 + 0R1

1ḋ2) + 0Ṙ2
2rP

= 0ḋ1 + 0
0ω1 × 0

1d2 + 0R1
1ḋ2 + 0

0ω2 × 0
2rP (8.277)

Most of the time, it is better to use a relative-velocity method and write

0
0vP = 0

0v1 + 0
1v2 + 0

2vP (8.278)

because

0
0v1 = 0

0ḋ1 (8.279)

0
1v2 = 0

0ω1 × 0
1d2 + 0R1

1ḋ2 (8.280)

0
2vP = 0

0ω2 × 0
2rP (8.281)
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and therefore,

0vP = 0ḋ1 + 0
0ω1 × 0

1d2 + 0R1
1ḋ2 + 0

0ω2 × 0
2rP (8.282)

�

Example 498 Geometric Interpretation of Motion Velocity Figure 8.9 illustrates a
body point P of a moving rigid body. The global velocity of the point P is a vector
addition of rotational and translational velocities, both expressed in the global frame:

GvP = GωB × G
BrP + GḋB (8.282a)

X Y

Z

O

G

P
rP

vP

d
.

ω

ω × rP

d
.

Figure 8.9 Geometric interpretation of rigid-body velocity.

At the moment, the body frame is assumed to be coincident with the global frame, and
the body frame has a velocity GḋB with respect to the global frame. The translational
velocity GḋB is a common property of every point of the body, but the rotational
velocity GωB × G

BrP differs for different points of the body and depends on BrP .

Example 499 Velocity of a Moving Point in a Moving-Body Frame Assume that
point P in Figure 8.7 is moving in the frame B, indicated by a time-varying position
vector BrP (t). The global velocity of P is a composition of the velocity of P in B,
rotation of B relative to G, and velocity of B relative to G:

Gd

dt
GrP =

Gd

dt

(
GdB + GRB

BrP

) =
Gd

dt
GdB +

Gd

dt

(
GRB

BrP

)
= GḋB + G

BṙP + GωB × G
BrP (8.283)



8.3 Multibody Velocity 731

Example 500 Coordinate Frame Velocity Vectors Are Vecfree Velocity vectors of the
origin of coordinate frames are free, so to express them in different coordinate frames,
we need only premultiply them by a rotation matrix. Hence, considering k

j vi as the
velocity of the origin of the Bi coordinate frame with respect to the origin of the frame
Bj expressed in frame Bk , we can write

k
j vi = −k

i vj (8.284)

and

k
j vi = kRm

m
j vi (8.285)

and therefore,

id

dt
i
irP = ivP = i

j vP + iωj × i
j rP (8.286)

Example 501 Velocity Analysis of an Inverted Slider–Crank Mechanism The
inverted slider–crank mechanism shown in Figure 8.10 is an applied planar four-link
mechanism with application in automatic production lines as well as light-vehicle
independent suspensions. Link (1) is the ground link, which is the base and reference
link. Link (2) ≡ MA is usually the input link, which is controlled by the input angle
θ2. Link (4) is the slider link and is usually considered the output link. The slider link
has a revolute joint with the ground and a prismatic joint with coupler link (3) ≡ AB .
The output variable can be the angle of the slider with the horizon, or the length AB .
Link (3) ≡ AB is the coupler link with angular position θ3.

1

3

θ2 θ4θ1

A B

M N

2

θ3

4

Figure 8.10 An inverted slider–crank mechanism.

We may show the inverted slider–crank mechanism by a vector loop, as shown in
Figure 8.11. The direction of each vector is arbitrary; however, the angles should be
associated with the vector’s direction and be measured with a positive direction of the
x-axis. The links and their expression vectors are indicated in Table 8.1.
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Figure 8.11 Kinematic model of an inverted slider–crank mechanism.

Table 8.1 Vector Representation of Inverted Slider–Crank Mechanism
Shown in Figure 8.11

Link Vector Length Angle Variable

1 Gr1 d θ1 = 180 deg d

2 Gr2 a θ2 θ2

3 Gr3 b θ3 θ3 or θ4

4 Gr4 e θ4 = θ3 + 90 deg −

The angular position of the output slider θ4 and the length of the coupler link b

are functions of the lengths of the links and the value of the input variable θ2:

b = ±
√

a2 + d2 − e2 − 2ad cos θ2 (8.287)

θ4 = θ3 + π

2
= 2 tan−1

(
−H ± √

H 2 − 4GI

2G

)
(8.288)

where

G = d − e − a cos θ2 (8.289)

H = 2a sin θ2 (8.290)

I = a cos θ2 − d − e (8.291)

Assuming θ2 and ω2 = θ̇2 are given and b, θ4 are known from Equations (8.287) and
(8.288), we can determine the values of ḃ and ω4:

ḃ = a

b
ω2 [b cos (θ4 − θ2) − e sin (θ4 − θ2)] (8.292)

ω4 = ω3 = a

b
ω2 sin (θ2 − θ4) (8.293)

Having coordinates θ2, θ4, b and velocities ω2, ω4, ḃ enables us to calculate the absolute
and relative velocities of every point of every link of the mechanism. The absolute and
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relative velocities of points A and B, shown in Figure 8.11, are

GvA = Gω2 × Gr2

=
 0

0
ω2

 ×
a cos θ2

a sin θ2

0

 =
−aω2 sin θ2

aω2 cos θ2

0

 (8.294)

GvB4 = Gω4 × Gr4

=
 0

0
ω4

 ×
e cos θ4

e sin θ4

0

 =
−eω4 sin θ4

eω4 cos θ4

0

 (8.295)

GvB3/A = Gω3 × (−Gr3
)

=
 0

0
ω4

 ×
−b cos θ4

−b sin θ4

0

 =
 bω4 sin θ4

−bω4 cos θ4

0

 (8.296)

GvB3 = GvB3/A + GvA =
 bω4 sin θ4

−bω4 cos θ4

0

 +
−aω2 sin θ2

aω2 cos θ2

0


=

 bω4 sin θ4 − aω2 sin θ2

aω2 cos θ2 − bω4 cos θ4

0

 (8.297)

GvB3/B4 = GvB3 − GvB4

=
 bω4 sin θ4 − aω2 sin θ2

aω2 cos θ2 − bω4 cos θ4

0

 −
−eω4 sin θ4

eω4 cos θ4

0


=

 ω4e sin θ4 − aω2 sin θ2 + bω4 sin θ4

aω2 cos θ2 − ω4e cos θ4 − bω4 cos θ4

0

 (8.298)

Example 502 � Zero-Velocity Points Consider a moving rigid body with a frame B

in a global frame G. If at any time t there exists a point of B that is not moving in G,
then such a stationary point is called a zero-velocity point .

To examine if there is a point with zero velocity at each time, we can set Equation
(8.271) to zero and search for Gr0:

Gω̃B

(
Gr0 − GdB

) + GḋB = 0 (8.299)

If there is any, Gr0 indicates the position vector of a zero-velocity point:

Gr0 = GdB − Gω̃−1
B

GḋB (8.300)
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The skew-symmetric matrix Gω̃B is singular and has no inverse. Therefore, there is no
general solution for Equation (8.299).

If we restrict ourselves to planar motions, say the (X, Y )-plane, then GωB = ωK̂

and Gω̃−1
B = 1/ω. Equation (8.299) would have a solution at any time t in a 2D space,

and a zero-velocity point at the position Gr0 can be determined:

Gr0(t) = GdB(t) − 1

ω

GḋB(t) (8.301)

The zero-velocity point is also called the pole, instant center , centro, or instantaneous
center of rotation. The position of the pole is generally a function of time and the path
of its motion is called a centroid .

Example 503 � Instantaneous Center of Rotation In a general planar motion of a
rigid body at any given instant, the velocities of various points of the body can be
expressed as the result of a rotation about an axis perpendicular to the plane. This axis
intersects the plane at the instantaneous center of rotation of the body with respect to
the ground.

If the directions of the velocities of two different body points A and B of the body
are known, the instant center of rotation is at the intersection of the lines perpendicular
to the velocity vectors GvA and GvB . If the velocity vectors vA and vB are perpendicular
to the line AB and if their magnitudes are known, the instantaneous center of rotation
is at the intersection of AB with the line joining the extremities of the velocity vectors.

There is an instant center of rotation between every two links moving with respect
to each other. The instant center is a point common to both bodies that has the same
velocity in each body coordinate frame.

Kennedy Theorem: The three instant centers I12, I23, and I13 between three links
numbered (1), (2), and (3) lie on a straight line.

Consider the three bodies shown in Figure 8.12. The ground is link (1); links (2)
and (3) are pivoted to the ground at points M and N and are rotating with angular
velocities ω2 and ω3. The two links are contacted at point C. The revolute joint at M

is the instant center I12 and the revolute joint at N is the instant center I13.
The velocity of point C as a point of link (2) is vC2 , perpendicular to the radius

MC. Similarly, the velocity of point C as a point of link (3) is vC2 , perpendicular to
the radius NC. The instant center of rotation I13 must be a common point with the
same velocity in both bodies. Let us draw the normal line n − n and tangential line
t − t to the curves of links (2) and (3) at the contact point C.

Point C is a common point between the two bodies. The normal components of vC2

and vC3 must be equal to keep contact, so the only difference between the velocity of
the common point can be in the tangent components. So, the instant center of rotation
I13 must be at a position where the relative velocity of points C2 and C3 with respect to
I13 are equal and are on the line t − t . Hence, it must be on the normal line n − n, and
the intersection of the normal line n − n with the center line MN is the only possible
point for the instant center of rotation I13.
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Figure 8.12 A three-link mechanism with the ground as link (1) and two moving links (2)
and (3).

We define
I12I23 = l2 (8.302)

I13I23 = l3 (8.303)

Then, because the velocities of the two bodies must be equal at the common instant
center of rotation, we have

l2ω2 = l3ω3 (8.304)
or

ω2

ω3
= l3

l2
= 1

1 + d/l2
(8.305)

where d is the length of the ground link MN .

Example 504 � Plane Motion of a Rigid Body The plane motion of a rigid body is
such that all points of the body move only in parallel planes. So, to study the motion
of the body, it is enough to examine the motion of points in just one plane.

Figure 8.13 illustrates a global coordinate frame G and a rigid body B in a planar
motion with the associated body frame B. The position and velocity of a body point
P are

GrP = GdB + GRB
BrP = GdB + G

BrP (8.306)
GvP = GḋB + GωB × (

GrP − GdB

) = GḋB + GωB × G
BrP (8.307)

The vector GdB indicates the position of the moving origin o relative to the fixed origin
O. The term GḋB is the velocity of point o and GωB × G

B rP is the velocity of point P

relative to o:

GvP/o = GωB × G
BrP (8.308)
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Figure 8.13 A rigid body in a planar motion.

Although it is not a correct view, it might sometimes be helpful if we interpret GḋB as
the translational velocity and GωB × G

BrP as the rotational velocity components of GvP .
Then, the velocity of any point P of a rigid body is a superposition of the velocity
GḋB of another arbitrary point o and the angular velocity GωB × G

BrP of the points P

around o.
The relative velocity vector GvP/o is perpendicular to the relative position vector

G
BrP . Employing the same concept, we can say that the velocity of points P and o with
respect to another point Q are perpendicular to G

BrP/Q and G
Bro/Q, respectively. We may

search for a point Q as the instantaneous center of rotation at which the velocity is
zero. Points o, P , and Q are shown in Figure 8.14.

X

Y

x

y

GdB

G

B

O

P

GvP/Q

BrP

o
Q

Gvo/Q GrP/Q

Gro/Q

GrQ

Figure 8.14 Instant center of rotation Q for planar motion of a rigid body.
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Assuming a position vector Gro/Q for the instant center point Q, we define

Gro/Q = aQ
GḋB + bQGωB × GḋB (8.309)

Then, following (8.307), the velocity of point Q can be expressed by

GvQ = GḋB + GωB × GrQ/o = GḋB − GωB × Gro/Q

= GḋB − GωB × (
aQ

GḋB + bQGωB × GḋB

)
= GḋB − aQGωB × GḋB − bQGωB × (

GωB × GḋB

)
= 0 (8.310)

Now, using the equations
GωB = ωK̂ (8.311)

GωB × (
GωB × GḋB

) = (
GωB · GḋB

)
GωB − ω2GḋB (8.312)

GωB · GḋB = 0 (8.313)
we find (

1 + bQ ω2)GḋB − aQGωB × GḋB = 0 (8.314)

Because GḋB and GωB × GḋB must be perpendicular, Equation (8.314) provides

1 + bQ ω2 = 0 (8.315)

aQ = 0 (8.316)

and therefore,
GrQ/o = 1

ω2

(
GωB × GḋB

)
(8.317)

Example 505 � Eulerian and Lagrangian Viewpoints When a variable quantity is
measured in a stationary global coordinate frame, it is called the absolute or Lagrangian
viewpoint. However, if the variable is measured in a moving-body coordinate frame,
it is called the relative or Eulerian viewpoint .

In 2D planar motion of a rigid body, there is always a pole of zero velocity at

Gr0 = GdB − 1

ω

GḋB (8.318)

The position of the pole in the body coordinate frame can be found by substituting Gr0

from (8.270),

GRB
Br0 + GdB = GdB − Gω̃−1

B
GḋB (8.319)

and solving for the position of the zero-velocity point in the body coordinate frame
Br0:

Br0 = −GRT
B Gω̃−1

B
GḋB = −GRT

B

[
GṘB

GRT
B

]−1 GḋB

= −GRT
B

[
GRB

GṘ−1
B

]
GḋB = −GṘ−1

B
GḋB (8.320)
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Therefore, Gr0 indicates the path of motion of the pole in the global frame, while
Br0 indicates the same path in the body frame. The Gr0 refers to the Lagrangian centroid
and Br0 refers to the Eulerian centroid.

Example 506 � Screw Axis and Screw Motion The screw axis may be defined as
a line for a moving rigid body B whose points P have velocity parallel to the angular
velocity vector GωB = ωû. Such points satisfy

GvP = GωB × (
GrP − GdB

) + GḋB = pGωB (8.321)

where p is a scalar. Since GωB is perpendicular to GωB × (Gr − Gd), a dot product of
Equation (8.321) by GωB yields

p = 1

ω2

(
GωB · GḋB

)
(8.322)

Introducing a parameter m to indicate different points of the line, the equation of
the screw axis would be

GrP = GdB + 1

ω2

(
GωB × GḋB

) + mGωB (8.323)

because if we have a × x = b and a · b = 0, then x = −a−2(a × b) + ma. In our
case, GωB × (GrP − GdB) = pGωB − GḋB and (GrP − GdB) is perpendicular to
GωB × (GrP − GdB) and hence to (pGωB − GḋB).

Therefore, there exists at any time a line s in space parallel to GωB , which is the
locus of points whose velocity is parallel to GωB .

If s is the position vector of a point on s, then

GωB × (
Gs − GdB

) = pGωB − GḋB (8.324)

and the velocity of any point out of s is

Gv = GωB × (
Gr − Gs

) + pGωB (8.325)

It expresses that at any time the velocity of a body point can be decomposed into
components perpendicular and parallel to the angular velocity vector GωB . Therefore,
the motion of any point of a rigid body is a screw. The parameter p is the pitch that
determines the ratio of translation velocity to rotation velocity. In general, s, GωB, and
p may be functions of time.
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8.4 VELOCITY TRANSFORMATION MATRIX

Consider the motion of a rigid body B in the global coordinate frame G, as shown in
Figure 8.7. Assume the body frame B(Oxyz) is coincident at some initial time t = t0
with the global frame G(OXYZ). At any time t �= t0, B is not necessarily coincident
with G, and therefore the homogeneous transformation matrix GTB(t) between B and
G is time varying.

The global position vector GrP (t) of a body point P is a function of time, but its
local position vector BrP is constant and is equal to GrP (t0):

BrP ≡ GrP (t0) (8.326)
GrP (t) = GRB(t) BrP + GdB(t) (8.327)

Gr(t) = GTB(t)Br =
[

GRB(t) Gd(t)

0 1

]
Br (8.328)

The G-velocity of P is obtained by the G-derivative of the position vector Gr(t):

GvP = d

dt
GrP (t) = GṙP (8.329)

The G-velocity of a body point may be found by applying a homogeneous velocity
transformation matrix GVB ,

Gv(t) = GVB
Gr(t) (8.330)

where the velocity matrix is

GVB = GṪB
GT −1

B (8.331)

=
[

GṘB
GRT

B
GḋB − GṘB

GRT
B

GdB

0 0

]
(8.332)

=
[

Gω̃B
GḋB − Gω̃B

GdB

0 0

]
(8.333)

The inverse of the velocity transformation matrix is

BVG = GV −1
B =

[
GRB

GṘ−1
B −GRB

GṘ−1
B

Gḋ + Gd

0 0

]
(8.334)

where

GVB
GV −1

B = I (8.335)

GrP = GV −1
B

GvP (8.336)

The B-expression of the velocity transformation matrix is

B
GVB = GT −1

B
GṪB =

[
B
Gω̃B

B ḋ
0 0

]
(8.337)
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and the transformation of GVB to B
GVB and the expression of GV1 in another coordinate

frame B2 are

GVB = GTB
B
GVB

GT −1
B (8.338)

B
GVB = GT −1

B
GVB

GTB = BTG
GVB

BT −1
G (8.339)

2
GV1 = 2TG

GV1
2T −1

G (8.340)

We can add the velocity transformation matrices when all of the matrices are expressed
in the same coordinate frame:

0V2 = 0V1 + 0
1V2 + 0

2V3 + · · · (8.341)

The velocity transformation matrix GVB can also be rearranged and shown with a
Plücker vector GtB :

GtB =
[

GvB

GωB

]
=

[
GḋB − Gω̃B

GdB

GωB

]
(8.342)

The Plücker vector GtB is a 6 × 1 vector called a velocity transformation vector , which
indicates the translational and rotational velocities of a body point.

Proof : Based on a homogeneous coordinate transformation, we have

GrP (t) = GTB(t)BrP = GTB(t)GrP (t0) (8.343)

and therefore,

GvP =
Gd

dt

[
GTB

BrP

] = GṪB
BrP (8.344)

=
 Gd

dt
GRB

Gd

dt
GdB

0 0

 BrP =
[

GṘB
GḋB

0 0

]
BrP

Substituting for BrP from Equation (8.343) gives

GvP = GṪB
GT −1

B
GrP (t)

=
[

GṘB
GḋB

0 0

] [
GRT

B −GRT
B

GdB

0 1

]
GrP (t)

=
[

GṘB
GRT

B
GḋB − GṘB

GRT
B

GdB

0 0

]
GrP (t)

=
[

Gω̃B
GḋB − Gω̃B

GdB

0 0

]
GrP (t) (8.345)

Therefore, the G-velocity of any point P of the rigid body B can be obtained by
premultiplying the position vector of P in G with the velocity transformation matrix
GVB :

GvP (t) = GVB
GrP (t) (8.346)
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where
GVB = GṪB

GT −1
B

=
[

Gω̃B
GḋB − Gω̃B

GdB

0 0

]
=

[
Gω̃B

GvB

0 0

]
(8.347)

and
Gω̃B = GṘB

GRT
B (8.348)

GvB = GḋB − GṘB
GRT

B
GdB = GḋB − Gω̃B

GdB

= GḋB − GωB × GdB (8.349)

The velocity transformation matrix GVB may be assumed as a matrix operator that
provides the global velocity of any point attached to B(oxyz). It consists of the angular
velocity matrix Gω̃B and the frame velocity GḋB , both expressed in G(OXYZ). The
velocity matrix GVB depends on six parameters: the three components of the angular
velocity vector GωB and the three components of the frame velocity GḋB .

Following the rule of inverse of homogeneous transformation matrices (6.88),

GT −1
B =

[
GRT

B −GRT
B

Gd
0 1

]
(8.350)

we can introduce the inverse-velocity transformation matrix by

BVG = GV −1
B

=
[ (

GṘB
GRT

B

)−1 − (
GṘB

GRT
B

)−1 (Gḋ − GṘB
GRT

B
Gd

)
0 0

]
=

[
GRB

GṘ−1
B −GRB

GṘ−1
B

(
Gḋ − GṘB

GRT
B

Gd
)

0 0

]
=

[
GRB

GṘ−1
B −GRB

GṘ−1
B

Gḋ + Gd
0 0

]
(8.351)

to get
GVB

GV −1
B = I (8.352)

Therefore, having the velocity vector of a body point GvP and the velocity transforma-
tion matrix GVB , we can find the global position of the point by

GrP = GV −1
B

GvP (8.353)

The velocity transformation matrix can be expressed in the body coordinate
frame B as

B
GVB = GT −1

B
GṪB

=
[

GRT
B −GRT

B
Gd

0 1

] [
GṘB

Gḋ
0 0

]
=

[
GRT

B
GṘB

GRT
B

Gḋ
0 0

]
=

[
B
Gω̃B

B ḋ
0 0

]
(8.354)
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where B
Gω̃B is the angular velocity matrix of B with respect to G expressed in B and B ḋ

is the velocity of the origin of B in G expressed in B. Using the definition of (8.331)
and (8.354), we are able to transform the velocity transformation matrices between the
B- and G-frames:

GVB = GTB
B
GVB

GT −1
B (8.355)

It can be done backward and also expanded to include a third frame:

B
GVB = BTG

GVB
BT −1

G (8.356)

2
GV1 = 2TG

GV1
2T −1

G (8.357)

If we have multibodies, we may need to determine the velocity transformation matrices
of every body relatively and individually in every coordinate frame. Let us consider
a global frame G and two frames B1 and B2. Assume that we can determine the
kinematics of B1 relative to G and the kinematics of B2 relative to B1. The point P

is a point in B2. Because B2 is moving relative to B1, the velocities of P in B1 and
B0 are

1vP = 1V2
1rP (8.358)

1rP = 1d2 + 1
2rP (8.359)

0
1vP = 0

1V2
0
1rP (8.360)

0
1rP = 0

1d2 + 0
2rP (8.361)

The velocity of point P in the global frame G is a combination of the velocity of B2

relative to B1 plus the velocity of B1 relative to G. Using the relative-velocity principle,
the velocity combination is allowed only if all the velocity vectors are expressed in the
same frame. The global frame is usually the best choice:

0v = 0v1 + 0
1v2 = 0V1

0d1 + 0
1V2 (0

1d2 + 0
2rP )

= (0V1 +0
1 V2)(

0d1 +0
1 d2 +0

2 rP ) = 0V 0
2 rP (8.362a)

0V2 = 0V1 +0
1 V2 (8.362b)

0rP = 0d1 + 0
1d2 + 0

2rP (8.362c)

The Plücker coordinates of velocity of a body point is a 6 × 1 vector called the
velocity transformation vector :

GtB =
[

GvB

GωB

]
=

[
GḋB − Gω̃B

GdB

GωB

]
(8.363)

In analogy to the two representations of the angular velocity, the G-velocity of point
of B can be represented either as the velocity transformation matrix GVB in (8.347)
or as the velocity transformation vector GtB in (8.363). The velocity transformation
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vector represents a noncommensurate vector because the dimensions of GωB and GvB

are not the same. �

Example 507 Velocity Transformation Matrix Based on Coordinate Transformation
Matrix The velocity transformation matrix can be found based on a coordinate trans-
formation matrix. Starting from

Gr(t) = GTB
Br =

[
GRB

Gd
0 1

]
Br (8.364)

and taking the derivative show that

Gv =
Gd

dt

[
GTB

Br
] = GṪB

Br =
[

GṘB
Gḋ

0 0

]
Br (8.365)

However,

Br = GT −1
B

Gr (8.366)

and therefore,

Gv =
[

GṘB
Gḋ

0 0

]
GT −1

B
Gr

=
[

GṘB
Gḋ

0 0

] [
GRT

B −GRT
B

Gd
0 1

]
Gr

=
[

GṘB
GRT

B
Gḋ − GṘB

GRT
B

Gd
0 0

]
Gr

= GVB
Gr (8.367)

Example 508 Velocity Transformation Matrix in Body Frames The velocity trans-
formation matrix is given by

GVB =
[

GṘB
GRT

B
Gḋ − GṘB

GRT
B

Gd
0 0

]
(8.368)

However, the velocity transformation matrix can be expressed in the body coordinate
frame B:

B
GVB = GT −1

B
GṪB =

[
B
Gω̃B

B ḋ
0 0

]
(8.369)

where B
Gω̃B is the B-expression of Gω̃B and B ḋ is the B-velocity of B in G.

It is also possible to use a matrix multiplication to find the velocity transformation
matrix in the body coordinate frame:

B
GvP = GT −1

B
GvP = GT −1

B
GṪB

BrP = B
GVB

BrP (8.370)
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We are able to transform the velocity transformation matrices between the B and G

frames:

GVB = GTB
B
GVB

GT −1
B (8.371)

It can also be useful if we define the time derivative of the transformation matrix by

GṪB = GVB
GTB (8.372)

or

GṪB = GTB
B
GVB (8.373)

Similarly, we may define a velocity transformation matrix from link (i) to link (i − 1)
of a connected multibody by

i−1Vi =
[

i−1Ṙi
i−1RT

i
i−1ḋ − i−1Ṙi

i−1RT
i

i−1d
0 0

]
(8.374)

and

i
i−1Vi =

[
i−1RT

i
i−1Ṙi

i−1RT
i

i−1ḋ
0 0

]
(8.375)

Example 509 Motion with a Fixed Point When a point of a rigid body is fixed to
the global frame, it is convenient to set the origins of the moving coordinate frame
B(Oxyz) and the global coordinate frame G(OXYZ) on the fixed point. Under these
conditions,

GdB = 0 GḋB = 0 (8.376)

and Equation (8.271) reduces to

GvP = Gω̃B
GrP (t) = GωB × GrP (t) (8.377)

Example 510 Velocity in Spherical Coordinates The homogeneous transformation
matrix from spherical coordinates S(Orθϕ) to Cartesian coordinates G(OXYZ) can be
found by a translation DZ,r and then a rotation RY,θ followed by a rotation RZ,ϕ:

GTS = RZ,ϕ RY,θ DZ,r =
[

GRB
Gd

0 1

]

=


cos θ cos ϕ − sin ϕ cos ϕ sin θ r cos ϕ sin θ

cos θ sin ϕ cos ϕ sin θ sin ϕ r sin θ sin ϕ

− sin θ 0 cos θ r cos θ

0 0 0 1

 (8.378)
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The time derivative of GTS shows that

GṪS = GVS
GTS

=
[

Gω̃S
GvS

0 0

]
GTS

=


0 −ϕ̇ θ̇ cos ϕ ṙ cos ϕ sin θ

ϕ̇ 0 θ̇ sin ϕ ṙ sin θ sin ϕ

−θ̇ cos ϕ −θ̇ sin ϕ 0 ṙ cos θ

0 0 0 0

GTB (8.379)

Example 511 � Velocity of the Gripper of a Planar R‖R Manipulator Figure 8.15
illustrates an R‖R planar manipulator with joint variables θ1 and θ2. Links (1) and (2)

are both R‖R(0), and therefore the transformation matrices 0T1, 1T2, and 0T2 are

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1

 (8.380)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1

 (8.381)

x2

y2

y0

y1

x1

x0

θ1

θ2
B0

B1

B2
l2

l 1

M0

M1 M2

Figure 8.15 A 2R or R‖R planar manipulator.
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0T2 = 0T1
1T2

=


c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1

s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1

 (8.382)

The points M1 and M2 are at

0rM1 =


l1 cos θ1

l1 sin θ1

0
1

 1rM2 =


l2 cos θ2

l2 sin θ2

0
1

 (8.383)

0rM2 = 0T1
1rM2 =


l2 cos (θ1 + θ2) + l1 cos θ1

l2 sin (θ1 + θ2) + l1 sin θ1

0
1

 (8.384)

To determine the velocity of M2, we need to calculate 0Ṫ2. However, 0Ṫ2 can be
calculated by direct differentiation of 0T2,

0Ṫ2 = d

dt
0T2

=


−θ̇12sθ12 −θ̇12cθ12 0 −l2θ̇12sθ12 − θ̇1l1sθ1

θ̇12cθ12 −θ̇12sθ12 0 l2θ̇12cθ12 + θ̇1l1cθ1

0 0 0 0
0 0 0 0

 (8.385)

θ12 = θ1 + θ2 θ̇12 = θ̇1 + θ̇2 (8.386)

or by the chain rule,

0Ṫ2 = d

dt

(0T1
1T2

) = 0Ṫ 1
1T2 + 0T1

1Ṫ2 (8.387)

where

0Ṫ1 = θ̇1


− sin θ1 − cos θ1 0 −l1 sin θ1

cos θ1 − sin θ1 0 l1 cos θ1

0 0 0 0
0 0 0 0

 (8.388)

1Ṫ2 = θ̇2


− sin θ2 − cos θ2 0 −l2 sin θ2

cos θ2 − sin θ2 0 l2 cos θ2

0 0 0 0
0 0 0 0

 (8.389)
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Having 0Ṫ1 and 1Ṫ2, we can find the velocity transformation matrices 0V1 and 1V2

by using 0T −1
1 and 1T −1

2 :

0T −1
1 =


cos θ1 sin θ1 0 −l1

− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

 (8.390)

1T −1
2 =


cos θ2 sin θ2 0 −l2

− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

 (8.391)

0V1 = 0Ṫ1
0T −1

1 = θ̇1


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (8.392)

1V2 = 1Ṫ2
1T −1

2 = θ̇2


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (8.393)

Now, we can determine the velocity of points M1 and M2 in B0 and B1, respectively:

0vM1 = 0V1
0rM1 = θ̇1


−l1 sin θ1

l1 cos θ1

0
0

 (8.394)

1vM2 = 1V2
1rM2 = θ̇2


−l2 sin θ2

l2 cos θ2

0
0

 (8.395)

To determine the velocity of the tip point M2 in the base frame, we can use velocity
vector addition:

0vM2 = 0vM1 + 0
1vM2 = 0vM1 + 0T1

1vM2

=


− (

θ̇1 + θ̇2
)
l2 sin (θ1 + θ2) − θ̇1l1 sin θ1(

θ̇1 + θ̇2
)
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

 (8.396)

We can also determine 0vM2 by using the velocity transformation matrix 0V2,

0vM2 = 0V2
0rM2
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where the velocity transformation matrix is

0V2 = 0Ṫ2
0T −1

2 =


0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1

0 0 0 0
0 0 0 0

 (8.397)

where

0T −1
2 = 2T1

1T0 = 1T −1
2

0T −1
1

=


cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2

− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1

 (8.398)

We can also determine the velocity transformation matrix 0V2 using the addition rule:

0V2 = 0V1 + 0
1V2

=


0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1

0 0 0 0
0 0 0 0

 (8.399)

where

0
1V2 = 0T1

1V2
0T −1

1 =


0 −θ̇2 0 θ̇2l1 sin θ1

θ̇2 0 0 −θ̇2l1 cos θ1

0 0 0 0
0 0 0 0

 (8.400)

Therefore,

0vM2 = 0V2
0rM2

=


− (

θ̇1 + θ̇2
)
l2 sin (θ1 + θ2) − θ̇1l1 sin θ1(

θ̇1 + θ̇2
)
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

 (8.401)

8.5 � DERIVATIVE OF A HOMOGENEOUS
TRANSFORMATION MATRIX

The velocity transformation matrix can be found directly from the homogeneous link
transformation matrix. Consider a 4 × 4 homogeneous transformation matrix GTB to
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move between two coordinate frames:

GTB =
[

GRB
Gd

0 1

]
=


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

0 0 0 1

 (8.402)

When the elements of the transformation matrix are time dependent, its derivative is

GdT

dt
= GṪB =



dr11

dt

dr12

dt

dr13

dt

dr14

dt
dr21

dt

dr22

dt

dr23

dt

dr24

dt
dr31

dt

dr32

dt

dr33

dt

dr34

dt
0 0 0 0


(8.403)

The time derivative of the transformation matrix can be rearranged to be proportional
to the transformation matrix,

GṪB = GVB
GTB (8.404)

where GVB is the 4 × 4 homogeneous velocity transformation matrix or velocity oper-
ator matrix and is equal to

GVB = GṪB
GT −1

B =
[

GṘB
GRT

B
Gḋ − GṘB

GRT
B

Gd
0 1

]
(8.405)

The homogeneous matrix and its derivative based on the velocity transformation matrix
are useful in the forward velocity kinematics of multibody and connected rigid bodies.
The matrix i−1Ṫi for two links connected by a revolute joint is given as

i−1Ṫi = θ̇i


− sin θi − cos θi cos αi cos θi sin αi −ai sin θi

cos θi − sin θi cos αi sin θi sin αi ai cos θi

0 0 0 0
0 0 0 0

 (8.406)

and for two links connected by a prismatic joint as

i−1Ṫi =


0 0 0 0
0 0 0 0
0 0 0 ḋi

0 0 0 0

 (8.407)

The associated velocity transformation matrix for a revolute joint R is

i−1Vi = θ̇i �R = θ̇i


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (8.408)
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and for a prismatic joint P is

i−1Vi = ḋi �P = ḋi


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (8.409)

Proof : Any transformation matrix can be decomposed into a rotation and a translation:

[T ] =
[

Rû,φ d
0 1

]
=

[
I d
0 1

] [
Rû,φ 0

0 1

]
= [D] [R] (8.410)

Taking a time derivative, we can find

Ṫ =
[

Ṙû,φ ḋ
0 0

]
=

[
I ḋ
0 1

] [
Ṙû,φ 0

0 1

]
− I

= [
I + Ḋ

] [
I + Ṙ

] − I = [V ] [T ] (8.411)

where [V ] is the velocity transformation matrix

[V ] = Ṫ T −1 =
[

Ṙû,φ ḋ
0 0

] [
RT

û,φ
−RT

û,φ
d

0 1

]
=

[
Ṙû,φ RT

û,φ
ḋ − Ṙû,φ RT

û,φ
d

0 1

]
=

[
ω̃ ḋ − ω̃ d
0 1

]
(8.412)

The transformation matrix between two neighbor coordinate frames of a multibody
is given in Equation (7.7) based on the DH parameters as

i−1Ti =


cos θi − sin θi cos αi sin θi sin αi ai cos θi

sin θi cos θi cos αi − cos θi sin αi ai sin θi

0 sin αi cos αi di

0 0 0 1

 (8.413)

Direct differentiation shows that if two bodies are connected by a revolute joint, θi is
the only variable of the DH matrix (8.413), and therefore,

i−1Ṫi = θ̇i


− sin θi − cos θi cos αi cos θi sin αi −ai sin θi

cos θi − sin θi cos αi sin θi sin αi ai cos θi

0 0 0 0
0 0 0 0



= θ̇i


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 i−1Ti = θ̇i �R
i−1Ti (8.414)
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which shows the revolute velocity transformation matrix i−1Vi between coordinate
frame Bi and Bi−1 as

i−1Vi = θ̇i �R = θ̇i


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (8.415)

If the two bodies are connected by a prismatic joint, di is the only variable of the DH
matrix (8.413), and therefore,

i−1Ṫi = ḋi


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 i−1Ti = ḋi �P
i−1Ti (8.416)

It shows that the prismatic velocity transformation matrix is

i−1Vi = ḋi �P = ḋi


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (8.417)

The �R and �P are revolute and prismatic velocity coefficient matrices with application
in the velocity analysis of multibodies. �

Example 512 � Velocity of Frame Bi in B0 Consider a multibody with n con-
nected links. The velocity of the frame Bi attached to link (i) with respect to the base
coordinate frame B0 can be found by differentiating 0di in the base frame:

0vi =
0d

dt
0di =

0d

dt

(0Ti
idi

)
= (0Ṫ1

1T2 . . . i−1Ti + 0T1
1Ṫ2

2T3 . . . i−1Ti + 0T1 . . . i−1Ṫi

)
idi

=
 i∑

j=1

∂0Ti

∂qj

q̇j

 idi (8.418)

However, the partial derivatives ∂i−1Ti /∂qi can be found by using the velocity coef-
ficient matrices �i , which is either �R or �P :

∂i−1Ti

∂qi

= �i
i−1Ti (8.419)

Hence,

∂0Ti

∂qj

=
{

0T1
1T2 . . . j−2Tj−1 �j

j−1Tj . . . i−1Ti for j ≤ i

0 for j > i
(8.420)
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Example 513 � Differential Rotation and Translation Assume the angle of rota-
tion about the axis û is too small and indicated by dφ. Then the differential rotation
matrix is

I + dRû,φ = I + Rû,dφ =


1 −u3dφ u2dφ 0

u3dφ 1 −u1dφ 0
−u2dφ +u1dφ 1 0

0 0 0 1

 (8.421)

because for very small φ we have

sin φ � dφ cos φ � 1 vers φ � 0 (8.422)

Differential translation dd, where

dd = d(dxÎ + dyĴ + dzK̂) (8.423)

can be shown by a differential translation matrix

I + dD =


1 0 0 ddx

0 1 0 ddy

0 0 1 ddz

0 0 0 0

 (8.424)

and therefore,

dT = [I + dD] [I + dR] − I

=


0 −dφu3 dφu2 ddx

dφu3 0 −dφu1 ddy

−dφu2 dφu1 0 ddz

0 0 0 0

 (8.425)

Example 514 � Combination of Principal Differential Rotations The principal dif-
ferential rotations about X, Y , Z are

RX,dγ =


1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1

 (8.426)

RY,dβ =


1 0 dβ 0
0 1 0 0

−dβ 0 1 0
0 0 0 1

 (8.427)

RZ,dα =


1 −dα 0 0

dα 1 0 0
0 0 1 0
0 0 0 1

 (8.428)
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Combining the three principal differential rotation matrices about the axes Z, Y , and
X yields [

I + RX,dγ

] [
I + RY,dβ

] [
I + RZ,dα

]
=


1 0 0 0
0 1 −dγ 0
0 dγ 1 0
0 0 0 1




1 0 dβ 0
0 1 0 0

−dβ 0 1 0
0 0 0 1




1 −dα 0 0
dα 1 0 0
0 0 1 0
0 0 0 1



=


1 −dα dβ 0

dα 1 −dγ 0
−dβ dγ 1 0

0 0 0 1

 (8.429)

The combination of differential rotations is commutative:[
I + RX,dγ

] [
I + RY,dβ

] [
I + RZ,dα

] = [
I + RY,dβ

] [
I + RZ,dα

] [
I + RX,dγ

]
= [

I + RZ,dα

] [
I + RX,dγ

] [
I + RY,dβ

]
= [

I + RZ,dα

] [
I + RY,dβ

] [
I + RX,dγ

]
= [

I + RY,dβ

] [
I + RX,dγ

] [
I + RZ,dα

]
= [

I + RX,dγ

] [
I + RZ,dα

] [
I + RY,dβ

]
(8.430)

Example 515 � Differential of a Transformation Matrix Assume the transformation
matrix

T =


0 0 1 4
1 0 0 4
0 1 0 4
0 0 0 1

 (8.431)

is subjected to a differential rotation and translation given by

dφû = [
0.1 0.2 0.3

]
(8.432)

dd = [
0.6 0.4 0.2

]
(8.433)

Then, the differential transformation matrix is

dT = [I + dD] [I + dR] − I

=


0 −0.3 0.2 0.6
0.3 0 −0.1 0.4

−0.2 0.1 0 0.2
0 0 0 0

 (8.434)
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Example 516 � Derivative of Rotation Matrix Based on the Rodriguez formula, the
angle–axis of rotation matrix is

Rû,φ = I cos φ + ûûT vers φ + ũ sin φ (8.435)

Therefore, the time rate of the Rodriguez formula is

Ṙû,φ = −φ̇ sin φ I + ûûT φ̇ sin φ + ũφ̇ cos φ = φ̇ũRû,φ (8.436)

8.6 � MULTIBODY VELOCITY

Consider a multibody with n connected links. The angular velocity of link (i) in the
global coordinate frame B0 is a summation of global angular velocities of links (j) for
j ≤ i,

0
0ωi =

i∑
j=1

0
j−1ωj (8.437)

where

0
j−1ωj =

{
θ̇j

0k̂j−1 if joint i is R

0 if joint i is P
(8.438)

The velocity of the origin of Bi in the base coordinate frame is

0
i−1ḋi =

{ 0
0ωi × 0

i−1di if joint i is R

ḋi
0k̂i−1 + 0

0ωi × 0
i−1di if joint i is P

(8.439)

where θ and d are DH parameters and d is a frame’s origin position vector.
Therefore, if the multibody has n links, the global angular velocity of the final

coordinate frame is

0
0ωn =

n∑
i=1

0
i−1ωi (8.440)

and the global velocity vector of the last link’s coordinate frame is

0
0ḋn =

n∑
i=1

0
i−1ḋi (8.441)

Proof : According to the DH definition, the position vector of the coordinate frame Bi

with respect to Bi−1 is

0
i−1di = di

0k̂i−1 + ai
0 ı̂i (8.442)

which depends on joint variables qj for j ≤ i, and therefore, 0
i−1ḋi is a function of

joint velocities q̇j for j ≤ i.
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Assume that every joint of a multibody except joint i is locked. Then, the angular
velocity of link (i) connected by a revolute joint to link (i − 1) is

0
i−1ωi = θ̇i

0k̂i−1 if the only movable joint i is R (8.443)

However, if links (i) and (i − 1) are connecting via a prismatic joint, then

0
i−1ωi = 0 if the only movable joint i is P (8.444)

The relative position vector (8.442) shows that the velocity of link (i) connected by a
revolute joint to link (i − 1) is

0
i−1ḋi = θ̇i

0k̂i−1 × ai
0 ı̂i

= 0
i−1ωi × 0

i−1di if the only movable joint i is R (8.445)

We substitute ai
0 ı̂i by 0

i−1di because the xi-axis is turning about the zi−1-axis with
angular velocity θ̇i , and therefore, θ̇i

0k̂i−1 × di
0k̂i−1 = 0. However, if links (i) and

(i − 1) are connected by a prismatic joint, then

0
i−1ḋi = ḋi

0k̂i−1 if the only movable joint i is P (8.446)

Now assume that all lower joints j ≤ i are moving. Then, the angular velocity of link
(i) in the base coordinate frame is

0
0ωi =

i∑
j=1

0
j−1ωj (8.447)

or

0
0ωi =


i∑

j=1

θ̇i
0k̂i−1 if jointj is R

0 if joint j is P

(8.448)

which can be written in a recursive form

0
0ωi = 0

0ωi−1 + 0
i−1ωi (8.449)

or

0
0ωi =

{ 0
0ωi−1 + θ̇i

0k̂i−1 if joint i is R

0
0ωi−1 if joint i is P

(8.450)

The velocity of the origin of link (i) in the base coordinate frame is

0
i−1ḋi =

{ 0
0ωi × 0

i−1di if joint i is R

ḋi
0k̂i−1 + 0

0ωi × 0
i−1di if joint i is P

(8.451)

The translation and angular velocities of the last link of an n-link multibody is then a
direct application of these results. �
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Example 517 � Serial Rigid-Link Angular Velocity Consider a serial multibody
with n links and n revolute joints. The global angular velocity of link (i) in terms of
the angular velocity of its previous links is

0ωi = 0ωi−1 + θ̇i
0k̂i−1 (8.452)

or in general

0ωi =
i∑

j=1

θ̇j
0k̂j−1 (8.453)

where
0

i−2ωi = 0
i−2ωi−1 + 0

i−1ωi = 0
i−2ωi−1 + θ̇i

0k̂i−1

= θ̇i−1
0k̂i−2 + θ̇i

0k̂i−1 (8.454)
0

i−1ωi = θ̇i
0k̂i−1 (8.455)

0
i−2ωi−1 = θ̇i−1

0k̂i−2 (8.456)

and therefore,

0ωi =
i−1∑
j=1

0
j−1ωj + θ̇i

0k̂i−1 =
i−1∑
j=1

θ̇j
0k̂j−1 + θ̇i

0k̂i−1

=
i∑

j=1

θ̇j
0k̂j−1 (8.457)

Example 518 � Serial Rigid-Link Translational Velocity The global angular velocity
of link (i) in a serial manipulator in terms of the angular velocity of its previous
links is

0vi = 0vi−1 + 0
i−1ωi × 0

i−1di (8.458)

where
0vi = 0ḋi (8.459)

or in general

0vi =
i∑

j=1

(
0k̂j−1 × 0

i−1di

)
θ̇j (8.460)

where
0

i−1vi = 0ωi × 0
i−1di (8.461)

0
i−2vi−1 = 0ωi−1 × 0

i−2di−1 (8.462)

0
i−2vi = 0

i−2vi−1 + 0
i−1vi = 0

i−2vi−1 + 0ωi × 0
i−1di

= 0ωi−1 × 0
i−2di−1 + 0ωi × 0

i−1di

= θ̇i−1
0k̂i−2 × 0

i−2di−1 + θ̇i
0k̂i−1 × 0

i−1di (8.463)
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and therefore,

0vi =
i−1∑
j=1

0
j−1vj + 0

i−1vi =
i∑

j=1

(
0k̂j−1 × 0

i−1di

)
θ̇j

8.7 � FORWARD-VELOCITY KINEMATICS

Consider a serial multibody with n connected links. The forward-velocity kinematics
solves the problem of relating joint speeds q̇ to the end-effector speeds Ẋ,

Ẋ = J q̇ (8.464)

where q is the joint variable vector and q̇ is the joint speed vector :

q = [
qn qn qn . . . qn

]T
(8.465)

q̇ = [
q̇n q̇n q̇n . . . q̇n

]T
(8.466)

Furthermore, Ẋ is the end-effector configuration speed vector :

Ẋ = [
Ẋn Ẏn Żn ωXn ωYn ωZn

]T

=
[ 0ḋn

0ωn

]
=

[ 0vn

0ωn

]
(8.467)

To solve this problem, we need to determine the 6 × n Jacobian transformation matrix
J(q), where n is the number of joint variables.

The global expression of velocity 0vn of the origin of Bn is proportional to the
manipulator joint speeds q̇D:

0vn = JD q̇D q̇D ∈ q̇ (8.468)

The 3 × n proportionality matrix JD(q) is the displacement Jacobian matrix of the
manipulator:

JD = ∂dn (q̇D)

∂q̇D

= ∂T (q)

∂q
(8.469)

The global expression of angular velocity 0ωn of Bn is proportional to the rotational
components of q̇:

0ωn = JR q̇ (8.470)

The 3 × n proportionality matrix JR(q) is the rotational Jacobian matrix of the robot:

JR = ∂0ωn

∂q
(8.471)
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It is also possible to break the forward-velocity problem into two subproblems to
find the translation and angular velocities of the end frame independently:

0vn = JD q̇ (8.472)
0ωn = JR q̇ (8.473)

We may combine Equations (8.468) and (8.470) and show the forward-velocity kine-
matics of a multibody by

Ẋ =
[

0vn
0ωn

]
=

[
JD

JR

]
q̇ = J q̇ (8.474)

Proof : Forward-velocity kinematics is defined as determination of the end-effector
translational and angular velocities 0vn, 0ωn for a given set of joint speeds q̇i , i =
1, 2, . . . , n. The components of velocity vectors 0vn and 0ωn are proportional to the
joint speeds q̇i , i = 1, 2, . . . , n:

0vn = JD q̇ (8.475)

0ωn = JR q̇ (8.476)

The proportionality matrices JD and JR are called the displacement and rotational
Jacobians.

We may combine Equations (8.475) and (8.476) as

Ẋ = J q̇ (8.477)

by defining the Jacobian matrix J and the vectors Ẋ and q̇, known as end-effector speed
vector and joint speed vector , respectively:

J =
[

JD

JR

]
(8.478)

Ẋ =
[

0vn

0ωn

]
(8.479)

q̇ = [
q̇n q̇n q̇n . . . q̇n

]T
(8.480)

We may also show JD by J whenever we analyze the velocity kinematics of a manip-
ulator without a wrist.

Consider a robot with six DOF that is made of a three-DOF manipulator to position
the wrist point and a spherical wrist with three DOF to orient the end effector. The
coordinate transformation of a point in the end-effector coordinate frame B6 and the
base coordinate frame B0 is

0r = 0T6(q) 6r = 0D6
0R6 =

[
I 0d6

0 1

] [
0R6 0

0 1

]
=

[
0R6

0d6

0 1

]
6r (8.481)
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where the transformation matrix 0T6 is a function of six joint variables qi ,
i = 1, 2, . . . , 6. We can always divide the six joint variables into the end-effector
position variables q1, q2, q3 and the end-effector orientation variables q4, q5, q6. The
end-effector position variables are the only variables in the position vector 0d6 and the
end-effector orientation variables are the only variables in the rotation transformation
matrix 0R6:

0d6 = 0d6 (q1, q2, q3) (8.482)
0R6 = 0R6 (q4, q5, q6) (8.483)

The origin of the end-effector frame B6 is at 6r = 0, which is globally at

0r =
[

0R6
0d6

0 1

] [
0
1

]
=

[
I 0d6

0 1

] [
0
1

]
= 0D6

[
0
1

]
= 0d6 (8.484)

The components of the end-effector displacement vector 0d6 = [X, Y, Z] are functions
of the manipulator joint variables q1, q2, q3: X

Y

Z

 =
 d1 (q1, q2, q3)

d2 (q1, q2, q3)

d3 (q1, q2, q3)

 (8.485)

Taking a derivative of both sides indicates that each component of 0v6 = 0ṙ is a linear
combination of q̇1, q̇2, q̇3:

Ẋ = ∂d1

∂q1
q̇1 + ∂d1

∂q2
q̇2 + ∂d1

∂q3
q̇3

Ẏ = ∂d2

∂q1
q̇1 + ∂d2

∂q2
q̇2 + ∂d2

∂q3
q̇3

Ż = ∂d3

∂q1
q̇1 + ∂d3

∂q2
q̇2 + ∂d3

∂q3
q̇3 (8.486)

which indicates that 0v6 is a linear combination of joint speeds q1, q2, q3:

0v6 = JD q̇D = q̇1
∂0d6

∂q1
+ q̇2

∂0d6

∂q2
+ q̇3

∂0d6

∂q3
(8.487)

We may show these relations by vector and matrix expressions:

0v6 = ∂d6

∂q
q̇D = JD q̇D (8.488)

 Ẋ

Ẏ

Ż

 =



∂d1

∂q1

∂d1

∂q2

∂d1

∂q3
∂d2

∂q1

∂d2

∂q2

∂d2

∂q3
∂d3

∂q1

∂d3

∂q2

∂d3

∂q3


 q̇1

q̇2

q̇3

 (8.489)
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The displacement Jacobian JD is equivalent to the derivative of T with respect to the
manipulator joint coordinates:

JD = ∂d6

∂q
= ∂0D6

∂q
= ∂0T6

∂q
= ∂T (q)

∂q
(8.490)

The angular velocity of the end effector is

0ω6 = 0Ṙ6
0RT

6 (8.491)

However, the time derivative of the rotational transformation matrix is

0Ṙ6 = d

dt

[0R1
1R2

2R3
3R4

4R5
5R6

]
= q̇1

∂0R1

∂q1

1R2
2R3

3R4
4R5

5R6 + q̇2
0R1

∂1R2

∂q2

2R3
3R4

4R5
5R6

+ q̇3
0R1

1R2
∂2R3

∂q3

3R4
4R5

5R6 + q̇4
0R1

1R2
2R3

∂3R4

∂q4

4R5
5R6

+ q̇5
0R1

1R2
2R3

3R4
∂4R5

∂q5

5R6 + q̇6
0R1

1R2
2R3

3R4
4R5

∂5R6

∂q6
(8.492)

and the transpose of 0R6 is

0RT
6 = [0R1

1R2
2R3

3R4
4R5

5R6
]T

= 5RT
6

4RT
5

3RT
4

2RT
3

1RT
2

0RT
1 (8.493)

Therefore,

0ω6 = 0Ṙ6
0RT

6

= q̇1
∂0R1

∂q1

0RT
1 + q̇2

0R1
∂1R2

∂q2

0RT
2

+ q̇3
0R2

∂2R3

∂q3

0RT
3 + q̇4

0R3
∂3R4

∂q4

0RT
4

+ q̇5
0R4

∂4R5

∂q5

0RT
5 + q̇6

0R5
∂5R6

∂q6

0RT
6 (8.494)

= 0ω1 + 0
1ω2 + 0

2ω3 + 0
3ω4 + 0

4ω5 + 0
5ω6 (8.495)

which indicates that 0ω6 is a linear combination of joint speeds qi , i = 1, 2, . . . , 6:

0ω6 = JR q̇ = q̇1
∂0ω6

∂q1
+ q̇2

∂0ω6

∂q2
+ q̇3

∂0ω6

∂q3

+ q̇4
∂0ω6

∂q4
+ q̇5

∂0ω6

∂q5
+ q̇6

∂0ω6

∂q6
(8.496)
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where

∂0ω6

∂q1
= ∂0R1

∂q1

0RT
1 (8.497)

∂0ω6

∂q2
= 0R1

∂1R2

∂q2

0RT
2 (8.498)

∂0ω6

∂q3
= 0R2

∂2R3

∂q3

0RT
3 (8.499)

∂0ω6

∂q4
= 0R3

∂3R4

∂q4

0RT
4 (8.500)

∂0ω6

∂q5
= 0R4

∂4R5

∂q5

0RT
5 (8.501)

∂0ω6

∂q6
= 0R5

∂5R6

∂q6

0RT
6 (8.502)

Combination of the translational and rotational velocities results in Equation (8.477)
for the velocity kinematics of the robot:

Ẋ =
[

0vn

0ωn

]
=

[
JD

JR

]
q̇ = J q̇ (8.503)

The Jacobian matrix of the robot is

J =


∂0d6

∂q1

∂0d6

∂q2

∂0d6

∂q3
0 0 0

∂0ω6

∂q1

∂0ω6

∂q2

∂0ω6

∂q3

∂0ω6

∂q4

∂0ω6

∂q5

∂0ω6

∂q6

 (8.504)

If the robot has n links and joints, the above equations go from 1 to n instead of
1 to 6. So, in general, the 6 × n Jacobian matrix J becomes

J =


∂0dn

∂q1

∂0dn

∂q2

∂0dn

∂q3
. . . . . .

∂0dn

∂qn

∂0ωn

∂q1

∂0ωn

∂q2

∂0ωn

∂q3
. . . . . .

∂0ωn

∂qn

 (8.505)

�

Example 519 � Jacobian Matrix for the 2R Planar Manipulator A 2R planar
manipulator with two R‖R links is illustrated in Figure 8.16. The manipulator has
been analyzed in Example 412 for forward kinematics and in Example 458 for inverse
kinematics.
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Figure 8.16 A 2R planar manipulator.

The angular velocity of links (1) and (2) are

0ω1 = θ̇1
0k̂0 (8.506)

0
1ω2 = θ̇2

0k̂1 (8.507)

0ω2 = 0ω1 + 0
1ω2 = (

θ̇1 + θ̇2
) 0k̂0 (8.508)

and the global velocity of the tip point of the manipulator is

0ḋ2 = 0ḋ1 + 0
1ḋ2 = 0ω1 × 0d1 + 0ω2 × 0

1d2

= θ̇1
0k̂0 × l1

0 ı̂1 + (
θ̇1 + θ̇2

) 0k̂0 × l2
0 ı̂2

= l1θ̇1
0̂1 × l2

(
θ̇1 + θ̇2

) 0̂2 (8.509)

The unit vectors 0̂1 and 0̂2 can be found by using the coordinate transformation
method:

0̂1 = Rz,θ1
1̂1

=
cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

0
1
0

 =
− sin θ1

cos θ1

0

 (8.510)

0̂2 = Rz,θ1+θ2
2̂2 =

c (θ1 + θ2) −s (θ1 + θ2) 0
s (θ1 + θ2) c (θ1 + θ2) 0

0 0 1

0
1
0


=

−s (θ1 + θ2)

c (θ1 + θ2)

0

 (8.511)
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Substituting back shows that

0ḋ2 = l1θ̇1

− sin θ1

cos θ1

0

 × l2
(
θ̇1 + θ̇2

) − sin (θ1 + θ2)

cos (θ1 + θ2)

0

 (8.512)

which can be rearranged to[
Ẋ

Ẏ

]
=

[ −l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

] [
θ̇1

θ̇2

]
= JD

[
θ̇1

θ̇2

]
(8.513)

Taking advantage of the structural simplicity of the 2R manipulator, we may find
its Jacobian simpler. The forward kinematics of the manipulator was found as

0T2 = 0T1
1T2

=


c (θ1 + θ2) −s (θ1 + θ2) 0 l1cθ1 + l2c (θ1 + θ2)

s (θ1 + θ2) c (θ1 + θ2) 0 l1sθ1 + l2s (θ1 + θ2)

0 0 1 0
0 0 0 1

 (8.514)

which shows the tip position 0
0d2 of the manipulator is at[

X

Y

]
=

[
l1 cos θ1 + l2 cos (θ1 + θ2)

l1 sin θ1 + l2 sin (θ1 + θ2)

]
(8.515)

Direct differentiation gives[
Ẋ

Ẏ

]
=

[−l1θ̇1 sin θ1 − l2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2
(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

]
(8.516)

which can be rearranged in the matrix form[
Ẋ

Ẏ

]
=

[ −l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

] [
θ̇1

θ̇2

]
(8.517)

or
Ẋ = JD θ̇ (8.518)

Example 520 � Columns of the Jacobian for the 2R Manipulator We can find
the Jacobian of the 2R planar manipulator systematically using the column-by-column
method. The global position vectors of the coordinate frames are

0
1d2 = l2

0 ı̂2 (8.519)

0d2 = l1
0 ı̂1 + l2

0 ı̂2 (8.520)
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and therefore,

0ḋ2 = 0ω1 × 0d2 + 0
1ω2 × 0

1d2

= θ̇1
0k̂0 × (

l1
0 ı̂1 + l2

0 ı̂2
) + θ̇2

0k̂1 × l2
0 ı̂2

= [
0k̂0 × (

l1
0 ı̂1 + l2

0 ı̂2
)

0k̂1 × l2
0 ı̂2

] [θ̇1

θ̇2

]
(8.521)

It can be set in matrix form to show the columns of [J]:[
0ḋ2

0ω2

]
=

[
0k̂0 × 0d2

0k̂1 × 0
1d2

0k̂0
0k̂1

] [
θ̇1

θ̇2

]
= J θ̇ (8.522)

Example 521 � Jacobian Matrix of a Planar Polar Manipulator Figure 8.17
illustrates a planar polar manipulator with the following forward kinematics:

0T2 = 0T1
1T2 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1




1 0 0 r

0 1 0 0
0 0 1 0
0 0 0 1



=


cos θ − sin θ 0 r cos θ

sin θ cos θ 0 r sin θ

0 0 1 0
0 0 0 1

 (8.523)

The tip point of the manipulator is at[
X

Y

]
=

[
r cos θ

r sin θ

]
(8.524)

z2

y2

y0

y1

x1

x0

θ

r

Figure 8.17 A planar polar manipulator.
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and therefore its velocity is[
Ẋ

Ẏ

]
=

[
cos θ −r sin θ

sin θ r cos θ

][
ṙ

θ̇

]
(8.525)

which shows that

JD =
[

cos θ −r sin θ

sin θ r cos θ

]
(8.526)

8.8 � JACOBIAN-GENERATING VECTOR

The Jacobian matrix provides the transformation from joint velocities to Cartesian
velocities:

Ẋ = J q̇ (8.527)

J =
[

0k̂0 × 0
0dn

0k̂1 × 0
1dn . . . 0k̂n−1 × 0

n−1dn

0k̂0
0k̂1 . . . 0k̂n−1

]
(8.528)

where J can be calculated column by column using the Jacobian-generating vector
ci(q), i = 1, 2, . . . , n:

ci(q) =
[

0k̂i−1 × 0
i−1dn

0k̂i−1

]
(8.529)

To calculate the ith column of the Jacobian matrix, we need to find two vectors 0
i−1dn

and 0k̂i−1. The vector 0
i−1dn indicates the position of the frame Bi−1 attached to link

i − 1 and the vector 0k̂i−1 indicates the joint axis unit vector of Bi−1, both expressed
in the base frame B0.

Calculating J based on the Jacobian-generating vectors shows that forward-velocity
kinematics is a consequence of the forward kinematics of multibodies.

Proof : Let 0di and 0di−1 be the global position vectors of the frames Bi and Bi−1 and
i−1di be the position vector of the frame Bi in Bi−1 as shown in Figure 8.18.

The three position vectors 0di , 0di−1, and i−1di are related by vector addition,

0di = 0di−1 + 0Ri−1
i−1di = 0di−1 + di

0k̂i−1 + ai
0 ı̂i (8.530)

where we have used Equation (8.442). Taking a time derivative,

0ḋi = 0ḋi−1 + 0Ṙi−1
i−1di + 0Ri−1

i−1ḋi

= 0ḋi−1 + 0Ṙi−1

(
di

i−1k̂i−1 + ai
i−1 ı̂i

)
+ 0Ri−1 ḋ i

i−1k̂i−1 (8.531)
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Joint i
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B0

Bi−1

Bi

zi−1

Figure 8.18 Link (i) and associated coordinate frames.

shows that the global velocity of the origin of Bi is a function of the translational and
angular velocities of link Bi−1. However, we can use the following relations

0
i−1ḋi = 0ḋi − 0ḋi−1 (8.532)

0Ṙi−1
i−1di = 0ωi−1 × 0Ri−1

i−1di = 0ωi−1 × 0
i−1di

= θ̇i
0k̂i−1 × 0

i−1di (8.533)

0Ri−1 ḋi
i−1k̂i−1 = ḋ i

0Ri−1
i−1k̂i−1 = ḋi

0k̂i−1 (8.534)

and conclude that

0
i−1ḋi = θ̇i

0k̂i−1 × 0
i−1di + ḋi

0k̂i−1 (8.535)

At each joint, either θ or d is variable. Therefore,

0
i−1ḋi = 0

0ωi × 0
i−1di if joint i is R (8.536)

or

0
i−1ḋi = ḋi

0k̂i−1 + 0
0ωi × 0

i−1di if joint i is P (8.537)

The end-effector velocity is then expressed by

0
0ḋn =

n∑
i=1

0
i−1ḋi =

n∑
i=1

θ̇i
0k̂i−1 × 0

i−1dn (8.538)

and

0
0ωn =

n∑
i=1

0
i−1ωi =

n∑
i=1

θ̇i
0k̂i−1 (8.539)
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which can be rearranged in matrix form:

[
0
0ḋn

0
0ωn

]
=

n∑
i=1

θ̇i

[
0k̂i−1 × 0

i−1dn

0k̂i−1

]

=
[

0k̂0 × 0
0dn

0k̂1 × 0
1dn . . . 0k̂n−1 × 0

n−1dn

0k̂0
0k̂1 . . . 0k̂n−1

]


θ̇1

θ̇2

...

θ̇n

 (8.540)

We usually show this equation by

Ẋ =
[

0
0ḋn

0
0ωn

]
= J q̇ (8.541)

where the vector q̇ = [
q̇1, q̇2, . . . , q̇n

]T
is the joint velocity vector and J is the Jacobian

matrix,

J =
[

0k̂0 × 0
0dn

0k̂1 × 0
1dn . . . 0k̂n−1 × 0

n−1dn

0k̂0
0k̂1 . . . 0k̂n−1

]
(8.542)

Employing the Jacobian-generating vector ci(q) is an applied method to determine
J. The vector ci (q) is associated with joint i. If joint i is revolute, then

ci(q) =
[

0k̂i−1 × 0
i−1dn

0k̂i−1

]
(8.543)

and if joint i is prismatic, then ci(q) simplifies to

ci(q) =
[

0k̂i−1

0

]
(8.544)

Equation (8.527) provides a set of six equations. The first three relate the translational
velocity of the end effector along the x0-axis. The rest of the equations relate the
rotational velocities of the end-effector frame about the base-frame axes. �

Example 522 � Jacobian Matrix of a Spherical Manipulator Figure 8.19 depicts a
spherical manipulator.
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Figure 8.19 A spherical manipulator.

To find its Jacobian matrix, we start with determining the 0k̂i−1-axes for i = 1, 2, 3.
It might be easier if we use the homogeneous definitions to find 0k̂i−1:

0k̂0 =


0
0
1
0

 (8.545)

0k̂1 = 0T1
1k̂1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0

0 −1 0 l0

0 0 0 1




0
0
1
0



=


− sin θ1

cos θ1

0
0

 (8.546)

0k̂2 = 0T2
2k̂2 =


cθ1cθ2 −sθ1 cθ1sθ2 0
cθ2sθ1 cθ1 sθ1sθ2 0
−sθ2 0 cθ2 l0

0 0 0 1




0
0
1
0



=


cos θ1 sin θ2

sin θ1 sin θ2

cos θ2

0

 (8.547)
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Then, we determine the vectors 0
i−1dn:

0
0d3 = l0

0k̂0 + d3
0k̂2 =


d3 cos θ1 sin θ2

d3 sin θ1 sin θ2

l0 + d3 cos θ2

0

 (8.548)

0
1d3 = d3

0k̂2 =


d3 cos θ1 sin θ2

d3 sin θ1 sin θ2

d3 cos θ2

0

 (8.549)

Therefore, the Jacobian of the manipulator is

J =
[

0k̂0 × 0
0d3

0k̂1 × 0
1d3

0k̂2
0k̂0

0k̂1 0

]

=



−d3 sin θ1 sin θ2 d3 cos θ1 cos θ2 cos θ1 sin θ2

d3 cos θ1 sin θ2 d3 cos θ2 sin θ1 sin θ1 sin θ2

0 −d3 sin θ2 cos θ2

0 − sin θ1 0

0 cos θ1 0

1 0 0


(8.550)

Example 523 � Jacobian Matrix for an Articulated Manipulator A robot is shown
in Figure 7.71 and its transformation matrices are calculated in Example 464. Because
the articulated manipulator has six DOF, its Jacobian would be a 6 × 6 matrix. The ith
column of the Jacobian matrix is

ci(q) =
[

0k̂i−1 × 0
i−1d6

0k̂i−1

]
(8.551)

For the first column, we need to find 0k̂0 and 0d6. The direction of the z0-axis in the
base coordinate frame is always

0k̂0 =
0

0
1

 (8.552)
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and the position vector of the end-effector frame B6 is 0d6. The vector 0d6 can directly
be determined from the fourth column of the transformation matrix 0T6:

0T6 = 0T 1
1 T 2

2 T 3
3 T 4

4 T 5
5 T6

=
[

0R6
0d6

0 1

]
=


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

 (8.553)

0d6 =
t14

t24

t34

 (8.554)

where

t14 = d6{sθ1sθ4sθ5 + cθ1 [cθ4sθ5c (θ2 + θ3]} + cθ5s (θ2 + θ3))

+ l3cθ1s (θ2 + θ3) + d2sθ1 + l2cθ1cθ2 (8.555)

t24 = d6{−cθ1sθ4sθ5 + sθ1 [cθ4sθ5c (θ2 + θ3) + cθ5s (θ2 + θ3)]}
+ sθ1s (θ2 + θ3) l3 − d2cθ1 + l2cθ2sθ1 (8.556)

t34 = d6 [cθ4sθ5s (θ2 + θ3) − cθ5c (θ2 + θ3)]

+ l2sθ2 + l3c (θ2 + θ3) (8.557)

Therefore,

0k̂0 × 0d6 =
0

0
1

 ×
t14

t24

t34

 =
−t24

t14

0

 (8.558)

and the first Jacobian-generating vector is

c1 =


−t24

t14

0
0
0
1

 (8.559)

For the second column we need to find 0k̂1 and 0
1d6. The z1-axis in the base frame can

be found by

0k̂1 = 0R1
1k̂1 = 0R1

0
0
1

 =
cθ1 0 sθ1

sθ1 0 −cθ1

0 1 0

0
0
1


=

 sin θ1

− cos θ1

0

 (8.560)
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The first half of c2 is 0k̂1 × 0
1d6. The vector 0

1d6 is the position of the end effector in the
coordinate frame B1. However, it must be expressed in the base frame to be able to per-
form the cross product. An easier method is to find 1k̂1 × 1d6 and transform the resultant
into the base frame. The vector 1d6 is the fourth column of 1T6 = 1T2

2T3
3T4

4T5
5T6,

which, from Example 464, is equal to

1d6 =
l2 cos θ2 + l3 sin (θ2 + θ3)

l2 sin θ2 − l3 cos (θ2 + θ3)

d2

 (8.561)

Therefore, the first half of c2 is

0k̂1 × 0
1d6 = 0R1

(
1k̂1 × 1d6

)
= 0R1

0
0
1

 ×
l2 cos θ2 + l3 sin (θ2 + θ3)

l2 sin θ2 − l3 cos (θ2 + θ3)

d2


=

cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)

 (8.562)

and

c2 =


cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

l2 cos θ2 + l3 sin (θ2 + θ3)

sin θ1

− cos θ1

0

 (8.563)

The third column is made by 0k̂2 and 0
2d6. The vector 0

2d6 is the position of the end
effector in the coordinate frame B2 and is the fourth column of 2T6 = 2T3

3T4
4T5

5T6.
The z2-axis in the base frame can be found by

0k̂2 = 0R2
2k̂2 = 0R1

1R2

0
0
1

 =
 sin θ1

− cos θ1

0

 (8.564)

and the cross product 0k̂2 × 0
2d6 can be found by transforming the resultant of 2k̂2 × 2d6

into the base coordinate frame:

2k̂2 × 2d6 =
l3 cos θ3

l3 sin θ3

0

 (8.565)

0R2

(
2k̂2 × 2d6

)
=

l3 cos θ1 sin (θ2 + θ3)

l3 sin θ1 sin (θ2 + θ3)

−l3 cos (θ2 + θ3)

 (8.566)
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Therefore,

c3 =


l3 cos θ1 sin (θ2 + θ3)

l3 sin θ1 sin (θ2 + θ3)

−l3 cos (θ2 + θ3)

sin θ1

− cos θ1

0

 (8.567)

The fourth column needs 0k̂3 and 0
3d6. The vector 0k̂3 can be found by transforming

3k̂3 to the base frame:

0k̂3 = 0R1
1R2

2R3

0
0
1


=

cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)

sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

 (8.568)

and the first half of J4 can be found by calculating 3̂k3 × 3d6 and transforming the
resultant into the base coordinate frame:

0R3

(
3k̂3 × 3d6

)
= 0R3

0
0
1

 ×
0

0
l3

 =
0

0
0

 (8.569)

Therefore,

c4 =


0
0
0

cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2)

sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

− cos (θ2 + θ3)

 (8.570)

The fifth column needs 0k̂4 and 0
4d6. We can find the vector 0k̂4 by transforming

4k̂4 to the base frame:

0k̂4 = 0R4

0
0
1

 =
 cθ4sθ1 − cθ1sθ4c (θ2 + θ3)

−cθ1cθ4 − sθ1sθ4c (θ2 + θ3)

−sθ4s (θ2 + θ3)

 (8.571)

The first half of c5 is 4k̂4 × 4d6 and is expressed in the base coordinate frame:

0R4

(
4k̂4 × 4d6

)
= 0R4

0
0
1

 ×
0

0
0

 =
0

0
0

 (8.572)
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Therefore,

c5 =


0
0
0

cos θ4 sin θ1 − cos θ1 sin θ4 cos (θ2 + θ3)

− cos θ1 cos θ4 − sin θ1 sin θ4 cos (θ2 + θ3)

− sin θ4 sin (θ2 + θ3)

 (8.573)

The sixth column is found by calculating 0k̂5 and 0k̂5 × 0
5d6:

0k̂5 = 0R5

0
0
1

 (8.574)

=
 −cθ1cθ4s (θ2 + θ3) − sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))

−sθ1cθ4s (θ2 + θ3) − sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3) − 1
2 s (θ2 + θ3) s2θ4


The first half of c6 is 5k̂5 × 5d6 and is expressed in the base coordinate frame:

0R5

(
5k̂5 × 5d6

)
= 0R5

0
0
1

 ×
0

0
0

 =
0

0
0

 (8.575)

Therefore,

c6 =


0
0
0

−cθ1cθ4s (θ2 + θ3) − sθ4 (sθ1sθ4 + cθ1cθ4c (θ2 + θ3))

−sθ1cθ4s (θ2 + θ3) − sθ4 (−cθ1sθ4 + sθ1cθ4c (θ2 + θ3))

cθ4c (θ2 + θ3) − 1
2s (θ2 + θ3) s2θ4

 (8.576)

and the Jacobian matrix for the articulated manipulator would be

J = [
c1 c2 c3 c4 c5 c6

]
(8.577)

Example 524 � Effect of a Spherical Wrist on Jacobian Matrix The Jacobian matrix
for a robot having a spherical wrist is always of the form

J =
[

0k̂0 × 0
0d6

0k̂1 × 0
1d6

0k̂2 × 0
2d6 0 0 0

0k̂0
0k̂1

0k̂2
0k̂3

0k̂6
0k̂5

]
(8.578)

which shows that the upper 3 × 3 submatrix is zero. This is because of the spherical
wrist structure and having a wrist point as the origin of the wrist coordinate frames B4,
B5, and B6.
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Example 525 � Jacobian Matrix by Direct Differentiation Figure 7.71 illustrates
an articulated robot. Its transformation matrices are given in Example 464. Using the
result of forward kinematics,

0T6 =
[ 0R6

0d6

0 1

]
(8.579)

we know that the position of the end effector is at

0d6 =
X6

Y6

Z6

 =
t14

t24

t34

 (8.580)

where
t14 = d6{sθ1sθ4sθ5 + cθ1 [cθ4sθ5c(θ2 + θ3) + cθ5s(θ2 + θ3)]}

+ l3cθ1s(θ2 + θ3) + d2sθ1 + l2cθ1cθ2 (8.581)

t24 = d6{−cθ1sθ4sθ5 + sθ1 [cθ4sθ5c(θ2 + θ3) + cθ5s(θ2 + θ3)]}
+ sθ1s(θ2 + θ3)l3 − d2cθ1 + l2cθ2sθ1 (8.582)

t34 = d6 [cθ4sθ5s(θ2 + θ3) − cθ5c(θ2 + θ3)]

+ l2sθ2 + l3c(θ2 + θ3) (8.583)

Taking the derivative of X6 yields

Ẋ6 = ∂X6

∂θ1
θ̇1 + ∂X6

∂θ2
θ̇2 + · · · + ∂X6

∂θ6
θ̇6

= J11θ̇1 + J12θ̇2 + · · · + J16θ̇6

= −t24θ̇1 + cθ1 [−l2sθ2 + l3c(θ2 + θ3)] θ̇2

+ l3cθ1s(θ2 + θ3)θ̇3 (8.584)

where
J11 = −t24

J12 = cos θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

J13 = l3 cos θ1 sin (θ2 + θ3)

J14 = 0 (8.585)

J15 = 0

J16 = 0



8.8 � Jacobian-Generating Vector 775

Similarly, the derivative of Y6 is given as

Ẏ6 = ∂Y6

∂θ1
θ̇1 + ∂Y6

∂θ2
θ̇2 + · · · + ∂Y6

∂θ6
θ̇6

= J21θ̇1 + J22θ̇2 + · · · + J26θ̇6

= t14θ̇1 + sθ1 [−l2sθ2 + l3c(θ2 + θ3)] θ̇2

+ l3sθ1s (θ2 + θ3) θ̇3 (8.586)

where
J21 = t14

J22 = sin θ1 (−l2 sin θ2 + l3 cos (θ2 + θ3))

J23 = l3 sin θ1 sin (θ2 + θ3)

J24 = 0 (8.587)

J25 = 0

J26 = 0

and the derivative of Z6 is given as

Ż6 = ∂Z6

∂θ1
θ̇1 + ∂Z6

∂θ2
θ̇2 + · · · + ∂Z6

∂θ6
θ̇6

= J31θ̇1 + J32θ̇2 + · · · + J36θ̇6

= [l2 cos θ2 + l3 sin(θ2 + θ3)] θ̇2 − l3 cos(θ2 + θ3)θ̇3 (8.588)

where
J31 = 0

J32 = l2 cos θ2 + l3 sin (θ2 + θ3)

J33 = −l3 cos (θ2 + θ3)

J34 = 0 (8.589)

J35 = 0

J36 = 0.

There is no explicit equation for expressing the rotations of the end effector’s frame
about the global axes. Therefore, there is no equation to find differential rotations about
the axes. This is the reason indirect or more systematic methods for evaluating the
Jacobian matrix should be used.
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The last three rows of the Jacobian matrix can be found by calculating the angular
velocity vector based on the angular velocity matrix,

0ω̃6 = 0Ṙ6
0RT

6 =
 0 −ωZ ωY

ωZ 0 −ωX

−ωY ωX 0

 (8.590)

0ω6 =
ωX

ωY

ωZ

 (8.591)

and then rearranging the components to show the Jacobian elements:

ωX = ∂ωX

∂θ1
θ̇1 + ∂ωX

∂θ2
θ̇2 + · · · + ∂ωX

∂θ6
θ̇6 (8.592)

ωY = ∂ωY

∂θ1
θ̇1 + ∂ωY

∂θ2
θ̇2 + · · · + ∂ωY

∂θ6
θ̇6 (8.593)

ωZ = ∂ωZ

∂θ1
θ̇1 + ∂ωZ

∂θ2
θ̇2 + · · · + ∂ωZ

∂θ6
θ̇6 (8.594)

The angular velocity vector of the end-effector frame is given as

ωX = sin θ1θ̇2 + sin θ1θ̇3 + cos θ1 sin θ23θ̇4

+ (cos θ4 sin θ1 − cos θ1 sin θ4 cos θ23) θ̇5

− [cθ1cθ4sθ23 + sθ4 (sθ1sθ4 + cθ1cθ4cθ23)] θ̇6 (8.595)

ωY = − cos θ1θ̇2 − cos θ1θ̇3 + sin θ1 sin θ23θ̇4

+ (− cos θ1 cos θ4 − sin θ1 sin θ4 cos θ23) θ̇5

+ [−sθ1cθ4sθ23 − sθ4 (−cθ1sθ4 + sθ1cθ4cθ23)] θ̇6 (8.596)

ωZ = θ̇1 − cos (θ2 + θ3) θ̇4 − sin θ4 sin (θ2 + θ3) θ̇5

+ (
cos θ4 cos θ23 − 1

2 sin θ23 sin 2θ4
)
θ̇6 (8.597)

and therefore,

J41 = 0

J42 = sin θ1

J43 = sin θ1

J44 = cos θ1 (cos θ2 sin θ3 + cos θ3 sin θ2) (8.598)

J45 = cos θ4 sin θ1 − cos θ1 sin θ4 cos (θ2 + θ3)

J46 = −cθ1cθ4s (θ2 + θ3) − sθ4 [sθ1sθ4 + cθ1cθ4c(θ2 + θ3)]
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J51 = 0

J52 = − cos θ1

J53 = − cos θ1

J54 = sin θ1 (cos θ2 sin θ3 + sin θ2 cos θ3)

J55 = − cos θ1 cos θ4 − sin θ1 sin θ4 cos (θ2 + θ3) (8.599)

J56 = −sθ1cθ4s (θ2 + θ3) − sθ4 [−cθ1sθ4 + sθ1cθ4c (θ2 + θ3)]

J61 = 1

J62 = 0

J63 = 0 (8.600)

J64 = − cos (θ2 + θ3)

J65 = − sin θ4 sin (θ2 + θ3)

J66 = cos θ4 cos (θ2 + θ3) − 1
2 sin (θ2 + θ3) sin 2θ4

Example 526 � Analytical Jacobian and Geometric Jacobian Assume the global
position and orientation of the end-effector frame are specified by a set of six parameters
arranged in a vector X,

X =
[

0rn
0φn

]
(8.601)

where 0rn is the Cartesian position of the end-effector frame,

0rn = 0rn(q) (8.602)

and 0φn represents three independent rotational parameters,

0φn = 0φn(q) (8.603)

both functions of the joint variable vector q.
The translational velocity of the end-effector frame can be expressed by

0rn = ∂r
∂q

q̇ = JD(q) q̇ (8.604)

and the rotational velocity of the end-effector frame can be expressed by

0φ̇n = ∂φ

∂q
q̇ = Jφ(q) q̇ (8.605)

The rotational velocity vector φ̇ in general differs from the angular velocity vector ω.
The combination of the Jacobian matrices JD and Jφ in the form

JA =
[

JD

Jφ

]
(8.606)
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is called the analytical Jacobian to indicate its difference with the geometric
Jacobian J.

Having a set of orientation angles, φ, it is possible to find the relationship between
the angular velocity ω and the rotational velocity φ̇. As an example, consider the
Euler angles ϕθψ about the zxz-axes. The global angular velocity in terms of Euler
frequencies is found in 4.181:ωX

ωY

ωZ

 =
0 cos ϕ sin θ sin ϕ

0 sin ϕ − cos ϕ sin θ

1 0 cos θ

 ϕ̇

θ̇

ψ̇

 (8.607)

ω = T (φ) φ̇ (8.608)

8.9 � INVERSE-VELOCITY KINEMATICS

The inverse-velocity kinematics problem , also known as the resolved-rates problem,
searches for the joint velocity vector associated with the end-effector velocity vector.
For a six-DOF connected multibody, such as a robotic manipulator, six DOF are needed
to be able to move the end effector in an arbitrary direction with an arbitrary angular
velocity. The speed vector of the end effector Ẋ is related to the joint speed vector q̇
by the Jacobian matrix:

Ẋ =
[

0vn
0ωn

]
=

[
JD

JR

]
q̇ = J q̇ (8.609)

Consequently, for the inverse-velocity kinematics, we require that the differential
change in joint coordinates be expressed in terms of Cartesian translation and the
angular velocities of the end effector. If the Jacobian matrix is non-singular at the
moment of calculation, the inverse Jacobian J−1 exists and we are able to find the req-
uired joint velocity vector by matrix inversion and multiplication:

q̇ = J−1 Ẋ (8.610)

A singular configuration is where the determinant of the Jacobian matrix is zero and
therefore, J−1 is indeterminate. Equation (8.610) determines the velocity required at
the individual joints to produce desired end-effector speeds Ẋ.

Inverse-velocity kinematics is a consequence of forward-velocity analysis and
needs matrix inversion. The inverse-velocity problem is equivalent to the solution of a
set of linear algebraic equations. To find J−1, every matrix inversion method may be
applied.

Example 527 � Inverse Velocity of a 2R Planar Manipulator The forward and
inverse kinematics of a 2R planar manipulator have been analyzed in Examples 412
and 458. Its Jacobian and forward-velocity kinematics are also found in Example 519 as

Ẋ = J q̇ (8.611)[
Ẋ

Ẏ

]
=

[ −l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

] [
θ̇1

θ̇2

]
(8.612)
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For inverse-velocity kinematics, we need to find the inverse of the Jacobian matrix.
Therefore,

q̇ = J−1 Ẋ (8.613)[
θ̇1

θ̇2

]
=

[ −l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

]−1 [
Ẋ

Ẏ

]
(8.614)

where

J−1 = −1

l1l2sθ2

[ −l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

]
(8.615)

and hence,

θ̇1 = Ẋc (θ1 + θ2) + Ẏ s (θ1 + θ2)

l1sθ2
(8.616)

θ̇2 = Ẋ[l1cθ1 + l2c (θ1 + θ2)] + Ẏ [l1sθ1 + l2s (θ1 + θ2)]

−l1l2sθ2
(8.617)

Singularity occurs when the determinant of the Jacobian is zero:

|J| = l1l2 sin θ2 = 0 (8.618)

Therefore, the singular configurations of the manipulator are

θ2 = 0 θ2 = 180 deg (8.619)

These singular configurations correspond to the fully extended or fully contracted con-
figurations, as shown in Figure 8.20. At the singular configurations, the value of θ1 is
indeterminate and may have any real value. The two columns of the Jacobian matrix
become parallel because Equation (8.612) becomes

[
Ẋ

Ẏ

]
= 2l1

[−sθ1

cθ1

]
θ̇1 + l2

[−sθ1

cθ1

]
θ̇2

= (
2l1θ̇1 + l2θ̇2

) [−sθ1

cθ1

]
(8.620)

In this situation, the end point can only move in the direction perpendicular to the
arm links.
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Figure 8.20 Singular configurations of a 2R planar manipulator.

Example 528 � Analytic Method for Inverse-Velocity Kinematics Theoretically we
must be able to calculate the joint velocities from the forward-velocity equations. How-
ever, in general, such a calculation is not easy. As an example, consider the 2R planar
manipulator shown in Figure 8.16.

The end-point velocity of the manipulator is expressed in Equation (8.521) as

0ḋ2 = θ̇1
0k̂0 × (

l1
0 ı̂1 + l2

0 ı̂2
) + θ̇2

0k̂1 × l2
0 ı̂2 (8.621)

Let us find the dot product of this equation with 0 ı̂2,

0ḋ2 · 0 ı̂2 = θ̇1

(
0k̂0 × l1

0 ı̂1

)
· 0 ı̂2 = l1θ̇1

0k̂0 · (0 ı̂1 × 0 ı̂2
)

= l1θ̇1
0k̂0 · 0 ı̂2 sin θ2 = l1θ̇1 sin θ2 (8.622)

and determine θ̇1,

θ̇1 =
0ḋ2 · 0 ı̂2

l1 sin θ2
(8.623)

Now a dot product of (8.621) with 0 ı̂1 reduces to

0ḋ2 · 0 ı̂1 = θ̇1

(
0k̂0 × l2

0 ı̂2

)
· 0 ı̂1 + θ̇2

(
0k̂1 × l2

0 ı̂2

)
· 0 ı̂1

= l2
(
θ̇1 + θ̇2

) 0k̂0 · (0 ı̂2 × 0 ı̂1
)

= −l2
(
θ̇1 + θ̇2

)
sin θ2 (8.624)

and provides

θ̇2 = −θ̇1 −
0ḋ2 · 0 ı̂1

l2 sin θ2
(8.625)
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Example 529 � Inverse Jacobian Matrix of an Articulated Robot The Jacobian
matrix J of an articulated robot with a spherical wrist is calculated in Example 523.
The Jacobian matrix of the manipulator is

J =
[

0k̂0 × 0
0d6

0k̂1 × 0
1d6

0k̂2 × 0
2d6 0 0 0

0k̂0
0k̂1

0k̂2
0k̂3

0k̂4
0k̂5

]
(8.626)

The upper right 3 × 3 submatrix of J is zero due to the spherical wrist structure and
because the last three position vectors are zero.

Let us split the Jacobian matrix into four 3 × 3 submatrices and write it as

J =
[

A B

C D

]
=

[
A 0
C D

]
(8.627)

where

[A] = [
0k̂0 × 0

0d6
0k̂1 × 0

1d6
0k̂2 × 0

2d6
]

(8.628)

[C] = [
0k̂0

0k̂1
0k̂2

]
(8.629)

[D] = [
0k̂3

0k̂4
0k̂5

]
(8.630)

Inversion of such a Jacobian is simpler if we take advantage of B = 0. The forward-
velocity kinematics of the robot can be written as

Ẋ = J q̇

[
0ḋ2

0ω2

]
=

[
A 0
C D

]


θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6

 (8.631)

The upper half of the equation is

0ḋ2 = [A]

θ̇1

θ̇2

θ̇3

 (8.632)

which can be inverted to θ̇1

θ̇2

θ̇3

 = A−1 0ḋ2 (8.633)

The lower half of the equation is

0ω2 = [
C D

]


θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6

 = [C]

θ̇1

θ̇2

θ̇3

 + [D]

θ̇4

θ̇5

θ̇6

 (8.634)
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and therefore, θ̇4

θ̇5

θ̇6

 = D−1

0ω2 − [C]

θ̇1

θ̇2

θ̇3

 (8.635)

KEY SYMBOLS

a turn vector of end-effector frame
B body coordinate frame
c cos
d differential, prismatic joint variable
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
e rotation quaternion
e0, e1, e2, e3 Euler parameters, components of e

G, B0 global coordinate frame, base coordinate frame
ı̂, ̂ , k̂ local coordinate axes unit vectors
ı̃, ̃ , k̃ skew-symmetric matrices of the unit vectors ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axes unit vectors
I = [I ] identity matrix
J Jacobian
l length
p pitch of a screw
q joint coordinate
q joint coordinate vector
r position vectors, homogeneous position vector
ri element i of r
rij element of row i and column j of a matrix
R rotation transformation matrix
s sin
s location vector of a screw
sgn signum function
SSRMS space station remote manipulator system
T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
v velocity vector
V velocity transformation matrix
û unit vector along the axis of ω

ũ skew symmetric matrix of the vector û

u1, u2, u3 components of û

x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ angles of rotation about the axes of global frame
δ Kronecker function, small increment of a parameter
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ε small test number to terminate a procedure
θ rotary joint angle
θijk θi + θj + θk

ϕ, θ, ψ angles of rotation about the axes of body frame
φ angle of rotation about û

ω angular velocity vector
ω̃ skew-symmetric matrix of the vector ω

ω1, ω2, ω3 components of ω

Symbol
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
� orthogonal
‖ parallel
⊥ perpendicular
�P prismatic velocity coefficient matrices
�R revolute velocity coefficient matrices

EXERCISES

1. Local Position, Global Velocity A body is turning about a global principal axis at a
constant angular rate. Find the global velocity of a point at Br:

Br = [
5 20 10

]T

(a) The axis is the Z-axis and the angular rate α̇ = 2 rad/s when α = 30 deg.

(b) The axis is the Y -axis and the angular rate β̇ = 2 rad/s when β = 30 deg.

(c) The axis is the X-axis and the angular rate γ̇ = 2 rad/s when γ = 30 deg.

2. Parametric Angular Velocity, Global Principal Rotations A body B is turning in a
global frame G. The rotation transformation matrix can be decomposed into principal axes.
Determine the angular velocities Gω̃B and GωB .

(a) GRB is the result of a rotation α about the Z-axis followed by β about the Y -axis.

(b) GRB is the result of a rotation β about the Y -axis followed by α about the Z-axis.

(c) GRB is the result of a rotation α about the Z-axis followed by γ about the X-axis.

(d) GRB is the result of a rotation γ about the X-axis followed by α about the Z-axis.

(e) GRB is the result of a rotation γ about the X-axis followed by β about the Y -axis.

(f) GRB is the result of a rotation β about the Y -axis followed by γ about the X-axis.

3. Global Position, Constant Angular Velocity A body is turning about a global principal
axis at a constant angular rate. Find the global position of a point at Br after t = 3s if the
body and global coordinate frames were coincident at t = 0s:

Br = [
5 20 10

]T

(a) The axis is the Z-axis and the angular rate α̇ = 2 rad/s.

(b) The axis is the Y -axis and the angular rate β̇ = 2 rad/s.

(c) The axis is the X-axis and the angular rate γ̇ = 2 rad/s.
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4. Numeric Angular Velocity, Global Principal Rotations A body B is turning in a global
frame G. The rotation transformation matrix can be decomposed into principal axes. Deter-
mine the angular velocities Gω̃B and GωB for Exercise 2, (a)–(f), using α̇ = 2 rad/s,
β̇ = 2 rad/s, γ̇ = 2 rad/s and α = 30 deg, β = 30 deg, γ = 30 deg.

5. Turning about x-Axis Find the angular velocity matrix when the body coordinate frame
is turning 35 deg/s at 45 deg about the x-axis.

6. Combined Rotation and Angular Velocity Find the rotation matrix for a body frame
after 30 deg rotation about the Z-axis followed by 30 deg about the X-axis and then
90 deg about the Y -axis. Then calculate the angular velocity of the body if it is turn-
ing with α̇ = 20 deg/s, β̇ = −40 deg/s, and γ̇ = 55 deg/s about the Z-, Y -, and X-axes,
respectively.

7. Angular Velocity, Expressed in Body Frame The point P is at rP = (1, 2, 1) in a body
coordinate B(Oxyz). Find B

Gω̃B when the body frame is turned 30 deg about the X-axis at
a rate γ̇ = 75 deg/s followed by 45 deg about the Z-axis at a rate α̇ = 25 deg/s.

8. Global Roll–Pitch–Yaw Angular Velocity Calculate the angular velocity for a global
roll–pitch–yaw rotation of α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 20 deg/s,
β̇ = −20 deg/s, and γ̇ = 20 deg/s.

9. Roll–Pitch–Yaw Angular Velocity Find B
Gω̃B and Gω̃B for the role, pitch, and yaw

rates equal to α̇ = 20 deg/s, β̇ = −20 deg/s, and γ̇ = 20 deg/s, respectively, and having the
rotation matrix

BRG =
 0.53 −0.84 0.13

0.0 0.15 0.99
−0.85 −0.52 0.081


10. Rolling Disc A disc of radius R rolls on a horizontal plane and makes a constant angle

θ with the Z-axis, and the center of the disc moves on a circle of radius kR with speed v,
as shown in Figure 8.21. Determine the angular velocity of the disc.

X

P

Z

x

z

C

θ
g

G
B

ψ

R

Z

ψY

Figure 8.21 A rolling disc at an angle θ with Z-axis.
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11. Angular Velocity from Rodriguez Formula We may find the time derivative of
GRB = Rû,φ by

GṘB = d

dt
GRB = φ̇

d

dφ

GRB

Use the Rodriguez rotation formula and find Gω̃B and B
Gω̃B .

12. Angular Velocity of End Point of a Stick Point A of the stick in Figure 8.22 has a
constant velocity vA = vı̂ on the x-axis. What is the angular velocity of the stick?

y

R

h

A

B

x

B

Figure 8.22 A sliding stick that is lined on a circle.

13. Rotating Slider Figure 8.23 illustrates a slider link on a rotating arm. Calculate
Gdı̂/dt,Gd̂/dt,Gdk̂/dt and Gd2 ı̂/dt2,Gd2̂ /dt2,Gd2k̂/dt2 and find Bv and Ba of m at
center of mass of the slider by using the rule of mixed derivatives:

Gd

dt

(
Bd

dt
r
)

=
Bd

dt

(
Bd

dt
r
)

+ GωB ×
(

Bd

dt
r
)

Y

X

m

θ
O

x
y

G

B

r

Figure 8.23 A slider on a rotating bar.

14. � Differentiating in Local and Global Frames Consider a local point at BrP = t ı̂

+ ̂ . The local frame B is rotating in G by α̇ about the Z-axis. Calculate (Bd/dt)BrP ,
(Gd/dt)GrP , (Bd/dt)GrP , and (Gd/dt)BrP .
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15. � Skew-Symmetric Identity for Angular Velocity Show that

Rω̃RT = R̃ω

16. � Transformation of Angular Velocity Exponents Show that

B
Gω̃n

B = GRT
BGω̃n

B
GRB

17. � Angular Velocity Matrix Identity Show that

ω̃2k+1 = (−1)k ω2k ω̃

and
ω̃2k = (−1)k ω2(k−1)

(
ω2 I − ωωT)

18. � Global Triple Angular Velocity Matrix Determine the angular velocities Gω̃B and
GωB for the global triple rotations of Appendix A.

19. � Local Triple Angular Velocity Matrix Determine the angular velocities Gω̃B and
GωB for the local triple rotations of Appendix B.

20. Angular Velocity, Expressed in Body Frame A point P is at rP = (1, 2, 1) in a body
coordinate B(Oxyz).

(a) Find B
Gω̃B when the body frame is turned 30 deg about the X-axis at a rate

γ̇ = 75 deg/s, followed by 45 deg about the Z-axis at a rate α̇ = 25 deg/s.

(b) Find B
Gω̃B when the body frame is turned 45 deg about the Z-axis at a rate α̇ = 25 deg/s,

followed by 30 deg about the X-axis at a rate γ̇ = 75 deg/s.

21. Global Roll–Pitch–Yaw Angular Velocity Calculate the angular velocity Gω̃B for a
global roll–pitch–yaw rotation of:

(a) α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 20 deg/s, β̇ = −20 deg/s, and
γ̇ = 20 deg/s

(b) α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 0 deg/s, β̇ = −20 deg/s, and γ̇ =
20 deg/s

(c) α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 20 deg/s, β̇ = 0 deg/s, and
γ̇ = 20 deg/s

(d) α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 20 deg/s, β̇ = −20 deg/s, and γ̇ =
0 deg/s

(e) α = 30 deg, β = 30 deg, and γ = 30 deg with α̇ = 0 deg/s, β̇ = 0 deg/s, and
γ̇ = 20 deg/s

22. Roll–Pitch–Yaw Angular Velocity Find B
Gω̃B and Gω̃B for the global role, pitch, and

yaw rates α̇ = 20 deg/s, β̇ = −20 deg/s, and γ̇ = 20 deg/s, respectively, and the following
rotation matrices:

(a)
BRG =

 0.53 −0.84 0.13
0.0 0.15 0.99

−0.85 −0.52 0.081


(b)

GRB =
 0.53 −0.84 0.13

0.0 0.15 0.99
−0.85 −0.52 0.081
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23. Angular Velocity from Rodriguez Formula We may find the time derivative of
GRB = Rû,φ by

GṘB = d

dt
GRB = φ̇

d

dφ

GRB.

Use the Rodriguez rotation formula and find Gω̃B and B
Gω̃B .

24. Skew-Symmetric Matrix Show that any square matrix can be expressed as the sum of
a symmetric and skew-symmetric matrix:

A = B + C B = 1
2 (A + AT) C = 1

2 (A − AT)

25. � Differentiating in Local and Global Frames Consider a local point at BrP . The
local frame B is rotating in G by α̇ about the Z-axis. Calculate (Bd/dt)BrP , (Gd/dt)GrP ,
(Bd/dt)GrP , and (Gd/dt)BrP .

(a) BrP = t ı̂ + ̂

(b) BrP = t ı̂ + t ̂

(c) BrP = t2 ı̂ + ̂

(d) BrP = t ı̂ + t2̂

(e) BrP = t ı̂ + t ̂ + t k̂

(f) BrP = t ı̂ + t2̂ + t k̂

(g) BrP = ı̂ sin t

(h) BrP = ı̂ sin ı̂ + ̂ cos t + k̂

26. 3R Planar Manipulator Velocity Kinematics Consider an R ‖ R ‖ R planar manipulator
with the following transformation matrices:

2T3 =


cθ3 −sθ3 0 l3cθ3

sθ3 cθ3 0 l3sθ3

0 0 1 0
0 0 0 1


1

T2 =


cθ2 −sθ2 0 l2cθ2

sθ2 cθ2 0 l2sθ2

0 0 1 0
0 0 0 1



0T1 =


cθ1 −sθ1 0 l1cθ1

sθ1 cθ1 0 l1sθ1

0 0 1 0
0 0 0 1


Calculate the Jacobian matrix J using direct differentiation and find the Cartesian velocity
vector of the end point for:

θ1 = 56 deg θ2 = −28 deg θ3 = −10 deg
l1 = 100 cm l2 = 55 cm l3 = 30 cm
θ̇1 = 30 deg/s θ̇2 = 10 deg/s θ̇3 = −10 deg/s
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Acceleration Kinematics

Angular acceleration of a rigid body is the time derivative of the instantaneous angular
velocity of the body with respect to another body. It is a vectorial quantity in a direc-
tion different than the angular velocity. We review acceleration calculus to study the
acceleration kinematics of rigid bodies.

9.1 ANGULAR ACCELERATION

Consider a rotating rigid body B(Oxyz ) with a fixed point O in a reference frame
G(OXYZ ) such as shown in Figure 9.1. When the body rotates in G, the global accel-
eration of a body point P is given as

Ga = Gv̇ = Gr̈ = GSB
Gr (9.1)

= GαB × Gr + GωB × (
GωB × Gr

)
(9.2)

= (
Gα̃B + Gω̃2

B

)
Gr =

( ·
Gω̃B + Gω̃2

B

)
Gr (9.3)

=
[
φ̈ũ + φ̇

·
ũ + φ̇2ũ2

]
Gr (9.4)

= (
φ̈û + φ̇u̇

) × Gr + φ̇2û × (
û × Gr

)
(9.5)

= GR̈B
GRT

B
Gr. (9.6)

where GαB is the angular acceleration vector of B relative to G,

GαB =
Gd

dt
GωB (9.7)

where Gα̃B is the angular acceleration matrix

Gα̃B =
·

Gω̃B = GR̈B
GRT

B + GṘB
GṘT

B = φ̈ũ + φ̇
·
ũ (9.8)

and GSB is the rotational acceleration transformation

GSB = GR̈B
GRT

B = Gα̃B + Gω̃2
B = Gα̃B − Gω̃B Gω̃T

B (9.9)

788
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X
Y

Z

x

y

G

B

z

rP

P

ω × r

ω × (ω × r)

Figure 9.1 A rotating rigid body B(Oxyz ) with a fixed point O in a reference frame G(OXYZ ).

The angular velocity vector GωB and matrix Gω̃B are

Gω̃B = GṘB
GRT

B (9.10)

GωB = φ̇û = φ̇ûω (9.11)

The relative angular acceleration of two bodies B1, B2 in the global frame G can
be combined as

Gα2 =
Gd

dt
Gω2 = Gα1 + G

1 α2 (9.12)

GS2 = GS1 + G
1 S2 + 2Gω̃1

G
1 ω̃2 (9.13)

The B-expressions of Ga and GSB are

B
Ga = B

GαB × Br + B
GωB × (

B
GωB × Br

)
(9.14)

B
GSB = BRG

GR̈B = B
Gα̃B + B

Gω̃2
B (9.15)

The global and body expressions of the rotational acceleration transformations GSB and
B
GSB can be transformed to each other by the following rules:

GSB = GRB
B
GSB

GRT
B (9.16)

B
GSB = GRT

B GSB
GRB (9.17)

Proof : The global position and velocity vectors of the body point P are

Gr = GRB
Br (9.18)

Gv = Gṙ = GṘB
Br = Gω̃B

Gr = GωB × Gr (9.19)

where Gω̃B is also the rotational velocity transformation because it transforms the
global position vector of a point, Gr, to its velocity vector Gv.

Differentiating Equation (9.19) and using the notation GαB = (Gd/dt)GωB provide
Equation (9.2):

Ga = Gr̈ = Gω̇B × Gr + GωB × Gṙ

= GαB × Gr + GωB × (
GωB × Gr

)
(9.20)
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Employing the axis–angle expression of angular velocity,

ω = φ̇û = φ̇

u1

u2

u3

 =
ω1

ω2

ω3

 (9.21)

ω̃ = φ̇ũ = φ̇

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 =
 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (9.22)

we can find the angular acceleration vector α and matrix α̃ in terms of the instantaneous
axis and angle of rotation:

α = ω̇ = φ̈û + φ̇u̇ (9.23)

α̃ =
·
ω̃ = φ̈ũ + φ̇

·
ũ (9.24)

We may substitute the matrix expressions of angular velocity and acceleration in (9.20)
to derive Equations (9.3) and (9.4):

Gr̈ = GαB × Gr + GωB × (
GωB × Gr

)
= Gα̃B

Gr + Gω̃BGω̃B
Gr

= (
Gα̃B + Gω̃2

B

)
Gr =

( ·
Gω̃B + Gω̃2

B

)
Gr

=
[
φ̈ũ + φ̇

·
ũ + φ̇2ũ2

]
Gr (9.25)

Substituting the vector expressions of angular velocity (9.11) and acceleration (9.23)
in (9.20), we derive Equation (9.5):

Gr̈ = (
φ̈û + φ̇u̇

) × Gr + φ̇2û × (
û × Gr

)
(9.26)

Recalling that
Gω̃B = GṘB

GRT
B (9.27)

Gṙ(t) = Gω̃B
Gr(t) (9.28)

we find Equations (9.6) and (9.8):

Gr̈ =
Gd

dt

(
GṘB

GRT
B

Gr
)

= GR̈B
GRT

B
Gr + GṘB

GṘT
B

Gr + [
GṘB

GRT
B

] [
GṘB

GRT
B

]
Gr

=
[

GR̈B
GRT

B + GṘB
GṘT

B + [
GṘB

GRT
B

]2
]

Gr

=
[

GR̈B
GRT

B − [
GṘB

GRT
B

]2 + [
GṘB

GRT
B

]2
]

Gr

= GR̈B
GRT

B
Gr (9.29)
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Gα̃B =
·

Gω̃B = GR̈B
GRT

B + GṘB
GṘT

B

= GR̈B
GRT

B + GṘB
GRT

B
GRB

GṘT
B

= GR̈B
GRT

B + [
GṘB

GRT
B

] [
GṘB

GRT
B

]T

= GR̈B
GRT

B + Gω̃BGω̃T
B = GR̈B

GRT
B − Gω̃2

B (9.30)

which indicates that
GR̈B

GRT
B = Gα̃B + Gω̃2

B = GSB (9.31)

The expanded forms of the angular accelerations GαB , Gα̃B and rotational acceleration
transformation GSB are

Gα̃B =
·

Gω̃B = φ̈ũ + φ̇
·
ũ =

 0 −ω̇3 ω̇2

ω̇3 0 −ω̇1

−ω̇2 ω̇1 0


=

 0 −u̇3φ̇ − u3φ̈ u̇2φ̇ + u2φ̈

u̇3φ̇ + u3φ̈ 0 −u̇1φ̇ − u1φ̈

−u̇2φ̇ − u2φ̈ u̇1φ̇ + u1φ̈ 0

 (9.32)

GαB =
ω̇1

ω̇2

ω̇3

 =
u̇1φ̇ + u1φ̈

u̇2φ̇ + u2φ̈

u̇3φ̇ + u3φ̈

 (9.33)

GSB =
·

Gω̃B + Gω̃2
B = Gα̃B + Gω̃2

B

=
−ω2

2 − ω2
3 ω1ω2 − ω̇3 ω̇2 + ω1ω3

ω̇3 + ω1ω2 −ω2
1 − ω2

3 ω2ω3 − ω̇1

ω1ω3 − ω̇2 ω̇1 + ω2ω3 −ω2
1 − ω2

2

 (9.34)

GSB = φ̈ũ + φ̇
·
ũ + φ̇2ũ2

=
 −(1 − u2

1)φ̇
2 u1u2φ̇

2 − u̇3φ̇ − u3φ̈ u1u3φ̇
2 + u̇2φ̇ + u2φ̈

u1u2φ̇
2 + u̇3φ̇ + u3φ̈ −(1 − u2

2)φ̇
2 u2u3φ̇

2 − u̇1φ̇ − u1φ̈

u1u3φ̇
2 − u̇2φ̇ − u2φ̈ u2u3φ̇

2 + u̇1φ̇ + u1φ̈ −(1 − u2
3)φ̇

2

 (9.35)

The angular acceleration vector of B in G can always be expressed in the natural
form

GαB = α ûα (9.36)

where ûα is a unit vector parallel to GαB and α is the angular acceleration magnitude.
The angular velocity and angular acceleration vectors are not parallel in general, and
therefore,

ûα �= ûω (9.37)

Only if the axis of rotation is fixed in both the G- and B-frames, we have

GαB = α û = ω̇ û = φ̈ û if û = ûα = ûω is a fixed axis (9.38)
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The angular velocity of several bodies rotating relative to each other can be related
according to (8.13):

0ωn = 0ω1 + 0
1ω2 + 0

2ω3 + · · · + 0
n−1ωn (9.39)

The angular accelerations of several relatively rotating rigid bodies follow the same
rule:

0αn = 0α1 + 0
1α2 + 0

2α3 + · · · + 0
n−1αn (9.40)

To show this fact and develop the relative acceleration formula, we consider a pair of
relatively rotating rigid links in a base coordinate frame B0 with a fixed point at O.
The angular velocities of the links are related as

0ω2 = 0ω1 + 0
1ω2 (9.41)

So, their angular accelerations are

0α1 =
0d

dt
0ω1 (9.42)

0α2 =
0d

dt
0ω2 = 0α1 + 0

1α2 (9.43)

and therefore,

0S2 = 0α̃2 + 0ω̃
2
2 = 0α̃1 + 0

1α̃2 + (
0ω̃1 + 0

1ω̃2
)2

= 0α̃1 + 0
1α̃2 + 0ω̃

2
1 + 0

1ω̃
2
2 + 20ω̃1

0
1ω̃2

= 0S1 + 0
1S2 + 20ω̃1

0
1ω̃2 (9.44)

Equation (9.44) is the required relative acceleration transformation formula . It indicates
the method of calculation of relative accelerations for a multibody. As a more general
case, consider a six-link multibody. The angular acceleration of link (6) in the base
frame would be

0S6 = 0S1 + 0
1S2 + 0

2S3 + 0
3S4 + 0

4S5 + 0
5S6

+ 20ω̃1
(0

1ω̃2 + 0
2ω̃3 + 0

3ω̃4 + 0
4ω̃5 + 0

5ω̃6
)

+ 20
1ω̃2

(0
2ω̃3 + 0

3ω̃4 + 0
4ω̃5 + 0

5ω̃6
)

...

+ 20
4ω̃5

(0
5ω̃6

)
(9.45)

We can transform the G- and B-expressions of the global acceleration of a body
point P to each other using a rotation matrix:

B
GaP = BRG

GaP = BRG GSB
GrP = BRG GSB

GRB
BrP

= BRG
GR̈B

GRT
B

GRB
BrP = BRG

GR̈B
BrP

= GRT
B

GR̈B
BrP = B

GSB
BrP = (

B
Gα̃B + B

Gω̃2
B

)
BrP

= B
GαB × Br + B

GωB × (
B
GωB × Br

)
(9.46)
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GaP = GRB
B
GaP = GRB

B
GSB

BrP = GRB
B
GSB

GRT
B

GrP

= GRB
GRT

B
GR̈B

GRT
B

GrP = GR̈B
GRT

B
GrP

= GSB
GrP = (

Gα̃B + Gω̃2
B

)
Gr

= GαB × Gr + GωB × (
GωB × Gr

)
(9.47)

From the definitions of GSB and B
GSB in (9.9) and (9.15) and comparing with

(9.46) and (9.47), we are able to transform the two rotational acceleration transfor-
mations by

GSB = GRB
B
GSB

GRT
B (9.48)

B
GSB = GRT

B GSB
GRB (9.49)

and derive the useful equations

GR̈B = GSB
GRB (9.50)

GR̈B = GRB
B
GSB (9.51)

GSB
GRB = GRB

B
GSB (9.52)

The angular acceleration of B in G is negative of the angular acceleration of G in
B if both are expressed in the same coordinate frame:

Gα̃B = − G
B α̃G GαB = − G

BαG (9.53)

B
Gα̃B = − Bα̃G

B
GαB = − BαG (9.54)

The term GαB × Gr in (9.20) is called the tangential acceleration, which is a
function of the angular acceleration of B in G. The term GωB × (

GωB × Gr
)

in Ga
is called centripetal acceleration and is a function of the angular velocity of B in G.
�

Example 530 Rotation of a Body Point about a Global Axis Consider a rigid body is
turning about the Z-axis with a constant angular acceleration α̈ = 2 rad/s2. The global
acceleration of a body point at P(5, 30, 10) cm when the body is at α̇ = 10 rad/s and
α = 30 deg is

GaP = GR̈B(t)BrP

=
 −87.6 48.27 0

−48.27 −87.6 0
0 0 0

 5
30
10

 =
 1010

−2869.4
0

 cm/s (9.55)

where

GR̈B =
Gd2

dt2
GRB = α̇

Gd

dα

GRB = α̈
Gd

dα

GRB + α̇2
Gd2

dα2
GRB

= α̈

− sin α − cos α 0
cos α − sin α 0
0 0 0

 + α̇2

− cos α sin α 0
− sin α − cos α 0

0 0 0

 (9.56)
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At this moment, the point P is at

GrP = GRB
BrP

=

cos
( 1

6π
) − sin

( 1
6π

)
0

sin
( 1

6π
)

cos
( 1

6π
)

0

0 0 1


 5

30

10

 =

−10.67

28.48

10

 cm (9.57)

Example 531 Rotation of a Global Point about a Global Axis A body point P at
BrP = [

5 30 10
]T

cm is turning with a constant angular acceleration α̈ = 2 rad/s2

about the Z-axis. When the body frame is at α = 30 deg, its angular speed
α̇ = 10 deg/s.

The transformation matrix GRB between the B- and G-frames is

GRB =

cos
(

1
6π

) − sin
(

1
6π

)
0

sin
( 1

6π
)

cos
( 1

6π
)

0

0 0 1

 ≈

0.866 −0.5 0

0.5 0.866 0

0 0 1

 (9.58)

and therefore, the acceleration of point P is

GaP = GR̈B
GRT

B
GrP =

 1010
−2869.4

0

 cm/s2 (9.59)

where
Gd2

dt2
GRB = α̈

Gd

dα

GRB − α̇2
Gd2

dα2
GRB (9.60)

is the same as (9.56).

Example 532 Principal Angular Accelerations The principal rotational matrices
about the axes X, Y , and Z are given in (8.61)–(8.63) for RX,γ , RY,β , and RZ,α . Based
on their time derivatives in (8.64)–(8.66), the principal angular velocities about the
axes X, Y , and Z are given in (8.67)–(8.69) as

ω̃X = ṘX,γ RT
X,γ = γ̇ Ĩ ωX = ωX Î = γ̇ Î (9.61)

ω̃Y = ṘY,βRT
Y,β = β̇J̃ ωY = ωY Ĵ = β̇Ĵ (9.62)

ω̃Z = ṘZ,αRT
Z,α = α̇K̃ ωZ = ωZ K̂ = α̇K̂ (9.63)

Taking another derivative shows that the principal angular accelerations about the
axes X, Y , and Z are

α̃X = R̈X,γ RT
X,γ + ṘX,γ ṘT

X,γ = γ̈ Ĩ αX = αX Î = γ̈ Î (9.64)
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α̃Y = R̈Y,βRT
Y,β + ṘY,βṘT

Y,β = β̈J̃ αY = αY Ĵ = β̈Ĵ (9.65)

α̃Z = R̈Z,αRT
Z,α + ṘZ,αṘT

Z,α = α̈K̃ αZ = αZ K̂ = α̈K̂ (9.66)

and therefore,

SX,γ̈ = R̈X,γ RT
X,γ = α̃X + ω̃2

X = γ̈ Ĩ + γ̇ 2Ĩ Ĩ (9.67)

SY,β̈ = R̈Y,βRT
Y,β = α̃Y + ω̃2

Y = β̈J̃ + β̇2J̃ J̃ (9.68)

SZ,α̈ = R̈Z,αRT
Z,α = α̃Z + ω̃2

Z = α̈K̃ + α̇2K̃K̃ (9.69)

R̈X,γ =
(
γ̈ Ĩ + γ̇ 2Ĩ Ĩ

)
RX,γ (9.70)

R̈Y,β =
(
β̈J̃ + β̇2J̃ J̃

)
RY,β (9.71)

R̈Z,α =
(
α̈K̃ + α̇2K̃K̃

)
RZ,α (9.72)

Example 533 Decomposition of an Angular Acceleration Vector Every angular
acceleration can be decomposed to three principal angular acceleration vectors by
employing the orthogonality condition (3.1):

GαB =
(

GαB · Î
)

Î +
(

GαB · Ĵ
)

Ĵ +
(

GαB · K̂
)

K̂

= αX Î + αY Ĵ + αZ K̂ = γ̈ Î + β̈Ĵ + α̈K̂

= αX + αY + αZ (9.73)

Example 534 � Relative Angular Acceleration The relative angular acceleration
formulas (9.43) or (9.40),

0α2 = 0α1 + 0
1α2 (9.74)

0αn = 0α1 + 0
1α2 + 0

2α3 + · · · + 0
n−1αn =

n∑
i=1

0
i−1αi (9.75)

are correct if and only if all of the angular accelerations are expressed in the B0-frame.
Therefore, any equation of the form

0α2 �= 0α1 + 1α2 (9.76)

α0 �= α1 + α2 (9.77)

0α3 �= 0α1 + 0α2 (9.78)

is wrong or is not completely expressed.
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Example 535 Angular Acceleration and Euler Angles The angular velocity GωB in
terms of Euler angles is given in Equation (4.181) as

GωB =
ωX

ωY

ωZ

 =
0 cos ϕ sin θ sin ϕ

0 sin ϕ − cos ϕ sin θ

1 0 cos θ

 ϕ̇

θ̇

ψ̇



=

θ̇ cos ϕ + ψ̇ sin θ sin ϕ

θ̇ sin ϕ − ψ̇ cos ϕ sin θ

ϕ̇ + ψ̇ cos θ

 (9.79)

The angular acceleration is then equal to

GαB =
Gd

dt
GωB

=


cos ϕ

(
θ̈ + ϕ̇ψ̇ sin θ

) + sin ϕ
(
ψ̈ sin θ + θ̇ ψ̇ cos θ − θ̇ ϕ̇

)
sin ϕ

(
θ̈ + ϕ̇ψ̇ sin θ

) + cos ϕ
(
θ̇ ϕ̇ − ψ̈ sin θ − θ̇ ψ̇ cos θ

)
ϕ̈ + ψ̈ cos θ − θ̇ ψ̇ sin θ

 (9.80)

To determine the B-expression of the angular velocity B
GαB , we may take a time

derivative of the B-expression of the angular velocity B
GωB given in Equation (4.182):

B
GωB =

ωx

ωy

ωz

 =

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1


 ϕ̇

θ̇

ψ̇

 (9.81)

B
GαB =

Bd

dt
B
GωB

= d

dt

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1


 ϕ̇

θ̇

ψ̇



+

sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0

cos θ 0 1

 d

dt

 ϕ̇

θ̇

ψ̇



=

cos ψ
(
θ̈ + ϕ̇ψ̇ sin θ

) + sin ψ
(
ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇

)
cos ψ

(
ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇

) − sin ψ
(
θ̈ + ϕ̇ψ̇ sin θ

)
ϕ̈ cos θ + ψ̈ − θ̇ ϕ̇ sin θ

 (9.82)
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We may also use the transformation matrix BRG in terms of Euler angles (4.142)
and determine the angular acceleration vector in the body coordinate frame as

B
GαB = BRG GαB

=
 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ


GαB

=
cos ψ

(
θ̈ + ϕ̇ψ̇ sin θ

) + sin ψ
(
ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇

)
cos ψ

(
ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇

) − sin ψ
(
θ̈ + ϕ̇ψ̇ sin θ

)
ϕ̈ cos θ − ψ̈ − θ̇ ϕ̇ sin θ

 (9.83)

Example 536 B-Expression of Angular Acceleration The angular acceleration
expressed in the body frame is the body derivative of the angular velocity vector. To
show this, we use the derivative transport formula (8.250):

B
GαB = B

Gω̇B =
Gd

dt
B
GωB

=
Bd

dt
B
GωB + B

GωB × B
GωB =

Bd

dt
B
GωB (9.84)

Interestingly, the global and body derivatives of B
GωB are equal:

Gd

dt
B
GωB =

Bd

dt
B
GωB = B

GαB (9.85)

This is because GωB is about an axis û that is instantaneously fixed in both B and G.
A vector α can generally indicate the angular acceleration of a coordinate frame A

with respect to another frame B. It can be expressed in or seen from a third coordinate
frame C. We indicate the first coordinate frame A by a right subscript, the second
frame B by a left subscript, and the third frame C by a left superscript, C

BαA. If the
left super- and subscripts are the same, we only show the subscript. So, the angular
acceleration of A with respect to B as seen from C is the C-expression of BαA:

C
BαA = CRB BαA (9.86)

Example 537 B-Expression of Acceleration Transforming Ga to the body frame
provides the body expression of the acceleration vector:

B
GaP = GRT

B
Ga = GRT

B GSB
Gr = GRT

B
GR̈B

GRT
B

Gr

= GRT
B

GR̈B
Br (9.87)

We denote the coefficient of Br by

B
GSB = GRT

B
GR̈B (9.88)
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and rewrite Equation (9.87) as
B
GaP = B

GSB
BrP (9.89)

where B
GSB is the rotational acceleration transformation of the B-frame relative to the

G-frame as seen from the B-frame.

Example 538 � Technical Point on Gω̃B , B
GSB , Gα̃B The derivative kinematics of

a rigid body with a fixed point begins by differentiating the kinematic transformation
between the body B and global G coordinate frames:

Gr = GRB
Br (9.90)

The kinematic transformation matrix GRB takes the coordinates of a point in the B-
frame and determines the coordinates of the point in the G-frame. The matrix GRB is
called a kinematic or geometric transformation because the dimensions of what it takes
and what it provides are the same.

The first derivative of (9.90) indicates the time rate of motion of a body point:

Gv = GṘB
Br = Gω̃B

Gr (9.91)

where Gω̃B is the angular velocity matrix of B in G. This matrix is skew symmetric
and its associated vector is the angular velocity vector. The matrix Gω̃B also acts as
an operator and a transformer. It takes the global position vector of a body point, Gr,
and determines its global velocity vector, Gv. So, it is called the rotational velocity
transformation.

The second derivative of (9.90) indicates the time rate of velocity:

Ga = GR̈B
Br = GSB

Gr (9.92)

where GSB is not skew symmetric, so it does not indicate a vector. However, GSB acts
as an operator and a transformer. It takes the global position vector of a body point, Gr,
and determines its global acceleration vector, Ga. It is called the rotational acceleration
transformation. The matrix GSB is the sum of two matrices:

GSB = Gα̃B + Gω̃2
B (9.93)

The first matrix, Gα̃B , is the time derivative of Gω̃B . So, it is a skew-symmetric matrix
and indicates the angular acceleration matrix and vector. However, Gα̃B cannot trans-
form a position vector to its acceleration vector. The second matrix, Gω̃2

B , is the square
of the angular velocity matrix. It is not skew symmetric and indicates no vector.

We may consider Gα̃B and Gω̃2
B as transformers because when they operate on Gr

they respectively provide the tangential and centripetal components of the acceleration
vector Ga.
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Example 539 Angular Acceleration from Rodriguez Formula Using the Rodriguez
rotation formula, we can show that

Gα̃B =
·

Gω̃B = lim
φ→0

Gd2

dt2
Rû,φ

= lim
φ→0

Gd2

dt2

(−ũ2 cos φ + ũ sin φ + ũ2 + I
) = φ̈ũ + φ̇

·
ũ (9.94)

Example 540 � Alternative Proof of Relative Acceleration Formula To show addi-
tion of the relative angular accelerations in Equations (9.44) and (9.45), we may start
from a combination of rotations,

0R2 = 0R1
1R2 (9.95)

and take their time derivatives,

0Ṙ2 = 0Ṙ1
1R2 + 0R1

1Ṙ2 (9.96)

0R̈2 = 0R̈1
1R2 + 20Ṙ1

1Ṙ2 + 0R1
1R̈2 (9.97)

Substituting the derivatives of rotation matrices with

0R̈2 = 0S2
0R2 (9.98)

0R̈1 = 0S1
0R1 (9.99)

1R̈2 = 1S2
1R2 (9.100)

0Ṙ2 = 0ω̃2
0R2 (9.101)

0Ṙ1 = 0ω̃1
0R1 (9.102)

1Ṙ2 = 1ω̃2
1R2 (9.103)

results in

0S2
0R2 = 0S1

0R1
1R2 + 2 0ω̃1

0R1 1ω̃2
1R2 + 0R1 1S2

1R2

= 0S1
0R2 + 2 0ω̃1

0R1 1ω̃2
0RT

1
0R1

1R2 + 0R1 1S2
1R2

= 0S1
0R2 + 2 0ω̃1

0
1ω̃2

0R2 + 0R1 1S2
0RT

1
0R1

1R2

= 0S1
0R2 + 2 0ω̃1

0
1ω̃2

0R2 + 0
1S2

0R2 (9.104)

Therefore, we find
0S2 = 0S1 + 0

1S2 + 2 0ω̃1
0
1ω̃2 (9.105)

which is equivalent to

0α̃2 + 0ω̃
2
2 = 0α̃1 + 0ω̃

2
1 + 0

1α̃2 + 0
1ω̃

2
2 + 2 0ω̃1

0
1ω̃2 (9.106)
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Simplifying this equation shows that

0α̃2 = 0α̃1 + 0
1α̃2 + 0ω̃

2
1 + 0

1ω̃
2
2 + 2 0ω̃1

0
1ω̃2 − 0ω̃

2
2

= 0α̃1 + 0
1α̃2 + (

0ω̃1 + 0
1ω̃2

)2 − 0ω̃
2
2

= 0α̃1 + 0
1α̃2 + 0ω̃

2
2 − 0ω̃

2
2 = 0α̃1 + 0

1α̃2 (9.107)

which indicates that two angular accelerations may be added when they are expressed
in the same frame:

0α2 = 0α1 + 0
1α2 (9.108)

Example 541 Velocity and Acceleration of a Simple Pendulum A point mass
attached to a massless rod hanging from a revolute joint is what we call a simple
pendulum . Figure 9.2 illustrates a simple pendulum. A local coordinate frame B is
attached to the pendulum, which rotates in a global frame G about the Z-axis. The
kinematic information of the mass is given as

Br = lı̂ (9.109)

Gr = GRB
Br =

 l sin φ

−l cos φ

0

 (9.110)

B
GωB = φ̇k̂ (9.111)

GωB = GRT
B

B
GωB = φ̇ K̂ (9.112)

GRB =

cos
(

3
2π + φ

) − sin
(

3
2π + φ

)
0

sin
( 3

2π + φ
)

cos
( 3

2π + φ
)

0
0 0 1


=

 sin φ cos φ 0
− cos φ sin φ 0

0 0 1

 (9.113)

Therefore,
B
Gv = B ṙ + B

GωB × B
Gr = 0 + φ̇k̂ × lı̂ = l φ̇̂ (9.114)

Gv = GRB
Bv =

l φ̇ cos φ

l φ̇ sin φ

0

 (9.115)

and
B
Ga = B

Gv̇ + B
GωB × B

Gv = l φ̈̂ + φ̇k̂ × l φ̇̂ = l φ̈̂ − l φ̇2 ı̂ (9.116)

Ga = GRB
Ba =

l φ̈ cos φ − l φ̇2 sin φ

l φ̈ sin φ + l φ̇2 cos φ

0

 (9.117)
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Y

X

m

O

l

x

y

G

B

φ

Figure 9.2 Illustration of a simple pendulum.

Example 542 A Moving Vehicle on Earth Consider the motion of a vehicle on
Earth at latitude 30 deg that is heading north, as shown in Figure 9.3. The vehicle has
a velocity v = B

E ṙ = 80ı̂ km/h = 22.22ı̂ m/s and acceleration a = B
E r̈ = 0.1ı̂ m/s2, both

with respect to the road and expressed in the vehicle frame B.
To determine the kinematics of the vehicle, we define three coordinate frames:

(1) a global frame G(OXYZ ) at Earth’s center, (2) an Earth fixed frame E at Earth’s
center, and (3) a vehicle frame B attached to the mass center of the vehicle such that
its z-axis is along Br and its x-axis points to the north pole. The Earth’s frame E is
turning about the Z-axis with ωE = GωE ≈ 2πrad/d. The frames E and G are assumed
coincident at the moment and the vehicle is in the (Z, Y )-plane.

θ

X Y

Z

x

y

z

30 deg

x
z

r

Z

(a)

G

B

Y

z

x
y

E
ω ω

(b)

Figure 9.3 A moving vehicle at latitude 30 deg and heading north pole.
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The radius of Earth is R, and hence, the vehicle’s kinematics are

B
Er = Rk̂ m (9.118)

B
E ṙ = 22.22ı̂ m/s (9.119)

B
E r̈ = 0.1ı̂ m/s2 (9.120)

θ̇ = v

R
rad/s (9.121)

θ̈ = a

R
rad/s2 (9.122)

The angular velocity of B is

B
GωB = BRG

(
GωE + G

EωB

) = BRG

(
ωE K̂ + θ̇ Î

)
= (ωE cos θ) ı̂ + (ωE sin θ) k̂ + θ̇ ̂

= (ωE cos θ) ı̂ + (ωE sin θ) k̂ + v

R
̂ (9.123)

Therefore, the velocity and acceleration of the vehicle are

B
Gv = B ṙ + B

GωB × B
Gr = 0 + B

GωB × Rk̂ = vı̂ − (RωE cos θ) ̂ (9.124)

B
Ga = B

Gv̇ + B
GωB × B

Gv

= aı̂ + (
RωE θ̇ sin θ

)
̂ +

ωE cos θ

v/R

ωE sin θ

 ×
 v

−RωE cos θ

0



= aı̂ + (
RωE θ̇ sin θ

)
̂ +

 Rω2
E cos θ sin θ

vωE sin θ

− 1

R
v2 − Rω2

E cos2 θ



=

 a + Rω2
E cos θ sin θ

2RωE θ̇ sin θ

− 1

R
v2 − Rω2

E cos2 θ

 (9.125)

The term aı̂ is the acceleration of B relative to Earth, (2RωE θ̇ sin θ)̂ is the Coriolis
acceleration, −(v2/R)k̂ is the centripetal acceleration due to traveling, and −Rω2

E is
the centripetal acceleration due to Earth’s rotation.

Substituting the numerical values and accepting R ≈ 6.3677 × 106 m yield

B
Gv = 22.22ı̂ − 6.3677 × 106

(
2π

24 × 3600

366.25

365.25

)
cos

π

6
̂

= 22.22ı̂ − 402.13̂ m/s (9.126)
B
Ga = 1.5662 × 10−2 ı̂ + 1.6203 × 10−3̂ − 2.5473 × 10−2k̂ m/s2 (9.127)
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Example 543 Spherical Pendulum A pendulum free to oscillate in any plane is
called a spherical pendulum. This name comes from the codominants that we use to
locate the tip mass. Consider a pendulum with a point mass m at the tip point of a
long, massless, and straight string with length l. The pendulum is hanging from a point
A(0,0,0) in a local coordinate frame B1(x1, y1, z1).

To indicate the mass m, we attach a coordinate frame B2(x2, y2, z2) to the pendulum
at point A, as shown in Figure 9.4. The pendulum makes an angle β with the vertical
z1-axis. The pendulum swings in the plane (x2, z2) and makes an angle γ with the
plane (x1, z1). Therefore, the transformation matrix between B2 and B1 is

2R1 = Ry2,−β Rz2,γ

=
 cos γ cos β cos β sin γ sin β

− sin γ cos γ 0
− cos γ sin β − sin γ sin β cos β

 (9.128)

The position vectors of m are

2r =
 0

0
−l

 1r = 1R2
2r =

l cos γ sin β

l sin β sin γ

−l cos β

 (9.129)

The equation of motion of m is
1M = I 1α2 (9.130)

1r × m1g = ml2
1α2 (9.131)l cos γ sin β

l sin β sin γ

−l cos β

 × m

 0
0

−g0

 = ml2
1α2 (9.132)

γ

B1

x1

y1

z1

β

x2

z2

B2

A

P

x1

y1

Figure 9.4 A spherical pendulum.
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Therefore,

1α2 = g0

l

− sin β sin γ

cos γ sin β

0

 (9.133)

To find the angular acceleration of B2 in B1, we use 2R1:

1Ṙ2 = β̇
d

dβ

2R1 + γ̇
d

dγ

2R1

=
−β̇cγ sβ − γ̇ cβsγ −γ̇ cγ γ̇ sβsγ − β̇cβcγ

γ̇ cβcγ − β̇sβsγ −γ̇ sγ −β̇cβsγ − γ̇ cγ sβ

β̇cβ 0 −β̇sβ

 (9.134)

1ω̃2 = 1Ṙ2
1RT

2 =
 0 −γ̇ −β̇ cos γ

γ̇ 0 −β̇ sin γ

β̇ cos γ β̇ sin γ 0

 (9.135)

1R̈2 = β̈
d

dβ

2R1 + β̇2 d2

dβ2
2R1 + β̇γ̇

d2

dγ dβ

2R1

+ γ̈
d

dγ

2R1 + γ̇ β̇
d2

dβdγ

2R1 + γ̇ 2 d2

dγ 2
2R1 (9.136)

1α̃2 = 1R̈2
1RT

2 − 1ω̃
2
2

=
 0 −γ̈ −β̈cγ + β̇γ̇ sγ

γ̈ 0 −β̈sγ − β̇γ̇ cγ

β̈cγ − β̇γ̇ sγ β̈sγ + β̇γ̇ cγ 0

 (9.137)

Therefore, the equation of motion of the pendulum would be

g0

l

− sin β sin γ

cos γ sin β

0

 =
 β̈ sin γ + β̇γ̇ cos γ

−β̈ cos γ + β̇γ̇ sin γ

γ̈

 (9.138)

The third equation indicates that

γ̇ = γ̇0 γ = γ̇0t + γ0 (9.139)

The second and third equations can be combined to the form

β̈ = −
√

g2
0

l2
sin2 β + β̇2γ̇ 2

0 (9.140)

which reduces to the equation of a simple pendulum if γ̇0 = 0.

Example 544 � Equation of Motion of a Spherical Pendulum Consider a particle
P of mass m that is suspended by a string of length l from a point A, as shown in
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Figure 9.4. If we show the tension of the string by T, then the equation of motion of P is

1T + m1g = m1r̈ (9.141)
or

−T 1r + m1g = m1r̈ (9.142)

To eliminate 1T, we multiply the equation by 1r,

1r × 1g = 1r × 1r̈ (9.143)l cos γ sin β

l sin β sin γ

−l cos β

 ×
 0

0
−g0

 =
l cos γ sin β

l sin β sin γ

−l cos β

 ×
ẍ

ÿ

z̈


and find −lg0 sin β sin γ

lg0 cos γ sin β

0

 =
 lÿ cos β + lz̈ sin β sin γ

−lẍ cos β − lz̈ cos γ sin β

lÿ cos γ − lẍ sin γ

 (9.144)

These are the equations of motion of m. However, we may express the equations only
in terms of γ and β. To do so, we may either take time derivatives of 1r or use 1α2

from Example 544 and find 1r̈:
1r̈ = 1α2 × 1r (9.145)

In either case, Equation (9.138) would be the equation of motion in terms of γ and β.

Example 545 � Angular Acceleration Transformation and Euler Angles Using the
Euler angle transformation matrix (4.144), we can determine the rotational acceleration
transformation GSB and the angular acceleration GαB in terms of Euler angles and their
time rates:

GSB = GR̈B
GRT

B = Gα̃B + Gω̃2
B (9.146)

Gα̃B =
·

Gω̃B = GR̈B
GRT

B + GṘB
GṘT

B (9.147)

Gω̃B = GṘB
GRT

B (9.148)

Gω̃2
B = −GṘB

GṘT
B = (

GṘB
GRT

B

)2
(9.149)

The principal decomposed expression of the Euler angle transformation matrix is

GRB = BR−1
G = BRT

G = [
Rz,ψRx,θRz,ϕ

]T = RT
z,ϕRT

x,θR
T
z,ψ

= RZ,ϕRX,θRZ,ψ (9.150)

We may use the decomposed form of GRB to determine GṘB , GR̈B , Gω̃B , and GSB :

GṘB = d

dt

(
RT

z,ϕRT
x,θR

T
z,ψ

) = d

dt

(
RZ,ϕRX,θRZ,ψ

)
= ṘZ,ϕRX,θRZ,ψ + RZ,ϕṘX,θRZ,ψ + RZ,ϕRX,θ ṘZ,ψ (9.151)
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GR̈B = R̈Z,ϕRX,θRZ,ψ + ṘZ,ϕṘX,θRZ,ψ + ṘZ,ϕRX,θ ṘZ,ψ

+ ṘZ,ϕṘX,θRZ,ψ + RZ,ϕR̈X,θRZ,ψ + RZ,ϕṘX,θ ṘZ,ψ

+ ṘZ,ϕRX,θ ṘZ,ψ + RZ,ϕṘX,θ ṘZ,ψ + RZ,ϕRX,θ R̈Z,ψ (9.152)

Assume Gω̃B is the same as (8.99):

Gω̃B = GṘB
GRT

B = GṘB

(
RT

Z,ψRT
X,θR

T
Z,ϕ

)
= ω̃Z,ϕ̇ + RZ,ϕ ω̃X,θ̇R

T
Z,ϕ + RZ,ϕRX,θ ω̃Z,ψ̇RT

X,θR
T
Z,ϕ

=

 0 −ϕ̇ − ψ̇cθ θ̇sϕ − ψ̇cϕsθ

ϕ̇ + ψ̇cθ 0 −θ̇cϕ − ψ̇sθsϕ

ψ̇cϕsθ − θ̇ sϕ θ̇cϕ + ψ̇sθsϕ 0

 (9.153)

Therefore, the angular acceleration matrix is

Gα̃B =
Gd

dt
Gω̃B =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 (9.154)

where
a1 = cos ϕ

(
θ̈ + ϕ̇ψ̇ sin θ

) + sin ϕ
(
ψ̈ sin θ + θ̇ ψ̇ cos θ − θ̇ ϕ̇

)
a2 = sin ϕ

(
θ̈ + ϕ̇ψ̇ sin θ

) + cos ϕ
(
θ̇ ϕ̇ − ψ̈ sin θ − θ̇ ψ̇ cos θ

)
(9.155)

a3 = ϕ̈ + ψ̈ cos θ − θ̇ ψ̇ sin θ

Multiplying Gω̃B by itself yields

Gω̃2
B = −GṘB

GṘT
B =

 r11 r12 r13

r21 = r12 r22 r23

r31 = r13 r32 = r23 r33

 (9.156)

where
r11 = − (

θ̇ sin ϕ − ψ̇ cos ϕ sin θ
)2 − (

ϕ̇ + ψ̇ cos θ
)2

r12 = (
θ̇ cos ϕ + ψ̇ sin θ sin ϕ

) (
θ̇ sin ϕ − ψ̇ cos ϕ sin θ

)
(9.157)

r13 = (
ϕ̇ + ψ̇ cos θ

) (
θ̇ cos ϕ + ψ̇ sin θ sin ϕ

)
r22 = − (

θ̇ cos ϕ + ψ̇ sin θ sin ϕ
)2 − (

ϕ̇ + ψ̇ cos θ
)2

r23 = (
ϕ̇ + ψ̇ cos θ

) (
θ̇ sin ϕ − ψ̇ cos ϕ sin θ

)
(9.158)

r33 = − (
θ̇ cos ϕ + ψ̇ sin θ sin ϕ

)2 − (
θ̇ sin ϕ − ψ̇ cos ϕ sin θ

)2
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We can similarly develop GSB :

GSB = GR̈B
GRT

B = GR̈B

(
RT

Z,ψRT
X,θR

T
Z,ϕ

)
= SZ,ϕ̈ + ṘZ,ϕ ω̃X,θ̇ RT

Z,ϕ + ṘZ,ϕRX,θ ω̃Z,ψ̇ RT
X,θR

T
Z,ϕ

+ ṘZ,ϕ ω̃X,θ̇ RT
Z,ϕ + RZ,ϕ SX,θ̈ RT

Z,ϕ + RZ,ϕṘX,θ ω̃Z,ψ̇ RT
X,θR

T
Z,ϕ

+ ṘZ,ϕRX,θ ω̃Z,ψ̇ RT
X,θR

T
Z,ϕ + RZ,ϕṘX,θ ω̃Z,ψ̇RT

X,θR
T
Z,ϕ

+RZ,ϕRX,θ SZ,ψ̈ RT
X,θR

T
Z,ϕ (9.159)

Thus,

GSB = Gα̃B + Gω̃2
B =

 r11 r12 − a3 a2 + r13

a3 + r12 r22 r23 − a1

r13 − a2 a1 + r23 r33

 (9.160)

Example 546 � Rotational Jerk Transformation Consider a body coordinate frame
B with a fixed point in a global frame G. The B-frame is turning in G with angular
velocity GωB and acceleration GαB . The global jerk Gj of a body point P at Gr is
given as

Gj = G...
r =

Gd

dt

(
GSB

Gr
) =

Gd2

dt2

(
Gω̃B

Gr
) =

Gd3

dt3
Gr

=
Gd

dt

([
φ̈ũ + φ̇

·
ũ + φ̇2ũ2

]
Gr

)
=

[
...
φũ + 2φ̈

·
ũ + φ̇

··
ũ + 3φ̇φ̈ũ2 + 2φ̇2

·
ũũ + φ̇2ũ

·
ũ + φ̇3ũ3

]
Gr

= GUB
Gr (9.161)

where GUB is the rotational jerk transformation

GUB = ...
φũ + 2φ̈

·
ũ + φ̇

··
ũ + 3φ̇φ̈ũ2 + 2φ̇2

·
ũũ + φ̇2ũ

·
ũ + φ̇3ũ3 (9.162)

Employing Ga = GR̈B
GRT

B
Gr, we can find the jerk of the body point and jerk trans-

formation based on the rotational transformation matrix GRB :

Gj =
Gd

dt

(
Ga

) =
Gd

dt

(
GSB

Gr
) =

Gd

dt

(
GR̈B

GRT
B

Gr
)

= (
G

...
RB

GRT
B + GR̈B

GṘT
B + GR̈B

GRT
B

GṘB
GRT

B

)
Gr

= (
G

...
RB

GRT
B + GR̈B

GRT
B

GRB
GṘT

B + GR̈B
GRT

B
GṘB

GRT
B

)
Gr

=
[
G

...
RB

GRT
B + GR̈B

GRT
B

(
GRB

GṘT
B + [

GRB
GṘT

B

]T
)]

Gr

= G
...
RB

GRT
B

Gr (9.163)
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GUB = G
...
RB

GRT
B (9.164)

Example 547 � Jerk of a Body Point Using Ga = GαB × Gr + GωB ×(
GωB × Gr

)
, we can find the vectorial expression formula for the jerk of a body

point:

Gj =
Gd

dt
(Ga) =

Gd

dt

[
GαB × Gr + GωB × (

GωB × Gr
)]

= GχB × Gr + 2 GαB × (
GωB × Gr

) + GωB × (
GαB × Gr

)
+ GωB × [

GωB × (
GωB × Gr

)]
(9.165)

where GχB is the angular jerk vector of B relative to G.
The matrix form of the jerk is

Gj =
Gd

dt

[(
Gα̃B + Gω̃2

B

)
Gr

]
=

[
G

·
α̃B + 2 Gω̃B Gα̃B + (

Gα̃B + Gω̃2
B

)
Gω̃B

]
Gr

= (
Gχ̃B + 2 Gω̃B Gα̃B + Gα̃B Gω̃B + Gω̃3

B

)
Gr (9.166)

and therefore the rotational jerk transformation is

GUB = Gχ̃B + 2 Gω̃B Gα̃B + Gα̃B Gω̃B + Gω̃3
B (9.167)

Example 548 � Angular Jerk The angular jerk matrix χ̃ =
·
α̃ = ··

ω̃ is the time
derivative of the angular acceleration matrix (9.8):

Gχ̃B = G

·
α̃B =

··
Gω̃B =

Gd

dt

(
GR̈B

GRT
B + GṘB

GṘT
B

)
= G

...
RB

GRT
B + 2GR̈B

GṘT
B + GṘB

GR̈T
B (9.168)

= GUB + 2 GSB Gω̃T
B + Gω̃B GST

B (9.169)

Using the angle–axis expression of the angular acceleration matrix, we find the
angle–axis expression of the angular jerk matrix Gχ̃B :

Gχ̃B =
··

Gω̃B =
Gd

dt

(
φ̈ũ + φ̇

·
ũ

)
= ...

φũ + 2φ̈
·
ũ + φ̇

··
ũ (9.170)

The expanded form is

Gχ̃B =
j11 j12 j13

j21 j22 j23

j31 j32 j33

 (9.171)
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where
j11 = 3u1u̇1φ̇

2 + 3
(
u2

1 − 1
)
φ̇φ̈

j21 = (2u2u̇1 + u̇2u1) φ̇2 + 3u2u1φ̇φ̈ + (
ü3φ̇ + 2u̇3φ̈ + u3

...
φ − u3φ̇

3)
j31 = (2u3u̇1 + u̇3u1) φ̇2 + 3u3u1φ̇φ̈ + (

ü2φ̇ + 2u̇2φ̈ + u2
...
φ − u2φ̇

3)
j12 = (2u1u̇2 + u̇1u2) φ̇2 + 3u1u2φ̇φ̈ + (

ü3φ̇ + 2u̇3φ̈ + u3
...
φ − u3φ̇

3)
j22 = 3u2u̇2φ̇

2 + 3
(
u2

2 − 1
)
φ̇φ̈

j32 = (2u3u̇2 + u̇3u2) φ̇2 + 3u3u2φ̇φ̈ + (
ü1φ̇ + 2u̇1φ̈ + u1

...
φ − u1φ̇

3)
j13 = (2u1u̇3 + u̇1u3) φ̇2 + 3u1u3φ̇φ̈ + (

ü2φ̇ + 2u̇2φ̈ + u2
...
φ − u2φ̇

3)
j23 = (2u2u̇3 + u̇2u3) φ̇2 + 3u2u3φ̇φ̈ + (

ü1φ̇ + 2u̇1φ̈ + u1
...
φ − u1φ̇

3)
j33 = 3u3u̇3φ̇

2 + 3
(
u2

3 − 1
)
φ̇φ̈ (9.172)

Example 549 � Angular Acceleration in Natural Frame ût , ûn, ûb The angular
velocity vector in the natural coordinate frame N(ût , ûn, ûb) is

N
GωN = ωt ût + ωnûn + ωbûb = ṡ

σ
ût + ṡ

ρ
ûb (9.173)

The time derivative of N
GωN provides the angular acceleration vector

N
GαN = d

dt
N
GωN = αt ût + αbûb + ωt

ṡ

ρ
ûn − ωb

ṡ

σ
ûn

= αt ût + αnûn + αbûb (9.174)

where

αt = s̈σ − ṡσ̇

σ 2
(9.175)

αn = ṡ2

ρ2
− ṡ2

σ 2
(9.176)

αb = s̈ρ − ṡρ̇

ρ2
(9.177)

Example 550 � Angular Acceleration’ Quaternion’ and Euler Parameters To
express the acceleration of a body point by quaternions and Euler parameters, we
consider the velocity equation

Gṙ = 2ė e∗Gr (9.178)
and take a time derivative

Gr̈ = 2ë e∗Gr + 2ė ė∗ Gr + 4ė2 e∗2 Gr

= 2
(
ë e∗ + ė ė∗ + 2ė2 e∗2) Gr (9.179)
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Therefore, the quaternion expression of the acceleration transformation matrix is

GSB = 2
(
ë e∗ + ė ė∗ + 2ė2 e∗2) (9.180)

To determine the angular acceleration quaternion, let us use the angular velocity

GωB = 2ė e∗ (9.181)
and take a derivative

GαB = 2ë e∗ + 2ė ė∗ (9.182)

Using the definition of angular velocity in terms of the rotational quaternion,

←→
GωB = 2

←→̇
e

←→
e∗ (9.183)

←→
B
GωB = 2

←→
e∗ ←→̇

e (9.184)

we are able to define the angular acceleration quaternion:

←→
GαB = 2

←→̈
e

←→
e∗ + 2

←→̇
e

←→̇
e∗ (9.185)

←→
B
G αB = 2

←→
e∗ ←→̈

e + 2
←→̇
e

←→̇
e∗ (9.186)

9.2 SECOND DERIVATIVE AND COORDINATE FRAMES

The time derivative of a vector depends on the coordinate frame in which it is expressed
and the frame in which we are taking the derivative. Consider a global frame G(OXYZ )

and a body frame B(Oxyz ). A vector is called a B-vector if it is expressed in the B-
frame, and similarly it is a G-vector if it is expressed in the G-frame. The second
derivative of the vector follows the same rule of the first G- and B-derivative of
the G- and B-vector as explained in Section 8.2. The derivative of a B-vector Bv =
ẋı̂ + ẏ̂ + żk̂ in B and the derivative of a G-vector Gv = ẊÎ + Ẏ Ĵ + ŻK̂ in G are
given as

Ba =
Bd2

dt2
Br =

Bd

dt
Bv = B r̈ = ẍ ı̂ + ÿ ̂ + z̈ k̂ (9.187)

Ga =
Gd2

dt2
Gr =

Gd

dt
Gv = Gr̈ = Ẍ Î + Ÿ Ĵ + Z̈ K̂ (9.188)

We call Ga and Ba simple accelerations because they are simple derivatives of the
simple velocities Gv and Bv. We may also calculate the mixed derivatives and find the
G-derivative of B

Gv and the B-derivative of G
B v.

Consider a body point P at Gr = GRB
Br. The G-derivative of B

Gv is

B
Ga =

Gd

dt
B
Gv = B

GαB × Br + B
GωB × (

B
GωB × Br

)
(9.189)

and the B-derivative of G
B v is

G
Ba =

Bd

dt
G
B v = − GαB × Gr + GωB × (

GωB × Gr
)

(9.190)
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We call B
Ga the B-expression of the G-acceleration and G

Ba the G-expression of the
B-acceleration. The left superscript of B

Ga indicates the frame in which a is expressed,
and the left subscript indicates the frame in which that derivative is taken. If the left
super- and subscripts of an acceleration vector are the same, it is a simple acceleration
vector and we only keep the superscript. To read the mixed accelerations B

Ga and G
Ba,

we may use the G-acceleration of a B-velocity and B-acceleration of a G-velocity ,
respectively.

When the interested point P is not a fixed point in B, then P is moving in frame B

with a variable body position BrP = BrP (t) and velocity BvP = BvP (t). The mixed
derivatives of v (t) are defined by

B
Ga =

Gd

dt
B
Gv (t)

= Ba + B
GαB × Br + 2 B

GωB × Bv + B
GωB × (

B
GωB × Br

)
(9.191)

G
Ba =

Bd

dt
G
B v (t)

= Ga − GαB × Gr − 2 GωB × Gv + GωB × (
GωB × Gr

)
(9.192)

Proof : To have more general equations, let us assume that the interested point P is a
moving point in the B-frame. If B represents a rigid body, then P is a body point and
hence is fixed in B. For a body point, the body position vector Br is constant in B and
its body derivatives would be zero.

Having only one rotating B-frame in a global G-frame, we can define eight different
accelerations as the second time derivatives of a position vector r:

1.
Gd

dt

Gd

dt
Gr =

Gd

dt
Gv = Ga (9.193)

2.
Gd

dt

Gd

dt
Br =

Gd

dt
B
Gv = BB

GGa = B
Ga (9.194)

3.
Gd

dt

Bd

dt
Gr =

Gd

dt
G
B v = GG

GB a (9.195)

4.
Gd

dt

Bd

dt
Br =

Gd

dt
Bv = BB

GBa (9.196)

5.
Bd

dt

Gd

dt
Gr =

Bd

dt
Gv = GG

BGa (9.197)

6.
Bd

dt

Gd

dt
Br =

Bd

dt
B
Gv = BB

BGa (9.198)

7.
Bd

dt

Bd

dt
Gr =

Bd

dt
G
B v = GG

BB a = G
Ba (9.199)

8.
Bd

dt

Bd

dt
Br =

Bd

dt
Bv = Ba (9.200)
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Only the first and eighth second derivatives are simple accelerations. These two acceler-
ations, given in (9.187) and (9.188), can be found by simple differentiation of a vector
in the same frame in which they are expressed. Therefore, the G-derivative of the
G-velocity and the B-derivative of the B-velocity provide the G- and B-acceleration,
respectively:

Gd2

dt2
Gr =

Gd

dt
Gv =

Gd

dt

Gd

dt
Gr = Ga = Gr̈

= Ẍ Î + Ÿ Ĵ + Z̈ K̂ (9.201)
Bd2

dt2
Br =

Bd

dt
Bv =

Bd

dt

Bd

dt
Br = Ba = B r̈

= ẍ ı̂ + ÿ ̂ + z̈ k̂ (9.202)

Recalling the derivative transfer formula (8.250) and the mixed velocities,
Gd

dt
Br = B

Gv = B
Gṙ =

Bd

dt
Br + B

GωB × Br

= Bv + B
GωB × Br (9.203)

Bd

dt
Gr = G

B v = G
B ṙ =

Gd

dt
Gr (t) − GωB × Gr

= Gv − GωB × Gr (9.204)

we can find the mixed accelerations in (9.194)–(9.199) one by one.
The second case, B

Ga = BB
GGa, is the B-expression of a G-acceleration. It happens

when the position vector of a point is given in B while derivatives are taken in G:

B
Ga = BB

GGa =
Gd

dt
B
Gv =

Gd

dt

(
Bv + B

GωB × Br
)

= Ba + B
GωB × Bv + (

B
GαB + B

GωB × B
GωB

) × Br

+ B
GωB × (

Bv + B
GωB × Br

)
= Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.205)

The first term, Ba, is the body acceleration of the moving point P in B, regardless
of the rotation of B in G. So, Ba can be assumed as the acceleration of the moving
point in B with respect to a body point that is coincident with P at the moment. The
second term, B

GαB × Br, is the tangential acceleration of a body point that is coincident
with P at the moment. The third term, 2 B

GωB × Bv, is called the Coriolis acceleration
and is the result of a moving point in B while B is rotating in G. The fourth term,
B
GωB × (

B
GωB × Br

)
, is the centripetal acceleration of a body point that is coincident

with P at the moment.
The B-expression of the G-acceleration B

Ga is the most applied and practical accel-
eration in the dynamics of rigid bodies. In a rigid body, the point P is a fixed point in
B and the acceleration B

Ga simplifies to

B
Ga =

Gd

dt
B
Gv = B

GαB × Br + B
GωB × (

B
GωB × Br

)
(9.206)
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A body point will have only a tangential and a centripetal acceleration. Using B
Ga is

a practical method of acceleration analysis because we usually prefer to measure the
kinematic information of a moving rigid body in the body coordinate frame.

The third case, GG
GB a, is the G-expression of the G-derivative of G

B v that is the
B-derivative of the G-expression of a position vector:

GG
GB a =

Gd

dt
G
B v =

Gd

dt

Bd

dt
Gr =

Gd

dt

(
Gv − GωB × Gr

)
= Ga − GαB × Gr − GωB × Gv (9.207)

For a fixed point in B, we have G
B v = 0 and GG

GB a = 0. Equation (9.207) reduces to the
G-expression of (9.206) in this case.

The fourth case, BB
GBa, is the B-expression of the G-derivative of B

Bv that is the
B-derivative of the B-expression of a position vector:

BB
GBa =

Gd

dt
Bv =

Gd

dt

Bd

dt
Br =

Gd

dt

(
Bv

)
= Ba + B

GωB × Bv (9.208)

The fifth case, GG
BGa, is the G-expression of the B-derivative of G

Gv that is the
G-derivative of the G-expression of a position vector:

GG
BGa =

Bd

dt
Gv =

Bd

dt

Gd

dt
Gr =

Bd

dt

(
Gv

)
= Ga − GωB × Gv (9.209)

The sixth case, BB
BGa, is the B-expression of the B-derivative of G

B v that is the
B-derivative of the G-expression of a position vector:

BB
BGa =

Bd

dt
B
Gv =

Bd

dt

Gd

dt
Br =

Bd

dt

(
Bv + B

GωB × Br
)

= Ba + B
GαB × Br + B

GωB × Bv (9.210)

The seventh case, GG
BB a, is the G-expression of the B-derivative of G

B v that is the
B-derivative of the G-expression of a position vector:

G
Ba = GG

BB a =
Bd

dt
G
B v =

Bd

dt

Bd

dt
Gr =

Bd

dt

(
Gv − GωB × Gr

)
= Ga − GωB × Gv − ( GαB − GωB × GωB) × Gr

− GωB × (
Gv − GωB × Gr

)
= Ga − GαB × Gr − 2 GωB × Gv + GωB × (

GωB × Gr
)

(9.211)

The seventh acceleration, G
Ba, is the same as the second acceleration, B

Ga, if we switch
the name of the coordinate frames B and G. So, B

Ga is the G-acceleration of a moving
point in B while the observer is in the B-frame, and G

Ba is the G-acceleration of a
moving point in B when the observer is in G.
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These accelerations for a point of a rigid body are

Ga =
Gd

dt

Gd

dt
Gr = Ẍ Î + Ÿ Ĵ + Z̈ K̂ (9.212)

B
Ga =

Gd

dt

Gd

dt
Br = B

GαB × Br + B
GωB × (

B
GωB × Br

)
(9.213)

GG
GB a =

Gd

dt

Bd

dt
Gr = Ga − GαB × Gr − GωB × Gv (9.214)

BB
GBa =

Gd

dt

Bd

dt
Br = 0 (9.215)

GG
BGa =

Bd

dt

Gd

dt
Gr = Ga − GωB × Gv (9.216)

BB
BGa =

Bd

dt

Gd

dt
Br = B

GαB × Br (9.217)

G
Ba =

Bd

dt

Bd

dt
Gr

= Ga − GαB × Gr − 2 GωB × Gv + GωB × (
GωB × Gr

)
(9.218)

Ba =
Bd

dt

Bd

dt
Br = 0 (9.219)

Example 551 Mixed Velocity and Simple Acceleration of a Moving Point in B Con-
sider a local frame B(Oxyz ) that is rotating in G(OXYZ ) with an angular velocity α̇

about the Z-axis and a moving point P in B at

BrP (t) = t2 ı̂ (9.220)

A top view of the system when B is at an angle α is shown in Figure 9.5. The global
position vector of the point is

GrP = GRB
BrP = RZ,α(t)BrP =

cos α − sin α 0
sin α cos α 0

0 0 1

t2

0
0


= t2 cos αÎ + t2 sin αĴ (9.221)

The angular velocity of B is

Gω̃B = GṘB
GRT

B = α̇K̃ GωB = α̇K̂ (9.222)

It can also be verified that the local expression of the angular velocity is

B
Gω̃B = GRT

B
G
Gω̃B

GRB = α̇k̃ B
GωB = α̇k̂ (9.223)
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X
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G

Figure 9.5 Top view of a local frame B that is rotating in G with an angular velocity α̇ about
the Z-axis and a moving point P in B.

Now we can find the following simple velocities:

BvP =
Bd

dt
BrP = B ṙP = 2t ı̂ (9.224)

GvP =
Gd

dt
GrP = GṙP

= (
2t cos α − t2α̇ sin α

)
Î + (

2t sin α + t2α̇ cos α
)
Ĵ (9.225)

For the mixed velocities we start with

B
GvP =

Gd

dt
BrP =

Bd

dt
BrP + B

GωB × BrP

=
2t

0
0

 + α̇

0
0
1

 ×
t2

0
0

 =
 2t

t2α̇

0


= 2t ı̂ + t2α̇̂ (9.226)

which is the B-expression of the G-velocity of P . It can also be found by a transfor-
mation:

B
GvP = GRT

B
GvP = 2t ı̂ + t2α̇̂ (9.227)

The next mixed velocity is

G
B vP =

Bd

dt
GrP =

Gd

dt
GrP − GωB × GrP

=
2t cos α − t2α̇ sin α

2t sin α + t2α̇ cos α

0

 − α̇

0
0
1

 ×
t2 cos α

t2 sin α

0


=

2t cos α

2t sin α

0

 = (2t cos α) Î + (2t sin α) Ĵ (9.228)
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which is the G-expression of the B-velocity of P . To find this velocity, we can also
apply a kinematic transformation GRB to BvP :

G
B vP = GRB

BvP = (2t cos α) Î + (2t sin α) Ĵ (9.229)

The simple accelerations of P are

BaP =
Bd

dt
BvP = B r̈P = 2ı̂ (9.230)

GaP =
Gd

dt
GvP = Gr̈P

= (
2 cos α − 4t α̇ sin α − t2α̈ sin α − t2α̇2 cos α

)
Î

+ (
2 sin α + 4t α̇ cos α + t2α̈ cos α − t2α̇2 sin α

)
Ĵ (9.231)

Example 552 Mixed Acceleration of a Moving Point in B The velocities and simple
accelerations of the moving point P in B from Example 551 help us to determine the
mixed accelerations of P .

The acceleration B
Ga = BB

GGa is given as

B
Ga = Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
=

 2 − t2α̇2

t (4α̇ + t α̈)

0

 (9.232)

We must also be able to determine the mixed accelerations B
Ga by a kinematic trans-

formation:
B
Ga = GRT

B
Ga

=
cos α − sin α 0

sin α cos α 0
0 0 1

T 2t cos α − t2α̇ sin α

2t sin α + t2α̇ cos α

0


=

 2 − t2α̇2

t (4α̇ + t α̈)

0

 (9.233)

The acceleration GG
GB a is given as

GG
GB a = Ga − GαB × Gr − GωB × Gv

=
2 cos α − 2t α̇ sin α

2 sin α + 2t α̇ cos α

0

 (9.234)

the acceleration BB
GBa as

BB
GBa = Ba + B

GωB × Bv =
 2

2t α̇

0

 (9.235)
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the acceleration GG
BGa as

GG
BGa = Ga − GωB × Gv =

2 cos α − (α̈t + 2α̇) t sin α

2 sin α + (α̈t + 2α̇) t cos α

0

 (9.236)

the acceleration BB
BGa as

BB
BGa = Ba + B

GαB × Br + B
GωB × Bv =

 2
(α̈t + 2α̇) t

0

 (9.237)

and the acceleration BB
BGa as

G
B a = GG

BB a

= Ga − GαB × Gr − 2 GωB × Gv + GωB × (
GωB × Gr

)
=

2 cos α

2 sin α

0

 (9.238)

We can also determine the mixed accelerations G
B a by a kinematic transformation:

G
B a = GRB

Ba

=
cos α − sin α 0

sin α cos α 0
0 0 1

2
0
0

 =
2 cos α

2 sin α

0

 (9.239)

Example 553 Simplest Way to Find Mixed Derivatives It is simpler and more applied
if we transform the position vector to the same frame in which we are taking the
derivative and then apply the differential operator. As an example, let us assume that
a point is moving in a body coordinate frame with the position vector

Br =
cos αt

sin αt

0

 α = const (9.240)

while the body coordinate frame is turning about the X-axis with angular velocity and
acceleration γ̇ and γ̈ :

GωB = γ̇ Î GαB = γ̈ Î (9.241)

To determine B
Gv and B

Ga, we transform Br to the G-frame:

Gr = GRB
Br

=
1 0 0

0 cos γ − sin γ

0 sin γ cos γ

cos αt

sin αt

0

 =
 cos αt

sin αt cos γ

sin αt sin γ

 (9.242)
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Taking derivatives provides the global velocity and acceleration:

Gv =
Gd

dt
Gr =

 −α sin αt

α cos αt cos γ − γ̇ sin αt sin γ

α cos αt sin γ + γ̇ sin αt cos γ

 (9.243)

Ga =
Gd

dt
Gv

=

 −α2 cos αt

− (
α2 + γ̇ 2

)
sin αt cos γ − (γ̈ sin αt + 2αγ̇ cos αt) sin γ

− (
α2 + γ̇ 2

)
sin αt sin γ + (γ̈ sin αt + 2αγ̇ cos αt) cos γ

 (9.244)

Using the kinematic transformation matrix GRB , we are able to calculate B
Gv and B

Ga:

B
Gv = GRT

B
Gv =

−α sin αt

α cos αt

γ̇ sin αt

 (9.245)

B
Ga = GRT

B
Ga =

 −α2 cos αt

− (
α2 + γ̇ 2

)
sin αt

γ̈ sin αt + 2αγ̇ cos αt

 (9.246)

Example 554 � Transformation of Acceleration Vectors The superscripts of all
defined mixed accelerations are always the same. When a transformation matrix GRB

is given, we may transform the expression of an acceleration from a coordinate frame
to the other. Applying a kinematic transformation will change both superscripts simul-
taneously. Therefore,

GG
BGa = GRB

BB
BGa BB

BGa = GRT
B

GG
BGa (9.247)

G
B a = GRB

Ba Ba = GRT
B

G
B a (9.248)

GG
GB a = GRB

BB
GBa BB

GBa = GRT
B

GG
GB a (9.249)

Ga = GRB
B
Ga B

Ga = GRT
B

Ga (9.250)

Example 555 � Relationship among the Accelerations Comparing the definitions
of the eight accelerations (9.193)–(9.200) indicates their relationships. The following
equations show some of the relations:

BB
BGa = BB

GBa + B
GαB × Br (9.251)

GG
GB a = GG

BGa − GαB × Gr (9.252)
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B
Ga = BB

BGa + B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.253)

G
B a = GG

GB a − GωB × Gv + GωB × (
GωB × Gr

)
(9.254)

Example 556 � Second-Derivative Transformation Formula Consider a point P

that can move in the body coordinate frame B(Oxyz ). The position vector BrP is not
constant, and therefore, using the derivative transformation formula (8.250), we find
the B-expression of the G-velocity as

Gd

dt
BrP = B

GvP =
Bd

dt
BrP + B

GωB × BrP (9.255)

Another G-derivative of this equation provides the B-expression for the global accel-
eration of P as (9.205):

B
Ga = Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.256)

Using this result, we can define the second-derivative transformation formula of a
B-vector B	 from the body to the global coordinate frame:

Gd

dt

Gd

dt
B	 = B

G	̈

=
Bd

dt

Bd

dt
B	 + B

GαB × B	

+ 2 B
GωB ×

(
Bd

dt
B	 + B

GωB × B	
)

(9.257)

The final result B
G	̈ shows the second global time derivative expressed in the body

frame, or simply the B-expression of the second G-derivative of a vector B	. The
vector B	 may be any vector quantity such as position, velocity, angular velocity,
momentum, angular momentum, a time-varying force vector.

Example 557 � Mixed Second-Derivative Transformation Formula Consider
three relatively rotating coordinate frames A, B, and C. The B-expression of the
A-acceleration of a moving point P in the body coordinate frame B(Oxyz ) is

Ad

dt
Bv = B

Aa = Ba + B
AαB × Br

+ 2 B
AωB × Bv + B

AωB × (
B
AωB × Br

)
(9.258)

and the B-expression of the C-acceleration of a moving point in the body coordinate
frame B(Oxyz ) is

Cd

dt
Bv = B

Ca = Ba + B
CαB × Br

+ 2 B
CωB × Bv + B

CωB × (
B
CωB × Br

)
(9.259)
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Combining Equations (9.258) and (9.259), we find

B
Aa − B

AαB × Br − 2 B
AωB × Bv − B

AωB × (
B
AωB × Br

)
= B

Ca − B
CαB × Br − 2 B

CωB × Bv − B
CωB × (

B
CωB × Br

)
(9.260)

We rearrange it to present the following formula for changing the frame C in which
we have taken two derivatives of BrP to the frame A in which we need the derivatives
to be taken:

B
Aa = B

Ca + (
B
AαB − B

CαB

) × Br + 2
(

B
AωB − B

CωB

) × Bv

+ B
AωB × (

B
AωB × Br

) − B
CωB × (

B
CωB × Br

)
(9.261)

It can equivalently be shown as

B
A	̈ = B

C	̈ + (
B
AαB − B

CαB

) × B	 + 2
(

B
AωB − B

CωB

) × B	̇

+ B
AωB × (

B
AωB × B	

) − B
CωB × (

B
CωB × B	

)
(9.262)

We call Equation (9.262) the mixed second-derivative transformation formula. It
presents the method to change the frame in which the second derivative of a vector
B	 is taken.

The mixed second-derivative transformation formula (9.262) is more general than
the simple derivative transformation formula (9.257). Equation (9.257) is a special case
of (9.262) when B ≡ C or B

CωB = 0 and B
CαB = 0.

Example 558 � Alternative Definition of Angular Acceleration Vector Similar to
the definition of the angular velocity vector in Equation (8.188),

B
GωB = ı̂

(
Gd̂

dt
· k̂

)
+ ̂

(
Gdk̂

dt
· ı̂
)

+ k̂

(
Gdı̂

dt
· ̂

)
(9.263)

we define the angular acceleration vector of a rigid body B(ı̂, ̂ , k̂) in the global frame
G(Î , Ĵ , K̂) as

B
GαB =

Gdı̂

dt

(
Gd̂

dt
· k̂

)
+ 1

2

(
Gd2̂

dt2 · k̂ −
Gd2k̂

dt2 · ̂
)

ı̂

+
Gd̂

dt

(
Gdk̂

dt
· ı̂
)

+ 1

2

(
Gd2k̂

dt2 · ı̂ −
Gd2 ı̂

dt2 · k̂

)
̂

+
Gdk̂

dt

(
Gdı̂

dt
· ̂

)
+ 1

2

(
Gd2 ı̂

dt2
· ̂ −

Gd2̂

dt2
· ı̂
)

k̂ (9.264)
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To prove (9.264), we take a G-derivative from (9.263):

B
GαB =

Gdı̂

dt

(
Gd̂

dt
· k̂

)
+

Gd̂

dt

(
Gdk̂

dt
· ı̂
)

+
Gdk̂

dt

(
Gdı̂

dt
· ̂

)

+ ı̂

(
Gd2̂

dt2
· k̂ +

Gd̂

dt
·

Gdk̂

dt

)

+ ̂

(
Gd2k̂

dt2 · ı̂ +
Gdk̂

dt
·

Gdı̂

dt

)

+ k̂

(
Gd2 ı̂

dt2
· ̂ +

Gdı̂

dt
·

Gd̂

dt

)
(9.265)

Employing the unit vector relationships

ı̂ · ı̂ = ̂ · ̂ = k̂ · k̂ = 1 (9.266)

ı̂ · ̂ = ̂ · k̂ = k̂ · ı̂ = 0 (9.267)

ı̂ · dı̂ = ̂ · d̂ = k̂ · dk̂ = 0 (9.268)

̂ · dı̂ = −ı̂ · d̂ k̂ · d̂ = −̂ · dk̂ ı̂ · dk̂ = −k̂ · dı̂ (9.269)

ı̂ · d2 ı̂ = −dı̂ · dı̂

̂ · d2̂ = −d̂ · d̂ (9.270)

k̂ · d2k̂ = −dk̂ · dk̂

ı̂ · d2̂ + ̂ · d2 ı̂ = −2dı̂ · d̂

̂ · d2k̂ + k̂ · d2̂ = −2d̂ · dk̂ (9.271)

k̂ · d2 ı̂ + ı̂ · d2k̂ = −2dk̂ · dı̂

we can simplify (9.265) to (9.264).

Example 559 � Alternative Definition of Acceleration Vector Consider a body coor-
dinate frame B moving with a fixed point in the global frame G. We can describe the
motion of the body by describing the motion of the local unit vectors ı̂, ̂ , k̂. Let Br
be the position vector of a fixed body point P . Then, Br is a B-vector with constant
components:

Br = xı̂ + ŷ + zk̂ (9.272)

When the body moves, only the unit vectors ı̂, ̂ , k̂ move relative to the global coor-
dinate frame. Therefore, the vectors of differential displacements are

dr = x dı̂ + y d̂ + z dk̂ (9.273)

d2r = x d2 ı̂ + y d2̂ + z d2k̂ (9.274)
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The differential dr is the B-expression of the infinitesimal displacement as seen from
the G-frame, and d2r is the infinitesimal change of dr as seen from the G-frame. Using
the orthogonality condition (3.1), we can express d2r as

d2r = (
d2r · ı̂) ı̂ + (

d2r · ̂) ̂ +
(
d2r · k̂

)
k̂ (9.275)

Substituting (9.274) in the right-hand side of (9.275) shows that

d2r =
(
xı̂ · d2 ı̂ + yı̂ · d2̂ + zı̂ · d2k̂

)
ı̂

+
(
x̂ · d2 ı̂ + ŷ · d2̂ + ẑ · d2k̂

)
̂

+
(
xk̂ · d2ı̂ + yk̂ · d2̂ + zk̂ · d2k̂

)
k̂ (9.276)

Using the unit vector relationships (9.266)–(9.271), we can modify d2r to

d2r = − (
dı̂ · dı̂

)
xı̂ − (

d̂ · d̂
)
ŷ −

(
dk̂ · dk̂

)
zk̂

− 2
[(

dı̂ · d̂
)
y +

(
dk̂ · dı̂

)
z
]
ı̂

− 2
[(

d̂ · dk̂
)

z + (
dı̂ · d̂

)
x
]
̂

− 2
[(

dk̂ · dı̂
)

z +
(
d̂ · dk̂

)
x
]
k̂

− (
̂ · d2 ı̂

)
yı̂ −

(
k̂ · d2̂

)
ẑ −

(
ı̂ · d2k̂

)
xk̂

−
(
k̂ · d2 ı̂

)
zı̂ − (

ı̂ · d2̂
)
x̂ −

(
̂ · d2k̂

)
yk̂ (9.277)

Example 560 Newton Equation of Motion The Newton equation of motion F = ma
for a particle of mass m is applied in the global coordinate frame G:

GF = mGa = m
Gd

dt

Gd

dt
Gr (9.278)

It means that both derivatives of acceleration must be taken in G. If the position vector
r was expressed in the body coordinate frame B, then the Newton equation of motion
would be

BF = m B
Ga = m

Gd

dt

Gd

dt
Br (9.279)

Example 561 � Double Mixed Acceleration Let us take the first and second deriva-
tives of Ar in different coordinate frames B and C. Using the derivative transformation
formula, the B-derivative of Ar is

Bd

dt
Ar = A

Bv =
Ad

dt
Ar + A

BωA × Ar (9.280)
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A time derivative of this equation in a third frame C would be

Cd

dt

Bd

dt
Ar =

Cd

dt
A
Bv = AA

CBa =
Cd

dt

(
Ad

dt
Ar

)
+

Cd

dt

(
A
BωA × Ar

)
=

Ad

dt

Ad

dt
Ar + A

CωA ×
Ad

dt
Ar

+
(

Ad

dt
A
BωA + A

CωA × A
BωA

)
× Ar

+ A
BωA ×

(
Ad

dt
Ar + A

CωA × Ar
)

= Aa + A
CωA × Av + A

BαA × Ar + (
A
CωA × A

BωA

) × Ar

+ A
BωA × Av + A

BωA × (
A
CωA × Ar

)
(9.281)

We call the acceleration AA
CBa the mixed double acceleration .

9.3 MULTIBODY ACCELERATION

Consider a rigid body with an attached local coordinate frame B(oxyz ) moving freely
in a fixed global coordinate frame G(OXYZ ). The rigid body can rotate in the global
frame, while the origin of the body frame B can translate relative to the origin of G.
The coordinates of a body point P in local and global frames, as shown in Figure 9.6,
are related by the equation

GrP = GRB
BrP + GdB (9.282)

where GdB indicates the position of the moving origin o relative to the fixed origin O.

X
Y

Z

x

y

GB

GrP

z

PBrP

GdB

o

O

ω × (ω × (GrP − GdB))

α × (GrP − GdB))

Figure 9.6 A rigid body with coordinate frame B(oxyz ) moving freely in a fixed global coor-
dinate frame G(OXYZ ).
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The acceleration of point P in G is

GaP = Gv̇P = Gr̈P = Gd̈B + GαB × (
GrP − GdB

)
+ GωB × [

GωB × (
GrP − GdB

)]
(9.283)

Proof : The acceleration of point P is a consequence of differentiating the velocity
equation (8.274) or (8.275):

GaP =
Gd

dt
GvP = GαB × G

B rP + GωB × G
B ṙP + Gd̈B

= GαB × G
B rP + GωB × (

GωB × G
B rP

) + Gd̈B

= Gd̈B + GαB × (
GrP − GdB

)
+ GωB × [

GωB × (
GrP − GdB

)]
(9.284)

The term GωB × (
GωB × G

B rP

)
is the centripetal acceleration and is independent of

the angular acceleration. The term GαB × G
B rP is the tangential acceleration and is

perpendicular to G
B rP . �

Example 562 Acceleration of a Body Point Consider a rigid body is moving and
rotating in a global frame. The acceleration of a body point can be found by taking
twice the time derivative of its position vector:

GrP = GRB
BrP + GdB

GṙP = GṘB
BrP + GḋB (9.285)

Gr̈P = GR̈B
BrP + Gd̈B (9.286)

= GR̈B
GRT

B

(
GrP − GdB

) + Gd̈B (9.287)

Differentiating the angular velocity matrix

Gω̃B = GṘB
GRT

B (9.288)

shows that
·

Gω̃B =
Gd

dt
Gω̃B = GR̈B

GRT
B + GṘB

GṘT
B

= GR̈B
GRT

B + Gω̃B Gω̃T
B (9.289)

and therefore,
GR̈B

GRT
B =

·
Gω̃B − Gω̃B Gω̃T

B (9.290)

Hence, the acceleration vector of the body point becomes

Gr̈P =
( ·

Gω̃B − Gω̃B Gω̃T
B

) (
GrP − GdB

) + Gd̈B (9.291)
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where
·

Gω̃B = Gα̃B =
 0 −ω̇3 ω̇2

ω̇3 0 −ω̇1

−ω̇2 ω̇1 0

 (9.292)

and

Gω̃B Gω̃T
B =

ω2
2 + ω2

3 −ω1ω2 −ω1ω3

−ω1ω2 ω2
1 + ω2

3 −ω2ω3

−ω1ω3 −ω2ω3 ω2
1 + ω2

2

 (9.293)

Example 563 Turning Panel of a Rotating Satellite The illustrated satellite in
Figure 9.7 is rotating about its z1-axis of symmetry with angular speed α̇ and angular
acceleration α̈. The panels of the satellite are turning relative to the satellite with
angular speed β̇ and angular acceleration β̈ about their longitudinal axis:

α̇ = 0.1 rad/s α̈ = 0.05 rad/s2 (9.294)

β̇ = 0.12 rad/s β̈ = −0.1 rad/s2 (9.295)

The angles α and β are now given as

α = 30 deg β = 45 deg (9.296)

To analyze the satellite as a multibody, we use the intersection point of the satellite
axis of symmetry and longitudinal axis of panels as the origin of global G(OXYZ )

and body B1(Ox1y1z1) coordinate frames. A panel B2(Ox2y2z2) coordinate frame is
attached to a panel at its geometric center. The G-frame is assumed to be fixed with

X

Y

Z

α

β

y1
x1

b

a

G

B2

z1

x2

z2

cB1

P

Figure 9.7 A rotating satellite about the Z-axis along with its turning panels about the x1-axis
relative to the satellite.
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respect to the satellite. The B1-frame is attached to the satellite and rotates about the
Z-axis. The B2-frame is attached to the panel and rotates about the x1-axis.

To locate the satellite and determine its orientation relative to Earth, we usually
add another coordinate frame B3 at O such that its z3-axis points to the Earth center.
There must also be two coordinate frames B4 and B5 at the Earth center such that one
of them is motionless and the other is attached to Earth and rotates with it. However,
we may ignore these coordinate frames when we need to determine the kinematics of
any point of the satellite in the satellite G-frame.

To determine the acceleration of a point P at the edge of a panel with size 2a × 2c,

a = 0.5 m b = 4.2 m c = 1.2 m (9.297)

we first determine its position vectors and the transformation matrices between the
frames:

2rP =
c

a

0

 =
1.2

0
0.5

m (9.298)

1d2 =
b − c

0
0

 =
3

0
0

m (9.299)

1R2 =
1 0 0

0 cos β − sin β

0 sin β cos β

 ≈
1 0 0

0 0.707 −0.707
0 0.707 0.707

 (9.300)

GR1 =
cos α − sin α 0

sin α cos α 0
0 0 1

 ≈
0.866 −0.5 0

0.5 0.866 0
0 0 1

 (9.301)

1rP = 1d2 + 1R2
2rP =

 4.2
−0.35356

0.35356

m (9.302)

GrP = GR1
1rP =

 3.8141
1.7938
0.35356

m (9.303)

Then, we determine the relative angular velocity of the frames and calculate the velocity
of the point P :

1ω2 =
β̇

0
0

 =
0.12

0
0

 rad/s (9.304)

Gω1 =
0

0
α̇

 =
 0

0
0.1

 rad/s (9.305)
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Gω2 = Gω1 + G
1 ω2 = Gω1 + GR1 1ω2 =

0.10392
0.06
0.1

 rad/s (9.306)

1vP = 1ḋ2 + 1ω2 × (1rP − 1d2
) =

 0
−0.0424
−0.0424

m/s (9.307)

1ḋ2 = 0 (9.308)

Gḋ2 = Gω1 × Gd2 = Gω1 × GR1
1d2 =

 −0.15
0.25981

0

 m/s (9.309)

GvP = Gḋ2 + G
1 vP = Gḋ2 + GR1

1vP =
−0.1288

0.22309
−0.0424

 m/s (9.310)

Finally, we determine the relative angular acceleration of the frames and calculate the
accelerations of the point P :

1α2 =
β̈

0
0

 =
−0.1

0
0

 rad/s2 (9.311)

Gα1 =
0

0
α̈

 =
 0

0
0.05

 rad/s2 (9.312)

Gα2 = Gα1 + G
1 α2 = Gα1 + GR1 1α2

=
−0.086603

−0.05
0.05

 rad/s2 (9.313)

1aP = 1d̈2 + 1α2 × (1rP − 1d2
) + 1ω2 × (

1ω2 × (1rP − 1d2
))

=
 0

4.0447 × 10−2

3.0265 × 10−2

m/s2 (9.314)

1d̈2 = 0 (9.315)
Gd̈2 = Gα1 × (

GrP − Gd2
) + Gω2 × [

Gω2 × (
GrP − Gd2

)]
= Gα1 × GR1

(1rP − 1d2
) + Gω2 × [

Gω2 × GR1
(1rP − 1d2

)]
=

−2.5722 × 10−2

6.4393 × 10−2

9.3086 × 10−3

m/s2 (9.316)
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GaP = Gd̈2 + G
1 aP = Gd̈2 + GR1

1aP

=

−4.5946 × 10−2

9.9421 × 10−2

3.9574 × 10−2

m/s2 (9.317)

Example 564 Acceleration of a Circular Point A moving point A that keeps its
distance form another fixed point B is called a circular point. The tip point of the
one-link manipulator illustrated in Figure 9.8 is a circular point with respect to the
center point at the joint. Knowing that

0ω1 = θ̇1
0k̂0 (9.318)

we can write
0α1 = 0ω̇1 = θ̈1

0k̂0 (9.319)

0ω̇1 × 0r1 = θ̈1
0k̂0 × 0r1 = θ̈1 RZ,θ+90

0r1 (9.320)

0ω1 × (
0ω1 × 0r1

) = −θ̇2
1

0r1 (9.321)

and calculate the acceleration of the circular point:

0r̈1 = θ̈1 RZ,θ+90
0r1 − θ̇2

1
0r1 (9.322)

y0

y1

x1

x0

θ1

B0
B1

l 1

Figure 9.8 The tip point of a pivoted arm is a circular point.

Example 565 Acceleration of a Planar Model of a Vehicle The equations of motion
in vehicle dynamics are usually expressed in a set of vehicle coordinate frame B(Cxyz )

attached to the vehicle at the mass center C, as shown in Figure 9.9. The x-axis is a
longitudinal axis passing through C and directed forward. The y-axis goes laterally to
the left from the driver’s viewpoint. The z-axis makes the B-frame a right-hand triad.
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β

vx

ψ

B
G

X

Y

C

x

y

v

d

vy

O

Figure 9.9 A rigid vehicle in planar motion.

The planar model of a car remains flat and parallel to the horizontal road. The z-axis
is always perpendicular to the ground, opposite to the gravitational acceleration g.

The position and orientation of the vehicle coordinate frame B(Cxyz) are measured
with respect to a grounded fixed coordinate frame G(OXYZ ). Analysis of the vehicle
motion is equivalent to expressing the position and orientation of B(Cxyz ) in G(OXYZ ).
The angle between the x- and X-axes is the yaw angle ψ and is called the heading
angle. The vehicle velocity vector v makes an angle β with the body x-axis called the
sideslip angle or attitude angle. The vehicle’s velocity vector v makes an angle β + ψ

with the global X-axis called the cruise angle.
The B-expressions of the accelerations of the car are

B
Ga = ax ı̂ + aŷ = (

v̇x − ωz vy

)
ı̂ + (

v̇y + ωz vx

)
̂ (9.323)

B
GαB = ω̇zk̂ = ψ̈ k̂ (9.324)

To show these equations, we decompose the velocity and acceleration of the car at C

and express them by their forward and lateral components in B:

Bv =
vx

vy

0

 B v̇ =
v̇x

v̇y

0

 (9.325)

The angular velocity and acceleration vectors of the planar vehicle are

B
GωB =

 0
0
ωz

 B
Gω̇B =

 0
0
ω̇z

 (9.326)
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Substituting the above vectors and matrix in the B-expression of vehicle acceleration,
B
Ga, provides Equation (9.323):

B
Ga = B v̇B + B

GωB × BvB =
v̇x

v̇y

0

 +
 0

0
ωz

 ×
vx

vy

0



=
mv̇x − mωzvy

mv̇y + mωzvx

0

 (9.327)

9.4 PARTICLE ACCELERATION

Consider a body coordinate frame B, a global frame G, and a point P in B. There are
three applied cases for motion of the point P with respect to B and G.

1. The turning frame B has a fixed point in G and the point P is a fixed point in B.
Figure 9.10(a) illustrates a two-dimensional view of this body point situation.
The acceleration of the body point P is

GaP = GαB × Gr + GωB × ( GωB × Gr) (9.328)

2. The turning frame B has a fixed point in G and the point P is moving in B.
Figure 9.10(b) illustrates a two-dimensional view of this particle situation. The
acceleration of the point P is

B
GaP = BaP + B

GαB × BrP + 2 B
GωB × BvP

+ B
GωB × (

B
GωB × BrP

)
(9.329)

X

Y

x

y

G

BrP

P

B

X

Y

x

y

G

BrP

P

B

BvP

X

Y

x

G

BrP

P
B

BvP

y

(b) (c)

GdB

BaP

BaP

(a)

Figure 9.10 A two-dimensional illustration of a moving body B in a global frame G: (a) B

has a fixed point O in G and P is a body point; (b) B has a fixed point O in G and P is moving
in B; (c) B is moving in G and P is moving in B.
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3. The frame B is moving in G and the point P is moving in B. Figure 9.10(c)

illustrates a two-dimensional view of this particle situation. The acceleration of
the point P is

GaP = Gd̈B + GRB
Ba + GRB

(
B
GαB × Br

) + 2 GRB

(
B
GωB × Bv

)
+ GRB

[
B
GωB × ( B

GωB × Br)
]

(9.330)

Proof : 1. Consider a body coordinate frame B with a fixed point in G and a fixed point
P in B as shown in Figure 9.10(a). The best way to express the position, velocity, and
acceleration vectors of a body point P is using the G-frame:

Br = BrP = xı̂ + ŷ + zk̂ (9.331)
Gr = GrP = GRB

BrP (9.332)

GvP = Gṙ =
Gd

dt
GrP = GωB × GrP (9.333)

GaP =
Gd2

dt2
Gr = GαB × Gr + GωB × Gṙ

= GαB × Gr + GωB × ( GωB × Gr) (9.334)

2. Consider a body coordinate frame B with a fixed point in G and a moving point P

in B as shown in Figure 9.10(b). When the point P is moving in B, we can usually
measure the velocity and acceleration of P in B as BvP , BaP . Therefore, the best way
to express the position, velocity, and acceleration vectors of the moving point P is
using B-expressions of G-derivatives:

BrP = xı̂ + ŷ + zk̂ (9.335)
GrP = GRB

BrP (9.336)

B
GvP =

Gd

dt
BrP = B ṙP + B

GωB × BrP (9.337)

B
GaP =

Gd2

dt2
BrP = BaP + B

GαB × BrP

+ B
GωB × BvP + B

GωB × (
BvP + B

GωB × BrP

)
= BaP + B

GαB × BrP

+ 2 B
GωB × BvP + B

GωB × (
B
GωB × BrP

)
(9.338)

3. Consider a moving-body coordinate frame B in G and a moving point P in B

as shown in Figure 9.10(c). In this case, we can usually measure the velocity and
acceleration of P in B as BvP , BaP and the velocity of origin of B in G as GḋB ,
Gd̈B . These vectors are not in the same frame. The best way to express the kine-
matic of P is to transform the local information to the global frame and express its
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position, velocity, and acceleration vectors by G-expressions of G-derivatives:

Br = BrP = xı̂ + ŷ + zk̂ (9.339)
Gd = GdB = dx ı̂ + dŷ + dzk̂ (9.340)

Gr = GrP = GdB + GRB
BrP (9.341)

GvP = GḋB + GRB
B
Gv = GḋB + GRB

(
B ṙ + B

GωB × Br
)

= GḋB + GRB
B ṙ + GRB

(
B
GωB × Br

)
(9.342)

GaP = Gd̈B + GRB
B
GaP

= Gd̈B +GRB

[
B r̈ + B

GωB × B ṙ + B
Gω̇B × Br + B

GωB × (
B ṙ + B

GωB × Br
)]

= Gd̈B + GRB
Ba + GRB

(
B
GαB × Br

)
+ 2 GRB

(
B
GωB × Bv

) + GRB

[
B
GωB × (

B
GωB × Br

)]
(9.343)

�

Example 566 Coriolis Acceleration Consider a rotating frame B in G with angular
velocity B

GωB along with a moving point P in B with velocity Bv. If we are able to
measure the local position, velocity, and acceleration of P , the best way to express the
acceleration of P in G will be using Equation (9.338), which is the same as (9.191):

B
Ga = Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.344)

where, based on their direction and frame of expression, Ba is local acceleration ,
B
GαB × Br is tangential acceleration, and B

GωB × ( B
GωB × Br) is centripetal accelera-

tion . The term 2 B
GωB × Bv is the Coriolis acceleration B

GaCo:

B
GaCo = B

GωB × Bv + B
GωB × Bv = 2 B

GωB × Bv (9.345)

The Coriolis acceleration is perpendicular to both B
GωB and BvP and may be interpreted

as the required component of acceleration of moving P to follow the rotation of B.
The Coriolis acceleration is a combination of two terms, B

GωB × Bv and B
GωB × Bv.

They are mathematically equivalent, so we show the Coriolis acceleration as B
GaCo =

2 B
GωB × Bv. However, the first one comes from

G d

dt
Bv = Ba + B

GωB × Bv (9.346)

and the second one comes from

B
GωB × G d

dt
Br = B

GωB × Bv + B
GωB × (

B
GωB × Br

)
(9.347)

The term Ba in (9.346) is the B-expression of the change of Bv in the eyes of an
observer in G, and the term B

GωB × Bv indicates the B-expression of the change in
direction of Bv due to the rotation of B in the eyes of an observer in G. Equation
(9.347) indicates the B-expression of the change in direction of change of Br in the
eyes of an observer in G. The first term, B

GωB × Bv, is the direction change of the
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change of Br in B, and B
GωB × ( B

GωB × Br) indicates the change in direction change
of Br due to the direction change of Br in B.

Practically, we may combine the two terms of B
GωB × Bv and express them as the

Coriolis acceleration (9.345). Such a combination of accelerations appears only in the
B-expression of the G-acceleration of a moving point in a rotating frame B, B

Ga =
BB
GGa = (Gd/dt) B

Gv = (Gd/dt)(Gd/dt)Br, provided the point P follows the rotation of
B. An observer in B will not see any motion of P that is caused by rotation of B.
Although B

GωB and B
GαB indicate the angular velocity and acceleration of B relative

to G, the acceleration B
Ga of point P would not be (9.344) if P is not following B

GωB

and B
GαB .
There is only one B

GωB × Bv in

BB
GBa = (Gd/dt)Bv = (Gd/dt)(Bd/dt)Br
BB
BGa = (Bd/dt) B

Gv = (Bd/dt)(Gd/dt)Br

We may have a similar discussion for negative Coriolis terms in accelerations G
B a,

GG
GB a, and GG

BGa.

Example 567 Coriolis Force Proportional to the Coriolis acceleration B
GaCo, we can

define a Coriolis force FCo = m B
GaCo, where m is the mass of the point P . We may

describe FCo as the required force on m to make it turn with B while m is moving in
B and not in the direction of GωB .

To apply FCo on m, we usually need to provide continued physical contact between
B and m. The effect of Coriolis acceleration can be better seen when the Coriolis force
is missing and m is not following the rotation of B.

For an applied description, let us consider a rotating disc in a horizontal plane with
a constant angular velocity B

GωB = ωk̂. Assume that there is also a moving particle P

in a radial groove with a constant velocity Bv = vı̂. Figures 9.11(a) and (b) illustrate
the top view of the system. In Figure 9.11(a), we are standing in the G-frame and
watching the rotation of B about K̂ and the motion of P in G. In Figure 9.11(b), we
are standing in the B-frame and watching the rotation of G about k̂ and the motion of
P in B. Let us assume that P starts moving in the groove on the x-axis when B and
G are coincident.

Because Ba = 0 and B
GαB = 0, the acceleration of P is

B
Ga = 2 B

GωB × Bv + B
GωB × (

B
GωB × Br

)
= 2

0
0
ω

 ×
v

0
0

 +
0

0
ω

 ×
0

0
ω

 ×
r

0
0


=

−rω2

2vω

0

 = −rω2 ı̂ + 2vω̂ (9.348)

The component 2vω̂ is the Coriolis acceleration of P in B
Ga. So, there must be a

Coriolis force FCo that the groove applies laterally on the moving mass m to turn it
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Figure 9.11 A rotating disc in a horizontal plane with a constant angular velocity B
GωB = ωk̂

and a moving particle P in a radial groove with velocity Bv = vı̂. (a) The observer is in the
G-frame. (b) The observer is in the B-frame.

with the disc:
BFCo = m B

GaCo = 2mvω̂ (9.349)

The direction of BFCo is always perpendicular to the radial groove and pointing
B
GωB × Bv.

The acceleration B
Ga = −rω2 ı̂ + 2vω̂ is the B-expression of the global accelera-

tion of P . A transformation to G provides the G-expression of the G-acceleration of P :

Ga = GRB
B
Ga = RZ,θ

B
Ga =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

−rω2

2vω

0


=

−rω2 cos θ − 2vω sin θ

2vω cos θ − rω2 sin θ

0

 (9.350)

The G-expression of the G-derivative and the B-expression of the B-derivative are
the proper equations to integrate. Assuming the initial conditions

r(0) = 0 θ(0) = 0 (9.351)

we can integrate the acceleration and determine the path of P in the G-frame:

Ẍ = −rω2 cos θ − 2vω sin θ = −vtω2 cos ωt − 2vω sin ωt (9.352)

Ẋ =
∫

Ẍdt = v cos ωt − vtω sin ωt (9.353)

X =
∫

Ẋdt = vt cos ωt (9.354)
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Ÿ = 2vω cos θ − rω2 sin θ = 2vω cos ωt − vtω2 sin ωt (9.355)

Ẏ =
∫

Ÿdt = v sin ωt + vtω cos ωt (9.356)

Y =
∫

Ẏdt = vt sin ωt (9.357)

A coordinate transformation determines the path of P in the B-frame:

Br = BRG
Gr = GRT

B

vt cos ωt

vt sin ωt

0

 =
vt

0
0

 (9.358)

The point P reaches the radius R at the time tR:

tR = R

v
(9.359)

Figure 9.12(a) illustrates the path of P in the eyes of an observer in G for different
values of v and for

ω = 1 rad/s R = 1 m (9.360)

Because R = 1 m, 1/v indicates the time tR that it takes for P to reach the edge of the
disc. The path for v = 0.4 m/s is shown in Figure 9.12(b). It also shows the point P and
frame B at two different times. Because Br = vt ı̂, the point P is always on the x-axis.
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Figure 9.12 The path of P in the eyes of an observer in G. (a) The path for different values
of speed v. (b) The position of point P and orientation of frame B at two different times for
v = 0.4 m/s.

The importance of B
GaCo was discovered and discussed by the French mathematician

Gaspard Gustave de Coriolis (1792–1843). Today the terms work and kinetic energy
still retain the meanings introduced by Coriolis.
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Example 568 No Coriolis Force Let us consider a frictionless rotating disc in a
horizontal plane with a constant angular velocity B

GωB = ωk̂, GωB = ωK̂ and a moving
particle P in a radial direction with a constant velocity Gv = vÎ . Figures 9.13(a) and
(b) illustrate the top view of the system. In Figure 9.13(a), we are standing in the
G-frame and watching the rotation of B about K̂ and the motion of P in G. In
Figure 9.13(b), we are standing in the B-frame and watching the rotation of G about
k̂ and the motion of P in B. Let us assume that P starts moving on the x-axis from
x = 0 when B and G are coincident.
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ω
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P

O

BrP
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Figure 9.13 A rotating disc in a horizontal plane with a constant angular velocity B
GωB = ωk̂

and a moving particle P with velocity Gv = vÎ . (a) The observer is in the G-frame. (b) The
observer is in the B-frame.

Because P is not following the rotation of B, the best way to analyze the acceler-
ation of P is using G

B a from (9.192). Knowing that Ga = 0 and B
GαB = GαB = 0, we

have

G
B a =

Bd

dt
G
B v (t) = −2 GωB × Gv + GωB × (

GωB × Gr
)

= −2

0
0
ω

 ×
v

0
0

 +
0

0
ω

 ×
0

0
ω

 ×
r

0
0



=
−rω2

−2vω

0

 = −rω2Î − 2vωĴ (9.361)

The component −2vωĴ is the Coriolis acceleration of P in G
B a.
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The acceleration G
B a = −rω2Î − 2vωĴ is the G-expression of the body accelera-

tion of P . A transformation to B provides the B-expression of the B-acceleration of P :

Ba = BRG
G
B a = RT

Z,θ
G
B a =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

T −rω2

−2vω

0


=

−rω2 cos θ − 2vω sin θ

−2vω cos θ + rω2 sin θ

0

 (9.362)

Assuming the initial conditions

r(0) = 0 θ(0) = 0 (9.363)

we can integrate the acceleration and determine the path of P in the B-frame:

ẍ = −rω2 cos θ − 2vω sin θ = −vtω2 cos ωt − 2vω sin ωt (9.364)

ẋ =
∫

Ẍdt = v cos ωt − vtω sin ωt (9.365)

x =
∫

Ẋdt = vt cos ωt (9.366)

ÿ = −2vω cos θ + rω2 sin θ = −2vω cos ωt + vtω2 sin ωt (9.367)

ẏ =
∫

ÿdt = −v sin ωt − vtω cos ωt (9.368)

y =
∫

ẏdt = −vt sin ωt (9.369)

A coordinate transformation determines the path of P in the G-frame:

Gr = GRB
Br = GRB

 vt cos ωt

−vt sin ωt

0

 =
vt

0
0

 (9.370)

The point P reaches the radius R at time tR:

tR = R

v
(9.371)

Figure 9.14(a) illustrates the path of P in the eyes of an observer in B for different
speeds v and for

ω = 1 rad/s R = 1 m (9.372)

Because R = 1 m, 1/v also indicates the time tR that it takes for P to reach the edge of
the disc. The path for v = 0.4 m/s is shown in Figure 9.14(b). It also shows the point
P and frame G at two different times. Because Gr = vtÎ , the point P is always on
the X-axis. Although there exists no applied force on P , an observer in B thinks that
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Figure 9.14 The path of P in the eyes of an observer in B. (a) The path for different values
of speed v. (b) The position of point P and orientation of frame G at two different times for
v = 0.4 m/s.

P is moving laterally because of a lateral acceleration G
B aCo = −2vωĴ . However, an

observer in G will see P in a straight radial motion while the ground moves laterally
underneath.

This expression of Coriolis acceleration is important in the explanation of the
motion of particles close to the ground. The rotation of Earth and the velocity of
particles produce a Coriolis acceleration G

B aCo in the eyes of an observer on Earth.

Example 569 Applied Acceleration When P Is Not Following B Let us summarize
the Coriolis effect when a moving point does not follow the rotation of the local frame
B. Figure 9.15 illustrates a rotating B-frame in a global G-frame. We, as the observers,
are standing in B and watching a moving point P . Practically, we must be able to
measure the kinematic information of P in B: BrP , BvP , BaP . Let us also assume that
we are aware of the rotation of B in G and have a good estimate of GωB and GαB .

The best way to analyze the motion of P is using the G-expression of the B-
acceleration, G

B a, or the B-expression of the G-acceleration, B
Ga, from (9.192) and

(9.344):

G
B a = Ga − GαB × Gr − 2 GωB × Gv + GωB × (

GωB × Gr
)

(9.373)

B
Ga = Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.374)

Using either of these equations we assume that P is following the rotation of B in G,
so the terms G

B a and B
Ga are meaningful.

Let us use Equation (9.374) and find Ba:

Ba = B
Ga − B

GαB × Br − 2 B
GωB × Bv − B

GωB × (
B
GωB × Br

)
(9.375)
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Figure 9.15 Observing a moving point P from the B-frame when the point does not follow
the rotation of the frame B.

It shows that the measured local acceleration Ba is the resultant of the B-expression
of the global acceleration B

Ga, local tangential acceleration − B
GαB × Br, local Coriolis

acceleration −2 B
GωB × Bv, and local centripetal acceleration − B

GωB × (
B
GωB × Br

)
.

An error happens when ω and α are very small and we assume Ba = B
Ga. The

simplification of motion of a particle close to the Earth surface is an example of such
an error.

Example 570 Newton Equation in a Rotating Frame Consider a spherical rigid
body (such as Earth) with a fixed point that is rotating with a constant angular velocity.
The equation of motion for a moving point P on the rigid body is found by setting
Gd̈B = B

Gω̇B = 0 in the equation of motion of a moving point in a moving body frame:

GF = mGaP

= m
[
Gd̈B + GRB

(
BaP + 2 B

GωB × BvP + B
Gω̇B × BrP

)]
+m GRB

[
B
GωB × (

B
GωB × BrP

)]
(9.376)

BF = mBaP + m B
GωB × (

B
GωB × BrP

) + 2m B
GωB × B ṙP (9.377)

�= mBaP

It shows that the Newton equation of motion F = m a is not correct in a rotating frame.
The equation of motion of a moving point can be rearranged to

BF − m B
GωB × (

B
GωB × BrP

) − 2m B
GωB × BvP = mBaP (9.378)

The left-hand side of this equation is called the effective force,

Feff = BF − m B
GωB × (

B
GωB × BrP

) − 2m B
GωB × BvP (9.379)

because it seems that the particle is moving under the influence of this force.
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Example 571 Motion Close to Earth Surface An applied example for a free moving
point in a rotating frame B is the motion of a particle close to Earth. Such a particle
is called free because it is not following the rotation of B. The angular velocity and
acceleration of Earth are

ωE ≈ 2π

24 × 3600

366.25

365.25
rad/s (9.380)

αE ≈ 0 (9.381)

The measured acceleration Ba of P in Earth’s coordinate frame B is

Ba = B
Ga − B

GωB × (
B
GωB × Br

) − 2 B
GωB × Bv

= Bg − 2 B
GωB × Bv (9.382)

The gravitational acceleration g measured on the ground is

Bg = B
Ga − B

GωB × (
B
GωB × Br

)
(9.383)

and the Coriolis acceleration of P in the eyes of an observer in B is

B
GaCo = −2 B

GωB × Bv (9.384)

On the surface of Earth, we have

R ≈ 6.3677 × 106 m

mE ≈ 5.9736 × 1024 kg

G ≈ 6.67259 × 10−11 N m2/kg2 (9.385)

The order of magnitude of B
Ga and the maximum value of B

GωB × ( B
GωB × Br) at the

equator are
B
Ga = −G

mE

R2
ûr ≈ −9.8303 ûr m/s2 (9.386)

−B
GωB × ( B

GωB × Br) = Rω2ûr = 0.03386 ûr m/s2 (9.387)

These two terms are on the radial axis so it is reasonable if we ignore −B
GωB ×

( B
GωB × Br) and accept g ≈ B

Ga. However, the Coriolis term −2 B
GωB × Bv, which is

not necessarily radial, depends on the velocity of the particle. Ignorance of the Coriolis
acceleration may cause P to deviate from its predicted path.

Example 572 � Free Fall in the Frame of Rotating Earth Consider a particle P

with mass m that is falling freely from a height h>R(≈ 6.3677 × 106m) above a point
P1 on the Earth surface. The Earth with radius R, shown in Figure 9.16, is assumed
to be spherical with no air. Let us ignore the rotation of Earth about the sun and set
a global coordinate frame G(OXYZ ) at the Earth center. Another coordinate frame
E (Oxyz ) is attached to Earth such that its z-axis is coincident with the global Z-axis.
The E-frame turns about the Z-axis once every 24 h. We indicate the point P1 on the
Earth surface by the longitude ϕ and latitude λ. Let us also attach a local coordinate
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Figure 9.16 The free-fall problem of a particle on Earth needs three coordinate frames: a
global frame G(OXYZ ) at the Earth center, an Earth frame E (Oxyz ) attached to Earth, and a
local coordinate frame B (Ox1y1z1) on Earth.

frame B(Ox1y1z1) at P1 such that its z1-axis points upward to the local frame and its
x1-axis points to the north pole.

The transformation matrices between B and E are

BRE = Rz1,πRy1,(π/2−λ)Rz1,ϕ

=
− cos ϕ sin λ − sin λ sin ϕ cos λ

sin ϕ − cos ϕ 0
cos λ cos ϕ cos λ sin ϕ sin λ

 (9.388)

Ed = BRT
E

Bd = BRT
E

0
0
R

 =
R cos λ cos ϕ

R cos λ sin ϕ

R sin λ

 (9.389)

ETB =
[

ERB
Ed

0 1

]
=

[
BRT

E
Ed

0 1

]
(9.390)

=


− cos ϕ sin λ sin ϕ cos λ cos ϕ R cos λ cos ϕ

− sin λ sin ϕ − cos ϕ cos λ sin ϕ R cos λ sin ϕ

cos λ 0 sin λ R sin λ

0 0 0 1



BTE = ET −1
B =


− cos ϕ sin λ − sin λ sin ϕ cos λ 0

sin ϕ − cos ϕ 0 0
cos λ cos ϕ cos λ sin ϕ sin λ −R

0 0 0 1

 (9.391)



842 Acceleration Kinematics

The acceleration of a moving point close to the Earth surface is found in
Equation (9.382):

Ea = Eg − 2 E
GωE × Ev (9.392)

Using
E
GωE = ωEk̂ (9.393)

Er =
x

y

z

 Ev =
ẋ

ẏ

ż

 Ea =
ẍ

ÿ

z̈

 (9.394)

Bg = −g0k̂ (9.395)

we find ẍ

ÿ

z̈

 = Eg − 2

 0
0

ωE

 ×
ẋ

ẏ

ż

 =
 2ẏωE − g0 cos λ cos ϕ

−2ẋωE − g0 cos λ sin ϕ

−g0 sin λ

 (9.396)

where

Eg = ERB
Bg =ERB

 0
0

−g0

 =
−g0 cos λ cos ϕ

−g0 cos λ sin ϕ

−g0 sin λ

 (9.397)

If the particle is released from rest at a height h>R, then its initial conditions are

Br(0) = hk̂1 = [
0 0 h 1

]T
(9.398)

Er (0) = ETB
Br (0) =


x0

y0

z0

1

 =


(R + h) cos ϕ cos λ

(R + h) sin ϕ cos λ

(R + h) sin λ

1

 (9.399)

Ev (0) = [
ẋ0 ẏ0 ż0

]T = [
0 0 0

]T
(9.400)

Integrating Equation (9.396) providesẋ

ẏ

ż

 =
 2yωE − g0t cos λ cos ϕ − 2y0ωE

−2xωE − g0t cos λ sin ϕ + 2x0ωE

−g0t sin λ

 (9.401)

Substituting the first and second equations of (9.401) in the second and first equations
of (9.396) separates the variables:

ẍ + 4ω2
Ex = −2ωEg0t cos λ sin ϕ − g0 cos λ cos ϕ

+ 4ω2
E (R + h) cos ϕ cos λ (9.402)

ÿ + 4ω2
Ey = 2ωEg0t cos λ cos ϕ − g0 cos λ sin ϕ

+ 4ω2
E (R + h) sin ϕ cos λ (9.403)
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The general solutions of (9.402) and (9.403) are

x = C1 cos 2ωEt + C2 sin 2ωEt

− g0

4ω2
E

(2ωEt sin ϕ + cos ϕ) cos λ + (R + h) cos ϕ cos λ (9.404)

y = C3 cos 2ωEt + C4 sin 2ωEt

+ g0

4ω2
E

(2ωEt cos ϕ − sin ϕ) cos λ + (R + h) sin ϕ cos λ (9.405)

We determine the coefficients C1, C2, C3, C4 from initial conditions (9.399) and (9.400),
and therefore

x = g0

4ω2
E

cos ϕ cos λ cos 2ωEt + g0

4ω2
E

sin ϕ cos λ sin 2ωEt

− g0

4ω2
E

(2ωEt sin ϕ + cos ϕ) cos λ + (R + h) cos ϕ cos λ (9.406)

y = g0

4ω2
E

sin ϕ cos λ cos 2ωEt − g0

4ω2
E

cos ϕ cos λ sin 2ωEt

+ g0

4ω2
E

(2ωEt cos ϕ − sin ϕ) cos λ + (R + h) sin ϕ cos λ (9.407)

The third equation of (9.401) is independent of the others and can be integrated inde-
pendently:

z = − 1
2g0t

2 sin λ + (R + h) sin λ (9.408)

Equations (9.406)–(9.408) indicate the components of the position vector of the falling
particle in the E-frame. We may transform Er from E to B to examine the components
of Br for an observer in the B-frame:

Br = BTE
Er (9.409)

Br =


− g0

8ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

sin 2λ

g0

4ω2
E

(sin 2ωEt − 2ωEt) cos λ

g0

4ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

cos2 λ − 1

2
g0t

2 + h

 (9.410)

Interestingly, the components of Br are independent of ϕ. It indicates that the path of
a falling particle at λ are similar for every ϕ in a local frame B. As a reference, let us
recall the free fall of a particle on a flat, level, and stationary ground as

x1 = 0 y1 = 0 z1 = − 1
2g0t

2 + h (9.411)
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Recalling that the latitude λ is the principal parameter to cause the different path of a
falling particle, we can determine the minimum and maximum deviation from a straight
line. The deviation is minimum at the north pole,

Br (t) =
 0

0

− 1
2g0t

2 + h

 λ = 90 deg (9.412)

and maximum at the equator,

Br (t) =


0

g0

4ω2
E

(sin 2ωEt − 2ωEt)

g0

4ω2
E

(
cos 2ωEt + 2ω2

Et2) − 1

2
g0t

2 + h

 λ = 0 (9.413)

Let us examine Br(t) for the following data:

ωE ≈ 7.2921 × 10−5 rad/s

g0 ≈ 9.81 m/s2

h = 100 m (9.414)

The particle hits the ground at time th when z = 0. For a nonrotating Earth, the time
th is given as

t0 = 4.5152 s ωE = 0 (9.415)

Figure 9.17 illustrates th − t0 at different altitudes λ from the south pole to the north
pole.

λ [rad]

th − t0 [s]

South Pole North Pole

Equator

1e−07

8e−08

6e−08

4e−08

2e−08

−1.5 −1 −0.5 0.5 1.510

Figure 9.17 Falling time of a particle from h = 100 m at different altitudes λ from the south
pole to the north pole.
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The x-component of Br(t) is depicted in Figure 9.18. The x-axis points North,
so a falling body moves south in the northern hemisphere and north in the southern
hemisphere. Therefore, the equator acts as an attractive line to the falling objects. The
x-displacement is zero at the north pole, south pole, and equator and maximum at
λ = ±45 deg.

x [m]

x [m]
 λ [rad]

 t [s]

t [s]
South Pole

North Pole

Equater

1e−06

0

0
1

2
3

4 1.5
1

0.5
0

−0.5 −1
−1.5

−1e−06

Figure 9.18 The x-component of Br (t) indicates the displacement of a falling body in the
north direction.

The y-component of Br(t) is depicted in Figure 9.19. The y-axis points west, so
a falling body moves east. The y-displacement is zero at the north and south poles
and a maximum at the equator, λ = 0. The combined x- and y-displacements of the
falling body are illustrated in Figure 9.20 at two points in the northern and southern
hemispheres.

The z-component of Br(t) is shown in Figures 9.21.

y[m]

y [m]

t [s]

λ [rad]

t [s]

South Pole
North Pole

Equator

−0.005

0

0
1

2
3

4 1.5 1 0.5 0 −0.5
−1 −1.5

−0.01

−0.015

−0.02

Figure 9.19 The y-component of Br(t) indicates the displacement of a falling body in the east
direction.



846 Acceleration Kinematics

Y

Z

x

Equator

X

y

x

y

Figure 9.20 The x- and y-displacements of a falling body in the northen and southern hemi-
spheres.
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Figure 9.21 The z-component of Br (t) as a function of time t and attitude λ.

Example 573 � Global Path of a Free Fall on Rotating Earth The global and Earth
coordinate frames G(OXYZ ) and E (Oxyz ) are shown in Figure 9.16. The Earth frame
E is turning with angular velocity GωE = θ̇ K̂ in G. The equations of acceleration of
a falling particle are determined in Equation (9.396) and its path of motion in B is
derived in Equations (9.406)–(9.408). Employing the transformation matrix between
E and G,

GRE =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (9.416)

we can determine the acceleration and path of motion in the G-frame:

Gr = GRE
Er (9.417)
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G

ψ

Y

Z

X

λ

P
r

Figure 9.22 Spherical variables ψ , λ, and r used to show a point in the G-frame.

It is simpler if we analyze the free-fall problem of a particle P in the G-frame
by integrating its G-acceleration. Let us use a spherical coordinate system and express
the Cartesian coordinates of P using the spherical variables ψ , λ, and r as shown in
Figure 9.22:

Gr =
r cos λ cos ψ

r cos λ sin ψ

r sin λ

 (9.418)

The only acceleration of the free-falling particle in G is the gravitational acceler-
ation Gg that is along −Gr:

Ga =
Ẍ

Ÿ

Z̈

 = Gg =
−g0 cos λ cos ψ

−g0 cos λ sin ψ

−g0 sin λ

 (9.419)

If the particle is initially motionless with respect to E and is released from height h

from the surface of Earth, then its initial conditions in G are

Gr (0) =
X0

Y0

Z0

 =
(R + h) cos λ0 cos ψ0

(R + h) cos λ0 sin ψ0

(R + h) sin λ0

 (9.420)

Gv (0) = G
BωG × Gr (0) =

 0
0

−ωE

 ×
(R + h) cos λ0 cos ψ0

(R + h) cos λ0 sin ψ0

(R + h) sin λ0



=
 ωE (cos λ0 sin ψ0) (R + h)

−ωE (cos λ0 cos ψ0) (R + h)

0

 =

Ẋ0

Ẏ0

Ż0

 (9.421)
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Integrating Equation (9.419) from λ0, ψ0,

Gv =
−g0t cos λ0 cos ψ0

−g0t cos λ0 sin ψ0

−g0t sin λ0

 +
Ẋ0

Ẏ0

Ż0

 (9.422)

Gr =

− 1
2g0t

2 cos λ0 cos ψ0

− 1
2g0t

2 cos λ0 sin ψ0

− 1
2g0t

2 sin λ0

 +
Ẋ0

Ẏ0

Ż0

 t +
X0

Y0

Z0

 (9.423)

and implementing the initial conditions provide the path of motion in the G-frame:

Gr =


[− 1

2g0t
2 cos ψ0 + (R + h) (ωEt sin ψ0 + cos ψ0)

]
cos λ0[− 1

2g0t
2 sin ψ0 − (R + h) (ωEt cos ψ0 − sin ψ0)

]
cos λ0

(R + h) sin λ0 − 1
2 t2g0 sin λ

 (9.424)

The particle hits the ground at th when we have∣∣Gr
∣∣ = R (9.425)

This equation results in the following equation to determine th:

R2 = (R + h)2 [ 1
4g2

0 t
4
h − (

g0 − ω2
E cos2 λ0

)
t2
h + 1

]
(9.426)

As expected, th is independent of ψ0.
We can substitute th from (9.426) in (9.424) and determine the global coordinates

of the particle when it hits the ground. Comparing the hitting coordinate with the
projection point P1 of the initial coordinates of the particle on the ground,

GrP1 (0) =
R cos λ0 cos ψ0

R cos λ0 sin ψ0

R sin λ0

 (9.427)

we can determine how much the particle deviates from point P1 because of the initial
velocity. If we calculate the global displacement of P1 by Earth rotation, we can
calculate the hitting coordinate in the E-frame.

Example 574 � Better Model of Free Fall on Rotating Earth The gravitational
attraction varies with distance from the center of Earth. If Bg = −g0k̂1 on the surface
of Earth, then the gravitational acceleration g at a point Er is

Eg = −g0
R2

x2 + y2 + z2
ERB k̂1

= −g0
R2

x2 + y2 + z2

− cos λ cos ϕ

− cos λ sin ϕ

− sin λ

 (9.428)

where E (Oxyz ) is the Earth coordinate frame at the Earth center and B(Ox1y1z1)

is a local coordinate frame on the Earth surface, as shown in Figure 9.16. Using
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(9.428), (9.388), (9.393), and (9.394), we can modify Equations (9.382) to get a better
model describing the acceleration of a moving point close to the Earth surface:

Ea = Eg − 2 E
GωE × Ev (9.429)ẍ

ÿ

z̈

 = −g0R
2

x2 + y2 + z2

− cos λ cos ϕ

− cos λ sin ϕ

− sin λ

 − 2

 0
0

ωE

 ×
ẋ

ẏ

ż


= −g0R

2

x2 + y2 + z2

 2ẏωE − cos λ cos ϕ

−2ẋωE − cos λ sin ϕ

− sin λ

 (9.430)

Example 575 � Free Fall in a Local Frame on Rotating Earth Consider the free
fall of a particle P with mass m from a height h>R(≈ 6.3677 × 106 m) above a point
P1 on the Earth surface. Here P1 is indicated by the longitude ϕ and latitude λ. The
spherical Earth with no air is shown in Figure 9.16. We set up a global coordinate
frame G(OXYZ ) at the Earth center. Another frame E(Oxyz) is attached to Earth such
that its z-axis is coincident with the Z-axis. We also attach a local coordinate frame
B(Ox1y1z1) at P1 such that its z1-axis points upward to the local frame and its x1-axis
points to the north pole.

The classical method of analysis of the motion of a free-falling particle on a rotating
Earth is expression of the equations of motion in the Earth frame E:

Ea = Eg − 2 E
GωE × Ev (9.431)

After integrating the equations, we determine the path of the particle in the E-frame.
Using coordinate transformation, we may determine the path in any local frame such
as B(Ox1y1z1) at P1. However, because B and E are fixed relatively, we can geomet-
rically transform both sides of Equation (9.431) to B and determine the equations of
motion in the B-frame.

Let us show the acceleration, velocity, and position vectors of P in the B-frame by

Ba =
ẍ1

ÿ1

z̈1

 Bv =
ẋ1

ẏ1

ż1

 Br =
x1

y1

z1

 (9.432)

and express the equation of motion (9.431) in B:

Ba = Bg − 2 B
GωE × Bv (9.433)ẍ1

ÿ1

z̈1

 =
 0

0
−g0

 − 2

ωE cos λ

0
ωE sin λ

 ×
ẋ1

ẏ1

ż1


=

 2ẏ1ωE sin λ

2ż1ωE cos λ − 2ẋ1ωE sin λ

−2ẏ1ωE cos λ − g0

 (9.434)
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The transformation between B and E is

BRE =
− cos ϕ sin λ − sin λ sin ϕ cos λ

sin ϕ − cos ϕ 0
cos λ cos ϕ cos λ sin ϕ sin λ

 (9.435)

However, all points at an altitude λ are mathematically equivalent, and we can
simplify the problem to ϕ = 0 without losing the generality of the solution. The
transformation matrix will then be

BRE =
− sin λ 0 cos λ

0 −1 0
cos λ 0 sin λ

 (9.436)

and therefore,
B
GωE = BRE

E
GωEωE cos λ

0
ωE sin λ

 =
− sin λ 0 cos λ

0 −1 0
cos λ 0 sin λ

 0
0

ωE

 (9.437)

Assuming the initial conditions

Br = hk̂1 =
0

0
h

 Bv =
0

0
0

 (9.438)

we integrate Equation (9.434) to getẋ1

ẏ1

ż1

 =
 2y1ωE sin λ

2z1ωE cos λ − 2x1ωE sin λ

−2y1ωE cos λ − g0t

 (9.439)

To separate the variables, we can substitute ẋ1 and ż1 in (9.434) and make its
second equation independent:

ÿ1 + 4ω2
Ey1 = −2ωEg0t cos λ (9.440)

The general solution of (9.440) is

y1 = C1 cos 2ωEt + C2 sin 2ωEt − g0t cos λ

2ωE

(9.441)

where
C1 = 0 C2 = g0 cos λ

4ω2
E

(9.442)

and therefore,
y1 = g0

4ω2
E

(sin 2ωEt − 2ωEt) cos λ (9.443)
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Now we can integrate the first and third equations of (9.434) to find x1 and z1:

x1 =
∫

2

(
g0

4ω2
E

(sin 2ωEt − 2ωEt) cos λ

)
ωE sin λ dt

= − g0

8ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

sin 2λ (9.444)

z1 =
∫ [

−2

(
g0

4ω2
E

(sin 2ωEt − 2ωEt) cos λ

)
ωE cos λ − g0t

]
dt

= g0

4ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

cos2 λ − 1
2g0t

2 + h (9.445)

So, the B-expression of the position vector of the falling particle is

Br (t) =


− g0

8ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

sin 2λ

g0

4ω2
E

(sin 2ωEt − 2ωEt) cos λ

g0

4ω2
E

(
cos 2ωEt + 2ω2

Et2 − 1
)

cos2 λ − 1

2
g0t

2 + h

 (9.446)

These equations are the same as (9.410).

Example 576 Applied Acceleration When P Is Following B Let us summarize the
Coriolis effect when a moving point follows the rotation of the local frame B. In this
case there must be continued contact between B and P . So, practically, we must have
the B-expression of BrP , BvP , BaP . Figure 9.23 illustrates a moving point P on a
given path in a rotating B-frame while B is turning in the global G-frame.

P

X

Y

Z

x
y

B Gz

BrP

G ω B

G α B

BvP

BaP

Figure 9.23 Observing a moving point P from the B-frame when the point follows the rotation
of the frame B by continued contact.
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We, as the observers, are standing in B and watching the motion of P . The best
way to analyze the motion of P is using the B-expression of the G-acceleration, B

Ga:

B
Ga = Ba + B

GαB × Br + 2 B
GωB × Bv + B

GωB × (
B
GωB × Br

)
(9.447)

The Coriolis force BFCo = m B
GaCo = 2m B

GωB × Bv is the required force on m to turn
it with B. The force BFCo must be provided by the path.

Example 577 A Train Heading South Consider a train moving on a meridian
with a constant speed v = Rλ̇ from the north pole toward the equator, as shown in
Figure 9.24(a). The position of the train on Earth is determined by the latitude ϕ and
altitude λ. The position of Earth frame E (x , y, z ) in the global frame G(X , Y , Z ) is
determined by the rotation θ about the Z-axis.

The position vector of the train and the angular velocity of Earth are

Er =
R cos λ cos ϕ

R cos λ sin ϕ

R sin λ

 E
GωE =

 0
0

ωE

 (9.448)

The velocity vector of the train is

Ev = Eλ̇ × Er = −λ̇

 sin ϕ

− cos ϕ

0

 ×
R cos λ cos ϕ

R cos λ sin ϕ

R sin λ


= λ̇

R cos ϕ sin λ

R sin ϕ sin λ

−R cos λ

 = v

cos ϕ sin λ

sin ϕ sin λ

− cos λ

 (9.449)
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Figure 9.24 A train is moving on a meridian with a constant speed heading south.
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Because E
GωE = const and Eλ̇ = const , the acceleration vector of the train is

E
Ga = Ba + 2 E

GωE × Ev + E
GωE × (

E
GωB × Er

)
= Eλ̇ × (

Eλ̇ × Er
) + 2 E

GωE × Ev + E
GωE × (

E
GωB × Er

)
= −v2

R

cos λ cos ϕ

cos λ sin ϕ

sin λ

 + 2

−vωE sin λ sin ϕ

vωE cos ϕ sin λ

0


+

−Rω2
E cos λ cos ϕ

−Rω2
E cos λ sin ϕ

0

 (9.450)

The first term is the centripetal acceleration B
GaCλ due to movement in a big circle on

Earth and toward the center of Earth. The second term is the Coriolis acceleration B
GaCo.

The third term is the centripetal acceleration B
GaCe due to rotation of Earth. The last two

terms are in a plane parallel to the (x, y)-plane and perpendicular to each other. They
are shown in a top view of Earth in Figure 9.24(b). The Coriolis acceleration B

GaCo

is eastward, and the centripetal acceleration B
GaCe is toward the center of the circle of

latitude λ.
We may assume that the Coriolis acceleration B

GaCo is proportional to a Coriolis
force B

GFCo = m B
GaCo. The Coriolis force must be provided by the rotating ground.

The magnitude of B
GFCo is independent of latitude ϕ:

B
GFCo = m B

GaCo

= −2mvωE sin λ sin ϕı̂ + 2mvωE cos ϕ sin λ̂ (9.451)

FCo = 2mvωE sin λ (9.452)

The direction of B
GFCo is the same as B

GaCo. So, the train must lean on the west rail to
turn with Earth. Such a weight transfer from the east to the west rail makes the west
rail wear faster. The leaning on the west rail will not change if the train goes north.

Everything that moves on Earth leans west. This is the main reason that rivers
dig into the west bank and leave dirt on the east bank. If contact between ground and
the moving object is missing, then it will move westward with a Coriolis acceleration
− B

GaCo. That is why in the case of a flood rivers will cover the west bank easier than
the east bank.

Example 578 � Foucault Pendulum, Exact Equations Consider a pendulum with
a point mass m at the tip of a long, massless, and straight string with length l. The
pendulum is hanging from a point A(0, 0, l) in a local coordinate frame B1(x1, y1, z1)

at a point P on the Earth surface. Point P at longitude ϕ and latitude λ is indicated by
Ed in the Earth frame E (Oxyz ). The E-frame is turning in a global frame G(OXYZ )

about the Z-axis.
To indicate the mass m, we attach a coordinate frame B1(x1, y1, z1) to the pendulum

at point A as shown in Figure 9.25. The pendulum makes an angle β with the vertical
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γ

B1

x1

y1

z1

β

x2

z2

B2
A

P

Figure 9.25 Foucault pendulum is a simple pendulum hanging from a point A above a point
P on Earth surface.

z1-axis. The pendulum swings in the plane (x2, z2) and makes an angle γ with the
plane (x1, z1). Therefore, the transformation matrix between B2 and B1 is

1T2 = 1D2
1R2

=


cos γ cos β − sin γ − cos γ sin β 0
cos β sin γ cos γ − sin γ sin β 0

sin β 0 cos β l

0 0 0 1

 (9.453)

The position vector of m is

2r =
 0

0
−l

 (9.454)

1r = 1T2
2r =

x1

y1

z1

 =
l cos γ sin β

l sin β sin γ

l − l cos β

 (9.455)

Employing the acceleration equation,

1
Ga = 1a + 1

Gα1 × 1r + 2 1
Gω1 × 1v + 1

Gω1 × ( 1
Gω1 × 1r

)
(9.456)

we can write the equation of motion of m as

1
GF − m 1

Gg = m 1
Ga (9.457)

where 1F is the applied nongravitational force on m.
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Recalling that

1
Gα1 = 0 (9.458)

we find the general equation of motion of a particle in frame B1 as

1
GF + m 1

Gg = m
[1a + 2 1

Gω1 × 1v + 1
Gω1 × ( 1

Gω1 × 1r
)]

(9.459)

The individual vectors in this equation are

1g =
 0

0
−g0

 1
GF =

Fx

Fy

Fz

 1
Gω1 =

ωE cos λ

0
ωE sin λ

 (9.460)

1v =
ẋ1

ẏ1

ż1

 =
lβ̇ cos β cos γ − lγ̇ sin β sin γ

lβ̇ cos β sin γ + lγ̇ cos γ sin β

lβ̇ sin β

 (9.461)

1a =
ẍ

ÿ

z̈

 =


l
(
β̈ cos γ − β̇2 sin γ − β̇γ̇ sin γ

)
cos β

− l
(
γ̈ sin γ + γ̇ 2 cos γ + β̇γ̇ cos γ

)
sin β

l
(
β̈ sin γ + β̇2 cos γ + β̇γ̇ cos γ

)
cos β

+ l
(
γ̈ cos γ − γ̇ 2 sin γ − β̇γ̇ sin γ

)
sin β

lβ̈ sin β

 (9.462)

In a spherical pendulum, the external force 1F is the tension of the string:

1
GF = −F

l

1r (9.463)

Substituting the above vectors in (9.459) provides three coupled ordinary differential
equations for two angular variables γ and β. One of the equations is not independent
and the others may theoretically be integrated to determine γ = γ (t) and β = β (t).

Example 579 � Foucault Pendulum, Approximate Solution The equations of
motion of a spherical pendulum on the rotating Earth are too complicated to be solved
analytically. However, we can simplify the equations and provide an approximate solu-
tion to indicate the main dynamic behavior of the pendulum. Substituting the Cartesian
expressions of r, v, a, g in B1 along with 1

Gω1 from (9.460) in the equations of motion
of the pendulum,

1
GF + m 1

Gg = m
[1a + 2 1

Gω1 × 1v + 1
Gω1 × ( 1

Gω1 × 1r
)]

(9.464)

and approximating the force 1
GF as

1
GF =


Fx

Fy

Fz

 =


−F

x1

l

−F
y1

l

F
l − z1

l

 (9.465)
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yield 
−Fx1

ml

−Fy1

ml

F
l − z1

ml
− g0



=


ẍ1 − 2ẏ1ωE sin λ − ω2

E

(
x1 sin2 λ − z1

sin 2λ

2

)
ÿ1 + 2ωE (ẋ1 sin λ − ż1 cos λ) − ω2

Ey1

z̈1 + 2ẏ1ωE cos λ + ω2
E

(
x1

sin 2λ

2
− z1 cos2 λ

)
 (9.466)

Simplification starts with ignoring ω2
E because of the small value of ωE for Earth.

Furthermore, by the assumption that the rise z is much smaller than l and ż, z̈ are very
small, the third equation reduces to

F

m
= g0 + 2ẏ1ωE cos λ (9.467)

Using this equation to eliminate F from the first and second equations and ignoring
the very small terms compared to large terms yieldẍ1

ÿ1

 =
−x1

l
g0 + 2ẏ1ωE sin λ

−y1

l
g0 − 2ẋ1ωE sin λ

 (9.468)

Introducing the linear natural frequency of a pendulum

ω2
n = g0

l
(9.469)

reduces the equations to
ẍ1 + ω2

nx1 − 2ẏ1ωE sin λ = 0 (9.470)

ÿ1 + ω2
ny1 + 2ẋ1ωE sin λ = 0 (9.471)

To solve these equations, we may introduce a complex variable u,

u = x1 + iy1 i2 = −1 (9.472)

and combine them to a single differential equation:

ü + (2iωE sin λ) u̇ + ω2
nu = 0 (9.473)

which is a linear ordinary differential equation with constant coefficients. The
solution is

u = Aest (9.474)

where s must satisfy the characteristic equation

s2 + (2iωE sin λ) s + ω2
n = 0 (9.475)
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The characteristic equations provide two possible solutions:

s = −iωE sin λ ±
√

2

2

√
ω2

E − 2ω2
n − ω2

E cos 2λ (9.476)

which can be approximated as

s =
{
is1

is2
≈ −iωE sin λ ± iωn (9.477)

so the general solution of Equation (9.473) is

u = A1e
is1t + A2e

is2t (9.478)

The complex coefficients A1 and A2 are determined by the initial conditions. To calcu-
late A1 and A2 let us suppose that the pendulum is released from rest at t = 0, λ = 0
and

x(0) = x0 y(0) = 0 (9.479)

Therefore, the initial conditions of the complex variable u are

u(0) = u0 u̇(0) = 0 (9.480)

Employing these conditions, we determine A1 and A2:

A1 = is2

is2 − is1
x0 A2 = −is1

is2 − is1
x0 (9.481)

It shows that both A1 and A2 are real numbers because both characteristic numbers are
imaginary.

We may use the Euler identity and rewrite solution (9.478) as

u = A1 cos s1t + A2 cos s2t + i (A1 sin s1t + A2 sin s2t) (9.482)

which indicates that

x = A1 cos (−ωE sin λ + ωn) t + A2 cos (−ωE sin λ − ωn) t (9.483)

y = A1 sin (−ωE sin λ + ωn) t + A2 sin (−ωE sin λ − ωn) t (9.484)

When ωE sin λ = 0, the equations reduce to the usual harmonic oscillations of a spher-
ical pendulum. For nonzero ωE sin λ, the Coriolis effect causes a rotation of the
oscillation plane with angular velocity ω = −ωE sin λ. So, the plane of oscillation
turns ω ≈ 2π rad/d at the poles and ω = 0 at the equator.

As an example, let us use

ωE ≈ 7.2921 × 10−5 rad/s

g0 ≈ 9.81 m/s2

l = 100 m

λ = 28◦58′30′′ N ≈ 28.975 deg N

ϕ = 50◦50′17′′ E ≈ 50.838 deg E

x0 = l cos 10 = 17.365 m (9.485)
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and find

s =
{

0.313 16i

−0.313 26i
(9.486)

A1 = 8.6839 m A2 = 8.6811 m (9.487)

x = 8.6839 cos (0.313 16t) + 8.6811 cos (−0.313 26t) (9.488)

y = 8.6839 sin (0.313 16t) + 8.6811 sin (−0.313 26t) (9.489)

At the given latitude, which corresponds to Bushehr, Iran, on the Persian Gulf shore, the
plane of oscillation turns about the local g-axis with an angular speed ω = −3.5325 ×
10−5 rad/s ≈ −87.437 deg/d. These results are independent of longitude. Therefore, the
same phenomena will be seen at Orlando, Florida, or New Delhi, India, which are
almost at the same latitude. Figure 9.26 depicts the projection of m on the (x, y)-plane
for a few oscillations. It takes T ≈ 49.4 h for the pendulum to turn 2π :

T = 2π

3.5325 × 10−5
= 1.7787 × 105 s = 49.408 h (9.490)

Y [m]

X [m]

0.15

0.05

0.1

−15 −5−10 155 10

−0.05

−0.1

Figure 9.26 The projection of the path of a pendulum with length l = 100 m at latitude λ ≈
28.975 deg N on Earth for a few oscillations (not to scale).

However, the pendulum gets back to the (y, x)-plane after t = T /2 = 24.704 h. By that
time, the pendulum must have oscillated about n ≈ 4433 times:

n = ωn

2π

T

2
= 0.31321

2π

1.7787 × 105

2
= 4433.3 (9.491)

By shortening the length of the pendulum, say l = 1 m, the rotation speed remains the
same while the number of oscillations increases to n ≈ 44333.

9.5 � MIXED DOUBLE DERIVATIVE

Consider three relatively rotating frames A, B, and C. The mixed double acceleration
AA
CBa is the A-expression of the second derivative of a position vector Ar when the
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first derivative is taken in the B-frame and the second derivative is taken in the C-
frame:

AA
CBa = Aa + A

CωA × Av + A
BαA × Ar + (

A
CωA × A

BωA

) × Ar

+ A
BωA × Av + A

BωA × (
A
CωA × Ar

)
(9.492)

So, the mixed double derivative is produced when we take the first and second
derivatives of Ar in different coordinate frames B and C.

Proof : Using the derivative transformation formula, the B-derivative of Ar is

Bd

dt
Ar = A

Bv =
Ad

dt
Ar + A

BωA × Ar (9.493)

A time derivative of this equation in a third frame C would be

Cd

dt

Bd

dt
Ar =

Cd

dt
A
Bv = AA

CBa =
Cd

dt

(
Ad

dt
Ar

)
+

Cd

dt

(
A
BωA × Ar

)
=

Ad

dt

Ad

dt
Ar + A

CωA ×
Ad

dt
Ar

+
(

Ad

dt
A
BωA + A

CωA × A
BωA

)
× Ar

+ A
BωA ×

(
Ad

dt
Ar + A

CωA × Ar
)

= Aa + A
CωA × Av + A

BαA × Ar + (
A
CωA × A

BωA

) × Ar

+ A
BωA × Av + A

BωA × (
A
CωA × Ar

)
(9.494)

We call the acceleration AA
CBa the mixed double acceleration. The first term Aa is the

local A-acceleration of a moving point P in the A-frame. The combined terms A
CωA ×

Av + A
BωA × Av is the mixed Coriolis acceleration:

aCo = AA
CBaRa = A

CωA × Av + A
BωA × Av (9.495)

The term A
BαA × Ar is the tangential acceleration of P . The term A

BωA × (
A
CωA × Ar

)
is the mixed centripetal acceleration. The term

(
A
CωA × A

BωA

) × Ar is a new term in
the acceleration of P that cannot be seen in the simple acceleration B

Ga. We call this
term the Razı acceleration aRa :

aRa = AA
CBaRa = (

A
CωA × A

BωA

) × Ar (9.496)
�

Example 580 � Difference between the Two ω × v of Coriolis Acceleration The
difference between the two terms in the Coriolis acceleration is clearer when we con-
sider three coordinate frames B1, B2, and G. The frame B2 is turning in B1, and
B1 is turning in G. There is also a moving point P in a coordinate frame B2. The
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B2-expression of the velocity of P in B1 is

2
1v =

1d

dt
2r =

2d

dt
2r + 2

1ω2 × 2r = 2v + 2
1ω2 × 2r (9.497)

The derivative of 2
1v in G provides a double mixed acceleration 22

G1a,

Gd

dt

1d

dt
2r = 22

G1a =
Gd

dt

( 2d

dt
2r
)

+
Gd

dt

( 2
1ω2 × 2r

)
=

2d

dt

2d

dt
2r + 2

Gω2 ×
2d

dt
2r +

( 2d

dt
2
1ω2 + 2

Gω2 × 2
1ω2

)
× 2r

+ 2
1ω2 ×

( 2d

dt
2r + 2

Gω2 × 2r
)

(9.498)

which can be simplified to

Gd

dt

1d

dt
2r = 2a + 2

Gω2 × 2v + 2
1α2 × 2r + (2

Gω2 × 2
1ω2

) × 2r

+ 2
1ω2 × 2v + 2

1ω2 × (2
Gω2 × 2r

)
(9.499)

which is equivalent to (9.492) and indicates that, if B1 �= G, then 2
Gω2 × 2v �= 2

1ω2 × 2v,
and there exists a mixed Coriolis acceleration:

aCo = 22
G1aCo = 2

1ω2 × 2v + 2
Gω2 × 2v (9.500)

Furthermore, when B1 �= G, there exists a Razı acceleration term aRa in the acceleration
of P that cannot be seen in B

Ga:

aRa = 22
G1aRa = (2

Gω2 × 2
1ω2

) × 2r (9.501)

Zakariy Razi (865–925) was a Persian mathematician, chemist, and physician and
is considered the father of pediatrics.

Example 581 � Modified Mixed Double Derivative Recalling the relative angular
velocity rule

2
Gω2 = 2

Gω1 + 2
1ω2 (9.502)

we can rewrite (9.499) in a more practical form:

Gd

dt

1d

dt
2r = 2a + (2

Gω1 + 2
1ω2

) × 2v + 2
1α2 × 2r

+ ((2
Gω1 + 2

1ω2
) × 2

1ω2
) × 2r

+ 2
1ω2 × 2v + 2

1ω2 × [(2
Gω1 + 2

1ω2
) × 2r

]
= 2a + 2

Gω1 × 2v + 2
1ω2 × 2v + 2

1α2 × 2r

+ (2
Gω1 × 2

1ω2
) × 2r + 2

1ω2 × 2v

+ 2
1ω2 × (2

Gω1 × 2r
) + 2

1ω2 × ( 2
1ω2 × 2r

)
(9.503)
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If the point P is not moving in B2, the double mixed acceleration (9.499) reduces to

Gd

dt

1d

dt
2r = 2

1α2 × 2r + (2
Gω2 × 2

1ω2
) × 2r

+ 2
1ω2 × (2

Gω2 × 2r
)

(9.504)

or equivalently to
Gd

dt

1d

dt
2r = 2

1α2 × 2r + (2
Gω1 × 2

1ω2
) × 2r

+ 2
1ω2 × [(2

Gω1 + 2
1ω2

) × 2r
]

(9.505)

This indicates that when a body B2 is turning relative to B1 and G there are three
terms in the double mixed acceleration of a body point of B2: the tangential accel-
eration 2

1α2 × 2r, the mixed centripetal acceleration 2
1ω2 × (

2
Gω2 × 2r

)
, and the Razı

acceleration
(

2
Gω2 × 2

1ω2
) × 2r.

Example 582 � Practical Double Mixed Acceleration The Razı acceleration appears
in the double mixed acceleration when there are a global frame G and two turning body
coordinate frames B1 in B2 in G. Using the relative motion of the coordinate frames,
the B1-expression of the acceleration of a body point in B2 is

22
G1a =

Gd

dt

1d

dt
2r = (2

Gω2 × 2
1ω2

) × 2r + 2
1ω2 × (2

Gω2 × 2r
)

(9.506)

Let us consider a point P on a disc with radius R that is mounted on a turning shaft.
The disc spins about a tilted axis on the shaft, as shown in Figure 9.27. We set a global
coordinate frame G at the disc center O. A coordinate frame B1 is attached to the disc
at O such that y1 coincides with the Y -axis and (x2, z2) is coplanar with (X,Z). The
disc is mounted in B1 at an angle of 45 deg. The disc coordinate frame is B2. The disc

Y

G45

x1

y2

B1

x2

P

θ X

Y

Z

x1

y1

y2

B2

G

θ

x2

O

z1

ϕ

B2

y1

ϕ
ϕ

P

z2

B1

Figure 9.27 A disc spinning about its axis and turning about a globally fixed axis.
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spins with constant angular velocity 2
1ω2 = θ̇ ı̂2 in B1, and B1 turns about the Y -axis

with constant angular velocity 1
Gω1 = ϕ̇Ĵ :

2
1ω2 = θ̇ ı̂2 =

θ̇

0
0

 1
Gω1 = ϕ̇Ĵ =

0
ϕ̇

0

 (9.507)

The point P is at

2r =
0

0
R

 (9.508)

and the transformation matrices between the frames are

GR1 = RY,ϕ =
 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

 (9.509)

2R1 = Ry,θRz,45 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


1 0 0

0 cos( 1
4π) sin( 1

4π)

0 − sin( 1
4π) cos( 1

4π)



=

 cos θ 0.70711 sin θ 0.70711 sin θ

− sin θ 0.70711 cos θ 0.70711 cos θ

0 −0.70711 0.70711

 (9.510)

The velocity 2
1v of P is

2
1v =

1d

dt
2r = 2

1ω2 × 2r

=
θ̇

0
0

 ×
0

0
R

 =
 0

−Rθ̇

0

 (9.511)

If we are standing in B1, then 1v is the velocity of P that we see:

1v = 1R2
2
1v =

 Rθ̇ sin θ

−0.70711Rθ̇ cos θ

−0.70711Rθ̇ cos θ

 (9.512)

If we are standing in G and watching P , then Gv is the velocity that we see:

Gv = GR2
2
Gv = GR2

Gd

dt
2r = GR2

( 2
Gω2 × 2r

)
= GR2

[( 2
Gω1 + 2

1ω2
) × 2r

] = GR2
[(2R1

1
Gω1 + 2

1ω2
) × 2r

]
= R

0.146θ̇ sin (θ + ϕ) + 0.707ϕ̇ cos ϕ + 0.853θ̇ sin (θ − ϕ)

−0.707θ̇ cos θ

0.146θ̇ cos (θ + ϕ) − 0.707ϕ̇ sin ϕ − 0.853θ̇ cos (θ − ϕ)

 (9.513)
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where

2
Gω1 = 2R1

1
Gω1 =

0.70711ϕ̇ sin θ

0.70711ϕ̇ cos θ

−0.70711ϕ̇

 (9.514)

2
Gω2 = 2

Gω1 + 2
1ω2 =

0.70711ϕ̇ sin θ + θ̇

0.70711ϕ̇ cos θ

−0.70711ϕ̇

 (9.515)

2
Gv = 2

Gω2 × 2r =

 0.70711Rϕ̇ cos θ

−R
(
θ̇ + 0.70711ϕ̇ sin θ

)
0

 (9.516)

GR2 = GR1
1R2 (9.517)

The accelerations 1a and Ga are the direct accelerations that we can measure
when we are standing in B1 or G, respectively. However, there are some other second
derivatives that can be measured indirectly. The acceleration 2

1a is given as

2
1a =

1d

dt

1d

dt
2r =

1d

dt
2
1v = 2

1α2 × 2r + 2
1ω2 × ( 2

1ω2 × 2r
)

=
θ̇

0
0

 ×
θ̇

0
0

 ×
0

0
R

 =
 0

0
−Rθ̇2

 (9.518)

and therefore,

1a = 1R2
2
1a =

 0

0.70711Rθ̇2

−0.70711Rθ̇2

 (9.519)

The acceleration 2
Ga is given as

2
Ga =

Gd

dt

Gd

dt
2r =

Gd

dt
2
Gv = 2

Gα2 × 2r + 2
Gω2 × ( 2

Gω2 × 2r
)

=

0.707ϕ̇ sin θ + θ̇

0.707ϕ̇ cos θ

−0.707ϕ̇

 ×


0.707ϕ̇ sin θ + θ̇

0.707ϕ̇ cos θ

−0.707ϕ̇

 ×

0

0

R




=

 −0.707Rϕ̇
(
θ̇ + 0.707ϕ sin θ

)
−0.5Rϕ̇2 cos θ

−0.5Rϕ̇2 cos2 θ − R
(
θ̇ + 0.707ϕ sin θ

) (
θ̇ + 0.707ϕ̇ sin θ

)
 (9.520)

and therefore,

2a = GR2
2
Ga (9.521)
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where
GR2 = GR1

1R2 (9.522)

=
cθcϕ + 0.707sθsϕ 0.707cθsϕ − cϕsθ 0.707sϕ

0.707sθ 0.707cθ −0.707
0.707cϕsθ − cθsϕ 0.707cθcϕ + sθsϕ 0.707cϕ


The double mixed acceleration 22

G1a is given as

22
G1a =

Gd

dt

1d

dt
2r = (2

Gω2 × 2
1ω2

) × 2r + 2
1ω2 × (2

Gω2 × 2r
)

=
−0.707Rθ̇ϕ̇

0
0

 +
 0

0
−Rθ̇

(
θ̇ + 0.707ϕ̇ sin θ

)


=
 −0.707Rθ̇ϕ̇

0
−Rθ̇

(
θ̇ + 0.707ϕ̇ sin θ

)
 (9.523)

The first term, −0.707Rθ̇ϕ̇ı̂2, is the Razı acceleration and the third term,
−Rθ̇

(
θ̇ + 0.707ϕ̇ sin θ

)
k̂2, is the mixed centripetal acceleration of P .

Employing the mixed-derivative transformation formula (8.255), we can determine
2
1a from 22

G1a as

2
1a = 22

G1a + ( 2
1ω2 − 2

Gω2
) × 2

1v =
 0

0
−Rθ̇2

 (9.524)

which must be the same as (9.518).

9.6 � ACCELERATION TRANSFORMATION MATRIX

Consider the motion of a rigid body B in the global coordinate frame G, as shown
in Figure 9.6. Assume the body-fixed frame B(oxyz ) is coincident at an initial time t0
with the global frame G(OXYZ ). At any time t �= t0, B is not necessarily coincident
with G, and therefore, the homogeneous kinematic transformation matrix GTB(t) is
time varying.

The acceleration of a body point in the global coordinate frame can be found by
applying a homogeneous acceleration transformation matrix GAB ,

GaP (t) = GAB
GrP (t) (9.525)

where GAB is the homogeneous acceleration transformation matrix

GAB =
[

Gα̃B − Gω̃B Gω̃T
B

Gd̈B − (
Gα̃B − Gω̃B Gω̃T

B

)
GdB

0 0

]
=

[
GSB

Gd̈B − GSB
GdB

0 0

]
(9.526)
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Proof : Based on the homogeneous coordinate transformation

GrP (t) = GTB
BrP (9.527)

GTB =
[

GRB
GdB

0 1

]
(9.528)

we have
GvP = GṪB

GT −1
B

GrP (t)

=
[

GṘB
GRT

B
GḋB − GṘB

GRT
B

GdB

0 0

]
GrP (t)

=
[

Gω̃B
GḋB − Gω̃B

GdB

0 0

]
GrP (t)

= GVB
GrP (t) (9.529)

To find the acceleration of a body point in the global frame, we take the second
time derivative from GrP (t) = GTB

BrP ,

GaP = d2

dt2
GTB

BrP = GT̈B
BrP (9.530)

and substitute for BrP :

GaP = GT̈B
GT −1

B
GrP (t) = GAB

GrP (t) (9.531)

GAB = GT̈B
GT −1

B (9.532)

Substituting for GT̈B and GT −1
B provides

GaP (t) =
[

GR̈B
Gd̈B

0 0

] [
GRT

B − GRT
B

GdB

0 1

]
GrP (t)

=
[

GR̈B
GRT

B
Gd̈B − GR̈B

GRT
B

GdB

0 0

]
GrP (t)

=
[

Gα̃B − ω̃ ω̃T Gd̈B − (
Gα̃B − ω̃ ω̃T

)
GdB

0 0

]
GrP (t)

=
[

GSB
Gd̈B − GSB

GdB

0 0

]
= GAB

GrP (t) (9.533)

where
GR̈B

GRT
B = Gα̃B − ω̃ ω̃T = GSB (9.534)

�

Example 583 Velocity, Acceleration, and Jerk Transformation Matrices The veloc-
ity transformation matrix is a matrix to map a position vector to its velocity vector.
Assume p and q denote the position vectors of two body points P and Q:

Gq − Gp = GRB

(
Bq − Bp

)
(9.535)



866 Acceleration Kinematics

Assume we have the kinematics of one of the points, say P . Then the position of the
other point is

Gq = Gp + GRB

(
Bq − Bp

)
(9.536)

This equation is similar to
Gr = Gd + GRB

Br (9.537)

where the origin of the B-frame is at point P and Br indicates the position of Q relative
to P . Taking a time derivative shows that

Gq̇ − Gṗ = Gω̃B

(
Gq − Gp

)
(9.538)

which can be converted to[
Gq̇
0

]
=

[
Gω̃B

Gṗ − Gω̃B
Gp

0 0

] [
Gq
1

]
= GVB

[
Gq
1

]
(9.539)

The matrix [V ] is the homogeneous velocity transformation matrix. Similarly, we obtain
the acceleration equation

Gq̈ − Gp̈ = Gα̃B

(
Gq − Gp

) + Gω̃B

(
Gq̇ − Gṗ

)
= Gα̃B

(
Gq − Gp

) + Gω̃B Gω̃B

(
Gq − Gp

)
= (

Gα̃B − Gω̃B Gω̃T
B

) (
Gq − Gp

)
= GSB

(
Gq − Gp

)
(9.540)

which can be converted to [
Gq̈
0

]
= [A]

[
Gq
1

]
(9.541)

where

[A] =
[

Gα̃B − Gω̃B Gω̃T
B

Gp̈ − (
Gα̃B − Gω̃B Gω̃T

B

)
Gp

0 0

]
=

[
GSB

Gp̈ − GSB
Gp

0 0

]
(9.542)

The matrix [A] is the homogeneous acceleration transformation matrix for rigid motion.
The homogeneous jerk transformation matrix can be found by another

differentiation:

G
...
q − G

...
p =

=
[( ·

Gα̃B + 2 Gω̃B Gα̃B

)
+ (

Gα̃B + Gω̃2
B

)
Gω̃B

] (
Gq − Gp

)
=

( ·
Gα̃B + 2 Gω̃B Gα̃B + (

Gα̃B + Gω̃2
B

)
Gω̃B

) (
Gq − Gp

)
= (

Gχ̃B + 2 Gω̃B Gα̃B + Gα̃B Gω̃B + Gω̃3
B

) (
Gq − Gp

)
(9.543)
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which can be converted to [
G

...
q

0

]
= [J ]

[
q
1

]
(9.544)

where [J ] is the homogeneous jerk transformation matrix

[J ] =
[
J11 J12

0 0

]
(9.545)

where
J11 = Gχ̃B + 2 Gω̃B Gα̃B + Gα̃B Gω̃B + Gω̃3

B (9.546)

J12 = Gp̈ − (
Gχ̃B + 2 Gω̃B Gα̃B + Gα̃B Gω̃B + Gω̃3

B

)
Gp (9.547)

Example 584 � Homogeneous Jerk Transformation Matrix Following the same
pattern we may define a jerk transformation as

GjP (t) = GUB
GrP (t) (9.548)

where
GJB =

[
G

...
RB

G
...
dB

0 0

] [
GRT

B −GRT
B

GdB

0 1

]
=

[
G

...
RB

GRT
B

G
...
dB − G

...
RB

GRT
B

GdB

0 0

]
(9.549)

and GUB is the jerk transformation matrix:

G
...
RB

GRT
B = GUB

=
··

Gω̃B − 2

( ·
Gω̃B − ω̃ ω̃T

)
ω̃T − ω̃

( ·
Gω̃B − ω̃ ω̃T

)T

= Gχ̃B − 2
(
Gα̃B − ω̃ ω̃T) ω̃T − ω̃

(
Gα̃B − ω̃ ω̃T)T

(9.550)

Example 585 � Kinematics of the Gripper of a Planar R‖R Manipulator
Figure 9.28 illustrates an R‖R planar manipulator with joint variables θ1 and θ2. Links
(1) and (2) are both R‖R(0), and therefore, the transformation matrices are

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0
0 0 0 1

 (9.551)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0
0 0 0 1

 (9.552)
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x2

y2

y0

y1

x1

x0

θ1

θ2B0

B1

B2

l2

l 1

M0

M1 M2

Figure 9.28 An R‖R planar manipulator with joint variables θ1 and θ2.

0T2 = 0T1
1T2 (9.553)

=


c (θ1 + θ2) −s (θ1 + θ2) 0 l2c (θ1 + θ2) + l1cθ1

s (θ1 + θ2) c (θ1 + θ2) 0 l2s (θ1 + θ2) + l1sθ1

0 0 1 0
0 0 0 1


The points M1 and M2 are at

0rM1 =


l1 cos θ1

l1 sin θ1

0
1

 1rM2 =


l2 cos θ2

l2 sin θ2

0
1

 (9.554)

0rM2 = 0T1
1rM2 =


l2 cos (θ1 + θ2) + l1 cos θ1

l2 sin (θ1 + θ2) + l1 sin θ1

0
1

 (9.555)

To determine the velocity and acceleration of M2, we need to calculate 0Ṫ2, which can
be done by direct differentiation of 0T2:

0Ṫ2 = d

dt
0T2 (9.556)

=


−θ̇12sθ12 −θ̇12cθ12 0 −l2θ̇12sθ12 − θ̇1l1sθ1

θ̇12cθ12 −θ̇12sθ12 0 l2θ̇12cθ12 + θ̇1l1cθ1

0 0 0 0
0 0 0 0


θ12 = θ1 + θ2 (9.557)

θ̇12 = θ̇1 + θ̇2 (9.558)
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We can also calculate 0Ṫ2 from 0T2 = 0T1
1T2 by the chain rule:

0Ṫ2 = d

dt

(0T1
1T2

) = 0Ṫ1
1T2 + 0T1

1Ṫ2 (9.559)

where

0Ṫ1 = θ̇1


− sin θ1 − cos θ1 0 −l1 sin θ1

cos θ1 − sin θ1 0 l1 cos θ1

0 0 0 0
0 0 0 0

 (9.560)

1Ṫ2 = θ̇2


− sin θ2 − cos θ2 0 −l2 sin θ2

cos θ2 − sin θ2 0 l2 cos θ2

0 0 0 0
0 0 0 0

 . (9.561)

Having 0Ṫ1 and 1Ṫ2, we can find the velocity transformation matrices 0V1 and 1V2

by using 0T −1
1 and 1T −1

2 :

0T −1
1 =


cos θ1 sin θ1 0 −l1

− sin θ1 cos θ1 0 0
0 0 1 0
0 0 0 1

 (9.562)

1T −1
2 =


cos θ2 sin θ2 0 −l2

− sin θ2 cos θ2 0 0
0 0 1 0
0 0 0 1

 (9.563)

0V1 = 0Ṫ1
0T −1

1 = θ̇1
0
1k̃ (9.564)

1V2 = 1Ṫ2
1T −1

2 = θ̇2
1
2k̃ (9.565)

Now, we can determine the velocity of points M1 and M2 in B0 and B1, respectively:

0vM1 = 0V1
0rM1 = θ̇1


−l1 sin θ1

l1 cos θ1

0
0

 (9.566)

1vM2 = 1V2
1rM2 = θ̇2


−l2 sin θ2

l2 cos θ2

0
0

 (9.567)

To determine the velocity of the tip point M2 in the base frame, we can use velocity
vector addition:

0vM2 = 0vM1 + 0
1vM2 = 0vM1 + 0T1

1vM2
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=


− (

θ̇1 + θ̇2
)
l2 sin (θ1 + θ2) − θ̇1l1 sin θ1(

θ̇1 + θ̇2
)
l2 cos (θ1 + θ2) + θ̇1l1 cos θ1

0
0

 (9.568)

We can also determine 0vM2 by using the velocity transformation matrix 0V2:

0vM2 = 0V2
0rM2

where the velocity transformation matrix is

0V2 = 0Ṫ2
0T −1

2 =


0 −θ̇1 − θ̇2 0 θ̇2l1 sin θ1

θ̇1 + θ̇2 0 0 −θ̇2l1 cos θ1

0 0 0 0
0 0 0 0

 (9.569)

where
0T −1

2 = 2T1
1T0 = 1T −1

2
0T −1

1 (9.570)

=


cos (θ1 + θ2) sin (θ1 + θ2) 0 −l2 − l1 cos θ2

− sin (θ1 + θ2) cos (θ1 + θ2) 0 l1 sin θ2

0 0 1 0
0 0 0 1


Furthermore, we can determine the velocity transformation matrix 0V2 using the addi-
tion rule:

0V2 = 0V1 + 0
1V2 (9.571)

where

0
1V2 = 0T1

1V2
0T −1

1 =


0 −θ̇2 0 θ̇2l1 sin θ1

θ̇2 0 0 −θ̇2l1 cos θ1

0 0 0 0
0 0 0 0

 (9.572)

Therefore,
0vM2 = 0V2

0rM2 (9.573)

To determine the acceleration of M2, we need to calculate 0T̈2, which can be done
by direct differentiation of 0Ṫ2:

0T̈2 = d

dt
0Ṫ2 = d

dt

d

dt

(0T1
1T2

) = d

dt

(0Ṫ1
1T2 + 0T1

1Ṫ2
)

= 0T̈1
1T2 + 20Ṫ1

1Ṫ2 + 0T1
1T̈2 (9.574)

We have
0T̈1 = d

dt
0Ṫ1

=


−θ̇2

1 cθ1 − θ̈1sθ1 θ̇2
1 sθ1 − θ̈1cθ1 0 −θ̈1l1sθ1 − l1θ̇

2
1 cθ1

θ̈1cθ1 − θ̇2
1 sθ1 −θ̇2

1 cθ1 − θ̈1sθ1 0 l1θ̈1cθ1 − l1θ̇
2
1 sθ1

0 0 0 0
0 0 0 0

 (9.575)
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1T̈2 = d

dt
1Ṫ2

=


−θ̇2

2 cθ2 − θ̈2sθ2 θ̇2
2 sθ2 − θ̈2cθ2 0 −θ̈2l2sθ2 − l2θ̇

2
2 cθ2

θ̈2cθ2 − θ̇2
2 sθ2 −θ̇2

2 cθ2 − θ̈2sθ2 0 θ̈2l2cθ2 − θ̇2
2 l2sθ2

0 0 0 0

0 0 0 0

 (9.576)

and therefore,

0T̈2 = 0T̈1
1T2 + 20Ṫ1

1Ṫ2 + 0T1
1T̈2

=


r11 r12 0 r14

r21 r22 0 r24

0 0 0 0

0 0 0 0

 (9.577)

where

r11 = −θ̇2
12 cos θ12 − θ̈12 sin θ12

r21 = −θ̇2
12 sin θ12 + θ̈12 cos θ12

r12 = θ̇2
12 sin θ12 − θ̈12 cos θ12

r22 = −θ̇2
12 cos θ12 − θ̈12 sin θ12 (9.578)

r14 = −θ̇2
12l2 cos θ12 − θ̈12l2 sin θ12 − θ̇2

1 l1 cos θ1 − θ̈1l1 sin θ1

r24 = θ̈12l2 cos θ12 − θ̇2
12l2 sin θ12 − θ̇2

1 l1 sin θ1 + θ̈1l1 cos θ1

Having 0T̈1, 1T̈2, and 0T̈2, we can find the acceleration transformation matrices 0A1,
1A2, and 0A2 by using 0T −1

1 , 1T −1
2 , and 0T −1

2 :

0A1 = 0T̈1
0T −1

1 =


−θ̇2

1 −θ̈1 0 0

θ̈1 −θ̇2
1 0 0

0 0 0 0

0 0 0 0

 (9.579)

1A2 = 1T̈2
1T −1

2 =


−θ̇2

2 −θ̈2 0 0

θ̈2 −θ̇2
2 0 0

0 0 0 0

0 0 0 0

 (9.580)

0A2 = 0T̈2
0T −1

2

=


−θ̇2

12 −θ̈12 0 l1θ̇
2
2 cos θ1 + 2θ1θ̇2l1 cos θ1 + θ̈2l1 sin θ1

θ̈12 −θ̇2
12 0 l1θ̇

2
2 sin θ1 + 2θ1θ̇2l1 sin θ1 − θ̈2l1 cos θ1

0 0 0 0

0 0 0 0

 (9.581)
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Now, we can determine the velocities of points M1 and M2 in B0 and B1, respectively:

0aM1 = 0A1
0rM1 =


−l1θ̇

2
1 cos θ1 − θ̈1l1 sin θ1

θ̈1l1 cos θ1 − θ̇2
1 l1 sin θ1

0
0

 (9.582)

1aM2 = 1A2
1rM2 =


−l2θ̇

2
2 cos θ2 − θ̈2l2 sin θ2

θ̈2l2 cos θ2 − θ̇2
2 l2 sin θ2

0
0

 (9.583)

0aM2 = 0A2
0rM2

=


−θ̈12l2 (cos θ12 + sin θ12) − θ̇2

1 l1 cos θ1 − θ̈1l1 sin θ1

θ̈12l2 (cos θ12 − sin θ12) − θ̇2
1 l1 sin θ1 + θ̈1l1 cos θ1

0
0

 (9.584)

9.7 � FORWARD-ACCELERATION KINEMATICS

The forward-acceleration kinematics problem of multibodies is the method of relating
the joint accelerations q̈ to the link accelerations Ẍ,

Ẍ = J q̈ + J̇ q̇ (9.585)

where J is the Jacobian matrix, q is the joint variable associate vector, q̇ is the joint
velocity associate vector, and q̈ is the joint acceleration associate vector:

q =


q1

q2
...

qn

 q̇ =


q̇1

q̇2
...

q̇n

 q̈ =


q̈1

q̈2
...

q̈n

 (9.586)

Consider a serial multibody with n connected links. The vector X is the final link
configuration vector , Ẋ is the final link configuration velocity vector , and Ẍ is the final
link configuration acceleration vector :

X = [
Xn Yn Zn ϕn θn ψn

]T
(9.587)

Ẋ =
[

0vn
0ωn

]
=

[
0ḋn
0ωn

]
(9.588)

= [
Ẋn Ẏn Żn ωXn ωYn ωZn

]T
(9.589)

Ẍ =
[

0an
0αn

]
=

[
0d̈n
0ω̇n

]
= [

Ẍn Ÿn Z̈n ω̇Xn ω̇Yn ω̇Zn

]T
(9.590)
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To calculate the time derivative of the Jacobian matrix
[
J̇
]
, we use Equations

(8.536)–(8.539),

0
i−1ḋi =

{
0
0ωi × 0

i−1di if joint i is R

ḋi
0k̂i−1 + 0

0ωi × 0
i−1di if joint i is P

(9.591)

0
i−1ωi =

{
θ̇i

0k̂i−1 if joint i is R
0 if joint i is P

(9.592)

and take a derivative to find the acceleration of link (i) with respect to its previous
link (i − 1):

0
i−1d̈i =


0
0ω̇i × 0

i−1di + 0
0ωi × (

0
0ωi × 0

i−1di

)
if joint i is R

0
0ω̇i × 0

i−1di + 0
0ωi × (

0
0ωi × 0

i−1di

)
+ d̈i

0k̂i−1 + 2ḋi
0
0ωi−1 × 0k̂i−1 if joint i is P

(9.593)

0
i−1ω̇i =

{
θ̈i

0k̂i−1 + θ̇i
0
0ωi−1 × 0k̂i−1 if joint i is R

0 if joint i is P
(9.594)

Therefore, the acceleration vectors of the final link are

0
0d̈n =

n∑
i=1

0
i−1d̈i (9.595)

0
0ω̇n =

n∑
i=1

0
i−1ωi (9.596)

The acceleration relationships can also be rearranged in the recursive form

0
i−1ω̇i =

{
θ̈i

0k̂i−1 + θ̇i
0
0ωi−1 × 0k̂i−1 if joint i is R

0 if joint i is P
(9.597)

Example 586 Forward Acceleration of a 2R Planar Manipulator The forward
velocity of the 2R planar manipulator of Figure 9.8 is

Ẋ = J q̇ (9.598)[
Ẋ

Ẏ

]
=

[−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

] [
θ̇1

θ̇2

]
The differential of the Jacobian matrix is

J̇ =
[
J̇11 J̇12

J̇21 J̇22

]
(9.599)

where
J̇11 = (−l1 cos θ1 − l2 cos (θ1 + θ2)) θ̇1 − l2 cos (θ1 + θ2) θ̇2

J̇12 = −l2 cos (θ1 + θ2) θ̇1 − l2 cos (θ1 + θ2) θ̇2 (9.600)

J̇21 = (−l1 sin θ1 − l2 sin (θ1 + θ2))θ̇1 − l2 sin (θ1 + θ2) θ̇2

J̇22 = −l2 sin (θ1 + θ2) θ̇1 − l2 sin (θ1 + θ2) θ̇2
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Therefore, the forward-acceleration kinematics of the manipulator can be rearranged in
the form

Ẍ = J q̈ + J̇ q̇ (9.601)

The acceleration of the 2R manipulator can be arranged in the form[
Ẍ

Ÿ

]
=

[−l1 sin θ1 −l2 sin (θ1 + θ2)

l1 cos θ1 l2 cos (θ1 + θ2)

] [
θ̈1

θ̈1 + θ̈2

]
−

[
l1 cos θ1 l2 cos (θ1 + θ2)

l1 sin θ1 l2 sin (θ1 + θ2)

] [
θ̇2

1(
θ̇1 + θ̇2

)2

]
(9.602)

Example 587 � Jacobian Matrix of a Planar Polar Manipulator Figure 8.17
illustrates a planar polar manipulator with the following forward kinematics:

0T2 = 0T1
1T2 =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1




1 0 0 r

0 1 0 0
0 0 1 0
0 0 0 1



=


cos θ − sin θ 0 r cos θ

sin θ cos θ 0 r sin θ

0 0 1 0
0 0 0 1

 (9.603)

The tip point of the manipulator is at[
X

Y

]
=

[
r cos θ

r sin θ

]
(9.604)

and therefore its velocity is[
Ẋ

Ẏ

]
=

[
cos θ −r sin θ

sin θ r cos θ

] [
ṙ

θ̇

]
(9.605)

which shows that

JD =
[

cos θ −r sin θ

sin θ r cos θ

]
(9.606)

9.8 � INVERSE-ACCELERATION KINEMATICS

Inverse-acceleration kinematics refers to determination of the joint acceleration vector
q̈ from forward-acceleration kinematics:

Ẍ =
[

0an
0αn

]
= J q̈ + J̇ q̇ (9.607)
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Assuming that the Jacobian matrix J is square and nonsingular, the joint acceleration
vector q̈ can be found by matrix inversion:

q̈ = J−1 (
Ẍ − J̇ q̇

)
(9.608)

However, calculating J̇ and J−1 becomes more tedious by increasing the DOF of the
multibody.

An alternative technique is to write the equation in the new form

Ẍ − J̇ q̇ = J q̈ (9.609)[
m
n

]
=

[
A 0
C D

]
q̈ (9.610)

where

[
m
n

]
= Ẍ − J̇ q̇ q̇ =



q̈1

q̈2

q̈3

q̈4

q̈5

q̈6


(9.611)

Therefore, the inverse-acceleration kinematics problem can be solved asq̈1

q̈2

q̈3

 = A−1 [m] (9.612)

and q̈4

q̈5

q̈6

 = D−1

[n] − [C]

q̈1

q̈2

q̈3


 (9.613)

The matrix J̇q̇ = Ẍ − J q̈ is called the acceleration bias vector and can be calcu-
lated by differentiating from

0
0ḋ6 =

3∑
i=1

0
0ωi × 0

i−1di (9.614)

0
0ω6 =

6∑
i=1

θ̇i
0k̂i−1 (9.615)

to

0
0a6 = 0

0d̈6 =
3∑

i=1

[0
0ω̇i × 0

i−1di + 0
0ωi × (0

0ωi × 0
i−1di

)]
(9.616)

0
0α6 = 0

0ω̇6 =
6∑

i=1

(
θ̈i

0k̂i−1 + 0
0ωi × θ̇i

0k̂i−1

)
(9.617)
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The angular acceleration vector 0
0α6 is the second half of Ẍ. Then, subtracting the

second half of J q̈ from 0
0α6 provides the second half of the bias vector:

6∑
i=1

0
0ωi × θ̇i

0k̂i−1 (9.618)

We substitute

0
0ωi =

i∑
j=1

θ̇j
0k̂j−1 (9.619)

0
0ω̇i =

i∑
j=1

(
θ̈j

0k̂j−1 + 0
0ωj−1 × θ̇j

0k̂j−1

)
(9.620)

into Equation (9.616),

0
0d̈6 =

3∑
i=1

i∑
j=1

(
θ̈j

0k̂j−1 + 0
0ωj−1 × θ̇j

0k̂j−1

)
× 0

i−1di

+
3∑

i=1

i∑
j=1

θ̇j
0k̂j−1 × (0

0ωi × 0
i−1di

)

=
3∑

i=1

i∑
j=1

θ̈j
0k̂j−1 × 0

i−1di +
3∑

i=1

i∑
j=1

(
0
0ωj−1 × θ̇j

0k̂j−1

)
× 0

i−1di

+
3∑

i=1

i∑
j=1

θ̇j
0k̂j−1 × (0

0ωi × 0
i−1di

)
(9.621)

to find the first half of the bias vector:
3∑

i=1

i∑
j=1

(
0
0ωj−1 × θ̇j

0k̂j−1

)
× 0

i−1di +
3∑

i=1

i∑
j=1

θ̇j
0k̂j−1 × (0

0ωi × 0
i−1di

)
(9.622)

Example 588 Inverse Acceleration of a 2R Planar Manipulator The forward velocity
and acceleration of the 2R planar manipulator are found as

Ẋ = J q̇[
Ẋ

Ẏ

]
=

[−l1sθ1 − l2s (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l2c (θ1 + θ2)

] [
θ̇1

θ̇2

]
(9.623)

Ẍ = J q̈ + J̇ q̇[
Ẍ

Ÿ

]
=

[−l1 sin θ1 −l2 sin (θ1 + θ2)

l1 cos θ1 l2 cos (θ1 + θ2)

] [
θ̈1

θ̈1 + θ̈2

]
(9.624)

−
[
l1 cos θ1 l2 cos (θ1 + θ2)

l1 sin θ1 l2 sin (θ1 + θ2)

] [
θ̇2

1(
θ̇1 + θ̇2

)2

]



Key Symbols 877

The derivative and inverse Jacobian matrices are

J̇ =
[−l1θ̇1cθ1 − l2

(
θ̇1 + θ̇2

)
c (θ1 + θ2) −l2

(
θ̇1 + θ̇2

)
c (θ1 + θ2)

−l1θ̇1sθ1 − l2
(
θ̇1 + θ̇2

)
s (θ1 + θ2) −l2

(
θ̇1 + θ̇2

)
s (θ1 + θ2)

]
(9.625)

J−1 = −1

l1l2sθ2

[ −l2c (θ1 + θ2) −l2s (θ1 + θ2)

l1cθ1 + l2c (θ1 + θ2) l1sθ1 + l2s (θ1 + θ2)

]
(9.626)

Therefore, the inverse-acceleration kinematics of the manipulator

q̈ = J−1 (
Ẍ − J̇ q̇

)
(9.627)

can be arranged as[
θ̈1

θ̈1 + θ̈2

]
= 1

l1l2sθ2

[
l2 cos (θ1 + θ2) l2 sin (θ1 + θ2)

−l1 cos θ1 −l1 sin θ1

] [
Ẍ

Ÿ

]
+ 1

l1l2sθ2

[
l1l2 cos θ1 l2

2
−l2

1 −l1l2 cos θ1

] [
θ̇2

1(
θ̇1 + θ̇2

)2

]
(9.628)

KEY SYMBOLS

a kinematic length of a link
A,B, C,D submatrices of J
B body coordinate frame
c cos
c Jacobian-generating vector
d differential, prismatic joint variable
dx, dy, dz elements of d
d translation vector, displacement vector
D displacement transformation matrix
DOF degrees of freedom
e rotation quaternion
e∗ conjugate of e

G,B0 global coordinate frame, base coordinate frame
ı̂, ̂ , k̂ local coordinate axis unit vectors
ı̃, ̃ , k̃ skew-symmetric matrices of the unit vectors ı̂, ̂ , k̂

Î , Ĵ , K̂ global coordinate axis unit vectors
I = [I] identity matrix
J Jacobian, geometric Jacobian
JD displacement Jacobian
JR rotational Jacobian
Jφ angular Jacobian
JA analytic Jacobian
l length
P prismatic joint, point
q joint coordinate
q vector joint coordinates
r position vectors, homogeneous position vector
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ri element i of r
rij element of row i and column j of a matrix
R rotation transformation matrix, revolute joint
s sin
S rotational acceleration transformation
tij the element of row i and column j of T

T homogeneous transformation matrix
Tarm manipulator transformation matrix
Twrist wrist transformation matrix
T a set of nonlinear algebraic equations of q
v velocity vector
V velocity transformation matrix
û unit vector along axis of ω

ũ skew-symmetric matrix of vector û

u1, u2, u3 components of û

x, y, z local coordinate axes
X,Y,Z global coordinate axes, coordinates of end-effector

Greek
α, β, γ angles of rotation about the axes of global frame
δ Kronecker function, small increment of a parameter
ε small test number to terminate a procedure
θ rotary joint angle
θijk θi + θj + θk

ϕ, θ, ψ angles of rotation about the axes of body frame
φ angle of rotation about û

ω angular velocity vector
û unit vector along axis of ω

ω̃ skew-symmetric matrix of vector ω

ω1, ω2, ω3 components of ω

Symbol
[ ]−1 inverse of matrix [ ]
[ ]T transpose of matrix [ ]
� orthogonal
‖ parallel
⊥ perpendicular

EXERCISES

1. Local Position, Global Acceleration A body is turning about a global principal axis at
a constant angular acceleration of 4 rad/s2. Find the global velocity and acceleration of a
point P at

Br =
10

20
30


(a) If the axis is the Z-axis, the angular velocity is 3 rad/s, and the angle of rotation is

π/3 rad.
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(b) If the axis is the X-axis, the angular velocity is 2 rad/s, and the angle of rotation is
π/4 rad.

(c) If the axis is the Y -axis, the angular velocity is 1 rad/s, and the angle of rotation is
π/6 rad.

2. Global Position, Constant Angular Acceleration A body is turning about the Z-axis at
a constant angular acceleration α̈ = 0.4 rad/s2. Find the global position of a point at

Br =
10

20
30


after t = 3 s when α̇ = 5rad/s if the body and global coordinate frames were coincident at
t = 0 s.

3. � Angular Velocity and Acceleration Matrices A body B is turning in the global frame
G. The transformation matrix can be simulated by a rotation α about the Z-axis followed
by a rotation β about the X-axis.

(a) Determine the axis and angle of rotation û and φ as functions of α and β.

(b) Show that if α and β are changing with constant rate, û and φ also change. Determine
the conditions that keep û constant and the conditions that keep φ constant.

(c) Assume û is constant and φ̇ = 6 rad/s. Determine α̇ and β̇ when φ = 30 deg.

(d) Determine φ̇ when α = 30 deg, β = 45 deg, α̇ = 6 rad/s, and β̇ = 6 rad/s.

4. Turning about x-Axis Find the angular acceleration matrix when the body coordinate
frame is turning −15 deg/s2, 30 deg/s at 45 deg about the x-axis.

5. Angular Acceleration and Euler Angles Calculate the angular velocity and acceleration
vectors in body and global coordinate frames if the Euler angles and their rates are:

ϕ = 0.5 rad ϕ̇ = 2.5 rad/s ϕ̈ = 5 rad/s2

θ = −0.2 rad θ̇ = −3.5 rad/s θ̈ = 3.5 rad/s2

ψ = 0.5 rad ψ̇ = 3 rad/s ψ̈ = 2.5 rad/s2

6. Combined Angular Accelerations

(a) A body B is turning about the z1-axis of a B1-frame with angular acceleration α rad/s2,
while B1 is turning about the X-axis of the global G-frame with angular acceleration
β rad/s2. Determine Bα1, GαB , Gα1, BS1, GSB , GS1.

(b) The frame B1 is also turning about the y2-axis of the B2-frame with angular acceleration
γ rad/s2, while B2 is turning about the X-axis of the global G-frame with angular
acceleration β rad/s2. Determine Bα1, Gα2, Gα1, Bα2, GαB , 2α1, BS1, GS2, GS1, BS2,
GSB , 2S1.
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7. Point on Circumference of a Rolling Disc Determine the acceleration of point P on the
rolling disc of Figure 9.29.

X

Y

x

y

ϕ

θ

B

G

O

r

R

C
P

Figure 9.29 A rolling disc in a round ground.

8. Angular Acceleration by Euler Angles Employing the Euler angle transformation
matrix,

(a) Determine the relations between the Cartesian angular velocity GωB and ϕ̇, θ̇ , and ψ̇ .

(b) Determine the relations between the Cartesian angular acceleration GαB and ϕ̈, θ̈ , and
ψ̈ .

(c) � Determine the relations between the Cartesian angular jerk GjB and
...
ϕ ,

...
θ , and

...
ψ

9. Combined Rotation and Angular Acceleration

(a) Find the rotation matrix for a body frame after 45 deg rotation about the Z-axis followed
by 45 deg about the X-axis and then 90 deg about the Y -axis.

(b) Calculate the angular velocity of the body if it is turning with α̇ = 20 deg/s,
β̇ = −20 deg/s, and γ̇ = 25 deg/s about the Z-, Y -, and X-axes, respectively.

(c) Calculate the angular acceleration of the body if it is turning with α̈ = 2 deg/ s2,
β̈ = 4 deg/s2, and γ̈ = −6 deg/s2 about the Z-, Y -, and X-axes.

10. � A Moving Vehicle on Earth Consider the motion of a vehicle on the Earth surface at
latitude λ and longitude ϕ that is heading north at an angle θ with respect to local north, as
shown in Figure 9.30. The vehicle has a velocity Bv with respect to the road and expressed
in the vehicle frame B. Determine the acceleration vector of the vehicle in:

(a) B-frame

(b) E-frame

(c) G-frame
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ϕ

Y

Z

x

Equator

y

x

X

ω
G

E

λ

Bv

θ

x1

y1

z1

P

α

B

Figure 9.30 A moving vehicle at latitude λ and heading θ with respect to local north.

11. Deflection of the Path of a Falling Particle Determine the horizontal deflection of a
falling particle in the gravitational field of an airless Earth when the particle is released
from a height h above the Earth surface at an altitude λ above the equator plane.

12. A Ferris Wheel Determine the acceleration of point P of the Ferris wheel of Figure 9.31.

13. � Differentiation and Coordinate Frame Define these derivatives:

Gd

dt

Gd

dt
Gr

Gd

dt

Gd

dt
Br

Gd

dt

Bd

dt
Gr

Bd

dt

Gd

dt
Gr

Gd

dt

Bd

dt
Br

Bd

dt

Bd

dt
Gr

Bd

dt

Gd

dt
Br

Bd

dt

Bd

dt
Br

x

y

a

b

ω

P

θ

Figure 9.31 A Ferris wheel.
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14. � Third Derivative and Coordinate Frames Consider a global frame G(OXYZ ), a
body frame B(Oxyz ), and a body point P that is moving in the frame B with a variable
body position BrP = BrP (t), velocity BvP = BvP (t), and acceleration BaP = BaP (t).
Determine how many possible simple and mixed jerks we can define.

15. � Mixed Velocity and Simple Acceleration Consider a local frame B(Oxyz ), that is
rotating in G(OXYZ ) with an angular velocity α̇ = 10 rad/s2 about the Z-axis and a moving
point P in B at

BrP (t) = sin 2t ı̂

Determine Gω̃B , B
Gω̃B , Bv, B

Gv, G
B v, Ba, Ga, B

Ga, G
Ba, GG

GB a, BB
GBa, GG

BGa, BB
BGa.

16. � Mixed Second-Derivative Transformation Formula Consider three relatively rotat-
ing coordinate frames A, B, and C. The frame C is turning about the yB -axis of the
B-frame with angular velocity 8 rad/s and angular acceleration 10 rad/s2, while B is turn-
ing about the xA-axis with angular velocity 5 rad/s and turning about the zA-axis with
angular acceleration 3 rad/s2. Determine the mixed double acceleration AA

CBa if:

(a) A point P is at Cr = [
1 1 1

]
and moving with velocity Cv = [−10 0 10

]
.

(b) A point P is at Cr = [
sin t 0 0

]
.

(c) A point P is at Cr = [
cot s sin t 0

]
.

(d) A point P is at Cr = [
cot s sin t t

]
.

17. An RPR Manipulator Determine the velocity and acceleration of point P at the end
point of the manipulator shown in Figure 9.32.

Y
d

X

l

P

x

y

y

x

θ

ϕ

Figure 9.32 A planar RPR manipulator.

18. A RRP Planar Redundant Manipulator A three DOF planar manipulator with joint
variables θ1, θ2, and d3 is illustrated in Figure 9.33.

(a) Solve the forward kinematics of the manipulator and calculate the position and ori-
entation of the end-effector X, Y , ϕ for a given set of joint variables θ1, θ2, and d3,
where X, Y are global coordinates of the end-effector frame B3 and ϕ is the angular
coordinate of B3.

(b) Solve the inverse kinematics of the manipulator and determine θ1, θ2, and d3 for given
values of X, Y , ϕ.
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(c) Determine the Jacobian matrix of the manipulator and show that the following equation
solves the forward-velocity kinematics:Ẋ

Ẏ

ϕ̇

 = J

θ̇1

θ̇2

ḋ3


(d) Determine J−1 and solve the inverse-velocity kinematics.

(e) Determine J̇ and solve the forward-acceleration kinematics.

(f) Solve the inverse-acceleration kinematics.

y3

y0

y1 x1

x0

θ1

θ2

d 3

l1

x2

y2

x3

ϕ

Figure 9.33 A RRP planar redundant manipulator.

19. A RPR Planar Redundant Manipulator

(a) Figure 9.34 illustrates a three-DOF planar manipulator with joint variables θ1, d2, and
θ2.

(b) Solve the forward kinematics of the manipulator and calculate the position and ori-
entation of the end-effector X, Y , ϕ for a given set of joint variables θ1, θ2, and d3,
where X, Y are global coordinates of the end-effector frame B3 and ϕ is the angular
coordinate of B3.

(c) Solve the inverse kinematics of the manipulator and determine θ1, θ2, and d3 for given
values of X, Y , ϕ.

(d) Determine the Jacobian matrix of the manipulator and show that the following equation
solves the forward-velocity kinematics:Ẋ

Ẏ

ϕ̇

 = J

θ̇1

θ̇2

ḋ3


(e) Determine J−1 and solve the inverse-velocity kinematics.

(f) Determine J̇ and solve the forward-acceleration kinematics.

(g) Solve the inverse-acceleration kinematics.
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y3

y0

y1

x1

x0

θ2

θ1

l3

d1

x2

y2

x3

ϕ

Figure 9.34 A RPR planar redundant manipulator.

20. � An Offset Articulated Manipulator Figure 9.35 illustrates an offset articulated
manipulator.

(a) Solve the forward kinematics of the manipulator.

(b) Solve the inverse kinematics of the manipulator.

(c) Solve the forward-velocity kinematics of the manipulator.

(d) Solve the inverse-velocity kinematics of the manipulator.

(e) Solve the forward-acceleration kinematics of the manipulator.

(f) Solve the inverse-acceleration kinematics of the manipulator.

 

 

θ1

θ3

θ2

z2

z3
z0 x2

l3

l1

x0

y0

z1

x1
l 2

P

x3

d1

Figure 9.35 An offset articulated manipulator.

21. Coriolis Acceleration A disc with radius R = 1 m is turning in a horizontal plane with
ω = ωK̂ and α = αK̂ . We shoot a particle m with speed v = 10Î m/s from the center of
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the disc which is at the origin of the disc coordinate frame B(Oxyz ) and global coordinate
frame G(OXYZ ). If we ignore any friction between m and the disc, determine the local
coordinate of the point where m reaches the periphery of the disc if:

(a) ω = 10 rad/s and α = 0

(b) ω = 10 rad/s and α = 1 rad/s2

(c) ω = 10 rad/s and α = −1 rad/s2

(d) ω = sin t rad/s

22. Coriolis and Effective Forces A disc with radius R = 1 m is turning in a horizontal
plane with ω = ωK̂ and α = αK̂. We shoot a particle m in a radial channel with speed
v = 10Î m/s from the center of the disc which is at the origin of the disc coordinate frame
B(Oxyz ) and global coordinate frame G(OXYZ ). If we ignore any friction between m and
the channel, determine the Coriolis and effective forces on m during its motion if:

(a) ω = 10 rad/s and α = 0

(b) ω = 10 rad/s and α = 1 rad/s2

(c) ω = 10 rad/s and α = −1 rad/s2

(d) ω = sin t rad/s

23. Free Fall from a Long Distance We drop a particle of mass m = 1 kg from a height
h = 1000 m above Shiraz at coordinate 29◦36′54”N, 52◦32′17”E. Determine the coordinate
of impact to the ground relative to the vertical position under the drop point if:

(a) We assume the ground is flat and g is constant.

(b) We asume the ground is spherical and g is constant.

(c) We asume the ground is spherical and g is not constant.

(d) � Compare the results of: Shiraz with Fargo, North Dakota, at 46◦52′N, 96◦48′ W;
Toronto, Canada, at 43◦40′N, 79◦24′ W; New York at 40◦48′ N, 73◦58′ W; Melbourne,
Australia, at 37◦47′ S, 144◦58′ E; and London GB at 51◦32′ N, 0◦5′ W.

Shiraz is a city in Iran close to the Persian Gulf and is famous for its wine.

24. Foucault Pendulum, Approximate Solution Use the data

ωE ≈ 7.292 1 × 10−5 rad/s g0 ≈ 9.81 m/s2

λ = 29◦36 ′54 ′′ N ϕ = 52◦32 ′17 ′′ E

l = 100 m x0 = l cos 10 = 17.365 m

for a Foucault pendulum and determine the approximate angular velocity of the plane of
oscillation ω and the path of the projection of m on the (x, y)-plane.

25. � Mixed Double or Triple Jerk Consider three relatively rotating frames A, B, and C.
Derive an equation for the mixed double or triple jerks AAA

CBBj, AAA
BCBj, AAA

BBCj, AAA
BCCj, AAA

CBCj,
AAA
CCBj.

26. � Mixed Triple Jerk Consider four relatively rotating frames A, B, C, and D. Derive
an equation for the mixed jerks AAA

DCB j.
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27. � Razı Acceleration Consider a point P on the disc with radius R = 1 m in Figure 9.27
and the following information:

2
1ω2 = θ̇ ı̂2 =

θ̇

0
0

 1
Gω1 = ϕ̇Ĵ =

0
ϕ̇

0

 2rP =
0

0
r


Determine GvP , 1v, 2

1v, 2
Gv, 2

1a, 1a, 2
Ga, 22

G1a, tangential acceleration, mixed centripetal
acceleration, mixed Coriolis acceleration, and Razı acceleration if:

(a) r = R, θ̇ = 10 rad/s, ϕ̇ = 2 rad/s, and all other variables are zero

(b) r = R, θ̇ = cos 10t rad/s, ϕ̇ = cos 2t rad/s, and all other variables are zero

(c) r = R, θ̇ = 10 rad/s, ϕ̇ = 2 rad/s, θ̈ = 1 rad/s, ϕ̈ = −0.2 rad/s, and all other variables
are zero

(d) r = t , θ̇ = cos 10t rad/s, ϕ̇ = cos 2t rad/s, and all other variables are zero

(e) r = R sin t , θ̇ = cos 10t rad/s, ϕ̇ = cos 2t rad/s, and all other variables are zero

28. � Acceleration Transformation Matrix Solve the following exercises by the accceler-
ation transformation matrix method:

(a) 17

(b) 18

(c) 19

(d) 20

29. � Forward- and Inverse-Acceleration Kinematics Solve the forward- and inverse-
acceleration kinematics of the multibody of the following exercises.

(a) 17

(b) 18

(c) 19

(d) 20
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Constraints

In applied mechanics, there are always some restrictions on the motion of particles
and rigid bodies. The mathematical expression of the restrictions is called constraints .
We classify and review the analytic expressions of constraints to show how they are
affecting the actual motions.

10.1 HOMOGENEITY AND ISOTROPY

Consider two points P1(x1, y1, z1) and P2(x2, y2, z2) at positions Gr1 and Gr2 expressed
in a coordinate frame G attached to a space S. We define their distance as

d = ∣∣Gr1 − Gr2
∣∣

=
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 (10.1)

If the distance d is invariant under a coordinate translation, then the space S is called
homogeneous , and if it is invariant under a coordinate rotation, then the space S is
called isotropic. A homogeneous and isotropic space is called a Euclidean space.

Proof : Assume that we translate the coordinate frame G in space S by a translation
vector Gd. The new position vectors r′

1, r′
2 of points P1 and P2 would be

Gr′
1 = Gr1 + Gd (10.2)

Gr′
2 = Gr2 + Gd (10.3)

which shows the distance is invariant under a coordinate translation:

d = ∣∣Gr′
1 − Gr′

2

∣∣ = ∣∣Gr1 + Gd − Gr2 − Gd
∣∣ = ∣∣Gr1 − Gr2

∣∣ (10.4)

Now assume that we rotate the coordinate frame G in space S by a rotation
matrix R. The new position vectors of points P1 and P2 would be

Gr′
1 = RGr1 (10.5)

Gr′
2 = RGr2 (10.6)

which shows the distance is invariant under a coordinate rotation:

d = ∣∣Gr′
1 − Gr′

2

∣∣ = ∣∣RGr1 − RGr2
∣∣ = |R| ∣∣Gr1 − Gr2

∣∣
= ∣∣Gr1 − Gr2

∣∣ (10.7)

887
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A homogeneous and isotropic space is flat, uniform, continuous, compact, and
infinite. �

Example 589 � Euclidean Time and Position Spaces The kinematic space in which
the physical motion takes place is assumed to be a three-dimensional position Euclidean
space E3. The time t is assumed to be a one-dimensional Euclidean space E1 and
independent of the position space. Motion is shown by the path that a describing point
traces when time goes by. A Euclidean space is indicated by two characteristics:

1. Homogeneity
2. Isotropy

The position space is homogeneous and isotropic. The time space is only homo-
geneous because isotropy is not defined for one-dimensional spaces.

The Euclidean position space, which may also be called Cartesian space or 3-space,
is the space of triple real numbers (x, y, z). These numbers are scale factors on the
axes of a scaled positive orthogonal triad and indicate the coordinates of a point P .

Example 590 � Alternative Definition of Euclidean Space In geometry, a space in
which the axioms and postulates of Euclidean geometry applies is a Euclidean space.
The main Euclidean axioms and postulates are:

1. The sum of angles of a triangle is 180 deg.
2. The distance between two parallel lines is constant.

Example 591 � Nonhomogeneous Time Space A time line between two points is
defined as the length of a period of time, such as a minute. If a minute at two different
times takes the same length, the time space is homogenous; otherwise, the time space
is nonhomogeneous. In a nonhomogeneous time space, one minute of today is longer
(slower) or shorter (faster) than tomorrow.

Is there any practical method to measure the length of a minute and determine if
the time space is nonhomogeneous?

Example 592 � Homogeneity of Time Space The homogeneity of time for a
dynamic system

mr̈ = F(ṙ, r, t) (10.8)

is equivalent to have no time in the force function. Such a system is invariant with
respect to time translation. The time invariance property of force functions implies
that the laws of nature remain constant. A mathematical description of this fact is: If
r = r(t) is a solution for mr̈ = F, then r = r(t + τ), τ ∈ R, is also a solution. So, there
must be no time t in F, explicitly:

mr̈ = F (ṙ, r) (10.9)
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To have an explicitly time-dependent force function, we should have two interacting
systems A and B. Then the influence of the subsystem B on A can be expressed by a
time-varying force function.

Example 593 � Homogeneous and Anisotropic Position Space A uniformly
stretched space in a direction is still homogenous but no longer isotropic. Such a
position space is similar to a uniformly moving river in which the speed of a boat is
different in different directions. However, its speed is the same if the boat is displaced
parallel to itself.

Example 594 � Particle, Point Mass, and Impenetrability Different points of a
three-dimensional Euclidean space E3 have different position vectors ri . A particle Pi

is a point in E3 that permanently carries a characteristic called the mass mi . Such a
particle is a point mass and can be shown by mi or Pi . Every mi is a positive real
constant for all times t . The position vector ri(t) of mi with respect to a fixed point
in E3 is a single-valued, continuous vector function of t . Therefore, every particle
occupies one and only one position in E3 at any given time t . It indicates that, if
there exists a single time t0 at which two particles m1 and m2 have different positions,
r1(t0) �= r2(t0), then their positions never coincide, r1(t) �= r2(t). Furthermore, if there
exists a single time t0 at which two particles m1 and m2 have the same position,
r1(t0) = r2(t0), then their positions coincide permanently, r1(t) = r2(t). This property
of point masses is called the impenetrability . Figure 10.1 illustrates the impenetrability
property.

X

x1

0

x2

P1
P2

Figure 10.1 Two moving particles in a one-dimensional space will have x1(t) �= x2(t) if
x1(t0) �= x2(t0).

Example 595 Galileo Relativity Principle To analyze mechanical phenomena, it is
necessary to choose a frame of reference. The laws of motion are in general different
in form in different frames. So, a simple phenomenon in frame A might be complicated
in frame B. A frame in which the position space is homogeneous and isotropic and
time is homogeneous is called an inertial frame.

Consider a force-free particle in an inertial frame G. Because of homogeneity of
position and time, the dynamics of the particle cannot explicitly depend on either the
position vector r of the particle or the time t . So, it must be a function of velocity v only.
Furthermore, because of the isotropy of space, its dynamics must also be independent
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of the direction of v, and therefore, it is a function only of its magnitude v2. For such
a force-free particle, we have

r̈ = a = 0 ṙ = v = c1 r = c1t + c2 (10.10)

In an inertial frame, any free motion takes place with a constant velocity in both
magnitude and direction. This is called the law of inertia .

If there is another frame moving uniformly in a straight line relative to the inertial
frame, then the law of inertia in the other frame will be the same as in the original
frame: Free motion takes place with a constant velocity. The two frames are equivalent
mechanically, and hence, there is not one but an infinity of inertial frames moving
relatively on straight lines with constant velocities. In all of these frames the properties
of position and time spaces and the laws of mechanics are the same. This equivalence
property in uniformly relative moving frames is called the Galileo relativity principle.

There is no absolute or superior inertial frame which could be preferred to other
frames. The position vectors Ar and Br of a given point P in two different inertial
frames A and B, of which the latter moves relative to the former with velocity v, are
related by

Ar = Br + vt (10.11)

with the assumption that time is the same in the two frames:

At = Bt (10.12)

Equations (10.11) and (10.12) are called a Galilean transformation between two inertial
frames A and B.

10.2 DESCRIBING SPACE

To describe the motion of a dynamic system, we may use different spaces with different
dimensions and application. Configuration, event, state, and state–time are the most
applied spaces to express a motion.

10.2.1 Configuration Space

Consider a mechanical system of n particles Pi(i = 1, 2, . . . , n) in a three-dimensional
Euclidean space E3. The positions of the particles are expressed by the vectors Gri =
Gri(t) in a coordinate frame G:

Gri =
 xi(t)

yi(t)

zi(t)

 (10.13)

The motion of the whole system at time t can be expressed by the path of a
single describing point in a 3n-dimensional space made by coordinates xi, yi, zi

(i = 1, 2, . . . , n). Such a space is called a configuration space (SC-space) and
indicated by a set XC :

XC = {xi, yi, zi : i = 1, 2, . . . , n} (10.14)



10.2 Describing Space 891

The describing point is called the configuration point (SC-point), and the path of an
SC-point is called the configuration trajectory (SC-trajectory). The set

SC = {xi(t), yi(t), zi(t) : i = 1, 2, . . . , n} (10.15)

indicates the SC-trajectory of the system in the time T -domain:

T = {t : −∞ < t < ∞} (10.16)

Therefore, every configuration of a system is indicated by a point on a SC-trajectory,
and every point of the SC-trajectory indicates a configuration of the system.

The coordinate axes xi(t), yi(t), zi(t) of an SC-space can be interchanged, so we
may show the SC-space and SC-trajectory as

XC = {ui : i = 1, 2, . . . , 3n} (10.17)

SC = {ui(t) : i = 1, 2, . . . , 3n} (10.18)

The degree of freedom of an SC-point is ideally 3n, which is equal to the number
of dimensions of the SC-space. However, there might be some regions of an SC-space
that are not allowed to or not reachable by an SC-point.

The SC-space is homogeneous and isotropic. The SC-trajectory is a continuous
curve with possible corners and multiple points. A corner is a point of the SC-trajectory
with two tangent vectors.

Example 596 Two Particles on the X-Axis Consider two point masses P1 and P2 on
the X-axis at positions x1 and x2, as shown in Figure 10.1. The configuration space of
this system is shown in Figure 10.2.

The impenetrability property splits the two-dimensional SC-space into two half
spaces: possible and forbidden. The two half spaces are divided by the line x1 = x2.

x1

P

x2
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SC-trajectory
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x1 = x2

x2 > x1

x1 > x2

Figure 10.2 The configuration space of two point masses P1 and P2 that can move on the
X-axis for x2 > x1.
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If for a time t0 we have x2(t0) > x1(t0), then the SC-trajectory of the system can only
be in the half space x2(t) > x1(t).

Example 597 Rigid-Body Configuration Space Consider a mechanical system of n

particles Pi(i = 1, 2, . . . , n) and m rigid bodies Bj(j = 1, 2, . . . ,m). The positions of
the particles are expressed by the vectors Gri = Gri(t) in a coordinate frame G(Oxyz):

Gri =

 xi(t)

yi(t)

zi(t)

 (10.19)

Configuration of the rigid bodies are expressed by the position vectors Grj = Grj (t)

of the origin of their body frames Bj and their orientation angles ϕj , θj , ψj :

Grj =

 xj (t)

yj (t)

zj (t)

 (10.20)

GRBj
= R

(
ϕj (t), θj (t), ψj (t)

)
(10.21)

The motion of the system at time t can be described by an SC-trajectory in a
(3n + 6m)-dimensional orthogonal SC-space made by the coordinates xi, yi, zi, xj ,

yj , zj , ϕj , θj , ψj , i = 1, 2, . . . , n, j = 1, 2, . . . , m.
The configuration of the system is the set

SC =
{

xi(t), yi(t), zi(t), xj (t), yj (t), zj (t), ϕj (t), θj (t), ψj (t)

: i = 1, 2, . . . , n; j = 1, 2, . . . ,m

}
(10.22)

which may also be written as

SC = {ui(t) : i = 1, 2, . . . , 3n + 6m} (10.23)

Example 598 Configuration Space Properties The SC-trajectories are continuous
because every component ui(t) is a continuous function of time. A discontinuous
SC-trajectory is equivalent to the SC-point disappearing at some point of the SC-space
and appearing at another point of the SC-space.

The SC-trajectories may have multiple points because the SC-point can be at a
point of the SC-space at different times. An SC-trajectory without any multiple point
indicates a dynamic phenomenon that never repeats itself.

The SC-trajectory may have corners. A corner is a point at which a direction is
not defined.

The position vector u of an SC-point is a 3n-vector is given as

u = [
u1 u2 u3 . . . u3n

]T
(10.24)
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The velocity and acceleration of an SC-point are also 3n-vectors:

u̇ = [
u̇1 u̇2 u̇3 . . . u̇3n

]T
(10.25)

ü = [
ü1 ü2 ü3 . . . ü3n

]T
(10.26)

The direction of an SC-trajectory is defined by a unit tangent vector ût :

ût = u̇
u̇

=
[
u̇1 u̇2 u̇3 . . . u̇3n

]T(∑3n
i=1 u̇2

i

)1/2
(10.27)

A corner of an SC-trajectory is either a rest point , at which

3n∑
i=1

u̇2
i = 0 (10.28)

or an impulsive point , at which the velocity vector is discontinuous:

lim
ε→0

u̇(t + ε) �= lim
ε→0

u̇(t − ε) (10.29)

At an impulsive point, a sudden force is applied on at least one particle of the system.

Example 599 Two Particles on the x-Axis Consider the position of two particles on
the x-axis with the following functions:

x1 = t2 x2 = x1 + A cos ωt (10.30)

The SC-space of this system is
XC = {x1, x2} (10.31)

and its SC-trajectory is
SC = {

t2, t2 + A cos (ωt)
}

(10.32)

Eliminating t between x1 and x2 provides the explicit form of the SC-trajectory of the
system:

x2 = x1 + A cos
(
ω

√
x1
)

(10.33)

If the system starts moving at time t0 = 0, then

x1(0) = 0 x2(0) = A (10.34)

If A > 0, the impenetrability requires that x2(t) > x1(t) at any time t . Therefore, there
is a limit in the SC-space:

x1 <
π2

4ω2
(10.35)

This limit is equivalent to having a boundary for time:

−∞ < t <
π

2ω
(10.36)

Figure 10.3 illustrates the SC-space and SC-trajectory for A = 1 and some different ω.
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x2

x1
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ω = 1.5

ω = 1
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Figure 10.3 SC-space and SC-trajectory of a system with two particles at x1 = t2 and x2 =
x1 + A cos ωt (x2 > x1) for A = 1 and some different different ω.

Example 600 � Configuration Trajectory of a Particle in a Plane Consider a par-
ticle that is moving in a two-dimensional configuration space of the (x, y)-plane. The
general equations of motion of the particle under a potential force F = mf1(x, y)ı̂ +
mf1(x, y)̂ are

d2x

dt2
= f1(x, y)

d2y

dt2
= f2(x, y) (10.37)

Eliminating t provides a third-order differential equation to determine the trajectory of
the particle in the (x, y)-plane:

(
f2 − y′f1

)
y′′′ =

[
∂f2

∂x
+

(
∂f2

∂y
− ∂f1

∂x

)
y′ − ∂f1

∂y
y′2

]
y′′ − 3f1y

′′2 (10.38)

y = y(x) y′ = dy

dx
(10.39)

The initial conditions of Equations (10.37),

x(0) = x0 ẋ(0) = ẋ0 y(0) = y0 ẏ(0) = ẏ0 (10.40)

transform to a new set of initial conditions for Equation (10.38):

y(0) = y0 y′(0) = y′
0 y′′(0) = y′′

0 (10.41)

As an example, consider a projectile from the origin with velocity v0 at an angle θ :

v = v0 cos θ ı̂ + v0 sin θ ̂ (10.42)

The equations of motion (10.37) are

d2x

dt2
= f1 = 0

d2y

dt2
= f2 = −g (10.43)
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so the trajectory equation (10.38) reduces to

−gy′′′ = 0 (10.44)

The solution of (10.44) is
y′′ = c1 (10.45)

y′ = c1x + c2 (10.46)

y = 1
2c1x

2 + c2x + c3 (10.47)

Employing the initial conditions

y(0) = 0 y′(0) = ẏ0

ẋ0
= tan θ ÿ(0) = −g (10.48)

y′′(0) = dy′

dt

dt

dx
= ẋ0ÿ0 − ẍ0ẏ0

ẋ3
0

= −g

v2
0 cos2 θ

(10.49)

we find the constants of integration as

c1 = −g

v2
0 cos2 θ

c2 = tan θ c3 = 0 (10.50)

and determine the configuration trajectory:

y = −1

2

g

v2
0 cos2 θ

x2 + x tan θ (10.51)

Example 601 � Configuration Trajectory in Space If a particle is moving in a
three-dimensional configuration space of (x, y, z) under a potential force such that its
equations of motion are

ẍ = f1(x, y, z) ÿ = f2(x, y, z) z̈ = f3(x, y, z) (10.52)

then its configuration trajectory is the solution of a pair of differential equations, one
of third order and one of second order:

(
f2 − y′f1

)
y′′′ =

∣∣∣∣∣∣∣∣∣
1

∂f1

∂x
+ y′ ∂f1

∂y
+ z′ ∂f1

∂z

y′ ∂f2

∂x
+ y′ ∂f2

∂y
+ z′ ∂f2

∂z

∣∣∣∣∣∣∣∣∣ y
′′ − 3f1y

′′2 (10.53)

(
f2 − y′f1

)
z′′ = (

f3 − z′f1
)
y′′ (10.54)

These equations come from eliminating t in Equations (10.52).
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10.2.2 Event Space

By adding a time axis to a configuration space, we make an event space. Consider a
mechanical system of n particles Pi (i = 1, 2, . . . , n) in a three-dimensional Euclidean
space E3 with position vectors Gri = Gri(t) = xi(t)ı̂ + yi(t)̂ + zi(t)k̂ expressed in a
coordinate frame G(Oxyz). The motion of the system at time t can be expressed by
the path of a describing point in (3n + 1)-dimensional space made up by coordinates
xi, yi, zi, t (i = 1, 2, . . . , n). Such a space is called an event space or SE-space and is
indicated by the set

XE = {xi, yi, zi, t : i = 1, 2, . . . , n} (10.55)

The describing point is called the SE-point , and the path of an SE-point is called the
SE-trajectory . The SE-set

SE = {xi(t), yi(t), zi(t), t : i = 1, 2, . . . , n} (10.56)

indicates the events or SE-trajectory of the system in the time T -domain:

T = {t : −∞ < t < ∞} (10.57)

Every event of a dynamic system is indicated by a point on a SE-trajectory, and
every point of the SE-trajectory indicates an event of the system. When n = 1, the
SE-trajectory is called the time history of the system.

We may also show the SE-space and SE-trajectory as

XE = {ui, t : i = 1, 2, . . . , 3n} (10.58)

SE = {ui(t), t : i = 1, 2, . . . , 3n} (10.59)

The degree of freedom of an SE-point is ideally equal to 3n + 1, where n is the
number of particles of the system. However, some regions of an SE-space might not
be allowed or not be reachable by an SE-point. The SE-space is homogeneous but is
not isotropic.

The SE-trajectory is a continuous and monotonically increasing curve in the
t-direction. The SE-trajectory might have corners but it never has multiple points.

Proof : To show that the SE-trajectory is a monotonically increasing curve in the
t-direction, we can define the direction ût of the SE-trajectory and show that ût would
never lie on a plane perpendicular to t :

ût = u̇
u̇

=
[
u̇1 u̇2 u̇3 . . . u̇3n 1

]T(∑3n
i=1 u̇2

i + 1
)1/2

(10.60)

The direction vector ût is perpendicular to an axis if the associated component to that
axis is zero. Any component of ût can be zero except the last one, which is associated
to the t-axis. Therefore, ût always has a nonzero component on the t-axis.

In the case that all of the u̇i (i = 1, 2, . . . , 3n) are zero, ût is parallel to the t-axis
and the SE-trajectory indicates a rest point. �
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Example 602 An Increasing Nonlinear Attraction Force Consider a point mass m

on the x-axis that is attracted to the origin by a force F proportional to the nth power
of its displacement:

F = −kmxn n> 0 (10.61)

The particle is released from rest at x(0) = x0. The equation of motion of the particle is

ẍ = ẋ
dẋ

dx
= −kxn (10.62)

An integral of the equation is

ẋ2 = −kxn+1

n + 1
+ C1 (10.63)

C1 = kxn+1
0

n + 1
(10.64)

To determine the event trajectory, we need to find integral of the equation

dx√
k

n + 1

(
xn+1

0 − xn+1
) = dt (10.65)

Example 603 A Decreasing Nonlinear Attraction Force Consider a particle with
mass m on the x-axis that is attracted to the origin by a force F :

F = −k
m

x3
k = 1 (10.66)

The particle is released from rest at x(0) = x0. The equation of motion of the particle is

ẍ = ẋ
dẋ

dx
= − 1

x3
(10.67)

Because of limx→0 F → −∞, the acceleration of the particle approaches infinity, which
indicates the equation of motion is not acceptable at the singular point x = 0.

An integral of Equation (10.67) provides

ẋ2 = 1

x2
− 1

x2
0

(10.68)

Because 1/x2 − 1/x2
0 > 0, we have |x| ≤ x0 and the particle that is released at t = 0

from x = x0 will never depart farther from the origin than its initial position. The
velocity of the particle is directed toward the origin,

ẋ = −
√

1

x2
− 1

x2
0

(10.69)

and is negative during the time interval 0 < t < tc, where tc is the critical time at which
the particle reaches the origin. Because of the equation of motion, ẍ < 0 for x > 0, and
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therefore, the magnitude of the negative velocity increases while the particle approaches
the origin. As x → 0, |ẋ| → ∞, and therefore, we can integrate Equation (10.69) from
t = 0 to t = tc − δ, where the time tc − δ corresponds to x = ε > 0. The limit of the
integral for ε → 0 and δ → 0 provides the SE-trajectory of the system:

x = 1

x0

√
x4

0 − t2 (10.70)

tc = x2
0 (10.71)

To have a monotonically increasing trajectory with time, t must be limited to

0 ≤ t < x2
0 (10.72)

Figure 10.4 depicts the SE-space and time history of the particle. The direction of the
SE-trajectory approaches lying on a plane perpendicular to the t-axis. What happens
to the particle for t > tc is not predictable by these results.

t

x

x0

tc

Figure 10.4 SE-space and SE-trajectory of a particle under a central force F = −m/x3 released
from rest at x(0) = x0.

This problem is similar to the collision problem in central force motions. The
mathematical models of attraction force between two particles, F = −k/xn, n ∈ N , is
an acceptable model only when the particles are apart. The model cannot approximate
the attraction force when the bodies get too close.

Example 604 � Regularization Regularization is a general term referring to the
techniques that remove singularities. In the nonlinear attraction force problem of
Example 603, we need regularization to remove the singularity at x = 0 because
ẋ → ∞.

Let us define new dependent and independent variables u and τ to replace x and t :

x = f (u) lim
x→0

f (u) = 0 (10.73)

g(u) = x′

ẋ
= dt

dτ
(10.74)
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Employing the new variables, we find

u′ = g

f ′ ẋ (10.75)

and the first integral (10.68) becomes

u′2 =
(

g

f ′

)2

ẋ2 =
(

g

f ′

)2
(

1

f 2
− 1

f 2
0

)
(10.76)

To have a finite velocity u′ at collision, we must have
(
g/f ′)2 → 0 when x → 0,

which is equivalent to having g/
(

ff ′) finite when x → 0. If the first term for the series
expansion of g/f ′ is Cf,

g

f ′ = Cf + C1f
2 + C2f

3 + · · · (10.77)

where C is the constant coefficient of the first term. Then g/
(

ff ′) remains finite
at x → 0,

g

ff ′ = C + C1f + C2f
2 + · · · (10.78)

and the velocity in the system of u and τ is finite at the singularity:

u′ = C (10.79)

As an example, if we try x = f (u) = un, then we find g(u) = Cff ′ = Cnu2n−1u′.
Introducing a set of new variables, we must be able to reexpress the equation

of motion. To transform the equation of motion (10.67), we need to calculate the
acceleration ẍ. Direct differentiation shows that

ẋ = dx

dt
= df(u)

du

du(τ )

dτ

dτ

dt
= f ′u′ 1

g
(10.80)

ẍ = d

dt

(
f ′

g
u′
)

= f ′u′ d
2τ

dt2
+ (

f ′u′′ + f ′′u′2) (dτ

dt

)2

(10.81)

However,
d2τ

dt2
= d

dt

1

g
= −g′u′

g3
(10.82)

and therefore,

ẍ = −f ′g′

g3
u′2 + f ′u′′

g2
+ f ′′

g2
u′2 (10.83)

Now, the equation of motion ẍ = −1/x3 becomes

u′′ = −g2

f ′

(
1

f 3
+ 1

g2
f ′′u′2 − 1

g3
f ′g′u′2

)
(10.84)

Let us choose a simple function for f, such as

x = f (u) = u (10.85)

dt

dτ
= g(u) (10.86)
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The new velocity u′ is

u′ = dx

dτ
≡ x′ (10.87)

and therefore, from (10.76), we have

x′2 = g2

(
1

x2
− 1

x2
0

)
(10.88)

To have finite x′ as x → 0 from (10.77), we must have

g = Cx + C1x
2 + C2x

3 + · · · (10.89)

and therefore, the velocity at collision would be

x′ = C (10.90)

Let us assume C = 1 and
g = x (10.91)

to determine τ :

τ =
∫ t

t0

dt

x
(10.92)

Some have suggested beginning with a guess function for f and calculating g and τ ,
including the Finnish scientist Karl Frithiof Sundman (1873–1949), Italian mathe-
matician Tullio Levi-Civita (1873–1941), and Hungarian-American scientist Victor
Szebehely (1921–1997).

10.2.3 State Space

The position and velocity of a particle are collectively called the state of the particle. By
adding new axes for velocity components to a configuration space, we make the state
space of a system. Consider a mechanical system of n particles Pi (i = 1, 2, . . . , n)

in a three-dimensional Euclidean E3 with the position and velocity vectors ri(t) =
xi(t)ı̂ + yi(t)̂ + zi(t)k̂ and vi (t) = ẋi (t)ı̂ + ẏi (t)̂ + żi (t)k̂. The motion of the system
at time t can be expressed by the path of a describing point in a 6n-dimensional
state space or SS-space made by coordinates xi, yi, zi, ẋi , ẏi , żi (i = 1, 2, . . . , n). The
SS-space is indicated by a set XS :

XS = {xi, yi, zi, ẋi , ẏi , żi : i = 1, 2, . . . , n} (10.93)

The describing point is called the SS-point , and the path of a SS-point is called the
SS-trajectory . The set

SS = {xi(t), yi(t), zi (t) , ẋi(t), ẏi(t), żi (t) : i = 1, 2, . . . , n} (10.94)

indicates the state or SS-trajectory of the system in the time T -domain:

T = {t : −∞ < t < ∞} (10.95)
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Every state of a system is indicated by a point on an SS-trajectory, and every point of
the SS-trajectory indicates a state of the system. When n = 1, the SS-space is called
phase plane and a set of SS-trajectories is called the phase portrait of the system.

We may also show the SS-space and SS-trajectory by the sets

XS = {ui, u̇i , : i = 1, 2, . . . , 3n} (10.96)

SS = {ui(t), u̇i(t) : i = 1, 2, . . . , 3n} (10.97)

The degree of freedom of an SS-point is ideally equal to 6n, where n is the number
of particles of the system. However, there might be some regions of an SS-space that
are not permitted to or not reachable by an SS-point. The SS-space is homogeneous
and isotropic.

The SS-trajectory is a continues curve with possible corners and multiple points.
The corners of SS-trajectories may also be called the equilibria or singular points .

Example 605 A Mass–Spring System Consider a mass m attached to a linear spring
with stiffness k as shown in Figure 10.5:

m = 1 kg k = 1 N/m (10.98)

The mass is released to move from the following initial conditions:

x(0) = x0 = a ẋ(0) = ẋ0 = 0 (10.99)

The equation of motion of the system is

ẍ + x = 0 (10.100)

Employing the identity ẍ = ẋ dx/dx, we can integrate the equation of motion and find
the energy equation,

1
2 ẋ2 + 1

2x2 = E (10.101)

where the constant of integration E is the mechanical energy of the system:

E = 1
2 ẋ2

0 + 1
2x2

0 = 1
2a2 (10.102)

Equation (10.101) is the SS-trajectory and (x, ẋ) is the SS-space of the system.
Figure 10.6 illustrates the phase portrait of the system for a few values of a. Consider
the trajectory for x0 = a = 0.01 m. The initial condition provides E = 0.00005 J, and
the equation of energy indicates a circle. The initial position a determines the level
of energy of the system, E = a2/2 > 0. The applied force on m is F = −kx, so the

k

x

m

Figure 10.5 A mass–spring vibrating system.
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x [m]

.
x [m/s]

0.01

0.01

0.015−0.015

Figure 10.6 The SS-trajectory and SS-space of a mass–spring system.

spring attracts m toward the origin by providing a negative acceleration. The negative
acceleration generates a negative velocity such that condition (10.101) is satisfied. It
shows that the trajectories are traced only in the indicated directions. The direction
of an SS-trajectory at a point can also be determined by dẋ/dx at that point. In this
case it is

dẋ

dx
= dẋ/dt

dx/dt
= −x

ẋ
(10.103)

So, when both x and ẋ are positive, the slope of ût is negative.
Employing the equation of motion ẍ/ẋ = −x/ẋ and assigning the x-axis and

ẋ-axis by the unit vectors ı̂ and ̂ , we can determine the direction of the SS-trajectory
(10.101) as

ût = ẋı̂ + ẍ̂√
ẋ2 + ẍ2

= ẋı̂ − x̂√
ẋ2 + x2

(10.104)

The origin (x, ẋ) = (0, 0) is the rest point of the system. The rest positions are also
called equilibrium or singular points . Liner systems like this mass–spring system have
only one equilibrium. Nonlinear systems may have multiple equilibriums with different
stability characteristics.

A closed SS-trajectory indicates a periodic motion. A periodic SS-trajectory is a
level contour of energy and is indicated by the associated value of E.

Example 606 � Phase Plane of Linear Systems The equation of motion of a single
mass mẍ = F(x, ẋ, t) can always be reduced to two first-order equations in terms of
state variables x and v = ẋ as

ẋ = f2 (x, v, t) v̇ = f2 (x, v, t) (10.105)

An example is

ẋ = v v̇ = 1

m
F (x, v, t) (10.106)
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The solution of these equations will provide the state variables as functions of time t :

x = g1(t) v = g2(t) (10.107)

Then the SS-trajectory will be found by eliminating t between g1(t) and g2(t).
A system is called linear if its state equations can be expressed by a set of inde-

pendent linear equations: [
ẋ

v̇

]
=

[
a b

c d

] [
x

v

]
(10.108)

These equations are equivalent to a single second-order equation:

ẍ + pẋ + qx = 0 (10.109)

p = − (a + d) q = ad − bc (10.110)

To obtain the phase portrait of the linear system, we solve Equations (10.108) for their
time history,

x =
{

C1e
s1t + C2e

s2t s1 �= s2 (10.111)

C1e
s1t + C2te

s1t s1 = s2 (10.112)

where s1 and s2 are the solutions of the characteristic equation:

s2 + ps + q = (s − s1) (s − s2) = 0 (10.113)

s1 = 1
2

(
−q +

√
p2 − 4q

)
s2 = 1

2

(
−q −

√
p2 − 4q

)
(10.114)

Equations (10.108) are independent provided that the determinant of the coefficient is
not zero, so q = ad − bc �= 0. There is only one singular point for the linear systems
(10.108) at the origin. However, the shape of the SS-trajectories in the vicinity of the
singular point depends on the characteristic values s1 and s2.

There are four possible classes for nonzero s1 and s2, as are explained below and
shown in Figures 10.7–10.12:

1. Center , if s1 and s2 are complex conjugates with a zero real part.
2. Focus , if s1 and s2 are complex conjugates with a nonzero real part.
3. Node, if s1 and s2 are real and both are positive or both are negative.
4. Saddle, if s1 and s2 are real and one is positive, the other negative.

The first class indicates steady-state oscillatory motion. When the real part of the
characteristic values are zero, there is no divergence or convergence to the singular
point. All trajectories are ellipses with a center at the singular point. The phase portrait
of an undamped mass–spring system belongs to this class. The phase portrait of a
center point is illustrated in Figure 10.7.

The second class indicates an unsteady oscillatory motion. A stable focus occurs
when the real part of the characteristic values are negative, so x and ẋ both converge
to zero, as shown in Figure 10.8. An unstable focus occurs when the real part of the
characteristic values are positive. Then x and ẋ both diverge to infinity, as shown in
Figure 10.9.
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x

.
x

Re

Im

Figure 10.7 When the characteristic values of a linear system are complex conjugates with a
zero real part, the singular point is a center.

x

.
x

Re

Im

Figure 10.8 When the characteristic values of a linear system are complex conjugates with
negative real parts, the singular point is a stable focus.

x

.
x

Re

Im

Figure 10.9 When the characteristic values of a linear system are complex conjugates with
positive real parts, the singular point is an unstable focus.

The third class indicates an asymmetic attraction or repulsion from the singular
point. If the characteristic values s1 and s2 are negative, the singular point is called
a stable node and both x and ẋ converge to zero, as shown in Figure 10.10. If both
characteristic values are positive, the point is called an unstable node, and both x and
ẋ diverge from zero, as shown in Figure 10.11. Because the characteristic values are
real, there is no oscillation in the SS-trajectories.

The fourth class indicates an unstable system that may approach the singular point
before moving asymptotically to infinity. The phase portrait of the system has a saddle
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Figure 10.10 When the characteristic values of a linear system are both real and negative, the
singular point is a stable node.

x

.
x

Re

Im

Figure 10.11 When the characteristic values of a linear system are both real and positive, the
singular point is a unstable node.

x

.
x

Re

Im

Figure 10.12 When the characteristic values of a linear system are real with one positive and
one negative, the singular point is a saddle.

shape as shown in Figure 10.12. There are also two lines passing through the singular
point. The diverging line, with arrows pointing to infinity, corresponds to initial condi-
tions which make s2 = 0. The converging line corresponds to initial conditions which
make s1 = 0.

Example 607 � Rectilinear Motion in a Field Phase plane is a suitable space to
express the behavior of dynamic systems, specially when the applied force on a particle
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is a function of its position and the particle is restricted to move only on an axis:

ẍ = F(x) (10.115)

The function F(x) defines a force field on the x-axis. Having F(x), we can define a
potential function

V (x) = −
∫ x

a

F (x) dx F (x) = −dV

dx
(10.116)

where a is any convenient value of x in the domain for which F(x) is defined and
V (a) = 0. The time derivative of V shows that

dV

dt
= ẋ

dV

dx
= −ẋF (x) (10.117)

Therefore, multiplying (10.115) by ẋ provides

− d

dt
(V + K) = 0 (10.118)

and hence,

V + K =
∫ x

a

F (x) dx + 1
2 ẋ2 = E (10.119)

where E is the constant of integration and the mechanical energy of the system. The
equation of motion (10.115), which gives ẍ as a function of x, is replaced by the
integral of energy (10.119), which gives ẋ2 in terms of x. There are two equal values
of ẋ with opposite signs for every E. Because K ≥ 0, it follows from the integral of
energy that the particle can never leave the region of V ≤ E.

The integral of energy is the equation of possible SS-trajectories of the system.
The actual trajectory is determined by calculating E from the initial conditions.

Example 608 � Rectilinear Motion with ẋ2 = g(x) The rectilinear motion of a par-
ticle under a conservative force field ẍ = F(x) theoretically reduces to an integral of
energy of the form ẋ2 = g(x), where g(x) is a continuous and twice-differentiable func-
tion g(x) ∈ C2. The equation ẋ2 = g(x) determines the SS-trajectories of the system.
The dynamic of the particle can be predicted from the graph of g(x).

There are five possible classes for the dynamics of such a particle. To discover the
different classes, we may plot the function y = g(x). The ordinate y = ẋ2 is propor-
tional to the kinetic energy of the particle, and the slope dy/dx of the graph gives the
associated value of 2ẍ. Motion can only happen on a stretch of the x-axis for which
g(x) ≥ 0.

1. Rest : This is an exceptional case in which g(x) and g′(x) = dg/dx both vanish
at a point x0. So, x0 is the equilibrium point and the graph of g(x) touches the x-axis
at x0 as point c in Figures 10.13(a) and 10.14(a). In the case x(0) = x0, ẋ(0) = 0, we
have x = x0 for all time and the particle rests in equilibrium forever.
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Figure 10.13 A graph of ẋ2 = g(x) corresponding to a libration.

x
c

x
a c

(a) (b)

.
x2 .

x2

Figure 10.14 Two possible graphs of ẋ2 = g(x) corresponding to limitation.

2. Libration: This is an oscillatory motion in which the particle oscillates contin-
ually between two points x = a and x = b on the x-axis. Suppose x(0) = x0 �= 0 and
g(x0) > 0; we have ẋ(0) = √

g(x0) > 0. The velocity ẋ > 0 for sufficiently small values
of time t . For those values, the relation between x and t is

t =
∫ x

x0

dx√
g(x)

(10.120)

Assume that x0 is between two zeros a and b (a < b) of g(x) such that g(x) > 0
for a < x < b, as shown in Figure 10.13(b). Because b is a simple zero of g(x), the
integral (10.120) approaches a finite time when x → b. The graph of g(x) crosses the
x-axis at a and b with a positive slope at a and a negative slope at b. The particle
instantly stops at x = b, where the negative acceleration pulls it back. Similarly, the
particle reaches x = a in a finite time where it instantly stops and moves to the right
again. This back-and-forth motion is called libration. The particle arrives at x = x0

with the same velocity with which it started. The total time of one cycle would be

t =
∮

dx√
g(x)

= 2
∫ b

a

dx√
g(x)

(10.121)

The particle will show the same behavior if it is released from a or b with ẋ = 0.
3. Limitation: This is an approaching motion in which x → c as t → ∞. Assume

the particle starts from x(0) = x0 < c with ẋ(0) = √
g(x0)> 0 and approaches a double

zero of g(x) at x = c, such as in Figure 10.14(a). Because both the acceleration and
velocity of the particle approach zero when x → c, the integral (10.120) diverges and
t → ∞ as x → c. In the case x(0) = x0 >c, the particle moves away from x = c such
that x → ∞ as t → ∞.
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Now consider the situation in which a < x0 < c, where a is a simple zero of
g(x) and c is a double zero of g(x), as shown in Figure 10.13(b). If ẋ(0) < 0, the
particle reaches a in a finite time and then returns to x → c as t → ∞. Point c is
the limit of motion that cannot be reached in a finite time. Such a motion is called a
limitation.

4. Lost : This is a run-away motion in which x → ∞ as t → ∞. Whenever a
particle starts from x(0) = x0 with g(x) > 0 and dg/dx > 0 for x ≥ x0, then x → ∞
as t → ∞. Because the position of the particle cannot be determined at a long time,
it is called a lost situation. If x0 >c, then Figure 10.14(b) illustrates a lost condition.
The mathematical definition of a lost motion is having a divergent integral (10.120)
for x → ∞.

5. Escape: This is a run-away motion in which x → ∞ in a limited time t → t0.
When a particle starts from x(0) = x0 with g(x) > 0 for x ≥ x0 and the integral (10.120)
converges when x → ∞, the motion is called an escape.

10.2.4 State–Time Space

By adding a time axis to a state space, we make a state–time space. Consider a mechan-
ical system of n particles Pi(i = 1, 2, . . . , n) in a three-dimensional Euclidean space
E3 with position and velocity vectors ri(t) = xi(t)ı̂ + yi(t)̂ + zi(t) k̂ and vi (t) =
ẋi (t)ı̂ + ẏi (t)̂ + żi (t) k̂. The motion of the system at any time t can be expressed
by the path of a describing point in a (6n + 1)-dimensional space made by coordinates
xi, yi, zi, ẋi , ẏi , żi , t (i = 1, 2, . . . , n). A state–time space or ST -space is indicated by
the set

XT = {xi, yi, zi, ẋi , ẏi , żi , t : i = 1, 2, . . . , n} (10.122)

The describing point is called the ST -point , and the path of an ST -point is called the
ST -trajectory . The ST -set

ST =
{

xi(t), yi(t), zi(t), ẋi(t), ẏi(t), żi (t), t :

i = 1, 2, . . . , n

}
(10.123)

indicates the state–time or ST -trajectory of the system in the time T -domain:

T = {t : −∞ < t < ∞} (10.124)

Every state–time of a dynamic system is indicated by a point on an ST -trajectory, and
every point of the ST -trajectory indicates a state–time of the system.

We may also show the XT -space and ST -trajectory as

XT = {ui, u̇i , t : i = 1, 2, . . . , 3n} (10.125)

ST = {ui(t), u̇i(t), t : i = 1, 2, . . . , 3n} (10.126)

The degree of freedom of an ST -point is ideally equal to 6n + 1, where n is
the number of particles of the system. However, there might be some regions of an
ST -space that are not permitted to or not reachable by an ST -point. The ST -space is
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homogeneous and is not isotropic. The ST -trajectory is a continuous and monotonically
increasing curve in the t-direction. The ST -trajectory might have corners but it never
has multiple points.

Example 609 A Damped Vibrating System Consider a linear mass–spring–damper
system as shown in Figure 10.15. Let us release the mass from initial conditions
x(0) = x0 > 0 and ẋ(0) = 0. The position is measured from equilibrium, which is the
position at which the weight of m and the spring force balance.

m

k

x

c

m

k c

Equilibrium

Figure 10.15 A linear mass-spring-damper system.

The equation of motion is

mẍ + cẋ + kx = 0 c < 2
√

km (10.127)

Using the definitions

ξ = c

2
√

km
ωn =

√
k

m
ωd = ωn

√
1 − ξ 2 (10.128)

we rewrite the equation of motion as

ẍ + 2ξωn ẋ + ω2
nx = 0 (10.129)

and determine the solution:

x(t) = x0e
−ξωnt cos ωdt (10.130)

ẋ(t) = −x0e
−tξωn (ωd sin ωdt + ξωn cos ωdt) (10.131)

This indicates a diminishing oscillatory motion with a constant frequency ωd and
decaying amplitude x0e

−ξωnt . The ST - and SS-trajectories of the motion are shown
in Figure 10.16. The ST -trajectory is a shrinking circular motion around the t-axis and
finally lies on the axis. The projection of the ST -trajectory on the (x, ẋ)-plane is the SS-
trajectory. The SE-trajectory is the projection of the ST -trajectory on the (x, t)-plane.
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Figure 10.16 The ST - and SS-trajectories of a linear mass–spring–damper system released the
mass from x(0) = 0.1 > 0.

10.2.5 � Kinematic Spaces

Consider a mechanical system of n particles Pi (i = 1, 2, . . . , n) in a three-dimensional
Euclidean space E3 with kinematic vectors

ri(t) = ri (t) = xi (t) ı̂ + yi(t)̂ + zi(t)k̂

ṙi(t) = vi (t) = ẋi (t)ı̂ + ẏi(t)̂ + żi (t)k̂

r̈i(t) = ai (t) = ẍi (t)ı̂ + ÿi(t)̂ + z̈i (t)k̂

...

r(m)
i (t) = x

(m)
i (t)ı̂ + y

(m)
i (t)̂ + z

(m)
i (t)k̂

(10.132)

We can express the motion of the system at time t by the path of a describing point in
different spaces using different kinematic characteristics of the particles.

The combination of acceleration and position is called the rush space or SR-space:

SR = {ui(t), üi(t) : i = 1, 2, . . . , 3n} (10.133)

Adding the time t-axis to a rush space produces the rush–time space or SRT-space:

SRT = {ui(t), üi(t), t : i = 1, 2, . . . , 3n} (10.134)

The combination of acceleration and velocity is called the flash space or SF -space:

SF = {u̇i (t), üi(t) : i = 1, 2, . . . , 3n} (10.135)

Adding the time t-axis to a flash space produces the flash–time space or SFT-space:

SFT = {u̇i (t), üi(t), t : i = 1, 2, . . . , 3n} (10.136)
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The combination of jerk and position is called the spark space or SP -space:

SP = {ui(t),
...
ui(t) : i = 1, 2, . . . , 3n} (10.137)

Adding the time t-axis to a spark space produces the spark–time space or SPT -space:

SPT = {ui(t),
...
ui(t), t : i = 1, 2, . . . , 3n} (10.138)

The combination of jerk and velocity is called the flicker space or SK -space:

SK = {u̇i (t),
...
ui(t) : i = 1, 2, . . . , 3n} (10.139)

Adding the time t-axis to a flicker space produces the flicker–time space or SKT -space:

SKT = {u̇i (t),
...
ui(t), t : i = 1, 2, . . . , 3n} (10.140)

The combination of jerk and acceleration is called the sparkle space or SL-space:

SL = {üi (t),
...
ui(t) : i = 1, 2, . . . , 3n} (10.141)

Adding the time t-axis to a sparkle space produces the sparkle–time space or SLT -
space:

SLT = {üi (t),
...
ui(t), t : i = 1, 2, . . . , 3n} (10.142)

Employing the other kinematic characteristics of the particles of a system, we
can define any kinematic space that expresses a motion better. The describing kine-
matic spaces can also be a combination of more than two kinematic quantities. In any
kinematic space, there might be some forbidden parts that the describing point is not
allowed to enter or touch. The continuity, multiple point, monotonicity, and corner of
the describing trajectory depend on the kinematic characteristics.

Example 610 � Harmonic Motion in Flash Space Consider a harmonic motion as

x = x0 cos ωt (10.143)

where x0 is the initial position. The acceleration of this motion is

ẍ = −x0ω
2 cos ωt (10.144)

Eliminating t provides the flash trajectory:

ẍ + ω2x = 0 − x0 ≤ x ≤ x0 (10.145)

Equation (10.145) is a segment of a straight line in the (ẍ, x)-plane, as shown in
Figure 10.17(a) for x0 = 1 and different ω. The slope of the line (10.145) is equivalent
to the frequency of the harmonic motion (10.143). The system is faster at higher slopes.
The negative slope indicates a stable harmonic system.

Figure 10.17(b) depicts the flash–time trajectory of the motion for ω = 1. The
flash trajectory is the projection of the flash–time trajectory on the (ẍ, x)-plane.
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Figure 10.17 The flash and flash–time spaces of the harmonic motion x = x0 cos ωt : (a) flash
trajectories for different ω; (b) flash–time trajectory for ω = 1.

Example 611 � Comparison of Harmonic and Periodic Motions The flash space
is a good environment in which to compare periodic motions with a simple harmonic
one. A periodic motion makes a closed curve while a harmonic motion is indicated
by a straight line with a negative slope. Comparison of the periodic motion with a
straight line can show how close the periodic motion is to a harmonic motion. Such a
comparison is informative, for example, in the perturbation approximation of periodic
motions.

Let us approximate a periodic motion with a harmonic function using a least-
squares analysis. Consider a periodic motion as

x1 = x0 cos ωt + x0

10
sin 2ωt (10.146)

ẍ1 = −ω2x0 cos ωt − 2

5
ω2x0 sin 2ωt (10.147)

where x0 is the initial position. Ignoring the second harmonic of the motion, we can
approximate the motion with the first harmonic as

x2 = x0 cos ωt ẍ2 = −x0ω
2 cos ωt (10.148)

Figure 10.18 illustrates the comparison of the periodic and harmonic motions in a
flash space. A harmonic approximation x3 is derived as

x3 = A cos ωt (10.149)

We may determine A from the equation

d

dA

∫ 2π

0

(
(x1 − x3)

2 + (ẍ1 − ẍ3)
2) dt = 0 (10.150)

and find

A = x0 (10.151)
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Figure 10.18 A comparison of the periodic motion x1 = x0 cos ωt + x0

10
sin 2ωt and the har-

monic motion x2 = x0 cos ωt in flash space.

10.3 HOLONOMIC CONSTRAINT

A holonomic constraint on a dynamic system is expressed by an equation of configu-
ration displacement and time:

f (u, t) = 0 (10.152)

An equation between the coordinates of the configuration space in the forms

f (x1, y1, z1, x2, y2, z2, x3, y3, z3, . . . , xN/3, yN/3, zN/3) = 0 (10.153)

f (u1, u2, u3, . . . , uN) = f (u) = 0 (10.154)

or reducible to these forms is called a scleronomic holonomic constraint . An equation
between the coordinates of the event space in the forms

f (x1, y1, z1, x2, y2, z2, x3, y3, z3, . . . , xN/3, yN/3, zN/3, t) = 0 (10.155)

f (u1, u2, u3, . . . , uN, t) = f (u, t) = 0 (10.156)

or reducible to these forms is called a rheonomic holonomic constraint . A constraint is
holonomic only if it can be defined by an equation in the configuration or event space.

Every scleronomic holonomic constraint defines a subspace in the configuration
space where the possible motion of the system can occur. Similarly, every rheonomic
holonomic constraint defines a subspace in the event space where the possible motion
of the system can occur. Any motion of a system out of its holonomic subspace is
impossible as long as the constraint exists.

If a holonomic constraint is imposed on finite displacements ui of a describing
point, there is also a constraint on infinitesimal displacements dui of the point:

df(u, t) = f1(du, dt) = 0 (10.157)
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The scleronomic and rheonomic holonomic constraints on infinitesimal displacements
are found by differentiating Equations (10.154) and (10.156), respectively:

N∑
i=1

∂f

∂ui

dui = 0 (10.158)

N∑
i=1

∂f

∂ui

dui + ∂f

∂t
dt = 0 (10.159)

Because both of these differential constraints are total differentials and can be integrated
to the forms (10.154) and (10.156), they are considered holonomic constraints. The
infinitesimal displacement consonants define tangential spaces to the finite displacement
constraint surfaces (10.154) and (10.156). If a differential constraint (10.157) is not a
total differential and is not integrable, it is not considered holonomic.

Proof : Consider a dynamic system with a three-dimensional configuration space
(u1, u2, u3) and a scleronomic holonomic constraint as

f (u1, u2, u3) = 0 (10.160)

The constraint equation defines a surface in the space (u1, u2, u3). To satisfy the con-
straint (10.160), the describing SC-point of the system and its SC-trajectories must lie
in the constraint surface for every possible motion.

When the configuration space has N dimensions, the constraint (10.154) defines
an (N − 1)-dimensional hypersurface in the configuration space in which every SC-
trajectory of the system must lie. Such a constraint surface is rigid and will not change
with time. Figure 10.19 illustrates the geometric interpretation of a scleronomic holo-
nomic constraint in a three-dimensional configuration space.

The time-dependent constraint

f (u1, u2, u3, t) = 0 (10.161)

SC x

f < 0

f = 0

u1
u2

u3
SC-trajectory

f > 0

Figure 10.19 A scleronomic constraint in a three-dimensional configuration space and possible
SC-trajectory.
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defines a rigid surface in the event space (u1, u2, u3, t). We may also interpret the
constraint as a time-variable surface in the configuration space. When the configuration
space has N dimensions, a time-dependent constraint defines an (N − 1)-dimensional
deformable hypersurface in the configuration space in which every SC-trajectory of
the system must lie. Such a constraint surface is not rigid and will change with time
in a prescribed manner. A scleronomic constraint makes a cylindrical surface in the
event space with a rigid projection on the configuration space. Figure 10.20 illustrates
the geometric interpretation of a rheonomic constraint and a scleronomic holonomic
constraint in a three-dimensional event space.

If we fix t at a time t = t0, then a rheonomic constraint reduces to a scleronomic
constraint. Such a scleronomic constraint is called a frozen constraint . The fixing-time
operation is called a freezing process in which the time variable t is eliminated and
(10.163) reduces to (10.162) with similar geometric interpretation.

Equation (10.154) imposes a holonomic scleronomic constraint on the finite dis-
placements of ui , i = 1, 2, 3, . . . , N . If the constraint surface is smooth enough such
that all first partial derivatives of the function f with respect to all arguments exist
and are continuous, we can determine the constraint on infinitesimal displacements dui ,
i = 1, 2, 3, . . . , N , by differentiation:

N∑
i=1

∂f

∂ui

dui = ∇f · du = 0 (10.162)

Assume the describing point of the system is shown by a point u∗
i on the con-

straint surface. The term ∇f defines a tangential plane to the constraint surface at u∗
i .

Equation (10.162) then indicates that any infinitesimal displacement du of the SC-point
must take place in the constraint plane ∇f when the partial derivatives are calculated
at u∗

i . The infinitesimal displacement constraint for the holonomic rheonomic constraint
(10.156) is

N∑
i=1

∂f

∂ui

dui + ∂f

∂t
dt = ∇f · du + ∂f

∂t
dt = 0 (10.163)

SE

u1

u2

t

SE-trajectory

SE-trajectory

f (u1,u2)=0

f (u1,u2,t)=0

Figure 10.20 A rheonomic and a scleronomic constraint in a three-dimensional event space
and possible SE-trajectories.
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u1

SC

f

∇f

u2

u3

u*
i

Figure 10.21 A constraint surface in a 3D configuration space and its constraint plane at a
point u∗

i .

This equation indicates that any infinitesimal displacement du of the SC-point must be
in the constraint plane ∇f when the constraint surface is frozen.

The constraint (10.162) is reducible to (10.154) because its integral

f (u1, u2, u3, . . .) − c = 0 (10.164)

is of the same form. Similarly, the constraint (10.163) is reducible to (10.156). The
constant of integration is not a function of initial conditions u0 and u̇0. It can be
determined by having the coordinates ui of any point of the constraint surface including
u0. Figure 10.21 illustrates a scleronomic constraint surface in a 3D configuration space
along with the constraint plane at a point u∗

i .
Every trajectory lying in a holonomic constraint surface is called a possible tra-

jectory , and any small displacement in the tangent constraint plane is called a possible
displacement . Out of all possible trajectories of a dynamic system, the one that also
satisfies the equations of motion and initial conditions is called the actual trajectory .
Similarly, the small displacement on the tangent constraint plane that satisfies the
equation of motion is called an actual displacement . Any displacement that violates
the constraint equation (10.154) or (10.162) is called an impossible displacement . It is
impossible that the describing point leave the constraint plane by an actual displacement.

The equation of a holonomic constraint f (ui) = 0, i = 1, 2, 3, . . . , N , is a regular
surface if N = 3. It is called a hypersurface if N > 3, although we may call it a surface
regardless of the value of N .

From the Greek holonomic means “lawful,” scleronomic means “rigid,” and rheo-
nomic means “flowing”. �

Example 612 A Box in a Channel on a Table Consider the motion of a box on a
flat table. We attach a Cartesian coordinate frame G to the table such that the Z-axis is
perpendicular to the table. We also attach a body frame B to the box at its geometric
center. We count the freedoms of the box by the possible motions of B in G. The
box is moving on a fixed plane in G, so it has three freedoms. Therefore there must
be three constraints to eliminate one translation and two rotations out of six possible
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freedoms: X, Y , Z, θX, θY , θZ . They are imposed by the table, which does not let the
box change its Z-component and turn about the X- and Y -axes:

Z − Z0 = 0 θX = 0 θY = 0 (10.165)

We may also express the constraint equations in the body frame B:

z − z0 = 0 θx = 0 θy = 0 (10.166)

Now let us assume that the box is sliding in a channel along the x-axis. A top
view of the system is shown in Figure 10.22. The channel also imposes two more
constraints,

Y − X tan α = 0 θZ = 0 (10.167)

and reduces its DOF to 1. The value of X of its mass center will clearly identify the
position of the box because there is a geometric relation between X and Y that indicates
only one of them is independent.

If the channel is mounted on a turntable that is rotating ω/2π times a second
about the Z-axis, then the X- and Y -coordinates of the box are related by a rheonomic
constraint,

X sin (ωt) − Y cos (ωt) = 0 θZ = ωt (10.168)

Such a box still has x or X as the only freedom in the configuration space (x, y, z, θx ,
θy , θz) or (X, Y , Z, θX, θY , θZ). This example indicates that the equation of a constraint
depends on the coordinate frame in which the constraint is expressed. The rheonomic
constraints (10.168) in G would be a scleronomic constraints in B:

y = 0 θz = 0 (10.169)

X

Y

G

x
y

α

B

Figure 10.22 A top view of a sliding box in a channel along the x-axis.
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Example 613 The Pin of a Tight Joint Two bars with length l are connected between
two fixed points with a distance d = 2l apart, as shown in Figure 10.23. The constraints
on the planar motion of the joint A are

x2 + y2 − l2 = 0 (x − 2l)2 + y2 − l2 = 0 (10.170)

Because of these two holonomic constraints, point A has no DOF. The only possible
position of A is the intersection point of the constraint circles of (10.170):

xA = l yA = 0 (10.171)

Taking a derivative, we can find the constraints on a small displacement of A:[
x y

x − 2l y

] [
dx

dy

]
=

[
0
0

]
(10.172)

The determinant of the coefficients of these equations is zero at position (10.171), and
therefore, a small displacement of A in dy is possible:∣∣∣∣ x y

x − 2l y

∣∣∣∣ = 2ly (10.173)

If the distance of the fixed joints is d < 2l, then the constraints would be

x2 + y2 − l2 = 0 (x − d)2 + y2 − l2 = 0 (10.174)

There are two possible positions for joint A; however, it can occupy only one of them:

xA = 1
2d yA = ±

√
l2 − ( 1

2d
)2

(10.175)

We must disassemble the bars and break the constraint to be able to assemble them
at the other possible position. In this situation, the constraints on a small despoilment
of A are [

x y

x − d y

] [
dx

dy

]
=

[
0
0

]
(10.176)

The determinant of the coefficients is not zero at both possible positions. Therefore the
only possible infinitesimal displacement is at dx = 0 and dy = 0.

y

xx

SC

l l

A

Figure 10.23 Two bars with length l are connected at joint A between two walls with a distance
d = 2l.
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Example 614 � Why Constraints? A mechanical system is a combination of rel-
atively moving rigid bodies. We can mathematically define the system by a set of
geometric relations between relatively fixed points and differential relations between
relatively moving points. The set of relations makes a set of constraint equations that
must be satisfied at all time. So, multibody kinematics is nothing but constraint kine-
matics, and the science of multibody dynamics is not complete without knowing how
to analyze and work with constraints. The following dynamic information can be cal-
culated easier by employing constraints:

1. The degree of freedom fC of a dynamic system is the number of dimen-
sions of its SC-space, N , minus the number of independent holonomic con-
straints, L. This number determines the number of independent variables we
need to describe the configuration of the system at any time. Furthermore,
fC indicates how many differential equations of motion we must develop to
determine the value of the variables as functions of time.

2. Associated to every holonomic constraint, we have a constraint force. All inter-
nal forces in the members of a mechanical system as well as contact forces are
constraint forces. We need the constraint forces to design the mechanical parts
of a system.

Example 615 Multiple Constraints and Independence When there are multiple
constraints on the describing point of a dynamic system, they must be linearly inde-
pendent and consistent. The L holonomic constraints fi(u1, u2, u3, . . . , uN , t) = 0,
i = 1, 2, 3, . . . , L, in an N -dimensional configuration space are said to be linearly
independent if we cannot find L not-all-zero constants ai such that

L∑
i=1

aifi (u1, u2, u3, . . . , uN, t) = 0 (10.177)

The constraints are consistent if they are linearly independent and all apply within
the subspace in which the describing point of the dynamic system can have an actual
displacement.

Consider a moving particle in a three-dimensional configuration space (u1, u2, u3)

with two holonomic constraints

f1 (u1, u2, u3) = 0 f2 (u1, u2, u3) = 0 (10.178)

Assume that the two constraints are consistent and define two intersecting surfaces.
The intersection would be a space curve on which the point must move. Therefore,
a moving particle on a prescribed curve in a 3D SC-space is under two holonomic
constraints. Such a particle has only one DOF.

Let us impose a third constraint f3(u1, u2, u3) = 0 on the particle. If the three
constraints are consistent and independent, the first two define a curve and the third
one intersects the curve at a finite number of points. The particle can occupy only one
of the points permanently with no DOF.



920 Constraints

As an example, consider the three constraints

z − z0 = 0 (10.179)

x − x0 = 0 (10.180)

x2 + y2 + z2 − R2 = 0 (10.181)

The intersection of these three constraints indicates two points P1 and P2 where a
particle can actually be in only one of them:

P1 = P1

(
x0,

√
R2 − x2

0 − z2
0, z0

)
(10.182)

P2 = P2

(
x0,−

√
R2 − x2

0 − z2
0, z0

)
(10.183)

If the three constraints are rheonomic, they will define a point that moves in space
in a prescribed manner. Consider the three constraints

z − z0 sin ωt = 0

x − x0 = 0

x2 + y2 + z2 − R2 = 0 (10.184)

Their intersections indicate two points P1 and P2 with variable coordinates:

P1 = P1

(
x0,

√
R2 − x2

0 − z2
0 sin2 ωt, z0

)
(10.185)

P2 = P2

(
x0, −

√
R2 − x2

0 − z2
0 sin2 ωt, z0

)
(10.186)

Such constraints show that the particle will have one of the following motions:

y =


√

R2 − x2
0 − z2

0 sin2 ωt (10.187)

−
√

R2 − x2
0 − z2

0 sin2 ωt (10.188)

Assuming the particle is under the motion (10.187), we can calculate the required force
to cause the motion:

Fy = mÿ (10.189)

= −m

√
2z2

0ω
2

4

z2
0 (3 + cos 4tω) + (

8R2 − 8x2
0 − 4z2

0

)
cos 2tω

(2y)
3
2

The force Fy is the resultant of the three constraint forces in the direction of the motion.
Now consider a free particle with mass m in a three-dimensional space (x, y, z)

under an applied force (10.189). Such a particle will move exactly the same as the
particle under the three constraints (10.184).
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Example 616 � Velocity Vector and Tangent Plane We can take a time derivative
from (10.154) and write Equation (10.162) as

N∑
i=1

∂f

∂ui

dui

dt
= ∇f · u̇ = 0 (10.190)

which indicates that the possible velocity vector u̇ is always on the constraint plane ∇f.
Assume that a constraint f (u) is a k-dimensional subspace of an N -dimensional

configuration space. At every point u∗ of f we have a k-dimensional tangent space
∇f (u∗).

Example 617 Constraint of a Pendulum with Moving Support Consider a planar
pendulum in plane (X, Y ) with a moving support according to the functions

x = x(t) y = y(t) (10.191)

where x and y indicate the position of the support in the configuration plane as shown in
Figure 10.24. Because of the constant length l of the pendulum, there exists a constraint
between the coordinates X and Y of the pendulum tip point:

[X − x(t)]2 + [Y − y(t)]2 − l2 = 0 (10.192)

Therefore, the constraint for a small displacement is

[X − x(t)][dX − ẋ dt) + (Y − y(t)](dY − ẏ dt) = 0 (10.193)

Y

X

θ

m

OG l

x

y

Figure 10.24 A planar pendulum with moving support.

Example 618 � Total Differential Constraint Consider a differential constraint

A(x, t)dx + B(x, t)dy + C(x, t)dz + D(x, t)dt = 0 (10.194)
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If there happens to exist a function f (x, y, z, t) such that

∂f

∂x
= A(x, t)

∂f

∂y
= B(x, t)

∂f

∂z
= C(x, t)

∂f

∂t
= D(x, t) (10.195)

then we can write (10.194) in the form

df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz + ∂f

∂t
dt = 0 (10.196)

The general solution of such a differential constraint is the holonomic constraint

f (x, y, z, t) = c (10.197)

called a total differential constraint.
As an example, consider the differential constraint

sin y dx + (sin z + x cos y) dy + (sin t + y cos z) dz + z cos t dt = 0 (10.198)

which is a total differential constraint because there is a function f such that the
constraint is df:

f (x, y, z, t) = x sin y + y sin z + z sin t = c (10.199)

Example 619 � Constraint Cannot Be a Function of Acceleration Assume a par-
ticle m is under a constraint of position, velocity, acceleration, and time:

f (u, u̇, ü, t) = 0 (10.200)

The constraint equation can theoretically be solved for acceleration as a function of
position, velocity, and time:

ü = f1(u, u̇, t) (10.201)

However, based on Newton’s second law, the acceleration of m must be proportional
to the applied force F:

ü = 1

m
F(u, u̇, t) (10.202)

In general, f1 �= mF . Therefore, if Newton’s second law is applied, there cannot be
another constraint on acceleration.

Newton’s equation of motion is the only acceptable constraint on accelerations in
dynamics. This is why we call this science Newtonian dynamics .

As an example assume that a particle with mass m is under the constraint

f (x, ẋ, ẍ, t) = ẍ + x + t ẋ = 0 (10.203)

This equation indicates that the particle is under an applied force F ,

F = −m(x + t ẋ) (10.204)
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Therefore, a constraint equation with a jerk argument such as

f (x, ẋ, ẍ,
...
x , t) = ...

x + t ẍ + 2ẋ = 0 (10.205)

must be a time derivative of Newton’s equation of motion:

d

dt
(ẍ + x + t ẋ) = ...

x + t ẍ + 2ẋ = 0 (10.206)

10.4 GENERALIZED COORDINATE

We can define a configuration degree of freedom fC as the number of dimensions of
SC-space, N , minus the number of independent holonomic constraints, L:

fC = N − L N >L (10.207)

The DOF of a dynamic system depends on the space in which we are describing its
dynamics. In general, the number of dimensions of its describing space minus the
number of independent constraints that can be expressed as a hypersurface is the DOF
of the system in that space. We can similarly define a state degree of freedom fS as
the number of dimensions of SS-space minus the number L of independent constraints
between ui and u̇i , i = 1, 2, 3, . . . , N :

fS = 2N − L (10.208)

However, the configuration degree of freedom fC in (10.207) is the most traditional
definition of the degree of freedom of a dynamic system.

Because every holonomic constraint defines a subspace in the configuration space
in which the SC-point of the system can move, the dimension fC of the final subspace
indicates the DOF of the system. Therefore, the N -dimensional position vector du of
the SC-point in the SC-space has only fC-dimensional DOF. So, we can define the
fC number of new variables to determine the N components of du. The independent
variables we choose to show the components of du are the generalized coordinates qi ,
i = 1, 2, . . . , fC , of the system:

qi = qi (u1, u2, u3, . . . , uN) i = 1, 2, . . . , fC (10.209)

Proof : A dynamic system must move such that its kinematics satisfy the constraint
equations at all times. If a constraint equation is holonomic, then we can express the
constraint as an equation of the coordinates of the configuration space. Theoretically,
we can solve a holonomic constraint equation to find one coordinate of the SC-space in
terms of the other coordinates. Having such an equation indicates that the coordinate is
not independent and its value is a function of the values of the other coordinates. There-
fore, the total number of independent coordinates of SC-space is equal to the dimensions
of the configuration space, N , minus the total number of independent holonomic con-
straints, L. The number of required independent coordinates is the configuration DOF
of the system, fC .
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The fC independent coordinates that we use to describe the kinematics of a dynamic
system are called the generalized coordinates of the system. The number of generalized
coordinates is equal to the DOF of the SC-point. Eliminating the dependent coordinates
determines the minimum required number of independent coordinates. This number is
the number of freedoms. We may use the N -dimensional configuration space along
with the L holonomic constraints to express the motion of the SC-point of a system or
define a new fC-dimensional configuration space with no constraint. We are also free to
choose any set of independent variables to express the coordinates of the constraint-free
configuration space.

Any set of real coordinates qi(i = 1, 2, . . . , fC) which can describe the configura-
tion of a system is called a set of generalized coordinates if and only if the number fC

of its members is necessary and sufficient .

Selection of a set of coordinates to express the configuration space is also optional.

Any set of real coordinates ui(i = 1, 2, . . . , N) which can describe the configura-
tion space of a system is a set of configuration coordinates.

Let us introduce a new set of coordinates:

vi = vi (u1, u2, u3, . . . , uN) i = 1, 2, . . . , N (10.210)

where the vi are single-valued functions of their arguments. We may consider the set
of functions vi as mapping functions that transform the coordinates of a point from
(u1, u2, u3, . . . , uN) to (v1, v2, v3, . . . , vN). The set of vi is another set of coordinates
to express the configuration space. To have a one-to-one and reversible mapping, the
Jacobian J of the ui with respect to vj or vice versa must be nonzero:

J =

∣∣∣∣∣∣∣∣∣∣

∂v1

∂u1
· · · ∂v1

∂uN
...

. . .
...

∂vN

∂u1
· · · ∂vN

∂uN

∣∣∣∣∣∣∣∣∣∣
= ∂ (v1, v2, v3, . . . , vN)

∂ (u1, u2, u3, . . . , uN)
(10.211)

Every one of the constraint equations fi (u1, u2, u3, . . . , uN), i = 1, 2, . . . , L, will also
be transformed to a new constraint equation based on the new coordinates. They express
new hypersurfaces in the configuration space:

fi (v1, v2, v3, . . . , vN) i = 1, 2, . . . , L (10.212)

Hence, the degree of freedom fC of a dynamic system remains the same regardless of
the coordinate system we use to describe the configuration space and constraints:

fC = N − L (10.213)

There is no superior option for ui , vj , and qi at this point. Defining a set of config-
uration or generalized coordinates that simplifies the equations of motion is an art and
skill based on experience and preference. However, it seems that canonical coordinates
based on Legendre transformation and Hamilton equations are an optimal set. �
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Example 620 A Planar Pendulum Consider a planar pendulum with a mass m

attached to a massless rigid bar with length l0 from the origin of a coordinate frame.
The SC-space is specified by the Cartesian coordinates x and y of m. The mass moves
on a circle of radius l0. The coordinates x and y must satisfy the holonomic constraint

x2 + y2 − l2
0 = 0 (10.214)

As the two Cartesian coordinates satisfy one holonomic constraint, there is only a
single generalized coordinate q1. We may use the angle θ of the bar as a generalized
coordinate, where θ must be a function of x and y:

θ = arctan
y

x
(10.215)

Employing the constraint equation, x and y must be expressible by θ :

x = l0 cos θ y = l0 sin θ (10.216)

We may use l and θ as a new set of configuration coordinates. The constraint
(10.214) will then transform to

l − l0 = 0 (10.217)

showing that the value of l remains constant and hence the other variable can be used
as a generalized coordinate. The Jacobian of new coordinates must be nonzero:

J =

∣∣∣∣∣∣∣∣
∂x

∂l

∂x

∂θ

∂y

∂l

∂y

∂θ

∣∣∣∣∣∣∣∣ = l �= 0 (10.218)

Example 621 A Pendulum with Moving Support Consider the planar pendulum in
Figure 10.24 that moves in plane (X, Y ) such that its support is moving along the
x- and y-axes with the given functions

x = x(t) y = y(t) (10.219)

The configuration space of the system is the (X, Y )-plane. However, because of the
constant length of the pendulum, there exists a constraint between the X- and Y -
coordinates of m:

[X − x(t)]2 + [Y − y(t)]2 − l2 = 0 (10.220)

The constraint equation is of the form (10.156) and therefore is a rheonomic holonomic
constraint. Therefore, only one of the coordinates X and Y is independent. Let us accept
X as the only independent variable and determine the Y -coordinate of m from (10.220):

Y = y(t) ±
√

l2 − [X − x(t)]2 (10.221)

For any value of X there exist two possible values for Y where only one of them
indicates the actual position of m. The actual value of Y must be determined by the
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equation of motion and initial conditions of the pendulum. Let us accept the minus
sign as the actual position to be consistent with Figure 10.24.

As an another option for a generalized coordinate, we can choose θ instead of X

and define X as a function of θ :
X = x(t) + l sin θ (10.222)

Substituting (10.222) in (10.221) provides Y as a function of θ :

Y = y(t) − l cos θ (10.223)

Let us assume that the support is moving with frequency ω on a circle with radius
R. Therefore, the functions x(t) and y(t) are

x = R cos ωt y = R sin ωt (10.224)

and the constraint equation (10.220) becomes

X2 + Y 2 + R2 − 2R (X cos ωt − Y sin ωt) − l2 = 0 (10.225)

Example 622 � System Configuration Space Figure 10.25 illustrates a 2a × 2b box
that is attached to a double pendulum. A point mass m is sliding in the box.

This mechanical system has four parts: two pendulums, a box, and a sliding particle.
The configuration of the parts can be uniquely determined by knowing the position of
four points: A, B, C, and m. The configuration space of the SC-point of the system
has eight dimensions (XA, YA, XB , YB , XC , YC , Xm, Ym). The constant distances
between points eliminate three DOF and the sliding condition of m eliminates one
DOF. Therefore, there must be four holonomic constraints among the coordinates of

Y

X
O

G

θ

l1

m

ϕ

l2

2a

2b

z

ψ

A

B

C

Figure 10.25 A point mass m is sliding in a box that is attached to a double pendulum.
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the SC-space. The constraints are
X2

A + Y 2
A − l2

1 = 0

(XA − XB)2 + (YA − YB)2 − l2
2 = 0

(XC − XB)2 + (YC − YB)2 − 4b2 = 0

(XC − XB) (Xm − XC) − (YC − YB) (Ym − YC) = 0

(10.226)

Using the above four constraints, we can choose a set of any four coordinates of the
configuration space (XA, YA, XB , YB , XC , YC , Xm, Ym) as the generalized coordinates.

The variables (θ , ϕ, ψ , z) might be better choices of generalized coordinates. The
relations between (θ , ϕ, ψ , z) and the eight coordinates are

tan θ = XA

YA

(10.227a)

tan ϕ = XB − XA

YB − YA

(10.227b)

tan ψ = XC − XB

YC − YB

(10.227c)

z =
√

(XC − XB)2 + (XC − XB)2 (10.227d)

Having the values of the generalized coordinates is enough to determine the con-
figuration of the whole mechanical system as well as every component of the system.
If the values of θ , ϕ, ψ , z are given, we can determine the configuration of the
mechanical system of Figure 10.25 by calculating the position of the points A, B, C,
and m:

XA = l1 sin θ YA = l1 cos θ

XB = l1 sin θ + l2 sin ϕ YB = l1 cos θ + l2 cos ϕ

XC = l1 sin θ + l2 sin ϕ + 2b sin ψ

YC = l1 cos θ + l2 cos ϕ + 2b cos ψ

Xm = l1 sin θ + l2 sin ϕ + 2b sin ψ + z cos ψ

Ym = l1 cos θ + l2 cos ϕ + 2b cos ψ − z sin ψ

(10.228)

Example 623 Advantage of Generalized Coordinates The essential nature or advan-
tage of generalized coordinates is that they provide freedom to be chosen arbitrar-
ily. There is no limit on selecting them as long as they are single valued and C1

functions of the configuration coordinates. There is also no restriction on the unit
dimension of generalized coordinates. While the coordinates of SC-space usually have
no dimension or the dimension of length, the generalized coordinate may have any
dimension.
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As an example, the motion of a free particle in a plane may be expressed by
Cartesian coordinates x and y with dimension of length, or by q1 and q2, as

x = q1 cos q2 y = q1 sin q2 (10.229)

q2 = arctan
y

x
q1 =

√
x2 + y2 (10.230)

where q1 has the dimension of length and q2 is dimensionless.

Example 624 � Number of DOF, fC , n, and Equations of Motion We need
n = N − L equations of motion for a dynamic system with N/3 particles. Such a
dynamic system has fC degrees of freedom. The configuration space of the system is
N -dimensional. The number of required equations of motion is equivalent to the con-
figuration degree of freedom fC = N − L, which is equal to the number of generalized
coordinates n. Let us summarize the relations of DOF, fC , n, and number of equations
of motion, although all of these are always equal.

1. The N -dimensional coordinate frame that we use to express the position in
configuration space is not necessarily Cartesian.

2. It is not true that there is an equation of motion for every generalized coor-
dinate. There are always n independent individual distinguishable generalized
coordinates, and there is a set of n coupled differential equations of the n gen-
eralized coordinates. Values of the generalized coordinates as functions of time
will be the solutions of the equations of motion.

3. Although the number of DOF and generalized coordinates are equal, there is
not necessarily a one-to-one relation between a freedom and a generalized coor-
dinate. The n freedoms of massive bodies of a mechanical system are not
necessarily indicated by a set of n generalized coordinates. Every freedom of a
mechanical system is equivalent to an independent motion of a massive body.
We can indicate and measure every motion by a coordinate. The motion coor-
dinates are functions of the generalized coordinates, so the motion coordinates
can be determined from the value of the generalized coordinates.

4. The coupling of the n equations of motion depends on the definition of the n

generalized coordinates. It is possible to change the type of coupling by changing
the coordinates. However, in general, it is not always possible to define a set
of coordinates that makes all of the equations decouple.

Example 625 � Mapping Generalized Space to Itself There are two approaches to
working with holonomic constraints:

1. Solve the L constraint equations for the L number of configuration coordinates
as functions of the other N − L coordinates that can be considered independent.

2. Replace the constraint by their associated constraint forces.
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Defining n = N − L generalized coordinates qi (i = 1, 2, . . . , n), we can define
a constraint-free n-dimensional configuration space (q1, q2, . . . , qn), instead of the
N -dimensional configuration space (u1, u2, . . . , uN) along with the L constraint
surfaces fi = fi(u1, u2, . . . , uN, t) (i = 1, 2, . . . , L). We may call an n-dimensional
constraint-free configuration space the generalized space.

Assume that we have defined n generalized coordinates as

q1, q2, . . . , qn (10.231)

We may also define another set of n generalized coordinates sj:

s1, s2, . . . , sn (10.232)

There must always exist a functional relationship between the two sets of coordinates:

sj = gj (q1, q2, . . . , qn) j = 1, 2, . . . , n (10.233)

The functions gj must satisfy the regularity conditions. So, they must be finite, single
valued, continuous, and differentiable functions of their arguments. Furthermore, the
Jacobian J must be nonzero:

J =

∣∣∣∣∣∣∣∣∣∣∣

∂s1

∂q1
· · · ∂s1

∂qn
...

. . .
...

∂sn

∂q1
· · · ∂sn

∂qn

∣∣∣∣∣∣∣∣∣∣∣
�= 0 (10.234)

Differentiation of Equations (10.233) gives

dsj = ∂gj

∂q1
dq1 + ∂gj

∂q2
dq2 + · · · + ∂gj

∂qn

dqn j = 1, 2, . . . , n (10.235)

Therefore, the differential of coordinates qi and sj are always linearly dependent,
regardless of what functional relations exist between the two sets of generalized
coordinates.

Expressing the generalized space by two sets qi and sj along with the point
transformation (10.233) is mapping a closed space to itself. The neighborhood of a
point Q(q1, q2, . . . , qn) in q-space is mapped to the neighborhood of S(s1, s2, . . . , sn)

in s-space. However, a straight line in q-space is no longer a straight line in
s-space. This phenomenon becomes less obvious when the size of the line gets
smaller. In an infinitesimal region around Q, straight lines are mapped to straight
lines and parallel lines remain parallel, although the length and angles are not
preserved.

Example 626 � Over-, Just, and Underconstraint Systems Consider a dynamic
system in an N -dimensional SC-space along with L holonomic constraint equations.
Depending on the relative values of N and L, we may have an over-, just, or under-
constraint system.
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1. A dynamic system is underconstrained if N >L.

The DOF of a dynamic system is the number of dimensions of its SC-space, N ,
minus the number of independent holonomic constraints, L:

fC = N − L N > L (10.236)

The constraints are defined by a set of L equations fi of the coordinates of the con-
figuration space:

fi = fi (u1, u2, . . . , uN , t) i = 1, 2, . . . , L (10.237)

We must define n = N − L generalized coordinates qj as algebraic functions of con-
figuration coordinates uk:

qj = qj (u1, u2, . . . , uN) j = 1, 2, . . . , n (10.238)

The n functions qj must be independent from the L constraint equations fi . Then we
must develop n differential equations of motion by employing a proper method such
as Newton’s second law:

Fr = mr ür r = 1, 2, . . . , n (10.239)

To determine the N coordinates of the position vector u = u (u1, u2, . . . , uN) of
the SC-point in SC-space, we must solve the set of n differential equations of motion.
It provides the value of n generalized coordinates qj(t). Then, we must solve the N

algebraic equations (10.237) and (10.238) for u1(t), u2(t), . . . , uN(t).

2. A dynamic system is just constrained if N = L.

When the number of constraints L on an SC-point is the same as the dimension
N of SC-space, the DOF is zero. The SC-point of the system remains at a point
of intersection of all constraint surfaces. Theoretically, we are able to solve the L

algebraic equations (10.237) and determine the N components u1(t), u2(t), . . . , uN(t)

of the position vector u = u(u1, u2, . . . , uN) of the SC-point.
Using ü1(t), ü2(t), . . . , üN (t), we can evaluate the required force Fr to provide

the acceleration ür of mr :

Fr = mr ür r = 1, 2, . . . , n (10.240)

3. A dynamic system is overconstrained if N < L.

If we have more constraints than the dimensions of SC-space, then there are two
situations. First, there are n = L − N redundant and unnecessary constraints. Second,
the constraint equations are not consistent and cannot be satisfied all at once.

Example 627 � Change of Coordinate Integration of a total differential constraint
depends on the ability to determine at least one integrating factor. However, the appear-
ance of the equation of a constraint depends on the coordinates in which the equation
is expressed. Change of coordinates and expression of the constraint equations in a
separated and integrable form are an alternative method. The following two examples
show the idea.
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Consider the set of nonlinear and coupled equations

ṙ = −ar − 1
2 r sin 2θ (10.241)

θ̇ = − 1
2b − 1

2 cos 2θ (10.242)

Using polar coordinates
x = r cos θ y = r sin θ (10.243)

we can simplify them to a set of solvable equations:

ẋ = −ax + 1
2 (b − 1) y (10.244)

ẏ = − 1
2 (b + 1) x − ay (10.245)

The order one-half Bessel equation

t2ẍ + t ẋ + (
t2 − 1

4

)
x = 0 (10.246)

can be transformed to the simpler equation

ÿ + y = 0 (10.247)

if we use a new coordinate y:
x = y√

t
(10.248)

Changing coordinates to get simpler equations dates back to the days of Euler.
However, there is no effective and general classical method that can always change the
coordinates if the equations are nonlinear.

Example 628 � Transforming a Bernoulli Equation to a Linear One There are
many methods that can be used to change a variable and make a differential integrable.
Transforming a Bernoulli equation to a linear differential form is one that is often
applied.

An ordinary differential equation (ODE) of the form

dy

dx
+ p(x)y = q(x) (10.249)

is an inhomogeneous linear first-order ODE. This equation is always solvable. Its
solution is

y = e− ∫
p(x)dx

(
C1 +

∫
q(x)e

∫
p(x)dxdx

)
(10.250)

Consider the constraint equation

dx + (
a(t)x + b(t)xc

)
dt = 0 (10.251)

where c is a constant and a(t), b(t) are arbitrary functions of t . When c = 0 the equation
is a linear ODE, and when c = 1 the equation is separable. For all other values of c,
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we can introduce a new variable y,

y = x1−c (10.252)

and transform the equation to

ẏ + [(1 − c)a(t)y + (1 − c)b(t)] = 0 (10.253)

which is a holonomic constraint because it is linear and integrable.
Equations of the form (10.251) are called Bernoulli equations.

Example 629 � Transforming a Non-Bernoulli Equation to a Bernoulli One Con-
sider a constraint of the form

ẋ − t

t2x2 + x5
= 0 (10.254)

which is not a Bernoulli equation in x. However, we can exchange the dependent and
independent variables,

dt

dx
− x2t − x5

t
= 0 (10.255)

and make a Bernoulli equation (10.251) in t for c = −1.

10.5 CONSTRAINT FORCE

Every holonomic constraint applies a constraint force FC on the describing point to keep
it in the constraint surface. Here, FC is proportional to the gradient of the frozen con-
straint equation f (u1, u2, u3, . . . , uN) = 0 and hence is perpendicular to the constraint
surface:

FC = −λ∇f = −λ

N∑
i=1

∂f

∂ui

ûi . λ ∈ R (10.256)

FC1

∂f/∂u1
= FC2

∂f/∂u2
= · · · = FCN

∂f/∂uN

(10.257)

Figure 10.21 illustrates a constraint surface f and a local constraint plane at a point
u∗ along with the gradient of f at that point in a 3D configuration space.

Any applied force F on the SC-point of a dynamic system can be decomposed
into tangential and perpendicular components to the local constraint plane. The normal
component of the applied force is a constraint force and the tangential component is
called the given force FG:

∇f · FG = 0 (10.258)

The decomposition of an applied force into constraint and given components in a 3D
configuration space is illustrated in Figure 10.26.
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u1

SC

f

u2

u3

u*
i

FFC

FG

Figure 10.26 Decomposition of an applied force F into constraint FC and given FG components
in a 3D configuration space.

Proof : The motion of a system can only be changed by applying forces. Every holo-
nomic constraint affects the motion of the describing point of a dynamic system. So a
constraint f (u, t) = 0 applies a force on the system, and therefore, we have constraints
and forces associated with them or we have no constraints. Such a force is a constraint
force that can be a function of position and time only.

A holonomic constraint is equivalent to a surface in a proper space. The only
possible motion of the describing point is in the constraint surface. Suppose the describ-
ing point tends to move out of the surface. Because such a motion is impossible, a
force intrinsic to the surface must exist to prevent the motion and make it impossi-
ble. The constraint force must be in the opposite direction of the gradient, as given in
Equation (10.256). The proportionality coefficient λ of a constraint force is called the
Lagrange multiplier . If we make ∇f a unit vector, then λ would be the magnitude of
the constraint force.

If FC is the normal component of the resultant of all applied forces at an SC-point
on the constraint plane, then any other component of the resultant force at the point
must be a given force FG lying in the constraint plane. The tangential given force FG

causes the point to move in the tangential plane and produces an actual motion. The
force FG will not push the point out of the constraint plane. The constraint force FC is
normal to the plane and will not make the point move. The resultant force of FG and
FC is called the applied or physical force F.

The physical force and its given and constraint components are position, velocity,
and time dependent and may vary at different points of a constraint surface. �

Example 630 A Spherical Pendulum Consider a particle that is hanging from a
point A by a massless rod of length l. The only constraint on the particle is its constant
distance from A. Such a constraint defines a sphere on which the finite displacement
of the particle may occur:

x2 + y2 + z2 − l2 = 0 (10.259)

Taking a derivative determines the constraint on infinitesimal displacement:

2x dx + 2y dy + 2z dz = 0 (10.260)
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Because the configuration space has three dimensions, N = 3, and there is only one
holonomic constraint, L = 1, the pendulum has two degrees of freedom, f = N − L =
3 − 1 = 2. Therefore, two independent functions of the Cartesian coordinates can be
used to express the two freedoms of the pendulum. Let us choose the angles β and γ

as shown in Figure 9.4. The Cartesian coordinates of the pendulum in a frame at A

with the z-axis in the direction of −g are x

y

z

 =
 l cos γ sin β

l sin β sin γ

−l cos β

 (10.261)

These equations show that β and γ are functions of x, y, z:

β = arctan
y

x
γ = − arccos

z

l
(10.262)

The constraint sphere applies a constraint force FC in the direction of the gradient
of (10.259):

FC = λ

 2x

2y

2z

 (10.263)

The constraint force is applied on the particle by the connecting rod. So, the force FC

is proportional to the tension force in the rod.

Example 631 Constraint Force of Two Holonomic Constraints Consider a particle
which is constrained to move along a smooth space curve. We consider the curve as
the intersection of two smooth constraint surfaces:

f1 (u1, u2, u3) = 0 f2 (u1, u2, u3) = 0 (10.264)

The intersecting condition provides that the gradient of these surfaces are not colinear
anywhere. The constraint force on the particle must be in a plane perpendicular to the
space curve.

Figure 10.27 illustrates two intersecting constraint surfaces f1 = 0 and f2 = 0 on
the space curve. The constraint forces of f1 and f2 are

F1 = −λ1 ∇f1 F2 = −λ2 ∇f2 (10.265)

and therefore the constraint force FC on the particle is

FC = −λ1 ∇f1 − λ2 ∇f2 (10.266)

where FC lies in a plane normal to the curve, defined by the two gradient vectors.
However, the direction of FC is not specified unless the ratio λ1/λ2 of the Lagrange
multipliers is known.
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u1

SC

f1
u2

u3

f2

−λ∇f2

−λ∇f1

FC

Figure 10.27 Two intersecting constraint surfaces f1 = 0 and f2 = 0 on the space curve.

10.6 VIRTUAL AND ACTUAL WORKS

An arbitrary displacement �u of a describing SC-point with respect to a holonomic
constraint tangent plane can be decomposed into the tangential and normal components

�u = du + ⊥u (10.267)

The tangential displacement du is the possible displacement that satisfies the constraint
equations. The normal displacement ⊥u is the impossible displacement that can occur
only by breaking at least one of the constraints. If the constraint surface is frozen,
then any displacement δu in the constraint plane is a virtual displacement . A virtual
displacement is a possible displacement if the constraint is scleronomic. Figure 10.28
illustrates the tangential and normal components or the constraint and given components
of a physical force F and an arbitrary displacement �u with respect to a constraint
plane at a point u∗ in the constraint surface f .

u1

SC

f

u2

u3

u*
i

FFC

FG

du
δu

⊥u

Figure 10.28 The tangential and normal components of a physical force F and an arbiterary
displacement �u on a constraint plane.
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The work done by a given force FG in an actual displacement du of a dynamic
system is the actual work WA on the system:

WA =
∫

FG · du (10.268)

The work done by the given force FG in a virtual displacement δu of a dynamic system
is the virtual work WV on the system:

WV =
∫

FG · δu (10.269)

Proof : Consider a 3D configuration space with a holonomic constraint f (u, t) = 0. Let
us imagine an arbitrary displacement �u having tangential and perpendicular compo-
nents du and ⊥u with respect to the frozen constraint plane. The tangential component
du is in the constraint plane and is considered a possible displacement. It is the per-
pendicular component ⊥u that is impossible and is prevented by the constraint force.
Showing the perpendicular direction of a surface at a point by the gradient of the
surface at that point, we have

∇f · du = 0 (10.270)

⊥u = c ∇f c ∈ R (10.271)

Four displacements can be imagined for a describing SC-point with respect to a
frozen holonomic constraint surface and its tangent plane:

1. Possible displacement . A displacement du lying in the constraint plane is called
a possible displacement . Possible displacement is consistent with constraint and
satisfies the constraint equation.

2. Impossible displacement . A displacement ⊥u perpendicular to the constraint
plane is called an impossible displacement . Impossible displacement is an imag-
inary motion of the SC-point normal to the constraint surface by assuming there
is no constraint.

3. Virtual displacement . The tangential displacement of a frozen constraint is called
a virtual displacement and is shown by δu. Virtual displacement is consistent
with frozen constraints and satisfies their frozen equation.

4. Actual displacement . Out of all possible displacements, the only one that is
caused by the given force FG is the actual displacement of the dynamic system.
So, an actual displacement satisfies both the constraint equation and the equation
of motion. The actual displacement is also shown by du.

The geometric relation of the displacements and the forces implies that the work
of the constraint force FC is zero in any possible displacement du satisfying the scle-
ronomic constraint equation f (u) = 0:

W =
∫

FC · du =
∫ (

FCx dx + FCy dy + FCz dz
)

= λ

∫
∇f · du = 0 (10.272)
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Assuming a three-dimensional configuration space, the proportionality of FC and the
gradient of the constraint surface provide

FCx

∂f/∂x
= FCy

∂f/∂y
= FCz

∂f/∂z
(10.273)

If the constraint is rheonomic, f (u, t) = 0, relation (10.273) is still valid. However,
because

df(u, t) = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz + ∂f

∂t
dt

= ∇f · du + ∂f

∂t
dt = 0 (10.274)

the work of the constraint force FC is no longer zero:

W =
∫

FC · du = −λ

∫
∂f

∂t
dt (10.275)

Assuming a frozen constraint, the possible displacements become virtual. Then, we
conclude that the virtual work of a constraint force is always zero:

WV =
∫

FC · δu =
∫ (

FCx δx + FCy δy + FCz δz
)

= λ

∫
∇f · δu = 0 (10.276)

We use this equation as the principle of virtual work to define and determine a constraint
force. �

Example 632 Possible and Virtual Displacements of a Particle on a Lift Consider a
particle on the floor of an elevator which is rising along the z-axis with speed vz. The
constraint equation for possible displacement is

dz − vz dt = 0 (10.277)

and the constraint equation for virtual displacement is

δz = 0 (10.278)

which indicate that the possible velocity is

ż = vz (10.279)

and the virtual velocity is
ż = 0 (10.280)

Example 633 Friction Force Friction force Ff is a given force that exists because
of a constraint and hence is a function of constraint force FN . Consider a particle with
mass m moving on a rough surface. Then,

Ff = −µFN
v
v

(10.281)
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where µ is the coefficient of friction, FN is the normal force exerted by the surfaces on
the particle, and v/v is the unit vector in the direction of the particle velocity relative
to the surface. This is a simplified Coulomb theory of friction that states: The friction
force is proportional to the force pressing two physical surfaces together and is in the
plane tangent to the surfaces at the contact point.

Friction force is an example of forces that arise from the presence of holonomic
constraints. It is a function of constraint force but its line of action lies in the tangent
plane and hence does virtual work.

In this example both the gravitational force mg and the normal force FN are
constraint forces and neither does work in a virtual displacement. However, there is
a difference between these two constraint forces. The normal force disappears when
the constraint is removed, but the gravitational force becomes a given force when the
constraint is removed.

French scientist Charles Augustin de Coulomb (1736–1806) developed a series of
two-term equations to model the friction force. The first term is a constant and the
second term varies with time, normal force, velocity, or other parameters. Leonardo
Da Vinci (1452–1519) was one of the first scholars to systematically study friction.

Example 634 Constraint Force Field Let C be a smooth curve in the (x, y)-plane.
If there is a strong attractive force field on C, then a moving point will always be close
to C. In the extreme case of an infinite force field, the point must remain on C. In this
case we say a constraint is put on the motion of the point.

A constraint force is exerted on a particle of the system from outside the system
if it does no work in an arbitrary virtual displacement. Every virtual displacement of
a particle is perpendicular to the constraint force. As an example, the tension force of
a pendulum is constraint force which is always perpendicular to every motion of the
hanging particle.

Example 635 � Virtual Velocity Virtual velocity δu̇ is defined as

δu̇ = d

dt
δu = δ

du

dt
(10.282)

Recalling that d/dt is the differential symbol in real time and δ is the differential in
frozen time, we show that their order of operation is interchangeable under specified
conditions:

d δu = δ du (10.283)

Let us interpret du and δu geometrically. Consider a holonomic constraint and two
neighboring possible curves as shown in Figure 10.29. Assume that P1(t) is the current
position of the describing point of the dynamics system and C1 is the actual path of
motion. At the same time we can also focus on another point P2(t) on another possible
path C2 that could be an actual path for another initial condition. The distance between
P1(t) and P2(t) is a virtual displacement δu at time t . The points P1(t) and P2(t) are
on a virtual curve �1 that is an isochrone curve indicating different possible positions
of the describing point at time t .
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u1

SC

f

u2

u3

du

P1(t)
δu

C1

C2

P2(t)

P2(t + dt)

P1(t + dt)

∆1

∆2

Figure 10.29 A constraint surface and two neighboring actual motion curves C1 and C2.

Points P1 and P2 would be at P1(t + dt) and P2(t + dt) after a time increment
dt . The distance between P1(dt) and P1(t + dt) is an actual displacement du after dt .
Similarly, the distance between P1(t + dt) and P2(t + dt) is a virtual displacement
at time t + dt and distance between P2(t) and P2(t + dt) is an actual displacement
after dt .

In general, the virtual displacement at time t + dt is different from time t . There-
fore, δu is a function of time, and it is reasonable to consider its rate of change with
time. Also, the magnitude of du on two possible curves might be different in the time
interval dt . So, we can measure its virtual change.

Now let us generalize the possible and virtual displacements between neighboring
curves. Figure 10.30 illustrates a family of possible paths with parameter a and a set

u1

SC

f

u2

u3

a1
a2 a3

a4

a5

b1

b2

b3

b4

b5

u

Figure 10.30 A family of possible paths with parameter a and a set of isochrone paths with
parameter b.
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of isochrone paths with parameter b. The configuration position vector u of a point in
this net is a two-parameter vector:

u = u (a, b) (10.284)

The arc between two neighboring points on an a-constant curve is

du = ∂u
∂b

db (10.285)

and the arc between two neighboring points on a b-constant curve is

δu = ∂u
∂a

δa (10.286)

So, we can define the two operators d and δ as

d = db
∂

∂b
δ = δa

∂

∂a
(10.287)

Employing (10.285) and (10.286), we can develop the derivatives

δ du = ∂2u
∂a ∂b

δa db d δu = ∂2u
∂b ∂a

db δa (10.288)

The necessary and sufficient condition for (10.283) is that the second derivatives of u
with respect to a and b exist and are continuous:

∂2u
∂a ∂b

= ∂2u
∂b ∂a

(10.289)

This is true when the constraint functions are of class C2.

Example 636 The Variation Let us call d the derivative and δ the variation operator.
To distinguish between d and δ, let us redefine them.

Consider a general scalar function of class C1 of n + m + 1 independent positions,
velocities, and time:

f = f (u1, u2, . . . , un; u̇1, u̇2, . . . , um; t) (10.290)

The derivative of f is shown by df and is defined as

df =
n∑

i=1

∂f

∂ui

dui +
m∑

j=1

∂f

∂u̇j

du̇j + ∂f

∂t
dt (10.291)

The variation of f is shown by δf and is defined as

δf =
n∑

i=1

∂f

∂ui

δui +
m∑

j=1

∂f

∂u̇j

δu̇j (10.292)
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Example 637 � Virtual Work of a General Force Consider a scalar function W

given as
W = W (u1, u2, . . . , un; u̇1, u̇2, . . . , um; t) (10.293)

The variation of W is

δW =
n∑

i=1

∂W

∂ui

δui +
m∑

j=1

∂W

∂u̇j

δu̇j (10.294)

If an applied force F on a particle, where

F = F (u1, u2, . . . , un; u̇1, u̇2, . . . , um; t) (10.295)

moves through a displacement du, then the actual differential work done by the force
in this displacement is the inner product of F and du,

dW = F · du (10.296)

and therefore, the total actual work is

WA =
∫

F · du (10.297)

The work WA is a function of the form (10.290), and therefore its variation would be
(10.294). In general, the actual work can be a function of position, velocity, and time.

Similar to (10.296), the work done by F during a virtual displacement δu can be
calculated as

δW = F · δu (10.298)

Because the differential work δW is calculated by the inner product of the force F and
a virtual displacement, we can also call δW a virtual work increment. Therefore, the
total virtual work is

WV =
∫

F · δu (10.299)

However, the virtual work δW is not in general equal to the variation of W unless
F is not a velocity-dependent force. Therefore, the virtual work cannot generally be
found by a variation of work W . The confusion comes from the fact that the sign δW

for virtual work (10.298) is just a short notation for F · δu. This confusion is also true
for dW as an actual work increment and dW as a differential of W . Actual work in
(10.296) is not in general equal to the differential of a work function.

Example 638 � Fundamental Equation of Dynamics The general form of an
applied force Fi on a particle mi of a dynamic system can be decomposed into a
constraint force FC and a given force FG:

Fi = FCi
+ FGi

(10.300)

Let us write the Newton equation of motion mi üi = Fi as

mi üi − FGi
= FCi

(10.301)
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When these equations are assumed to be applied on all particles in the dynamic system,
we have

N/3∑
i=1

(
mi üi − FGi

) =
N/3∑
i=1

FCi
(10.302)

The virtual work of both sides of Equation (10.302) provides
N/3∑
i=1

(
mi üi − FGi

) · δui = 0 (10.303)

juts because the virtual work of constraint forces is zero. This equation is called the
fundamental equation of dynamics . It is also referred to as Lagrange’s form of the
D’Alembert principle. Employing (10.298) and expanding (10.303), we have a new
form of the fundamental equation:

δW −
N/3∑
i=1

mi üi · δui = 0 (10.304)

The fundamental equation provides a good environment to show how constraints
affect the dynamics of a system quantitatively. Let us write the fundamental equation
for all components of the configuration space as

N∑
i=1

(miüi − Fi) · δui = 0 (10.305)

in which δui must satisfy
N∑

i=1

∂fj
∂ui

δui =
N∑

i=1

Aji δui = 0 j = 1, 2, . . . , L (10.306)

Combining these equations, we have

N∑
i=1

miüi − Fi +
L∑

j=1

λjAji

 · δui = 0 (10.307)

Because of the arbitrariness of δui , we get

miüi − Fi +
L∑

j=1

λjAji = 0 i = 1, 2, . . . , N (10.308)

British mathematician Leopold Alexander Pars (1896–1985) calls Equation
(10.303) the first form of the fundamental equation of dynamics. Jean Le Rond
D’Alembert (1717–1783) was a French mathematician who introduced D’Alembert’s
principle. He found Equation (10.303) based on an expansion of the principle of
virtual work in statics,

δW =
N/3∑
i=1

(Fi · δui ) = 0 (10.309)

which was developed by Swiss mathematician Johann Bernoulli (1667–1748).
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Example 639 � D’Alembert’s Principle Let us decompose Equation (10.302) to
tangent and normal components with respect to the constraint plane:

N/3∑
i=1

(
mi üi − FGi

)
t
+

N/3∑
i=1

(
mi üi − FGi

)
n =

N/3∑
i=1

(
FCi

)
t
+

N/3∑
i=1

(
FCi

)
n (10.310)

The motion happens in the constraint plane, so the normal components of üi are zero,
and we have

N/3∑
i=1

(
mi üi − FGi

)
t
=

N/3∑
i=1

(
FCi

)
t

(10.311)

N/3∑
i=1

(
FGi

)
n +

N/3∑
i=1

(
FCi

)
n = 0 (10.312)

D’Alembert’s principle states: The totality of the constraint forces may be disregarded
in the dynamic analysis of a system of particles:

N/3∑
i=1

(
FCi

)
t
= 0 (10.313)

Based on D’Alembert’s principle, the right-hand side of Equation (10.311) is zero and
it reduces to the Newton equation for a system of particles:

N/3∑
i=1

(
mi üi − FGi

)
t
= 0 (10.314)

Therefore, the tangent components of the given forces in the constraint plane are the
only forces which contribute to particle acceleration. Recalling that the constraint force
is normal to the constraint plane, the D’Alembert principle can be justified.

A physical meaning of Equation (10.312) is that the normal component of a phys-
ical force is in balance with the constraint forces. The explanation of friction force in
Example 633 may clarify this fact.

Although D’Alembert’s principle refers to Equation (10.313), some literatures use
the D’Alembert principle to refer to the fundamental equation (10.303).

Example 640 Constraint Force Calculation Consider a triangular wedge with incli-
nation θ that is moving with constant velocity v on the X-axis. A particle of mass
m is sliding down on the inclined surface of the wedge by gravitational force mg.
Figure 10.31 illustrates the dynamic system. The particle m is restricted by a holonomic
rheonomic constraint:

f (X, Z, t) = X tan θ + Z − (vt + l) tan θ = 0 (10.315)

We show the constraint force by FC , which is always normal to the moving surface.
The virtual displacement δr and actual displacement dr are shown in the figure. The
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m

θ
mg

FC

m

dr

θ

mg

t

X

Z

r

δr

t+dt

vt

X

G

l

Figure 10.31 A particle of mass m slides down on the inclined surface of a moving wedge.

virtual displacement δr is perpendicular to FC at each time. The equations of motion
of the particle are

mẍ = λ
∂f

∂X
= λ tan θ (10.316)

mz̈ = −mg + λ
∂f

∂Z
= λ − mg (10.317)

The differential equations (10.316) and (10.317) along with the constraint equations
(10.315) make a set of three equations to be solved for X, Z, and λ:

mẌ = g tan θ

1 + tan2 θ
mZ̈ = − g tan θ

1 + tan2 θ
λ = mg

1 + tan2 θ
(10.318)

If the initial conditions are

X(0) = 0 Z(0) = h Ẋ(0) = v Ż(0) = 0 (10.319)

we can integrate the equations of motion and determine the motion of m:

X = 1

2

g tan θ

1 + tan2 θ
t2 + vt (10.320)

Z = h − 1

2

g tan θ

1 + tan2 θ
t2 (10.321)

The constraint force on m is

FC = λ∇f = λ
∂f

∂X
Î + λ

∂f

∂Z
K̂ = λ tan θ Î + λK̂

= mg tan θ

1 + tan2 θ
Î + mg

1 + tan2 θ
K̂ (10.322)

FC = mg√
1 + tan2 θ

(10.323)
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Example 641 Force Balance of a Slider–Crank Mechanism Consider a slider–crank
mechanism as shown in Figure 10.32. Using the principle of virtual work in statics
(10.309), we can determine the required value of torque Q to hold the mechanism
when the piston is under a force F.

G

A

M x

X

Y

h

F
Q

a
b

ϕθ B

Figure 10.32 A slider–crank mechanism in a force balance situation.

The vectorial expressions of force F and torque Q are

F = FÎ Q = QK̂

F > 0 Q > 0
(10.324)

where Q does work by a rotation θ and F by a displacement x. Therefore, the virtual
work of the force system is

δW = Q δθ − Fδx = 0 (10.325)

Employing the geometry of the mechanism, we have

x = a cos θ + b cos ϕ (10.326)

h = a sin θ = b sin ϕ (10.327)

Eliminating ϕ provides

x = a cos θ + b

√
1 −

(a

b

)2
sin2 θ (10.328)

Therefore, the virtual displacements of δx and δθ are related by the equation

δx = −a sin θ δθ − a2

b

sin θ cos θ√
1 − (a/b)2 sin2 θ

δθ (10.329)

Substituting (10.329) in (10.325) and simplifying, we find the required relation between
F and Q to keep the mechanism at an angle θ :

Q = Fa sin θ

(
1 + cos θ

b
√

1 − (a/b)2 sin2 θ

)
(10.330)



946 Constraints

Example 642 Virtual Work and Equilibrium of Dynamic Systems A double-inverted
pendulum is shown in Figure 10.33. Each link has a length l and mass m. Two similar
linear springs with stiffness k support the pendulum. If the springs have free length at
θ1 = θ2 = 0, we may use the principle of virtual work and determine the positions of
the equilibria.

x

y

m

θ1

g

o

θ2

m

k

l

l
k

Figure 10.33 A supported double-inverted pendulum.

The forces of the springs are

F1 =
[

kl sin θ1

0

]
F2 =

[
kl (sin θ1 + sin θ2)

0

]
(10.331)

and the gravitational forces are

W1 =
[

0
−mg

]
W2 =

[
0

−mg

]
(10.332)

The position vectors of the points of application of the above forces are

rF1 =
[−l sin θ1

l cos θ1

]
rF2 =

[−l (sin θ1 + sin θ2)

l (cos θ1 + cos θ2)

]
(10.333)

rW1 =
[− 1

2 l sin θ1

1
2 l cos θ1

]
rW2 =

[−l
(
sin θ1 + 1

2 sin θ2
)

l
(
cos θ1 + 1

2 cos θ2
) ]

(10.334)

The virtual displacements of the points are

δrF1 =
[−l δθ1 cos θ1

−l δθ1 sin θ1

]
(10.335)

δrF2 =
[−l (δθ1 cos θ1 + δθ2 cos θ2)

−l (δθ1 sin θ1 + δθ2 sin θ2)

]
(10.336)
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δrW1 =
[

− 1
2 l δθ1 cos θ1

− 1
2 l δθ1 sin θ1

]
(10.337)

δrW2 =
[

−l
(
δθ1 cos θ1 + 1

2δθ2 cos θ2
)

−l
(
δθ1 sin θ1 + 1

2δθ2 sin θ2
) ]

(10.338)

So, the virtual work of the system is

δW =
∑

Fi · δri

= [ 3
2mg sin θ1 − kl cos θ1 (2 sin θ1 + sin θ2)

]
lδθ1

+ [ 1
2mg sin θ2 − kl cos θ2 (sin θ1 + sin θ2)

]
lδθ2 (10.339)

At equilibrium, we have δW = 0, and therefore, we find two equations to determine
the equilibrium values of (θ1, θ2):

3
2mg sin θ1 − kl cos θ1 (2 sin θ1 + sin θ2) = 0 (10.340)

1
2mg sin θ2 − kl cos θ2 (sin θ1 + sin θ2) = 0 (10.341)

Four sets of trivial solutions are

θ1 = θ2 = 0 θ1 = θ2 = ±π (10.342)

as illustrated in Figure 10.34.
To determine the nontrivial equilibria, we set the parameters to the given values,

such as
m = 1 kg g = 9.81 m/s2 k = 10 N/m l = 1 m (10.343)

and plot the functions f1 and f2 in Figure 10.35:

f1 = 3
2mg sin θ1 − kl cos θ1 (2 sin θ1 + sin θ2) = 0 (10.344)

f2 = 1
2mg sin θ2 − kl cos θ2 (sin θ1 + sin θ2) = 0 (10.345)

(0,0) (0,π)

(π,π) (π,0)

Figure 10.34 Four trivial equilibria of the double-inverted pendulum.
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θ2

θ1

f1
f1

f1

f1

f1

f2
f2

f2

f2
f2

Figure 10.35 Plots of functions f1 and f2.

The intersections of f1 and f2 indicate the equilibria:

θ1 ≈ 61.64 deg θ2 ≈ 75.12 deg (10.346)

θ1 ≈ 191.97 deg θ2 ≈ 46.65 deg (10.347)

θ1 ≈ 168.02 deg θ2 ≈ 313.34 deg (10.348)

θ1 ≈ 298.35 deg θ2 ≈ 284.87 deg (10.349)

These equilibrium configurations are illustrated in Figure 10.36.
The number and position of the equilibria depend on the parameters of the system.

To investigate the effects of the parameters, let us rewrite the equations f1 and f2 as

f1 = 3
2c sin θ1 − cos θ1 (2 sin θ1 + sin θ2) = 0 (10.350)

f2 = 1
2c sin θ2 − cos θ2 (sin θ1 + sin θ2) = 0 (10.351)

where
c = mg

kl
(10.352)

(61.64,75.12)

(191.97,46.65)

(168.02,313.34)

(298.35,284.87)

Figure 10.36 Four nontrivial equilibria of the double-inverted pendulum.
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c = ∞ c = 3

c = 2 c = 1

c = 0.32c = 0.5

c = 0.28 c = 0

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

θ1

θ2

Figure 10.37 Plots of functions f1 and f2 for different values of c (not to scale).

So, the common solutions of f1 and f2 depend on only one parameter, c. Figure 10.37
illustrates the functions f1 and f2 for different values of c. When c = ∞, the only
equilibria are the trivial positions of (10.342). By decreasing c, up to six more equilibria
appear.

Example 643 � Energy Equation If all of the constraints on a dynamic system
are catastatic, then all of the virtual displacements and velocities would be possible
displacements and velocities. Having only catastatic constraint, we have

δui = dui = u̇idt (10.353)
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So, we can rewrite the fundamental equation of dynamics (10.303) as

N/3∑
i=1

mi üi · u̇i =
N/3∑
i=1

FGi
· u̇i (10.354)

Let us use the kinetic energy K ,

K =
N/3∑
i=1

1

2
mi u̇2

i (10.355)

dK

dt
=

N/3∑
i=1

mi üi · u̇i (10.356)

and modify the fundamental equation to

dK

dt
=

N/3∑
i=1

FGi
· u̇i (10.357)

Equation (10.357) is called the first, or primitive, form of the equation of energy. It is
the same as the principle of work energy and expresses that the rate of increase of the
kinetic energy of a system is equal to the rate of work of the given forces.

Now let us consider, in addition to catastatic constraint, that the dynamic system
is under a conservative force system in which the given forces FGi

are not functions
of velocities u̇i and time t . Therefore FGi

are only functions of displacement ui , and
hence −∑N/3

i=1 FGi
· ui is the total differential of a potential energy V :

N/3∑
i=1

FGi
· ui = −dV (10.358)

Substituting this result in Equation (10.357) provides

dK

dt
= −dV

dt
(10.359)

and therefore,
d

dt
(K + V ) = 0 (10.360)

K + V = E (10.361)

Equation (10.361) is the second, or classical, form of the equation of energy. So, for a
catastatic system under the action of conservative given forces, the sum of the kinetic
and potential energies of the system remains constant. The mechanical energy of the
system, E, is determined by initial conditions.

Example 644 � Second and Third Forms of Fundamental Equation Let us take
a derivative of a holonomic constraint and rewrite it as

N∑
i=1

∂f

∂ui

u̇i + ∂f

∂t
= 0 (10.362)
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A variation in velocity at the same configuration and the same time gives

N∑
i=1

∂f

∂ui

(u̇i + δu̇i) + ∂f

∂t
= 0 (10.363)

Therefore,
N∑

i=1

∂f

∂ui

δu̇i = ∇f · δu̇ = 0 (10.364)

which shows the virtual velocity and constraint force are orthogonal. So, we may replace
virtual displacement in the fundamental equation with virtual velocity and obtain the
second form of the fundamental equation of dynamics:

N/3∑
i=1

(
mi üi − FGi

) · δu̇i = 0 (10.365)

Instead of a small variation of velocity, we may replace δu̇i with a finite-difference
velocity �u̇i in Equation (10.363) to find the second form:

N/3∑
i=1

(
mi üi − FGi

) · �u̇i = 0 (10.366)

The velocity u̇i + �u̇i is another possible velocity at the same configuration and time
as u̇i . The second form of the fundamental equation has application in impulsive force
problems.

If we differentiate the constraint equation (10.362), then

N∑
i=1

(
∂f

∂ui

üi + u̇i

d

dt

∂f

∂ui

)
+ d

dt

∂f

∂t
= 0 (10.367)

where
d

dt
= ∂

∂t
+

N∑
j=1

u̇j
∂

∂uj
(10.368)

Now consider two possible motions with the same configuration and velocity at time t

but with different accelerations üi and üi + δüi . Equation (10.367) becomes

N∑
i=1

(
∂f

∂ui

(üi + δüi) + u̇i

d

dt

∂f

∂ui

)
+ d

dt

∂f

∂t
= 0 (10.369)

and therefore,
N∑

i=1

∂f

∂ui

δüi = ∇f · δü = 0 (10.370)

The variation of acceleration satisfies the same equation as virtual displacement. So, we
may replace virtual displacement in the fundamental equation with virtual acceleration
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and obtain the third form of the fundamental equation of dynamics:

N/3∑
i=1

(
mi üi − FGi

) · δüi = 0 (10.371)

Again, instead of a small variation of acceleration, we may replace δüi with a finite-
difference velocity �üi in Equation (10.369) to find the third form:

N/3∑
i=1

(
mi üi − FGi

) · �üi = 0 (10.372)

In the first form of the fundamental equation, we consider an infinitesimal virtual
displacement from a given configuration. In the second form, we consider that the
configuration is not varied and use the difference between two possible velocities. In
the third form, the configuration and velocity are not varied, and we use the difference
between two possible accelerations. The second and third forms can be justified by the
fact that, if δu is in the constraint surface, then δu̇ and δü, or �u̇i and �üi must also
be in the constraint surface.

10.7 � NONHOLONOMIC CONSTRAINT

The kinematic constraints do not always show up as equality equations between the
coordinates of the configuration space. They may also appear as nonintegrable infinites-
imal displacement equations and also as inequality relations. The inequality constraints
and nonintegrable differential relations are called nonholonomic constraints .

Nonholonomic constraints cannot change the DOF of a dynamic system. There-
fore, all accessible configurations in the absence of nonholonomic constraints are also
accessible in their presence.

10.7.1 � Nonintegrable Constraint

A constraint equation that can only be expressed by the differential of the coordinates
of the configuration space, dui , and time, dt , is a nonholonomic constraint :

N∑
i=1

Ai dui = 0 (10.373)

N∑
i=1

Ai dui + A dt = 0 (10.374)

The coefficients Ai and A are functions of ui and t :

Ai = Ai (ui, t) A = A (ui, t) (10.375)

The differential forms (10.373) and (10.374) are total constraints if there is a
function f (u, t) such that

Ai = ∂f

∂ui

A = ∂f

∂t
(10.376)
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Then, the differential constraints (10.373) and (10.374) can be integrated to determine
their associated finite displacement holonomic constraints:

f (u) = 0 (10.377)

f (u, t) = 0 (10.378)

When there is no function f (u, t) to have (10.376), the differential constraints (10.373)
and (10.374) are not integrable and are called nonholonomic. The necessary and suffi-
cient conditions for (10.373) and (10.374) to be total differential are

∂Ai

∂uk

= ∂Ak

∂ui

∂A

∂ui

= ∂Ai

∂t
(10.379)

Proof : Consider a differential constraint of x and t :

N∑
i=1

Ai dui + A dt = 0 (10.380)

Suppose the constraint is total and we have a C2 function f (u, t) = 0 such that

Ai = ∂f

∂ui

A = ∂f

∂t
i = 1, 2, . . . , N (10.381)

Because the mixed second partial differentials of f are equal,

∂2f

∂ui ∂uk

= ∂2f

∂uk ∂ui

∂2f

∂ui ∂t
= ∂2f

∂t ∂ui

(10.382)

we must have
∂Ai

∂uk

= ∂Ak

∂ui

∂A

∂ui

= ∂Ai

∂t
(10.383)

which is the necessary condition for (10.380) to be total.
If we show that (10.383) enables us to construct a function f , then it is also a

sufficient condition. Let us begin by integrating the first term of (10.380) with respect
to ur , r ∈ {1, 2, . . . , N}:

f =
∫

Ar dur + fr(u1, u2, . . . , ur−1, ur+1, . . . , uN, t) (10.384)

The constant of integration must be a function of u1, u2, . . . , ur−1, ur+1, uN, t to
disappear under differentiation with respect to ur . This reduces our problem to that of
finding fr with the property that f , as given by (10.384), satisfies the second condition
of (10.383). On differentiating (10.384) with respect to us , s ∈ {1, 2, . . . , N}, s �= r ,
and equating the result to As , we get

∂

∂us

∫
Ar dur + ∂fr(u1, u2, . . . , ur−1, ur+1, . . . , uN, t)

∂us

= As (10.385)
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which yields

fr(u1, u2, . . . , ur−1, ur+1, . . . , uN, t) =
∫ (

As − ∂

∂us

∫
Ar dur

)
dus (10.386)

provided the integrand is a function of us . So, a derivative of the integrand with respect
to ur must be zero:

∂

∂ur

(
As − ∂

∂us

∫
Ar dur

)
= ∂As

∂ur

− ∂2

∂ur ∂us

∫
Ar dur

= ∂As

∂ur

− ∂Ar

∂us

= 0 (10.387)

Therefore, (10.380) is an integrable differential constraint if and only if conditions
(10.383) are fulfilled. The associated holonomic constraint would be

fr(u1, u2, . . . , uN, t) = f (u, t) = c (10.388)

The constant c is independent of the initial conditions of the dynamic system and can
be determined by having the coordinates of a point u in the constraint surface at a time
t . Substituting t with ur and A with Ar in (10.384) completes the conditions (10.383).

A nonholonomic constraint in applied mechanics is a system whose state depends
on its path of motion. Such a system is described by a set of periodic variables subject
to differential constraints. The nonholonomic constraint was introduced by the German
physicist Heinrich Rudolf Hertz (1857–1894). �

Example 645 An Integrable Differential Constraint Consider the differential con-
straint (

tex + 2x
)

dx + exdt = 0 (10.389)

To check if the constraint is total,

df = ∂f

∂x
dx + ∂f

∂t
dt = 0 (10.390)

we examine the conditions in (10.376):

∂2f

∂t ∂x
= ex ∂2f

∂x ∂t
= ex (10.391)

Therefore, the constraint is integrable. To determine the associated holonomic con-
straint, we integrate ∂f/∂t to get

f =
∫

ex dt + g(x) = tex + g(x) (10.392)

so
∂f

∂x
= tex + dg(x)

dx
(10.393)
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Because (10.393) must be equal to tex + 2x, we have dg(x)/dx = 2x, which provides
g(x) = x2, and therefore the holonomic constraint is

tex + x2 = c (10.394)

If the dynamic system is at x = x0 when t = 0, then c = 0.
If a differential constraint is in the form

A dx + B dy = 0 (10.395)

where
∂B

∂x
= ∂A

∂y
(10.396)

then the associated holonomic constraint is

A +
∫ (

B − ∂M

∂y

)
dy = c (10.397)

Example 646 A Unicycle and Bicycle on a Flat Ground Consider a unicycle that
remains vertical on a flat ground as shown in Figure 10.38. The unicycle can move
forward and backward and also rotate about a local vertical axis going through the
contact point of the wheel and ground. However, it cannot move laterally. This unicycle
has a nonintegrable differential constraint because it does not have lateral motion,

Ẋ sin θz − Ẏ cos θz = 0 (10.398)

and it has another constraint because of pure rotation:

Ẋ cos θz + Ẏ sin θz = Rϕ̇ (10.399)

X

Y

θ

Z

v

θ

z

x

y

B

G

ϕ
R

Figure 10.38 A vertical unicycle in a pure rotation.
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Nonintegrability of these constraints is equivalent to the fact that we cannot move the
unicycle to another point by varying only one coordinate of X, Y , θ , ϕ while keeping
the other three unchanged. Therefore, there cannot be any unique algebraic function
among them.

If the unicycle has more than one fixed wheel, such as a nonsteerable bicycle, it
cannot turn about θz, and we have

θ̇z = 0 (10.400)

Then constraints (10.398) and (10.399) will be integrable and provide three holonomic
constraints:

θz − θ0 = 0 (10.401)

(X − X0) sin θz − (Y − Y0) cos θz = 0 (10.402)

(X − X0) cos θz − (Y − Y0) sin θz = R (ϕ − ϕ0) (10.403)

Example 647 � Breaking an Integrable Constraint Consider the differential con-
straint

dy − g(z) dx − xg′(z) dz = 0 (10.404)

where g′(z) = dg(z)/dz. The variables of the differential constraint are separated. So,
we can take an integral and determine a holonomic constraint:

y − g(z)x − c1 = 0 (10.405)

Now assume we are given a differential form, including the first two terms of (10.404):

dy − g(z) dx = 0 (10.406)

Such a constraint is not integrable and indicates a nonholonomic constraint.
Sometimes a nonholonomic constraint is a broken total differential, although this

fact does not help to make a holonomic constraint.

Example 648 Rolling Constraint The constraint imposed on the motion of rolling
body A on B is that the velocities of the contact points must be equal. Consider a
rolling sphere of radius R on a fixed plane. The velocity of the contact point must
be zero.

Let us show the velocity of the center of a rolling sphere by vC and its angular
velocity by ω. The velocity of any contact point can be found from

v0 = vC + ω × r (10.407)

where r = −Rûn and ûn is the unit vector normal to the plane. The constraint is to
have no sliding at the contact point:

vC − Rω × ûn = 0 (10.408)
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This equation cannot be integrated and indicates a nonholonomic constraint. This is
because ω is not in general the total time derivative of any coordinate, although vC is
the total time derivative of the position vector of the sphere center.

If we replace the rolling sphere with a rolling cylinder, then the rolling constraint
(10.408) becomes holonomic. In this case the fixed axis of the cylinder would be the
permanent axis of ω. Then, ω is a total differential of the angular rotation θ of the
cylinder:

ω = dθ

dt
(10.409)

Condition (10.408) can therefore be integrated and gives a relation between the angle
θ and the coordinates of the cylinder center. In the simple case where the cylinder is
rolling on the x-axis, the holonomic rolling constraint is

x = x0 + Rθ (10.410)

Practically, if the contact of a rolling body A on B happens at a point, the
rolling constraint is nonholonomic, and if it happens on a line, the rolling constraint is
holonomic.

Example 649 Motion of a Rolling Sphere Consider a rolling sphere on the (x, y)-
plane under an external force F and torque M. The constraint of motion is (10.408). We
can determine the equations of motion of the sphere using the fundamental equation of
dynamics (10.303). Denoting the reaction force at the contact point by N, we use the
Newton equation

∑
F = dp/dt = mdv/dt and the Euler equation

∑
r × F = dL/dt =

I dω/dt to begin the analysis:

m
dv
dt

= F + N (10.411)

I
dω

dt
= M − Rûn × N (10.412)

Differentiating the constraint equation (10.408) and eliminating ω̇ by (10.412), we
obtain an equation that relates F, N, and M:

I

mR
(F + N) = M × ûn − RN + Rûn

(
ûn · N

)
(10.413)

Writing this equation in components and substituting I = 2
5mR2, we have

Nx = 5

7R
My − 2

7
Fx

Ny = − 5

7R
Mx − 2

7
Fy

Nz = −Fz (10.414)
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Substituting these equations in (10.411), we obtain the equations of motion involving
only the external force system:

m
dvx

dt
= 5

7

(
Fx + 1

R
My

)
(10.415)

m
dvy

dt
= 5

7

(
Fy − 1

R
Mx

)
(10.416)

The components ωx and ωy of the angular velocity ω should be calculated from the
constraint equation (10.408). The component ωz is the solution of the z-component of
Equation (10.412):

2

5
mR2 dωz

dt
= Mz (10.417)

Example 650 A Rolling Disc and Nonholonomic Constraint Figure 10.39 illustrates
a thin disc with radius R that is rolling without slipping on a horizontal plane. Let us
attach a body coordinate frame B to the disc at the mass center C and a global frame
G on the horizontal plane. We use the Euler angles ϕ, θ , ψ to indicate the orientation
of B in G and the coordinates X, Y of the contact point P(X, Y, Z) to indicate the
position of the disc. Because of the holonomic constraint Z = 0, we can use the five
variables X, Y , ϕ, θ , ψ as the required five generalized coordinates.

The condition of rolling without slipping provides a vectorial nonholonomic con-
straint:

GvP = GvC + GωB × G
CrP = 0 (10.418)

To determine scalar equations of the nonholonomic constraint, we need to expand
the vectorial equation. Let us introduce two intermediate frames B1 and B2, both at C,

X

P

Z

Y

ϕ

x

z2

y1

C

θ

g

ϕ

ψ

G

B2

θ

z1

y

z

y2

ψ

B

B1

R

Figure 10.39 A thin disc with radius R is rolling without slipping on a horizontal plane.
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to determine the transformation matrix GRB . The frame B1 differs with G only by a
rotation ϕ about the z1-axis:

1RG =
 cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

 (10.419)

The frame B2 differs with B1 only by a rotation θ about the y2-axis:

2R1 =
 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (10.420)

The frame B differs with B2 only by a rotation ψ about the x-axis:

BR2 =
 1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (10.421)

Therefore,
BRG = BR2

2R1
1RG

=
 cθcϕ cθsϕ −sθ

cϕsθsψ − cψsϕ cψcϕ + sθsψsϕ cθsψ

sψsϕ + cψcϕsθ cψsθsϕ − cϕsψ cθcψ

 (10.422)

GRB = BRT
G

=
 cθcϕ cϕsθsψ − cψsϕ sψsϕ + cψcϕsθ

cθsϕ cψcϕ + sθsψsϕ cψsθsϕ − cϕsψ

−sθ cθsψ cθcψ

 (10.423)

Employing the transformation matrix

GR2 = [ 2R1
1RG

]T = 1RT
G

2RT
1

=
 cos θ cos ϕ − sin ϕ cos ϕ sin θ

cos θ sin ϕ cos ϕ sin θ sin ϕ

− sin θ 0 cos θ

 (10.424)

and the global coordinates of the contact point P(X, Y ), we find the global position
of C:

GrC = GrP + GR2
2
P rC (10.425)

=
X

Y

0

 + GRB

 0
0
R

 =
X + R cos ϕ sin θ

Y + R sin θ sin ϕ

R cos θ


Taking a time derivative of GrC provides the velocity of the mass center C:

GvC =
Gd

dt

GrC =

 Ẋ + Rθ̇ cos θ cos ϕ − Rϕ̇ sin θ sin ϕ

Ẏ + Rθ̇ cos θ sin ϕ + Rϕ̇ cos ϕ sin θ

−Rθ̇ sin θ

 (10.426)
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The angular velocity of the disc is given as

B
Gω̃B = GRT

B
GṘB (10.427)

=
 0 θ̇ sψ − ϕ̇cθcψ θ̇cψ + ϕ̇cθsψ

ϕ̇cθcψ − θ̇ sψ 0 ϕ̇sθ − ψ̇

−θ̇cψ − ϕ̇cθsψ ψ̇ − ϕ̇sθ 0


Employing the above kinematic vectors and transformation matrices, we can write

the rolling constraint equation as

GvP = GvC + GRB

(
B
GωB × GR2

2
CrP

) = 0

=

 Ẋ − Rψ̇ sin ϕ

Ẏ + Rψ̇ cos ϕ

0

 (10.428)

Example 651 � Integrating Factor The conditions (10.376) guarantee that a given
differential constraint is integrable. However, there exist differential constraints that are
integrable while the conditions are not fulfilled. This is because the given constraint is
divided by a common factor. The divisor is called integrating factor µ.

We show the existence of µ for a two-dimensional nontotal equation:

A dx + B dy = 0
∂A

∂y
�= ∂B

∂x
(10.429)

Assume that there exist a holonomic constraint f for this differential:

f (x, y) = c (10.430)

The total differential of f is

df = ∂f

∂x
dx + ∂f

∂y
dy (10.431)

Comparing (10.431) and (10.429) yields

∂f/∂x

A
= ∂f/∂y

B
= µ (x, y) (10.432)

where we denote the common ratio by µ(x, y). Therefore, if (10.429) is integrable,
then it has at least one integrating factor:

∂f

∂x
= µA

∂f

∂y
= µB (10.433)

∂ (µA)

∂y
= ∂ (µB)

∂x
(10.434)

We can show that, if f1(f ) is any function of f , then

µf1 (A dx + B dy) = f1 df = d

(∫
f1(f ) df

)
(10.435)

so, µf1(f ) is also an integrating factor.



10.7 � Nonholonomic Constraint 961

To develop the required conditions to get a total differential constraint, we begin
by expanding (10.434) to obtain

1

µ

(
B

∂µ

∂x
− A

∂µ

∂y

)
= ∂A

∂y
− ∂B

∂x
(10.436)

It is a partial differential equation for µ = µ(x, y). However, any particular solution for
µ(x, y) is enough to make the differential constraint total. Let us examine an integrating
factor as a function of x alone. In this case, Equation (10.436) simplifies to

1

µ

dµ

dx
= 1

B

(
∂A

∂y
− ∂B

∂x

)
(10.437)

Because the left-hand side of this equation is a function only of x, the right-hand side
must also be a function of x:

1

B

(
∂A

∂y
− ∂B

∂x

)
= g(x) (10.438)

Therefore, we have
1

µ

dµ

dx
= g(x) (10.439)

which can be integrated to

ln µ =
∫

g(x)dx (10.440)

or
µ = e

∫
g(x)dx (10.441)

We may also search for an integrating factor as a function of y alone and find

µ = e
∫

h(y)dy (10.442)

where

h(y) = − 1

A

(
∂A

∂y
− ∂B

∂x

)
(10.443)

Example 652 � Making Integrable by an Integrating Factor The differential con-
straint

A dx + B dy = y dx + (x2y − x)dy = 0 (10.444)

shows that
∂A

∂y
= 1

∂B

∂x
= 2xy − 1 (10.445)

However, if we multiply the constraint by 1/x2, it becomes a total differential constraint:

y

x2
dx +

(
y − 1

x

)
dy = d

(
y2

2
− y

x

)
= 0 (10.446)
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Let us use Equation (10.441) to find this integrating factor that is only a func-
tion of x:

g(x) = 1

B

(
∂A

∂y
− ∂B

∂x

)
= − 2

x
(10.447)

µ = e
∫

g(x)dx = x−2 (10.448)

Example 653 Linear Equation Integrating Factor Consider a constraint equation
of the form

ẋ + p(t)x = q(t) (10.449)

where p(t) and q(t) are arbitrary functions of t . This is an inhomogeneous linear
first-order ODE. Linear equations have a general integrating factor µ:

µ(t) = e
∫

p(t)dt (10.450)

Multiplying (10.449) by µ yields

d

dt
(x µ) = q(t) µ (10.451)

So, the solution of (10.449) is

x = 1

µ
C1 + 1

µ

∫
q(t)µ dx

= e− ∫
p(t)dx

(
C1 +

∫
q(t)e

∫
p(t)dx dt

)
(10.452)

10.7.2 � Inequality Constraint

An inequality constraint on a dynamic system is expressed by an equation of displace-
ments and time,

f (u, t) < 0 (10.453)

or by their differential:
df < 0 (10.454)

The first one is called a limit constraint and the second one is called a slip constraint .
A relation between the coordinates of the configuration space in the form

f (u1, u2, u3, . . . , uN) = f (u) < 0 (10.455)

or reducible to this form is called a scleronomic limit constraint . An equation between
the coordinates of the event space of the form

f (u1, u2, u3, . . . , uN, t) = f (u, t) < 0 (10.456)

or reducible to this form is called a rheonomic limit constraint . A limit constraint is
always nonholonomic.
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Each scleronomic limit constraint defines a limit surface in the configuration space
that the possible motion of the system can only occur on one side of the limit surface.
Similarly, each rheonomic limit constraint defines a limit surface in the event space
that the possible motion of the system can only occur on one side of the limit surface.
Any motion of a system to touch or penetrate the limit surface is not possible as long
as the constraint exists.

If a limit constraint is imposed on the finite displacement ui of a describing point,
there is no constraint on infinitesimal displacement dui of the point.

The differential inequality or slip constraint may exist in dynamic systems regard-
less of limit constraints.

Proof : Consider a dynamic system with a three-dimensional configuration space
(u1, u2, u3) and a scleronomic limit constraint as

f (u1, u2, u3) < 0 (10.457)

The associated equality constraint equation f (u1, u2, u3) = 0 defines a surface in
(u1, u2, u3)-space. The local value of the constraint function f = f (u1, u2, u3) is pos-
itive on one side and negative on the other. To satisfy the constraint (10.457), the
SC-point of the system and its SC-trajectories must lie on the side of the constraint
surface where f < 0. The positive side of a surface f is indicated by ∇f. So, the side
−∇f is where the SC-point can move.

A time-dependent limit constraint given as

f (u1, u2, u3, t) < 0 (10.458)

also separates the configuration space into fields in which f < 0 and f > 0. The bound-
ary of the fields is defined by the associated constraint equation f (u1, u2, u3, t) = 0.
This equation defines a rigid surface in the event space (u1, u2, u3, t) or a surface in
the configuration space that changes with time in a prescribed manner. At any time t ,
the SC-point must be on the side of −∇f of the frozen constraint at that time.

Because the describing point of the dynamic system is not supposed to touch the
limit surface, the limit surface or any local differential of it has no interaction with the
motion of the SC-point. Therefore, a limit constraint cannot change the DOF of the
dynamic system.

Limit constraints cannot be defined by the sign ≤ instead of the inequality sign <:

f (u, t) � 0 (10.459)

This is because we can always decompose an equal-and-less-than constraint into an
equal constraint and a less-than constraint:

f (u, t) ≤ 0 ≡
{

f (u, t) < 0
f (u, t) = 0

(10.460)

Assume that the SC-point of the system is in the field of f < 0 where its DOF is
fC . As soon as the SC-point touches the constraint surface f = 0, its DOF drops to
fC − 1 and its equations of motion change to include the constraint force of f = 0.
Therefore, a system with a holonomic constraint f = 0 or a limit constraint f < 0 has
two different dynamics that must be analyzed separately. However, we may use the
equal-and-less-than sign (≤) as a short notation to indicate both constraints.



964 Constraints

We can transform a greater-than constraint (f > 0) to a less-than constraint (f < 0)

by multiplying by −1. �

Example 654 A Box on a Turntable with a Wall Consider the motion of a box in
a channel on a turntable such as the one explained in Example 612. Assume that we
remove one of the channel walls. Some of the kinematic constraints on the motion of
the box are not symmetric. The equality constraints on the box are

ZC − Z0 = 0 θX = 0 θY = 0 θZ = 2π ft (10.461)

where (XC, YC,ZC) are the coordinates of the box center. To express the inequality
constraint, we may show the constraints on four corners of the box if we consider the
size of the box in the (X, Y )-plane as 2a × 2b:

YC − b cos θZ − a sin θZ ≥ 0 (10.462)

YC − b cos θZ + a sin θZ ≥ 0 (10.463)

YC + b cos θZ + a sin θZ ≥ 0 (10.464)

YC + b cos θZ − a sin θZ ≥ 0 (10.465)

Only two of the above four constraints are needed to make sure that no corner breaks
the unilateral wall constraint Y > 0.

Example 655 Wiping Blades Figure 10.40 illustrates two sweeping blades A and B

that are supposed to weep a rectangular area of 2a × 4a such that XA < 0 and XB > 0.
Applying any harmonic motion to the blades with amplitude a, such as the following
functions, will do the job:

XB = a[1 + sin(ωBt + ϕB)] (10.466)

XA = −a[1 + sin(ωAt + ϕA)] (10.467)

X

a

θ

Y

A B

XA

XB

Figure 10.40 Two sweeping blades A and B with XA < 0 and XB > 0.
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Let us also add a turning blade with length l = a at the center of the area. If the
blade starts turning with a constant angular frequency ω from the horizontal position,
then coordinates of the tip point of the blade would be

X = a cos ωt Y = a sin ωt (10.468)

The inequality constraints of the motion of sweeping and turning blades are

XA < X < XB (10.469)

To satisfy the constraints, there must be specific relationships between the frequencies
ω, ωA, ωB and the initial conditions of the blades:

XB(0)

a
= 1 + sin ϕB(0) (10.470)

XA(0)

a
= −1 − sin ϕA(0) (10.471)

Let us assume that
ω = ωA = ωB (10.472)

Then, the constraint X >XA provides

eA = X − XA > 0

= a cos ωt + a[1 + sin(ωAt + ϕA)] > 0 (10.473)

Figure 10.41 illustrates eA/a versus ϕA and ωt , both between 0 and 2π . It indicates
the regions of the plane (ϕA, ωt) in which eA > 0 and the first constraint is satisfied.
We can similarly define an eB function as

eB = XB − X > 0

= a[1 + sin(ωBt + ϕB)] − a cos ωt > 0 (10.474)

and plot eB/a versus ϕB and ωt to have an image of the regions of eB/a > 0.

2

−1

1

3

1
2

3
4

6

1

4

ϕB

ωt

eA / a

Figure 10.41 Plot of eA/a versus ϕA and ωt , where eA = a cos ωt + a[1 + sin(ωAt + ϕA)].
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ωt

ϕBϕA

eA > 0
eB > 0

eB < 0

eA < 0

eA < 0

eB < 0

eB < 0

Figure 10.42 Top view of eB/a and eB/a, side by side.

To determine the regions of ϕA, ϕB and ωt , in which both constraints are satisfied,
let us show the top view of eB/a and eB/a side by side, as shown in Figure 10.42.
The shaded areas indicate where one of the constraints is not satisfied. Because ωt is
periodic, this graph repeats itself vertically. Therefore, having any vertical line on axes
ϕA and ϕB that does not hit any shaded area indicates there are safe values that satisfy
the constraints.

10.8 � DIFFERENTIAL CONSTRAINT

Constraints on infinitesimal displacements are of the forms

N∑
i=1

Aijdui = 0 j = 1, 2, . . . , L (10.475)

N∑
i=1

Aijdui + Aj dt = 0 j = 1, 2, . . . , L (10.476)

where Aij and Aj are C2 functions of ui (i = 1, 2, . . . , N) and t . They are L linear
differentials of N + 1 >L variables. The expression of constraints by linear equations
of differentials is called the Pfaffian form . Holonomic constraints are of the Pfaffian
form upon differentiating.

Similar to holonomic constraints, we can call the Pfaffian form (10.475) in which
t does not occur explicitly scleronomic, and the form (10.476) rheonomic. However,
to distinguish between finite-displacement holonomic constraints and Pfaffian forms,
which many not be holonomic, we call the Pfaffian form (10.475) in which Ai = 0
catastatic and the Pfaffian form (10.476) in which Ai �= 0 acatastatic.
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If a Pfaffian form is a total differential, it is integrable and can be reduced to the
holonomic form (10.154) or (10.156). If a Pfaffian form is not total and there is no
integrating factor, it is a differential constraint.

Consider a single Pfaffian form in a three-dimensional configuration space,

P dx + Q dy + R dz = 0 (10.477)

where P , Q, and R are functions of x, y, and z. If the conditions (10.383) are not
fulfilled, then the necessary and sufficient condition for (10.477) to be integrable is

P

(
∂Q

∂z
− ∂R

∂y

)
+ Q

(
∂R

∂x
− ∂P

∂z

)
+ R

(
∂P

∂y
− ∂Q

∂x

)
= 0 (10.478)

Proof : The conditions (10.383) are necessary and sufficient conditions for the differ-
ential constraint

A dx + B dy + C dz = 0 (10.479)

to be total:
df = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz = 0 (10.480)

If A, B, C have a common factor µ, and if

∂f

∂x
= µP

∂f

∂y
= µQ

∂f

∂z
= µR (10.481)

then the total differential (10.479) may be written in the form (10.477), which does not
necessarily satisfy the conditions (10.477).

To derive the conditions for (10.477) to be integrable, we assume there exist a
holonomic function f = f (x, y, z) and an integrating factor µ = µ(x, y, z) such that
they satisfy conditions (10.481). Then we have

∂ (µP )

∂y
= ∂2f

∂y ∂x
= ∂2f

∂x ∂y
= ∂ (µQ)

∂x
(10.482)

which can be rearranged as

µ

(
∂P

∂y
− ∂Q

∂x

)
= Q

∂µ

∂x
− P

∂µ

∂y
(10.483)

Similarly we have

µ

(
∂Q

∂z
− ∂R

∂y

)
= R

∂µ

∂y
− Q

∂µ

∂z
(10.484)

µ

(
∂R

∂x
− ∂P

∂z

)
= P

∂µ

∂z
− R

∂µ

∂x
(10.485)

We can respectively multiply these three equations by P , Q, R and sum to eliminate µ:

P

(
∂Q

∂z
− ∂R

∂y

)
+ Q

(
∂R

∂x
− ∂P

∂z

)
+ R

(
∂P

∂y
− ∂Q

∂x

)
= 0 (10.486)
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This is the necessary condition for differential constraint (10.477) to have an integrating
factor and be integrable. It means that, if φ is a function of x, y, z and

P1 = φP Q1 = φQ R1 = φR (10.487)

then the condition of integrability (10.478) is satisfied by P1,Q1, R1.
To prove that (10.478) is also a sufficient condition for integrability, we must

show that there exists a solution when it is satisfied. Let us assume that one of the
variable, say z, is momentarily frozen and is assumed constant. Then Equation (10.477)
reduces to

P dx + Q dy = 0 (10.488)

where P and Q are functions of variables x, y and parameter z. This equation always
has a solution,

f1 (x, y, z) = c1 (10.489)

where, if φ (x, y, z) is the integrating factor, then

∂f1
∂x

= φP = P1
∂f1
∂y

= φQ = Q1 (10.490)

Although it is not necessarily true that ∂f1/∂z = φR = R1, we can always write the
third condition as

R1 = φR = ∂f1
∂z

+ S (10.491)

Because P1, Q1, R1 must satisfy (10.486), we have

∂S

∂x

∂f1
∂y

− ∂S

∂y

∂f1
∂x

= 0 (10.492)

which shows that S and f1 are functionally related:

S = S(f1, z) (10.493)

By examination,

φ (P dx + Q dy + R dz) = ∂f1
∂x

dx + ∂f1
∂y

dy + ∂f1
∂z

dz + S dz

= df1 + S dz (10.494)

we see that the original equation is equivalent to

df1 + S dz = 0 (10.495)

If ψ = ψ(f1, z) is an integral factor of this equation, then

ψφ(P dx + Q dy + R dz) = ψ(df1 + S dz) (10.496)

is a total differential. Its original function is

f2 (f1, z) = c2 (10.497)
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which becomes
f (x, y, z) = 0 (10.498)

upon replacing f1 by its expression in x,y, z.
The integrability condition for a general case is

Ai

(
∂Aj

∂uk

− ∂Ak

∂uj

)
+ Aj

(
∂Ak

∂ui

− ∂Ai

∂uk

)
+ Ak

(
∂Ai

∂uj

− ∂Aj

∂ui

)
= 0

i, j, k = 1, 2, . . . , N (10.499)

There are N (N − 1) (N − 2) /6 such equations, of which (N − 1) (N − 2) /2 are
independent.

Johann Friedrich Pfaff (1765–1825) was a German mathematician and the first to
explain the meaning of nonintegrable differential forms, which are fewer in number
than their variable arguments. The condition (10.486) was found by Euler in 1770.

The word catastatic comes from the Greek word for “orderly.” �

Example 656 � Integrability Analysis Procedure Consider the differential constraint

yz (y + z) dx + zx (z + x) dy + xy (x + y) dz = 0 (10.500)

This equation satisfies the integrability condition (10.478), and therefore, we can deter-
mine a holonomic constraint.

To review the procedure of the analysis in the above Proof, let us freeze z and
simplify this equation to

yz (y + z) dx + zx (z + x) dy = 0 (10.501)

It has the solution
f1 = (y + z) (z + x)

xy
(10.502)

The differentials of f1 are

∂f1
∂x

= z (y + z)

x2y
= − 1

x2y2
P (10.503)

∂f1
∂y

= −z (z + x)

xy2
= − 1

x2y2
Q (10.504)

so
φ = − 1

x2y2
(10.505)

Now we have
S = φR − ∂f1

∂z
= −x + y

xy
= −2

f1 − 1

z
(10.506)

and therefore,

φ (P dx + Q dy + R dz) = df1 − 2
f1 − 1

z
dz (10.507)
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An integrating factor of this equation is

ψ = 1

z2
(10.508)

and

ψφ (P dx + Q dy + R dz) = df1

z2
− 2 (f1 − 1)

z2
= d

(
f1 − 1

z2

)
(10.509)

which yields
f1 − 1

z2
= c2 (10.510)

Replacing f1 yields the holonomic constraint

x + y + z

xyz
= c (10.511)

This example is adopted form Ince (1926). Edward Lindsay Ince (1891–1941) was a
British mathematician who improved the theory of differential equations.

Example 657 � Pfaff Problem When the integrability condition (10.478) is not
satisfied, the differential constraint (10.477) is not derivable from a single function. Pfaff
showed that in this case the differential constraint is equivalent to a pair of algebraic
equations known as integral equivalents. For example, the differential constraint of

y dx + z dy + x dz = 0 (10.512)

can be a result of any set of the coupled algebraic equations

1
2y2 + xz = c1 x − y = c2 (10.513)

1
2y2 + xz = c1 y − z = c2 (10.514)

In general, when the integrability condition is not satisfied, then a differential constraint
in N or N + 1 variables is equivalent to a system of not more than N algebraic
equations. This is called the Pfaff problem.

10.9 GENERALIZED MECHANICS

Consider a mechanical system in a constraint-free n-dimensional configuration space.
The n coordinates of the space are a set of generalized coordinates qi , i = 1, 2, . . . , n.
The coordinates of the original configuration space ui , i = 1, 2, . . . , N , and the coor-
dinates of the Cartesian space (xi, yi, zi), i = 1, 2, . . . , N/3, are functions of the
generalized coordinates qi and possibly time t :

ui = ui (q1, q2, . . . , qn, t) i = 1, 2, . . . , N (10.515)

xi = ui (q1, q2, . . . , qn, t) i = 1, 2, . . . , N/3 (10.516)

yi = ui (q1, q2, . . . , qn, t) i = 1, 2, . . . , N/3 (10.517)

zi = ui (q1, q2, . . . , qn, t) i = 1, 2, . . . , N/3 (10.518)
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Therefore, we must be able to express every dynamic characteristic of the system f (ui)

that is expressible by ui or (xi, yi, zi) by generalized coordinates:

f (ui) = f (q1, q2, . . . , qn, t) i = 1, 2, . . . , N (10.519)

Example 658 Generalized Kinetic Energy The kinetic energy of a system with N/3
particles is

K = 1

2

N/3∑
i=1

mi

(
ẋ2

i + ẏ2
i + ż2

i

) = 1

2

N∑
i=1

miu̇
2
i (10.520)

Expressing the configuration coordinate ui in terms of generalized coordinates qj,
we have

u̇i =
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t
s = 1, 2, . . . , N (10.521)

Therefore, the kinetic energy in terms of generalized coordinates is

K = 1

2

N∑
i=1

mi

(
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t

)2

= 1

2

n∑
j=1

n∑
k=1

ajkq̇j q̇k +
n∑

j=1

bj q̇j + c (10.522)

where

ajk =
N∑

i=1

mi

∂ui

∂qj

∂ui

∂qk

(10.523)

bj =
N∑

i=1

mi

∂ui

∂qj

∂ui

∂t
(10.524)

c = 1

2

N∑
i=1

mi

(
∂ui

∂t

)2

(10.525)

where (
n∑

s=1

∂ui

∂qs

q̇s + ∂ui

∂t

)2

=
 n∑

j=1

∂ui

∂qj
q̇j + ∂ui

∂t

(
n∑

k=1

∂ui

∂qk

q̇k + ∂ui

∂t

)

=
n∑

j=1

n∑
k=1

(
∂ui

∂qj

∂ui

∂qk

)
q̇j q̇k

+ 2
n∑

j=1

∂ui

∂qj

∂ui

∂t
q̇j +

(
∂ui

∂t

)2

(10.526)

Using these expressions, we may show the kinetic energy of the dynamic system as

K = K0 + K1 + K2 (10.527)
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where

K0 = 1

2

N∑
i=1

mi

(
∂ui

∂t

)2

(10.528)

K1 =
n∑

j=1

N∑
i=1

mi

∂ui

∂qj

∂ui

∂t
q̇j (10.529)

K2 = 1

2

n∑
j=1

n∑
k=1

N∑
i=1

mi

∂ui

∂qj

∂ui

∂qk

q̇j q̇k (10.530)

Examining akj, we find that ajk is symmetric:

akj =
N∑

i=1

mi

∂ui

∂qk

∂ui

∂qj
= ajk (10.531)

If the coordinates ui do not depend explicitly on time t , then ∂ui/∂t = 0 and we have

K = 1

2

n∑
j=1

n∑
k=1

ajkq̇j q̇k (10.532)

Kinetic energy is a scalar quantity and, because of (10.520), must be positive defi-
nite. The first term of (10.522) is a positive quadratic form. The third term of (10.522)
is also a nonnegative quantity, as indicated by (10.525). The second term of (10.520)
can be negative for some q̇j and t . However, because of (10.520), the sum of all three
terms of (10.522) must be positive.

Example 659 Generalized Potential Force If there exists a potential energy function
V = V (ui), i = 1, 2, . . . , N , then the potential force Fj is derivable from the potential
energy:

Fj = − ∂V

∂uj

(10.533)

Let us assume that we substitute ui from (10.515) and express V in terms of qk.
Therefore,

− ∂V

∂qr

= −
N∑

j=1

∂V

∂uj

∂uj

∂qr

=
N∑

j=1

Fj

∂uj

∂qr

= Fr (10.534)

and the generalized force Fr is related to the potential energy V , given in generalized
coordinates by

Fr = − ∂V

∂qr

(10.535)
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Example 660 � Generalized Constraints Consider a mechanical system of N/3
particles in the configuration space u1, u2, . . . , uN with L (< N) independent holonomic
and nonholonomic constraints:

N∑
i=1

Aji dui + Aj dt = 0 j = 1, 2, . . . , L (10.536)

Let us assume that L′ of the constraints are holonomic,

N∑
i=1

∂fj
∂ui

dui + ∂fj
∂t

dt = 0 j = 1, 2, . . . , L′ (10.537)

and the remaining L − L′ constraints are nonholonomic,

N∑
i=1

Aji dui + Aj dt = 0 j = L′ + 1, L′ + 2, . . . , L (10.538)

Using the L′ holonomic constraints, we reduce the number of configuration coordinates
to the minimum required n = N − L′ to specify the configuration of a system of N/3
particles. Any set of coordinates q1, q2, . . . , qn is a set of generalized coordinates of a
system if and only if the number n of its members is necessary and sufficient to define
the configuration of the system uniquely.

Each holonomic constraint in (10.537) is a total differential:

dfj (u1, u2, . . . , uN, t) = 0 j = 1, 2, . . . , L′ (10.539)

These equations can be integrated to provide L′ equations among the N coordinates
ui , i = 1, 2, . . . , N :

fj(u1, u2, . . . , uN, t) = cj j = 1, 2, . . . , L′ (10.540)

The constants cj are determined from initial conditions u1(0), u2(0), . . ., uN(0). Let
us define N transformations

qk = qk (u1, u2, . . . , uN, t) k = 1, 2, . . . , N (10.541)

where qk are single-valued functions of u1, u2, . . . , uN, t . We may consider these
equations as mapping functions which map the point (u1, u2, . . . , uN) in u-space to
a point (q1, q2, . . . , qN) in q-space at a fixed time t . The uniqueness of qk guarantees
the uniqueness of the mapping. If there exists a domain U in u-space in which the
Jacobian J is not zero for any bounded t ,

J =

∣∣∣∣∣∣∣∣∣∣

∂s1

∂u1
· · · ∂s1

∂u1

· · · . . . · · ·
∂s1

∂u1
· · · ∂s1

∂u1

∣∣∣∣∣∣∣∣∣∣
�= 0 (10.542)
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then, from the implicit function theory, the mapping is one to one. Therefore, the
domain U of u-space maps to a domain Q of q-space in which there exist N inverse
transformations:

uk = uk (q1, q2, . . . , qN, t) k = 1, 2, . . . , N (10.543)

Using (10.540) and (10.541), we find that the first L′ of qk are constant ck and
fixed by constraint surfaces fk = ck, k = 1, 2, . . . , L′:

qk = fk (u1, u2, . . . , uN, t) = ck k = 1, 2, . . . , L′ (10.544)

The inverse mapping (10.543) shows that the N configuration coordinates uk are deter-
mined by L′ constants ck, k = 1, 2, . . . , L′, and N − L′ variables qk , k = L′ + 1,

L′ + 2, . . . , N :

uk = uk (c1, c2, . . . , cL′, qL′+1, qL′+2, . . . , qN, t) k = 1, 2, . . . , N (10.545)

Therefore, only n = N − L′ coordinates qk , k = 1, 2, . . . , n, are required to determine
the N configuration coordinates uk and find the position of the describing SC-point
of the system when the uk satisfy L′ holonomic constraints (10.539) or (10.540). The
remaining n = N − L′ coordinates qk, k = 1, 2, . . . , n, are now no longer subject to
any holonomic constraints. The n constraint-free coordinates qi (i = 1, 2, . . . , n) are the
generalized coordinates of the system. We may define a constraint-free n-dimensional
generalized configuration space (q1, q2, . . . , qN) in which there is no constraint surface
and the describing point of the system may reach any point of the space. How-
ever, because of nonholonomic constraints (10.538), the movement of the generalized
describing SQ-point must satisfy Equations (10.538).

From (10.545), the infinitesimal possible and virtual displacements of the SC-point
of the system are

dui =
n∑

j=1

∂ui

∂qj
dqj + ∂ui

∂t
dt i = 1, 2, . . . , N (10.546)

δui =
n∑

j=1

∂ui

∂qj
δqj i = 1, 2, . . . , N (10.547)

The possible displacements dui satisfy all constraint equations on the system (10.536),
which after substituting (10.546),

N∑
i=1

Aji

(
n∑

k=1

∂ui

∂qk

dqk + ∂ui

∂t
dt

)
+ Aj dt = 0 (10.548)

j = 1, 2, . . . , L

and simplification become the constraints on the possible displacements of the gener-
alized coordinates dqk:

n∑
k=1

(
N∑

i=1

Aji
∂ui

∂qk

)
dqk +

(
N∑

i=1

Aji
∂ui

∂t
+ Aj

)
dt = 0 (10.549)

j = 1, 2, . . . , l
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However, because in the generalized configuration space (q1, q2, . . . , qn) there is no
holonomic constraints, the L′ equations of (10.549) are identities and only l = L −
L′ nonholonomic constraints remain. The nonholonomic constraints (10.549) on the
generalized coordinates qk may be called the generalized constraints . Therefore, any
constraint on the generalized coordinates qk is a generalized constraint and it must be
nonholonomic.

Introducing the new notation

Bjk =
N∑

i=1

Aji
∂ui

∂qk

(10.550)

Bj =
N∑

i=1

Aji
∂ui

∂t
+ Aj (10.551)

we can write the nonholonomic constraints (10.549) as
n∑

k=1

Bjk dqk + Bj dt = 0 j = 1, 2, . . . , L − L′ (10.552)

or as
n∑

k=1

Bjk q̇k + Bj = 0 j = 1, 2, . . . , l l = L − L′ (10.553)

The possible displacements dqk must satisfy (10.552) and the possible velocities q̇k

must satisfy (10.553). The nonholonomic constraints on the virtual generalized dis-
placement δqk are

n∑
k=1

Bjkδqk = 0 j = 1, 2, . . . , l (10.554)

Example 661 � dδ Operators for Generalized Coordinates It is introduced in
Example 635 that d/dt is the differential symbol in real time and δ is the differential in
frozen time. It is also shown that the orders of the d and δ operators are interchangeable
for configuration position vector u under specified conditions:

dδu = δ du u = [
u1 u2 uN

]
(10.555)

The same relationship holds for the generalized position vector q:

dδq = δ dq q = [
q1 q2 qn

]
(10.556)

To show this, let us use the expression of infinitesimal possible and virtual configuration
displacements u in terms of generalized coordinates q,

dui =
n∑

j=1

∂ui

∂qj
dqj + ∂ui

∂t
dt i = 1, 2, . . . , N (10.557)

δui =
n∑

j=1

∂ui

∂qj
δqj i = 1, 2, . . . , N (10.558)
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and substitute them in the ith component of (10.555):

d δu − δ du = d

 n∑
j=1

∂ui

∂qj
δqj

 − δ

 n∑
j=1

∂ui

∂qj
dqj + ∂ui

∂t
dt


=

n∑
j=1

∂ui

∂qj

(
d δqj − δ dqj

) +
n∑

j=1

d

(
∂ui

∂qj

)
δqj

−
n∑

j=1

δ

(
∂ui

∂qj

)
dqj − δ

(
∂ui

∂t

)
dt = 0 (10.559)

The sum of the last three terms in this equation is zero:

n∑
j=1

d

(
∂ui

∂qj

)
δqj −

n∑
j=1

δ

(
∂ui

∂qj

)
dqj − δ

(
∂ui

∂t

)
dt

=
n∑

j,k=1

∂2ui

∂qk ∂qj
dqk δqj +

n∑
j=1

∂2ui

∂t ∂qj
dt δqj

−
n∑

j,k=1

∂2ui

∂qk ∂qj
δqk dqj −

n∑
j=1

∂2ui

∂qj ∂t
δqj dt

=
n∑

j,k=1

∂2ui

∂qk ∂qj
dqk δqj −

n∑
k,j=1

∂2ui

∂qj ∂qk

δqj dqk = 0 (10.560)

Therefore, (10.559) reduces to the following equation that must hold for all q and for
any transformation u = u (q):

n∑
j=1

∂ui

∂qj

(
d δqj − δ dqj

) = 0 (10.561)

which implies that
d δqj − δ dqj = 0 j = 1, 2, . . . , n (10.562)

which shows that
d δq = δ dq (10.563)

10.10 � INTEGRAL OF MOTION

Any equation of the form
f (q, q̇, t) = c (10.564)

where
c = f (q0, q̇0, t0) (10.565)

q = [
q1 q2 . . . qn

]
(10.566)
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with total differential
df

dt
=

n∑
i=1

(
∂f

∂qi

q̇i + ∂f

∂q̇i

q̈i

)
+ ∂f

∂t
= 0 (10.567)

where the generalized positions q and velocities q̇ of a dynamic system must satisfy
at all times t is called an integral of motion . The parameter c whose value depends on
initial conditions is called a constant of motion . The maximum number of independent
integrals of motion for a dynamic system with n degrees of freedom is 2n. A constant
of motion is a quantity whose value remains constant during the motion.

Any integral of motion is a result of a conservation principle or a combination
of them. There are only three conservation principles for a dynamic system: energy,
momentum, and moment of momentum. Every conservation principle is the result of
symmetry in position and time spaces. The conservation of energy indicates the homo-
geneity of the time space, the conservation of momentum indicates the homogeneity
in the position space, and the conservation of the moment of momentum indicates the
isotropy in the position space.

Proof : Consider a mechanical system with fC degrees of freedom. Mathematically
the dynamics of the system is expressed by a set of n = fC second-order differential
equations of n generalized coordinates qi(t), i = 1, 2, . . . , n:

q̈i = Fi (qi, q̇i , t) i = 1, 2, . . . , n (10.568)

The general solution of the equations contain 2n constants:

q̇i = q̇i (c1, c2, . . . , cn, t) i = 1, 2, . . . , n (10.569)

qi = qi(c1, c2, . . . , c2n, t) i = 1, 2, . . . , n (10.570)

To determine these constants and uniquely identify the motion of the system, it is
necessary to know the initial conditions qi(t0), q̇i (t0), which specify the state of the
system at some given instant t0:

cj = cj (q(t0), q̇(t0), t0) j = 1, 2, . . . , 2n (10.571)

fj (q(t), q̇(t), t) = cj (q(t0), q̇(t0), t0) (10.572)

Each of the functions fj is an integral of motion and each ci is a constant of motion.
An integral of motion may also be called a first integral , and a constant of motion may
also be called a constant of integral.

When an integral of motion is given,

f1 (q, q̇, t) = c1 (10.573)

we can substitute one of the equations of (10.568) with the first-order equation

q̇1 = f (c1, qi, q̇i+1, t) i = 1, 2, . . . , n (10.574)

and solve a set of n − 1 second-order and one first-order differential equations:{
q̈i+1 = Fi+1(qi, q̇i, t)

q̇1 = f (c1, qi, q̇i+1, t)
i = 1, 2, . . . , n. (10.575)
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If there exist 2n independent first integrals fj, j = 1, 2, . . . , 2n, then instead of solv-
ing n second-order equations of motion (10.568), we can solve a set of 2n algebraic
equations

fj (q, q̇) = cj (q(t0), q̇(t0), t0) j = 1, 2, . . . , 2n (10.576)

and determine the n generalized coordinates qi , i = 1, 2, . . . , n:

qi = qi (c1, c2, . . . , c2n, t) i = 1, 2, . . . , n (10.577)

Generally speaking, an integral of motion f is a function of generalized coordinates
q and velocities q̇ such that its value remains constant. The value of an integral of
motion is the constant of motion c that can be calculated by substituting the given
value of variables q(t0), q̇(t0) at the associated time t0.

Breaking a constraint increases the degree of freedom and produces a new dynamic
system with new equations of motion. However, when a dynamic system and its con-
straints are set up, the number of degrees of freedom and its generalized coordinates
are fixed. If any conservation law is applied on the system, then there exist associated
integrals of motion whether we are using or ignoring them. It is not possible to break
an integral of motion if it exists. �

Example 662 A Mass–Spring–Damper Vibrator Consider a mass m attached to
a spring with stiffness k and a damper with damping c such as the one shown in
Figure 10.15. The equation of motion of the system and its initial conditions are

mẍ + cẋ + kx = 0 (10.578)

x(0) = x0 ẋ(0) = ẋ0 (10.579)

Its solution is
x = c1 exp (s1t) + c2 exp (s2t) (10.580)

s1 = c − √
c2 − 4km

−2m
s2 = c + √

c2 − 4km

−2m
(10.581)

Taking a time derivative, we find

ẋ = c1s1 exp (s1t) + c2s2 exp (s2t) (10.582)

Using x and ẋ, we determine the integrals of motion f1 and f2:

f1 = ẋ − xs2

(s1 − s2) exp (s1t)
= c1 (10.583)

f2 = ẋ − xs1

(s2 − s1) exp (s2t)
= c2 (10.584)

Because the constants of the integral remain constant during the motion, we can cal-
culate their value at any particular time, such as t = 0:

c1 = ẋ0 − x0s2

s1 − s2
c2 = ẋ0 − x0s1

s2 − s1
(10.585)
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Substituting s1 and s2 yields

c1 =
√

c2 − 4km
(
cx0 + x0

√
c2 − 4km + 2mẋ0

)
2
(
c2 − 4km

) (10.586)

c2 =
√

c2 − 4km
(
cx0 − x0

√
c2 − 4km + 2mẋ0

)
2
(
c2 − 4km

) (10.587)

Let us take time derivatives of the integrals of motion (10.583) and (10.584) to check
if their derivatives are zero:

d

dt
f1 = e−ts1

s1 − s2
(ẍ − ẋ (s1 + s2) + xs1s2)

=
exp

(
t

2m

(
c −

√
c2 − 4km

))
√

c2 − 4km
(mẍ + cẋ + kx) = 0 (10.588)

d

dt
f2 = − e−ts2

s1 − s2
(ẍ − ẋ (s1 + s2) + xs1s2)

= −
exp

(
t

2m

(
c +

√
c2 − 4km

))
√

c2 − 4km
(mẍ + cẋ + kx) = 0 (10.589)

Example 663 � Exact Equation An exact equation D(n)(x) is the derivative of an
equation of lower order given as

D(n)(x) = d

dt

(
D(n−1)(x)

)
(10.590)

This equation is simplified by integrating with respect to t :

D(n−1)(x) = c1 (10.591)

The nth-order ODE in x(t) is given as

D(n)(x) = a0(t) + a1(t)x + a1(t)ẋ + · · · + an(t)x
(n) (10.592)

As an example, consider a particle with mass m that is under a force F :

F = −m(x + t ẋ) (10.593)

The equation of motion of m is
ẍ = −x − t ẋ (10.594)

Example 664 � Constraints and Constants of Motion Relationship Consider a
dynamic system with N/3 particles. The position and velocity of the ith particle
are given as ri and vi . Instead of showing the N/3 particles by N/3 vectors ri in
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three-dimensional space, we may equivalently indicate the motion of the system by a
point in an N -dimensional configuration space ui , i = 1, 2, . . . , N . A holonomic con-
straint is a function of coordinates ui and time t , or equivalently a function of positions
ri and t :

f (ui, t) = 0 i = 1, 2, . . . , N (10.595)

A differential constraint is a nonintegrable function of dui and t , or equivalently a
nonintegrable function of ui , u̇i , and t :

f (dui, dt) = 0 i = 1, 2, . . . , N (10.596)

f (ui, u̇i, t) = 0 i = 1, 2, . . . , N (10.597)

A holonomic constraint is an equation among the coordinates ui of a dynamic system.
They must be considered when the dynamic system is being analyzed. If we ignore
an existing holonomic constraint among the coordinates ui , it will not generally be
satisfied when the equations of the system are solved.

A nonholonomic constraint is an equation among the velocity components u̇i of a
dynamic system. They must be considered when the dynamic system is being analyzed.
If we ignore an existing nonholonomic constraint among the velocity components u̇i , it
will not generally be satisfied when the equations of the system are solved. A nonholo-
nomic constraint (10.597) cannot be used to reduce the number of required coordinates
and configuration degree of freedom fC . However, a nonholonomic constraint reduces
the state degree of freedom fS of a dynamic system.

Let us define a 2n-dimensional generalized state space SG with coordinates qi ,
q̇i , i = 1, 2, . . . , n. This is a holonomic constraint-free space in which the generalized
describing point of the system will trace the actual generalized state path of motion.
Although there is no holonomic constraint in SG, a nonholonomic constraint of the form
(10.597) will survive and show itself by a new function of generalized coordinates and
velocities:

f (qi, q̇i , t) = 0 i = 1, 2, . . . , n (10.598)

A nonholonomic constraint among the generalized coordinates and velocities defines
a surface in SG-space in which the SG-point must move. A nonholonomic constraint
will not be satisfied automatically and we must consider its equation when we solve
a dynamic system. Therefore, there exists an associated constraint force FC in the
generalized state space SG to keep the describing point on the nonholonomic constraint
surface:

FC = −λ ∇f = −λ

n∑
i=1

(
∂f

∂qi

q̂i + ∂f

∂q̇i

̂̇qi

)
λ ∈ R (10.599)

Although all partial derivatives of ∂f/∂q̇i can be zero, at least one component of ∂f/∂q̇i

is nonzero.
An integral of motion is a function of generalized coordinates and velocities qi , q̇i ,

f (qi, q̇i , t) = c i = 1, 2, . . . , n (10.600)

where n is the number of DOF of the system. We can also interpret an integral of motion
as a surface in SG-space in which the SG-point will move. An integral of motion will
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be satisfied automatically and we do not need to consider its equation when we solve a
dynamic system. Therefore, there is no associated force in the generalized state space
SG to keep the describing point in the integral surface. The differential and gradient of
an integral of motion must be zero:

∂f

∂qi

q̇i + ∂f

∂q̇i

q̈i = 0 i = 1, 2, . . . , n (10.601)

∇f =
n∑

i=1

(
∂f

∂qi

q̂i + ∂f

∂q̇i

̂̇qi

)
= 0 (10.602)

We may use an SG-surface to reduce the order of the system from 2n to 2n − 1
and solve 2n − 1 first-order differential equations instead of n second-order equations.
However, if we ignore an existing integral of motion, it will automatically be satisfied
when the equations of the system are solved. An SG-surface is a function of both qi

and q̇i .

Example 665 � Constraint and First Integral of a Pendulum Figure 10.43(a)

illustrates a planar pendulum that is analyzed in Example 132. The free-body diagram
of Figure 10.43(b) provides two equations of motion:

mẍ = −T
x

l
(10.603)

mÿ = −mg + T
y

l
(10.604)

Eliminating the tension force T , we have one second-order equation of two variables:

ÿx + ẍy + gx = 0 (10.605)

Because of the constant length of the connecting bar, we have the constraint equation
between x and y

x2 + y2 − l2 = 0 (10.606)

Having one constraint in the two-dimensional configuration space (x, y) indicates that
we can express the dynamic of the system by only one generalized coordinate. Choosing

l

θ
m

X

Y

y

x

mg

T

g

Figure 10.43 A planar pendulum.
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θ as the generalized coordinate, we can express x and y by θ to express the equation
of motion (10.605) as

θ̈ + g

l
sin θ = 0 (10.607)

Multiplying the equation by θ̇ and integrating yield the integral of energy:

f (θ, θ̇) = 1
2 θ̇2 − g

l
cos θ = E (10.608)

E = 1
2 θ̇2

0 − g

l
cos θ0 (10.609)

The integral of motion (10.608) is a first-order differential equation

θ̇ =
√

2E + 2
g

l
cos θ (10.610)

This equation expresses the dynamic of the pendulum upon solution.
Let us assume θ is too small such that we can approximate the equation of motion as

θ̈ + g

l
θ = 0 (10.611)

The first integral of this equation is

f (θ, θ̇) = 1
2 θ̇2 − g

l
θ = E (10.612)

E = 1
2 θ̇2

0 − g

l
θ0 (10.613)

which provides a separated first-order differential equation

θ̇ =
√

2E + 2
g

l
θ (10.614)

Its solution is

t =
∫

dθ√
2E + 2

g

l
θ

=
√

2
l

g

√
g

l
θ + E − p (10.615)

where p is the second constant of motion,

p = l

g
θ̇0 (10.616)

Now, let us ignore the energy integral and solve the second-order equation of
motion (10.611):

θ = c1 cos

√
g

l
t + c2 sin

√
g

l
t (10.617)

A time derivative of the solution√
l

g
θ̇ = −c1 sin

√
g

l
t + c2 cos

√
g

l
t (10.618)
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can be used to determine the integrals and constants of motion:

f1 = θ cos

√
g

l
t −

√
l

g
θ̇ sin

√
g

l
t (10.619)

f2 = θ sin

√
g

l
t +

√
l

g
θ̇ cos

√
g

l
t (10.620)

Using the initial conditions θ(0) = θ0, θ̇ (0) = θ̇0, we have

c1 = θ0 c2 =
√

l

g
θ̇0 (10.621)

A second-order equation has only two constants of integrals. Therefore, we should be
able to express E and p in terms of c1 and c2 or vice versa:

E = 1

2
θ̇2

0 − g

l
θ0 = 1

2

g

l
c2

2 − g

l
c1 (10.622)

p = l

g
θ̇0 = l

g

√
g

l
c2 (10.623)

c2 =
√

l

g
θ̇0 = g

l

√
l

g
p (10.624)

c1 = θ0 = 1

2

g

l
p2 − l

g
E (10.625)

where E is the mechanical energy of the pendulum and p is proportional to its moment
of momentum.

Example 666 A Hopping Machine Figure 10.44 illustrates a hopping machine in the
flight phase. It consists of a body with mass m1 and mass moment I about its mass
center and an extendable leg. There are two actuators on this machine: a motor to turn
the leg relative to the body and an actuator to extend and contract the leg. The local
configuration of the system is determined by θ , φ, and l.

Because there is no external moment on the system while in space, the angular
momentum of the system is conserved. Assuming that the mass of the leg is concen-
trated at its foot, the angular momentum conservation equation is

L = I θ̇ + m2 (d + l)2 (θ̇ + ϕ̇
)

(10.626)

We may use this first integral to reduce the order of equations of motion.
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d

m2

I, m1

X

l

ϕ

Figure 10.44 A hopping machine.

Example 667 � Homogeneity of Time, Integral of Energy Consider a dynamic
system with kinetic and potential energies K and V :

K = K(q, q̇, t) (10.627)

V = V (q) (10.628)

The difference between these energies is called the Lagrangian or kinetic potential of
the system and is shown by L:

L = K − V = L (q, q̇, t) (10.629)

Having the Lagrangian is equivalent to knowing the system. We are able to find the
equations of motion of the system from its Lagrangian:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 i = 1, 2, . . . , n (10.630)

If the Lagrangian of a system does not depend explicitly on time, then its total
time derivative is zero. Not having t in L is equivalent to homogeneity of time, which
indicates that the origin of the time axis and the scale of a unit time step are arbitrary:

dL
dt

=
n∑

i=1

∂L
∂qi

q̇i +
n∑

i=1

∂L
∂q̇i

q̈i = 0 (10.631)

Let us substitute ∂L/∂qi from the Lagrange equation (10.630) to obtain

dL
dt

= q̇i

n∑
i=1

d

dt

(
∂L
∂q̇i

)
+

n∑
i=1

∂L
∂q̇i

q̈i =
n∑

i=1

d

dt

(
q̇i

∂L
∂q̇i

)
(10.632)
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or
d

dt

(
n∑

i=1

q̇i

∂L
∂q̇i

− L
)

= 0 (10.633)

Therefore,
n∑

i=1

q̇i

∂L
∂q̇i

− L = E (10.634)

where E is a constant of motion and f1 is an integral of motion:

f1 =
n∑

i=1

q̇i

∂L
∂q̇i

− L (10.635)

We may use
n∑

i=1

q̇i

∂L
∂q̇i

=
n∑

i=1

q̇i

∂K

∂q̇i

= 2K (10.636)

to show that E is the mechanical energy of the system:

f1 = 2K − (K − V ) = K + V = E (10.637)

This is equivalent to the principle of conservation of energy in (2.371).

Example 668 � Homogeneity of Space, Integral of Momentum Homogeneity of
space indicates that we may translate the coordinate system parallel to itself without
changing the dynamic properties of the system. This translation may be a constant
displacement or a uniform displacement with a constant velocity.

Let us indicate the Lagrangian L by position and velocity vectors r, v:

L = L (ri , vi , t) (10.638)

d

dt

∂L
∂vi

− ∂L
∂ri

= 0 i = 1, 2, . . . ,
N

3
(10.639)

A dynamic system is independent of position ri if its Lagrangian L does not depend
explicitly on ri . So, we must have

N/3∑
i=1

∂L
∂ri

= 0 (10.640)

From the Lagrange equation (10.639) we have

N/3∑
i=1

d

dt

∂L
∂vi

= d

dt

N/3∑
i=1

∂L
∂vi

= 0 (10.641)

Therefore,
N/3∑
i=1

∂L
∂vi

= p (10.642)
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where p is a constant of motion and f2 is an integral of motion:

f2 =
N/3∑
i=1

∂L
∂vi

(10.643)

Employing the kinetic energy of the system, K , we have

K = 1

2

N/3∑
i=1

miv2
i (10.644)

and knowing that
∂L
∂vi

= ∂K

∂vi

(10.645)

we can write p as

p =
N/3∑
i=1

mivi (10.646)

where p is the translational momentum of the system.
Not having ri in the Lagrangian L means that the kinetic energy K does not depend

on ri and we have no variation in V . The potential energy V is generally a function
of ri , where its gradient indicates the force field F = −∇V(ri ):

∂L
∂ri

= −∂V

∂ri

= Fi (10.647)

Therefore, Equation (10.640) signifies that the sum of the forces on all particles of the
system is zero:

N/3∑
i=1

Fi = 0 (10.648)

The three components of p may all conserve only in the absence of an external force
field in the associated direction.

When the Lagrangian L is expressed by the generalized coordinates qi , the deriva-
tive of the Lagrangian with respect to generalized velocity q̇i is called the generalized
momentum pi ,

pi = ∂L
∂q̇i

(10.649)

and its derivative with respect to the generalized coordinate qi is called the generalized
force Qi ,

Qi = ∂L
∂qi

(10.650)

Using these notations, the Lagrange equation (10.630) reduces to

Qi = ṗi (10.651)
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Example 669 � Isotropy of Space, Integral of Moment of Momentum Isotropy of
space indicates that we may rotate the coordinate system without changing the dynamic
properties of the system.

Let us indicate the Lagrangian L by position and velocity vectors r, v:

L = L (ri , vi , t) (10.652)

d

dt

∂L
∂vi

− ∂L
∂ri

= 0 i = 1, 2, . . . , n (10.653)

Virtual rotation δφ provides virtual displacement and velocity as

δri = δφ × ri (10.654)

δvi = δφ × vi (10.655)

If the space is isotropic, L must be independent of the rotation δφ:

δL =
N/3∑
i=1

∂L
∂ri

· δri +
N/3∑
i=1

∂L
∂vi

· δvi = 0 (10.656)

Substituting pi for ∂L/∂vi and ṗi for ∂L/∂ri , we have

N/3∑
i=1

(ṗi · δφ × ri + pi · δφ × vi ) = 0 (10.657)

Taking advantage of the scalar triple-product equation (1.111) and factoring δφ

show that

δφ ·
N/3∑
i=1

(ri × ṗi + vi × pi) = δφ · d

dt

N/3∑
i=1

ri × pi = 0 (10.658)

A nonzero δφ provides
N/3∑
i=1

ri × pi = L (10.659)

where L is a constant of motion and f3 is an integral of motion,

f3 =
N/3∑
i=1

ri × pi (10.660)

and L is called the rotational momentum or moment of momentum of the dynamic
system.

Example 670 Satellite Orientation Control The planar model of a simplified satellite
is illustrated in Figure 10.45. Two similar massless arms with tip mass points m are
attached to the main body, which has a mass m1 and mass moment I . When the satellite
is free floating, its angular momentum will be conserved. So, moving the arms causes
the main body to rotate.
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d

m2

θ

I, m

X

l

ϕ1

m1

x

y

ϕ2

Figure 10.45 A planar satellite with two orientation control arms.

Let us indicate the local coordinates of the masses by (x1, y1) and (x2, y2) and their
angular positions with respect to the body by ϕ1 and ϕ2. The velocity of the satellite
mass center is v and the global angular position of the satellite is measured by θ . The
kinetic energy of the system is

K = 1
2 (m + m1 + m2)v

2 + 1
2I θ̇2

+ 1
2m1(Ẋ

2
1 + Ẏ 2

1 ) + 1
2m1

(
Ẋ2

2 + Ẏ 2
2

)
(10.661)

where
X1 = d cos θ + l cos (θ + ϕ1)

Y1 = d sin θ + l sin (θ + ϕ1) (10.662)

X2 = −d cos θ − l cos (θ + ϕ2)

Y2 = −d sin θ − l sin (θ + ϕ2) (10.663)

There is no change in potential energy and therefore K = L. Because there is no θ in
the Lagrangian of the system, L = ∂L/∂θ̇ is a constant of motion,

L = ∂L
∂θ̇

= ∂K

∂θ̇
= const (10.664)

Example 671 � Integrals of Motion of Spherical Pendulums A particle of mass
m moves under the action of gravity on a smooth sphere of radius R as shown in
Figure 10.46.

This dynamic system has two DOF. We take the angles ϕ and θ as the general-
ized coordinates. A spherical pendulum has two integrals of motion, namely angular
momentum and energy:

1
2R

(
θ̇2 + ϕ̇2 sin2 θ

) − g cos θ = E (10.665)

ϕ̇ sin2 θ = L (10.666)
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m

l

X Y

Z

ϕ

θ

G

Figure 10.46 A particle moves under the action of gravity on a smooth sphere.

Having two integrals of motion provides two first-order differential equations to deter-
mine the time behavior of the generalized coordinates, instead of solving two second-
order equations of motion. Eliminating ϕ̇ causes the first equations to decouples:

θ̇2 = 2
E

R
+ 2

g

R
cos θ − L2

sin2 θ
(10.667)

Employing a new variable
z = cos θ (10.668)

the equation simplifies to
ż2 = f (z) (10.669)

f (z) = 2

R

(
1 − z2) (E + gz) − L2 (10.670)

This equation is of the form (2.243) and can be solved for z = z(t) by Jacobi elliptic
functions.

To determine the path of m on the sphere, we also need to find the time behav-
ior of ϕ:

dϕ = L

1 − z2
dt = L(

1 − z2
)√

f (z)
dz (10.671)

Example 672 � Integrals of Motion of a Top An axisymmetric rigid body that is
rotating in a constant gravitational field about a fixed point on its axis of symmetry is
called a top. The fixed point is at a distance l from the body mass center C. Figure 10.47
illustrates a top with a body coordinate frame B and a global frame G at the fixed
point O.

We will use Euler angles ϕ, θ , ψ as the generalized coordinates to describe the
motion of B in G. The rotation of the top about its axis of symmetry is shown by ψ .
The angle between the axis of symmetry and the Z-axis is shown by θ , and rotation of
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z
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y
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ûψ

ûϕ
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l
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ϕ
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Figure 10.47 A top.

the axis of symmetry about the Z-axis is shown by ϕ. The moment caused by gravity is

BM = BrC × mBg =
 0

0
l

 × mgBRG

 0
0

−1


= mgl

 cos ψ sin θ

− sin ψ sin θ

0

 (10.672)

where BRG is given in (4.144).
The rotational equations of motion of a rigid body with a fixed point in a principal

body frame are
Mx = Ixω̇x − (

Iy − Iz

)
ωyωz (10.673)

My = Iyω̇y − (Iz − Ix) ωzωx (10.674)

Mz = Izω̇z − (
Ix − Iy

)
ωxωy (10.675)

where Ix , Iy , Iz are the elements of the mass moment matrix [I ], which for the axisym-
metric top is

BI =
 Ix 0 0

0 Ix 0
0 0 Iz

 (10.676)

Substituting [I ] and BM provides

mgl

 cos ψ sin θ

− sin ψ sin θ

0

 =
 Ixω̇x − (Ix − Iz) ωyωz

Iyω̇y − (Iz − Ix) ωzωx

Izω̇z

 (10.677)
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We use Equation (9.81) and replace the components of angular velocity by Euler angles
and frequencies. Solving the first two equations for ϕ̇ and θ̇ and simplifying, we obtain
three differential equations for the Euler angles:

Ixθ̈ + (
Iz

(
ψ̇ + ϕ̇ cos θ

) − Ixϕ̇ cos θ
)
ϕ̇ sin θ − mgl sin θ = 0 (10.678)

Ixϕ̈ sin θ + 2Ixθ̇ ϕ̇ cos θ − Izθ̇
(
ψ̇ + ϕ̇ cos θ

) = 0 (10.679)

Iz

d

dt

(
ψ̇ + ϕ̇ cos θ

) = 0 (10.680)

These three equations provide three integrals of motion. The first integral is the third
equation:

ψ̇ + ϕ̇ cos θ = ωz = const (10.681)

Using this integral of motion, the first and second equations of motion become

Ixθ̈ + (Izωz − Ixϕ̇ cos θ) ϕ̇ sin θ − mgl sin θ = 0 (10.682)

Ixϕ̈ sin θ + 2Ixθ̇ ϕ̇ cos θ − Izθ̇ωz = 0 (10.683)

Multiplying the second equation by sin θ provides the second integral of motion:

d

dt

(
Ixϕ̇ sin2 θ + Izωz cos θ

)
(10.684)

The third integral will be obtained by multiplying Equation (12.607) by θ̇ and (12.608)
by ϕ̇ sin θ and adding them:

d

dt

(
Ix

(
ϕ̇2 sin2 θ + θ̇2) + 2mgl cos θ

) = 0 (10.685)

We must also be able to find the integrals of motion from conservation principles.
Gravity does not produce any moment about the z-axis and the Z-axis, and therefore
these components of angular momentum conserves:

Lz = Izωz = Iz

(
ψ̇ + ϕ̇ cos θ

) = const (10.686)

LZ = ωzIz cos θ + ωyIx cos ψ sin θ + ωxIx sin θ sin ψ

= ωzIz cos θ + ϕ̇Ix sin2 θ (10.687)

where LZ is the third component of GL after substitution for components of B
GωB :

GL = BRT
G

 Ixωx

Ixωy

Izωz

 (10.688)

The mechanical energy E of the top conserves:

E = mgl cos θ + 1
2Ix

(
ω2

x + ω2
y

) + Izω
2
z (10.689)

Therefore,
Ix

(
ϕ̇2 sin2 θ + θ̇2) + 2mgl cos θ = 2E − Izω

2
z (10.690)
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Example 673 � The n-Body Problem The problem of how n celestial bodies move
under Newtonian gravitational forces kept Newton (1643–1727) busy for almost the last
three decades of his life. The first complete mathematical formulation of this problem
appeared in Newton’s Principia (1687). The physical problem may be informally stated
as follows: Given only the present positions and velocities of a group of celestial bodies,
predict their motion for all future and past times.

More precisely, consider n point masses m1,m2, . . . , mn in Euclidean three-
dimensional space. Suppose that the force of attraction experienced between each pair
of particles is Newtonian. If the initial positions and velocities are specified for every
particle at some present time t0, determine the position and velocity of each particle
at every future (or past) moment of time. In mathematical terms, this means finding a
global solution of the initial-value problem for the differential equations that describe
the n-body problem:

mi r̈i = −∂V

∂ri

i = 1, 2, . . . , n (10.691)

V = G

n∑
j=1

mimj∣∣ri − rj

∣∣ i = 1, 2, . . . , n (10.692)

The best way to extract information about the n-body problem is to use the integrals
of motion or conservation laws. The number of first integrals depends not on n but on
the nature of forces. Therefore, the results obtained using conservation laws for n = 2
or n = 3 are valid for any n.

Because no external force is acting on the system, the center of mass C will move
in a straight line with constant velocity:

n∑
i=1

mivi = c1 (10.693)

n∑
i=1

miri = c1t + c2 (10.694)

These two vector equations provide six constants of motion that are the components
of c1 and c2:

c1 =
n∑

i=1

mivi (0) (10.695)

c2 =
n∑

i=1

miri(0) − 1

t

n∑
i=1

mivi(0) (10.696)

Because no external moment is acting on the system, the rotational momentum is
conserved:

n∑
i=1

ri × mivi = c3 (10.697)
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which provides three more constants of integration:

c3 =
n∑

i=1

ri(0) × mivi(0) (10.698)

Because no time t is in the equations of motion, the energy of the system is
conserved:

1

2

n∑
i=1

mivi + V = c4 (10.699)

which provides one more constant of integration. To show (10.699), we may multiply
(10.691) by ṙi = vi , add them, and integrate:

n∑
i=1

mi

∫
r̈i · ṙi dt +

n∑
i=1

∫
∂V

∂ri

· ṙi dt

=
n∑

i=1

mi

∫
r̈i · ṙi dt +

n∑
i=1

∫
∂V

∂ri

· dr = c4 (10.700)

In the best case, an isolated dynamic system has only 10 contents of motion.

Example 674 The Central-Force Motion Consider the motion of a single particle
which is acted upon by a force directed toward the origin of the global coordinate frame
G(O, x, x, z). Such a force is called the central force. The magnitude of a central force
is assumed to be dependent only on the distance between the particle and the origin.
Let us assume that the initial velocity of the particle is in the (x, y)-plane. Because
the force always acts toward the origin, the force is also in the (x, y)-plane, and this
means the particle will always remain in the (x, y)-plane.

The polar or cylindrical coordinate system (ρ, θ) is the best to describe the
equations of motion of the particle. The force F on the particle is given as

F = f (ρ)ûρ (10.701)

The acceleration in polar coordinates is

a = (
ρ̈ − ρθ̇2) ûρ + (

2ρ̇θ̇ + ρθ̈
)
ûθ (10.702)

and therefore, the equations of motion of the particle are

m
(
ρ̈ − ρθ̇2) = f (ρ) (10.703)

2ρ̇θ̇ + ρθ̈ = 0 (10.704)

Given
d

dt

(
ρ2θ̇

) = 2ρρ̇θ̇ + ρ2θ̈ = ρ
(
2ρ̇θ̇ + ρθ̈

)
(10.705)
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Equation (10.704) is an integral of motion and ρ2θ̇ is a constant of motion. It is actually
the moment of momentum L of the system:

L = m (r × v) = m
[
ρûρ × (

ρ̇ûρ + ρθ̇ ûθ

)] = mρ2θ̇ ûz (10.706)

L = |L| = mρ2θ̇ (10.707)

The constant of motion L proves that Kepler’s second law is true for every central-force
motion. The law states: The rate at which the position vector of the particle sweeps
out is constant:

Ȧ = 1

2
ρ2θ̇ = L

2m
(10.708)

The path of motion of the particle is called the orbit. The equation of the orbit of
the particle is an expression of ρ as a function of θ . To obtain the orbit, we should use
the integral of motion (10.707) and eliminate t between (10.707) and (10.703). From
(10.707), we have

θ̇ = L

mρ2
(10.709)

and therefore, we can develop the following derivatives:

ρ̇ = dρ

dθ
θ̇ = L

mρ2

dρ

dθ
(10.710)

ρ̈ = L

mρ2

d

dθ

(
dρ

dt

)
= L

mρ2

d

dθ

(
L

mρ2

dρ

dθ

)
(10.711)

The equation of motion (10.703) will now become

L2

m

(
1

ρ2

d

dθ

(
1

ρ2

dρ

dθ

)
− 1

ρ3

)
= f (ρ) (10.712)

By introducing a new variable u = 1/ρ,

1

ρ2

dρ

dθ
= − du

dθ
(10.713)

we can simplify the orbit differential equation:

−L2u2

m

(
d2u

dθ2
+ u

)
= f (u) (10.714)

This equation must be solved to determine the orbit ρ = ρ(θ) when f is given.
The gravitational force follows the inverse square law,

f = − k

ρ2
= −ku2 k > 0 (10.715)

and reduces Equation (10.714) to

d2u

dθ2
+ u = mk

L2
(10.716)
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which has the solution

u = mk

L2
+ C cos (θ − θ0) (10.717)

where C and θ0 are constants of the integral and may be calculated by initial conditions.
The equation of the orbit is then

L2/mk

ρ
= 1 + CL2

mk
cos (θ − θ0) (10.718)

This is a conic section with eccentricity e = CL2/(mk) and semi–latus rectum L2/(mk).
The origin, which is the center of the force, is the focus of the conic section.

Introducing the potential function V = k/ρ to have F = −∇V , we can calculate
the mechanical energy E of the particle by adding the kinetic energy K and potential
energy V = −k/ρ:

E = K + V = 1

2
m

(
ρ̇2 + ρ2θ̇2) − k

ρ
(10.719)

We can eliminate θ̇ by the integral of the moment of momentum (10.707) and eliminate
time by (10.710), which yields

E = L2

2m

[(
1

ρ2

dρ

dθ

)2

+ 1

ρ2

]
− k

ρ
(10.720)

or

E = L2

2m

[(
d2u

dθ2

)2

+ u2

]
− ku (10.721)

Substituting (10.717) in (10.721) yields

E = CL2

2m
− mk2

2L2
(10.722)

and therefore,

C = 1

L

√
2mE + m2k2

L2
(10.723)

The eccentricity becomes

e = AL2

mk
=

√
1 + 2L2E

mk2
(10.724)

It shows that there are four possible orbits:

1. If E > 0, then e < 1 and the orbit is a hyperbola.
2. If E = 0, then e = 1 and the orbit is a parabola.
3. If −mk2/(2L2) < E < 0, then 0 < e < 1 and the orbit is an ellipse.
4. If E = −mk2/(2L2), then e = 1 and the orbit is a circle.
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10.11 � METHODS OF DYNAMICS

Besides the Newton–Euler method to find the equations of motion, there are few other
applied methods. The principle of virtual work (10.302), D’Alembert principle (10.303)
and (10.313), the fundamental equations of dynamics (10.303), (10.365), and (10.371)
are the sources for all other methods to derive the differential equations of motion of
dynamic systems. In this section, we review some of the methods of dynamics.

10.11.1 � Lagrange Method

The Lagrange equation is a superior method to derive the equations of motion of a
dynamic system:

d

dt

∂K

∂q̇i

− ∂K

∂qi

− Qi = 0 i = 1, 2, . . . , n (10.725)

where K is the kinetic energy, Qi is the generalized force, and qi are the generalized
coordinates of the system. The Lagrange method is based on the fundamental equation
of dynamics.

Assuming a potential function V such that

F = −∇V (10.726)

the Lagrange equation of motion can be written as

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1, 2, . . . , n (10.727)

where Qr is the generalized nonpotential force and

L = K − V (10.728)

Proof : The fundamental equation of dynamics (10.303),

N/3∑
i=1

(
mi üi − FGi

) · δui = 0 (10.729)

indicates that there are N/3 number of coupled equations between configuration coor-
dinates. It should be expressed by generalized coordinates to have a suitable form to
derive the equations of motion of a system.

Recalling that configuration coordinates are functions of generalized coordinates,

ui = ui (q1, q2, . . . , qn, t) (10.730)

we can express ui and u̇i as

δui =
n∑

j=1

∂ui

∂qj
δqj (10.731)

u̇i = dui

dt
=

n∑
j=1

∂ui

∂qj
δq̇j + ∂ui

∂t
(10.732)
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and get
δu̇i

δq̇j

= ∂ui

∂qj

δu̇k

δq̇j

= ∂uk

∂qj
(10.733)

Now, the first term of (10.729) is

N/3∑
i=1

mi üi · δui =
n∑

j=1

N/3∑
i=1

mi üi · ∂ui

∂qj
δqj =

n∑
j=1

δqj

N/3∑
i=1

mi üi · ∂ui

∂qj

=
n∑

j=1

δqj

N/3∑
i=1

[
d

dt

(
mi u̇i · ∂ui

∂qj

)
− mi u̇i · d

dt

∂ui

∂qj

]

=
n∑

j=1

δqj

N/3∑
i=1

[
d

dt

(
mi u̇i · ∂u̇i

∂q̇j

)
− mi u̇i · ∂u̇i

∂qj

]

=
n∑

j=1

δqj

 d

dt

∂

∂q̇j

N/3∑
i=1

1

2
mi u̇2

i − ∂

∂qj

N/3∑
i=1

1

2
mi u̇2

i


=

n∑
j=1

δqj

(
d

dt

∂K

∂q̇j

− ∂K

∂qj

)
(10.734)

where

K =
N/3∑
i=1

1

2
mi u̇2

i (10.735)

and the second term of (10.729) is:

N/3∑
i=1

FGi
· δui =

n∑
j=1

N/3∑
i=1

FGi
· ∂ui

∂qj
δqj =

n∑
j=1

Qjδqj (10.736)

where

Qj =
N/3∑
i=1

FGi
· ∂ui

∂qj
(10.737)

K is the kinetic energy of the system, and Qj is the generalized force associated with
coordinate qj.

Therefore, the expression of the fundamental equation of dynamics in terms of
generalized coordinates would be

n∑
j=1

(
d

dt

∂K

∂q̇j

− ∂K

∂qj
− Qj

)
δqj = 0 (10.738)

Because in general δqj �= 0, we have

d

dt

∂K

∂q̇j

− ∂K

∂qj
− Qj = 0 j = 1, 2, . . . , n (10.739)
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This is the Lagrange equation and is an applied form to derive the equations of motion
of a dynamic system.

If there exists a function V = V (qi) such that some of the forces are derived from
the derivative of V ,

Fk = −∇V k = 1, 2, . . . , n′ n′ < n (10.740)

then we can write the Lagrange equation as

d

dt

∂K

∂q̇j

− ∂K

∂qj
+ ∂V

∂qj
− Qj = 0 j = 1, 2, . . . , n (10.741)

where Qj only indicates the nonpotential generalized forces. If we define the Lagrangian
as L = K − V , then the Lagrange equation may be written as

d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Qj j = 1, 2, . . . , n (10.742)

�

Example 675 � Unconstrained Particle and Lagrange Method Consider a mass m

in a three-dimensional space that is under a force F:

F = Fxı̂ + Fŷ + Fzk̂ = Fρûρ + Fθ ûθ + Fzûz (10.743)

Let us choose the cylindrical coordinate (ρ, θ, z) = (q1, q2, q3) to express the posi-
tion of m:

x = ρ cos θ y = ρ sin θ z = z (10.744)

r = xı̂ + ŷ + zk̂ = ρûρ + żûz (10.745)

To determine the equations of motion of m, let us calculate its kinetic energy:

K = 1
2

(
ẋ2 + ẏ2 + ż2

) = 1
2

(
ρ̇2 + ρθ̇2 + ż2

)
(10.746)

The generalized forces Qi are

Q1 = Qρ = F · ∂r
∂ρ

= Fρ (10.747)

Q2 = Qθ = F · ∂r
∂θ

= Fθ (10.748)

Q3 = Qz = F · ∂r
∂z

= Fz (10.749)

Substituting (10.746)–(10.749) into the Lagrange equation (10.739) provides the
equations of motion

mρ̈ − mrθ̇2 − Fρ = 0 (10.750)

mρ2θ̈ + 2mρρ̇θ̇ − Fθ = 0 (10.751)

mz̈ − Fz = 0 (10.752)
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10.11.2 � Gauss Method

Gauss introduced a function Z that is called the constraint of motion ,

Z =
N/3∑
i=1

1

2mi

(
mi üi − FGi

)2
(10.753)

and showed that the equations of motion

mi üi − FGi
= 0 (10.754)

can be found by minimization of Z with respect to üi . The Gauss method is called the
principle of least constraint .

Proof : Because the given forces FGi
cannot be varied, we can rewrite the third form

of the fundamental equation (10.371) as

N/3∑
i=1

(
mi üi − FGi

) · δ
(

mi üi − FGi

mi

)
= 0 (10.755)

Simplifying this equation by using the equations of holonomic constraints to calculate
üi provides

δ

N/3∑
i=1

1

2mi

(
mi üi − FGi

)2 = 0 (10.756)

Let us define a quantity Z, called the constraint of motion ,

Z =
N/3∑
i=1

1

2mi

(
mi üi − FGi

)2
(10.757)

and call Equation (10.756) the principle of least constraint . It states: The actual motion
in nature happens in such a way that the constraint of motion becomes minimum. So,
the variation of Z with respect to ü is zero for actual motion:

∂Z

∂üi

= 0 i = 1, 2, . . . , N/3 (10.758)

When the particles are free from constraints, then Z becomes zero and we get the
Newton equation of motion:

mi üi − FGi
= 0 (10.759)

The German mathematician Friedrich Gauss (1777–1855) discovered the principle
of least constraints and introduced Z as the constraint of motion. So, we may also call
Z a Gauss function and Equation (10.756) a Gauss equation of motion . �

Example 676 � Application of Principle of Least Constraint Consider a particle
under a force F and the constraint

z = f (x, y) (10.760)
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The constraint indicates that x and y are the only independent variables. An expansion
shows that

z̈ = ∂f

∂x
ẍ + ∂f

∂y
ÿ + ∂2f

∂x2
ẋ2 + · · · (10.761)

The constraint of motion that should be minimized is

Z = (Fx − mẍ)2 + (
Fy − mÿ

)2 + (Fz − mz̈)2 (10.762)

Substituting (10.761) into (10.762) yields

Z = (Fx − mẍ)2 + (
Fy − mÿ

)2 +
[
Fz − m

(
∂f

∂x
ẍ + ∂f

∂y
ÿ

)]2

(10.763)

and minimizing Z provides the equations of motion

(Fx − mẍ) − (Fz − mz̈)
∂f

∂x
= 0 (10.764)

(
Fy − mÿ

) − (Fz − mz̈)
∂f

∂y
= 0 (10.765)

Example 677 � Atwood Machine and Least Constraint Two particles with masses
m1 and m2 >m1 are attached with a massless constant-length string passing over a
massless pulley as shown in Figure 10.48(a). Using the principle of least constraint,
we can find the equation of motion of the system.

Let us assume that the acceleration of m1 is a. The constraint of motion that should
be minimized is

Z = 1
2

[
m1 (a + g)2 + m2 (−a + g)2

]
(10.766)

X

Y

G

m2

m1

g

y1
y2

X

Y

G

m2

m1

y2

y1

(a) (b)

Figure 10.48 Atwood machine.
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A derivative of Z gives

dZ

dA
= am1 − am2 + gm1 + gm2 = 0 (10.767)

and therefore,

a = m2 − m1

m2 + m1
g (10.768)

Now, let us assume that m1 is a monkey that climbs a string as illustrated in
Figure 10.48(b). The climbing of the monkey with respect to the string is given by a
smooth function f (t). If the heights of m1 and m2 from a fixed datum are y1 and y2,
respectively, and the system starts moving from y1 = 0, y2 = 0, f (0) = 0, ḟ (0) = 0,
then the constraint of motion is

Z = 1
2

[
m1(ÿ1 + g)2 + m2(ÿ2 + g)2

]
(10.769)

Using the conditions y1(0) = 0, y2(0) = 0, y1 = f − y2, we find

Z = 1
2

[
m1(ÿ1 + g)2 + m2(f̈ − ÿ1 + g)2

]
(10.770)

To find ÿ1, we take a derivative to minimize Z:

dZ

dÿ1
= m1 (g + ÿ1) − m2

(
f̈ − ÿ1 + g

) = 0 (10.771)

Therefore,

ÿ1 = m2
(
f̈ + g

) − gm1

m1 + m2
(10.772)

which provides the position of the monkey upon integration:

(m1 + m2)y1 = m2f + 1
2g(m2 − m1)t

2 (10.773)

If m1 = m2, we have y1 = y2 = f/2 and the monkey always remains at the same level
as the counterweight.

To demonstrate uniformly accelerated motion due to gravity, the British scientist
George Atwood (1745–1807) invented a multiple-pulley machine.

Example 678 � A Body Sliding on a Massive Wedge and Least Constraint Consider
a body of mass m1 sliding without friction on the inclined surface of a wedge of mass
m2 that can slide on a horizontal surface as shown in Figure 2.41. If acceleration of
m2 in the x-direction is ẍ2 and acceleration of m1 with respect to the inclined surface
of m2 is a, then the constraint of motion is

Z = 1
2m2ẍ

2
2 + 1

2m1
[
(−a cos θ − ẍ2)

2 + (−a sin θ + g)2
]

(10.774)

Minimizing Z with respect to a and ẍ2 leads to

ẍ2 = − m1 sin θ cos θ

m2 + m1 sin2 θ
g (10.775)

a = (m1 + m2) sin θ

m2 + m1 sin2 θ
g (10.776)
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which shows that the absolute acceleration of m1 in the y-direction is

ÿ1 = −a sin θ = − (m1 + m2) sin2 θ

m2 + m1 sin2 θ
g (10.777)

10.11.3 � Hamilton Method

Consider a dynamic system with generalized coordinates qi , Lagrangian L =
L (qi, q̇i , t), and nonpotential generalized forces Qi . The equations of motion of the
system may be found by the Hamilton equations:

∂H

∂qj
= −ṗi + Qi (10.778)

∂H

∂pj

= q̇i (10.779)

where H is the Hamiltonian function and pi is the generalized momentum of the
dynamic system:

H = H
(
qj, pj , t

) = piq̇i − L (10.780)

pi = ∂L
∂q̇i

(10.781)

Proof : Consider a dynamic system with the following Lagrangian L, nonpotential
generalized force Qi , and generalized momentum pi :

L = L (qi, q̇i , t) i = 1, 2, . . . , n (10.782)

Qi = d

dt

∂L
∂q̇i

− ∂L
∂qi

i = 1, 2, . . . , n (10.783)

pi = ∂L
∂q̇i

(10.784)

The independence of pi provides the nonzero determinant∣∣∣∣ ∂2L
∂q̇i ∂q̇j

∣∣∣∣ �= 0 (10.785)

So, we can solve the n equations (10.784) to calculate the generalized velocities q̇i :

q̇i = q̇i

(
qj, pj , t

)
j = 1, 2, . . . , n (10.786)

Substituting (10.786) into the Hamilton function H ,

H = piq̇i − L (10.787)

we find H in terms of qj, pj , t :

H = H
(
qj, pj , t

)
(10.788)
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A variation of H is
δH = ∂H

∂qj
δqj + ∂H

∂pj
δpj + ∂H

∂t
δt (10.789)

We can also determine the variation of H from (10.787):

δH = q̇iδpj + piδq̇i −
(

∂L
∂q̇i

δq̇i + ∂L
∂qi

δqi + ∂L
∂t

δt

)
= q̇iδpj + piδq̇i −

(
piδq̇i + (ṗi − Qi) δqi + ∂L

∂t
δt

)
= q̇iδpj − (ṗi − Qi) δqi − ∂L

∂t
δt (10.790)

Equating (10.790) and (10.789) indicates that

∂H

∂qj
= −ṗi + Qi (10.791)

∂H

∂pj
= q̇i (10.792)

∂H

∂t
= −∂L

∂t
(10.793)

The set of equations (10.791) and (10.792) are called the Hamiltonian equations of
motion. Hamiltonian equations are also called canonical equations of motion.

If there is no nonpotential force,

Qi = 0 (10.794)

then Hamiltonian equations reduce to

∂H

∂qj
= −ṗi (10.795)

∂H

∂pj
= q̇i (10.796)

In Hamiltonian mechanics the generalized coordinate q and generalized momentum p

are the variables of a dynamic system while in Lagrangian mechanics the generalized
coordinate q and generalized velocity q̇ are the variables of the dynamic system. �

Example 679 � A Mass–Spring–Damper System Consider a mass–spring system
with the following equation of motion:

mẍ + kx = 0 (10.797)

The Lagrangian of this system is

L = K − V = 1
2mẋ2 − 1

2kx2 (10.798)
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Using the momentum of the system, p = mẋ,

p = ∂L
∂ẋ

= mẋ (10.799)

we can rewrite the Lagrangian as

L = 1

2

p2

m
− 1

2
kx2 (10.800)

and define the Hamiltonian as

H = pẋ − L = p2

m
− 1

2

p2

m
+ 1

2
kx2 = 1

2

p2

m
+ 1

2
kx2 (10.801)

Therefore, the Hamiltonian equations of motion are

ẋ = ∂H

∂p
= p

m
ṗ = −∂H

∂x
= −kx (10.802)

Now consider a mass–spring–damper system with the following equation of
motion:

mẍ + 2ξωẋ + ω2x = 0 (10.803)

where
ω2 = k

m
ξ = c

2mω
(10.804)

We can define the Lagrangian as

L = 1
2

(
ẋ2 − ω2x2

)
e2ξω (10.805)

which provides the equation of motion (10.803) by applying the Lagrange equation
(10.783).

The generalized momentum of the system

p = ∂L
∂ẋ

= ẋe2ξω (10.806)

provides the generalized velocity
ẋ = pe−2ξω (10.807)

Therefore, the Hamiltonian of the system is

H = pẋ − L = 1
2p2e−2ξω + 1

2ω2x2e2ξω (10.808)

which provides the following canonical equations of motion:

ẋ = ∂H

∂p
= pe−2ξω ṗ = −∂H

∂x
= −ω2xe2ξω (10.809)
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Example 680 � Hamiltonian of an Elastic Pendulum Figure 10.49 illustrates an
elastic pendulum. If the free length of the pendulum is l and its stretch is u, then the
kinetic and potential energies and the Lagrangian of the pendulum are

K = 1
2m

[
u̇2 + (l + u)2θ̇2

]
(10.810)

V = 1
2ku2 − mb(l + u)(1 − cos θ) (10.811)

L = K − V (10.812)

Given
pu = ∂L

∂u̇
= mu̇ pθ = ∂L

∂θ̇
= m(l + u)2 θ̇ (10.813)

we have
H = u̇pu + θ̇pθ − L (10.814)

= 1

2

(
p2

u

m
+ p2

θ

m (l + u)

)
+ mg (l + u) (1 − cos θ) + 1

2
ku2

x

y

m

θ
g

o

k

l+u

Figure 10.49 An elastic pendulum.

Example 681 � Hamiltonian H and Mechanical Energy E If there are no nonpo-
tential forces, Qi = 0, and the dynamic system is scleronomic,

∂H

∂t
= −∂L

∂t
= 0 (10.815)

then the Hamiltonian H is equal to the mechanical energy of the system and is a
constant of motion:

H = E = K + V = const (10.816)

To show this, let us take a time derivative of the Lagrangian function (10.782):

dL
dt

= ∂L
∂qi

q̇i + ∂L
∂q̇i

q̈i + ∂L
∂t

= d

dt

∂L
∂q̇i

q̇i + ∂L
∂q̇i

q̈i + ∂L
∂t

= d

dt

(
∂L
∂q̇i

q̇i

)
+ ∂L

∂t
(10.817)
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We may rearrange this equation as

d

dt

(
∂L
∂q̇i

q̇i − L
)

= ∂L
∂t

(10.818)

When (10.815) holds, a constant of motion appears:

H = ∂L
∂q̇i

q̇i − L = 2K − L = E = const (10.819)

It is easy to show that the Hamiltonian of a scleronomic system is constant:

d

dt
H(qi, pi) = ∂H

∂qi

q̇i + ∂H

∂pi

pi

= ∂H

∂qi

(
∂H

∂p

)
+ ∂H

∂pi

(
−∂H

∂q

)
= 0 (10.820)

A scleronomic system without any nonpotential force is called a Hamiltonian system.

Example 682 � Hamilton Equations of a Particle in Translation Consider a particle
m in a translational motion under a force F :

mẍ = F(x, t) (10.821)

Using the momentum p of m,
ẋ = p

m
(10.822)

we may write the equation of motion of the particle as

ṗ = F(x, t) (10.823)

The motion of m is expressed by the solution of these two equations. If we use a
modified phase plane (x, p) ≡ (x, mẋ) to express the motion of m by a moving SS-
point, then the SS-trajectory and SS-velocity vectors of m are

r =
[

x

ẋ

]
v =

[
p/m

F(x, t)

]
(10.824)

Because the system has only one DOF, the force F can always be derived from a
potential function V (x, t):

F(x, t) = −∂V (x, t)

∂x
(10.825)

V (x, t) = −
∫ x

x0

F(x, t) dx (10.826)

We can also define the right-hand side of (10.822) by a derivative:

p

m
= d

dp

(
p2

2m

)
(10.827)
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Let us define the Hamiltonian function of the system as

H(x, p) = p2

2m
+ V (x, t) (10.828)

and rewrite the equations of motion (10.822)–(10.823) and the phase velocity vector v:

ẋ = ∂H (x, p)

∂p
ṗ = −∂H (x, p)

∂q
(10.829)

v =


∂H

∂p

−∂H

∂q

 (10.830)

The modified phase plane (q, p) has an important area-preserving property, which helps
to analyze the motion of dynamic systems.

Example 683 � Hamilton Phase Plane and Gradient Consider a Hamiltonian sys-
tem H = H(q, p). The phase velocity v and gradient of H are given as

v =


∂H

∂p

−∂H

∂q

 ∇H =


∂H

∂q

∂H

∂p

 (10.831)

The inner product of v and ∇H is zero:

v · ∇H = 0 (10.832)

Therefore, the phase velocity of a Hamiltonian system is equal in magnitude and per-
pendicular in direction to the gradient of the Hamiltonian. Because H is conserved,
the SS-trajectory of motion is along curves of constant H , and the Hamiltonian phase
plane is similar to Figure 10.50. The difference between the values of H on neigh-
boring contours remains the same throughout the phase plane. The magnitude of the
phase velocity is inversely proportional to the distance between neighboring contours.

+

−

x

y

G

v

SS-trajectory

H1

H2

H1>H2

∇H

v

∇H

Figure 10.50 Phase plane of a Hamiltonian system.
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On each trajectory, the velocity on the right-hand side contours are slower and the
velocity on the left-hand side contours are faster.

The contours of the H -plane and the points at which ∇H = 0 are invariant charac-
teristics of a Hamiltonian dynamics system. The invariant points indicate the equilibria
of the system.

As an example consider a simple pendulum of length l and mass m such that

ml2 = 1 (10.833)

Because the system is conservative, the mechanical energy of the system is the Hamil-
tonian of the system:

H = E = K + V = 1
2ml2θ̇2 − mgl cos θ = p2

2ml2
− mgl cos θ

= 1
2p2 − a2 cos θ (10.834)

a2 = mgl (10.835)

p = ∂L
∂θ̇

= ∂ (K − V )

∂θ̇
= ml2θ̇ = θ̇ (10.836)

The Hamiltonian equations of motion of the pendulum are

θ̇ = p ṗ = −a2 sin θ (10.837)

The phase plane of the system is shown in Figure 10.51.

p

θ
0

2
π− 3π

2

Figure 10.51 Hamiltonian phase plane of a simple pendulum.

Example 684 � The Routhian If we want to replace only some of the generalized
velocities q̇ by momenta p, we may define a Routhian R for the dynamic system,

R (qi, pi, si , ṡi ) = piq̇i − L pi = ∂L
∂q̇i

(10.838)
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in which s and ṡ are the generalized coordinate and velocity of the system and q and
p are the new generalized coordinate and associated momentum of the system. Let us
first suppose that there are only two coordinates q and s and transform the variables
from q, s, q̇, ṡ to q, s, p, ṡ. The differential of the Lagrangian L(qi , q̇i , si , ṡi ) is

dL = ∂L
∂qi

dqi + ∂L
∂q̇i

dq̇i + ∂L
∂si

dsi + ∂L
∂ṡi

dṡi

= ṗi dqi + pi dq̇i + ∂L
∂si

dsi + ∂L
∂ṡi

dṡi (10.839)

Therefore,

d(L − piq̇i) = ṗi dqi − q̇i dpi + ∂L
∂si

dsi + ∂L
∂ṡi

dṡi (10.840)

Now, we define the Routhian as

R(qi, pi, si , ṡi) = piq̇i − L (10.841)

in which the velocity q̇ is expressed in terms of the momentum p using pi = ∂L/∂q̇i .
The differential of R is

dR = −ṗi dqi + q̇i dpi − ∂L
∂si

dsi − ∂L
∂ṡi

dṡi (10.842)

Therefore, we have

q̇ = ∂R

∂p
ṗ = −∂R

∂q
(10.843)

∂L
∂si

= −∂R

∂si

∂L
∂ṡi

= −∂R

∂ṡi

(10.844)

and substituting these results into the Lagrange equation provides

d

dt

∂R

∂ṡi

− ∂R

∂si

= 0 (10.845)

Thus the Routhian R is a Hamiltonian with respect to the coordinate q and is a
Lagrangian with respect to the coordinate s.

10.11.4 � Gibbs–Appell Method

The Gibbs–Appell function of acceleration energy is given as

G = G (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, q̈1, q̈2, . . . , q̈n, t)

= 1

2

N∑
i

mi (ai · ai ) (10.846)

We can determine the equations of motion by applying the Gibbs–Appell equation:

n∑
j=1

(
∂G

∂q̈j

− Qj

)
δqj = 0 (10.847)
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Proof : Consider a dynamic system of N particles whose positions ri , i = 1, 2, . . . , N ,
are expressed by n generalized coordinates qj, j = 1, 2, . . . , n:

ri = ri (q1, q2, . . . , qn, t) i = 1, 2, . . . , N (10.848)

The velocity and acceleration of each particle are

vi = dri

dt
= ∂ri

∂qj
q̇j + ∂ri

∂t
(10.849)

ai = d2ri

dt2
= ∂ri

∂qj
q̈j + ∂2ri

∂qk∂qj
q̇j q̇k + 2

∂2ri

∂qj∂t
q̇j + ∂2ri

∂t2
(10.850)

From these equations, we find the relations

∂ri

∂qj
= ∂vi

∂q̇j

= ∂ai

∂q̈j

(10.851)

d

dt

∂vi

∂q̇j

= ∂vi

∂qj
(10.852)

d

dt

∂ai

∂q̇j

= 2
∂vi

∂qj
(10.853)

We can combine and expand Equations (10.851) and (10.853) and write them in the
general forms

∂ri

∂qj
= ∂vi

∂q̇j

= ∂ai

∂q̈j

= · · · = ∂(k)ri

∂q
(k)
j

(10.854)

d

dt

∂(k)ri

∂q
(k−1)
j

= k

k − 1

∂(k−1)ri

∂q
(k−2)
j

(10.855)

Employing the kinetic energy

K = 1

2

N∑
i

mi (vi · vi ) (10.856)

we can write the Lagrange equation (10.738) as

n∑
j=1

(
d

dt

∂

∂q̇j

N∑
i

1

2
mi (vi · vi ) − ∂

∂qj

N∑
i

1

2
mi (vi · vi ) − Qj

)
δqj = 0 (10.857)

Performing the partial and total derivatives, we find

n∑
j=1

(
N∑
i

miai · ∂vi

∂q̇j

+ mivi · d

dt

∂vi

∂q̇j

− mivi · ∂vi

∂qj
− Qj

)
δqj = 0 (10.858)

Based on (10.852), the second and third terms of this equation are equal, and therefore,
we have

n∑
j=1

(
N∑
i

miai · ∂ai

∂q̈j

− Qj

)
δqj = 0 (10.859)
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which can be transformed to

n∑
j=1

(
∂

∂q̈j

N∑
i

1

2
mi (ai · ai ) − Qj

)
δqj = 0 (10.860)

Using the Gibbs–Appell function of acceleration energy,

G = G (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, q̈1, q̈2, . . . , q̈n, t)

= 1

2

N∑
i

mi (ai · ai ) (10.861)

we can write the central equation of dynamics as

n∑
j=1

(
∂G

∂q̈j

− Qj

)
δqj = 0 (10.862)

Suppose the dynamic system is holonomic so that all the virtual displacements δqj

are independent. In this case, we have the following system of differential equations,
known as the Gibbs–Appell equations of motion:

∂G

∂q̈j

= Qj j = 1, 2, . . . , n (10.863)

The Gibbs–Appell equation (10.863) is fully equivalent to the Lagrange equation
(10.739). While the Lagrange equation is based on kinetic energy (10.856), the
Gibbs–Appell equation is based on the acceleration energy function (10.861).

When the dynamic system is holonomic and scleronomic, the acceleration (10.850)
and the Gibbs–Appell equation (10.861) reduce to

ai = ∂ri

∂qj
q̈j + ∂2ri

∂qk∂qj
q̇j q̇k j, k = 1, 2, . . . , n (10.864)

G = 1
2ajkq̈j q̈k + �jksq̇j q̇kq̈s (10.865)

where

ajk = akj =
N∑
i

mi

∂ri

∂qj

∂ri

∂qk

(10.866)

�ijk = 1

2

(
∂gjk

∂qi

+ ∂gik

∂qj
− ∂gij

∂qk

)
(10.867)

The Gibbs–Appell equation of motion was introduced by American scientist
Josiah Willard Gibbs (1839–1903) and French mathematician Paul Emile Appell
(1855–1930). Appell suggested writing Equation (10.863) by introducing the Appell
function A,

A = G −
n∑
i

Qiq̈i (10.868)
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and deriving the equations of motion as

∂A

∂q̈1
= 0

∂A

∂q̈2
= 0 · · · ∂A

∂q̈n
= 0 (10.869)

So, the equations of motion are found by minimization of the Appell function with
respect to the generalized accelerations q̈i . This is similar to the Gauss method, which
derives the equations of motion by minimizing the Gauss function Z (10.753) with
respect to accelerations üi . �

Example 685 � Elastic Pendulum and Gibbs–Appell Equation Figure 10.52 illus-
trates a planar elastic pendulum. If at the equilibrium condition the distance of m and
the fulcrum is l0 and the extra stretch of the length is z, then the Cartesian position of
m during the motion is given as

x = l sin θ y = −l cos θ (10.870)

where
l = z + l0 (10.871)

where q1 = z and q2 = θ are the generalized coordinates of the system. From (10.870),
we have

ẍ = z̈ sin θ + lθ̈ cos θ − lθ̇2 sin θ + 2żθ̇ cos θ (10.872)

ÿ = −z̈ cos θ + lθ̈ sin θ + lθ̇2 cos θ + 2żθ̇ sin θ (10.873)

The acceleration energy function (10.861) of the elastic pendulum becomes

G = 1

2

N∑
i

mi (ai · ai) = 1

2
m

(
ẍ2 + ÿ2)

= 1

2
m

(
l2θ̇4 + l2θ̈2 − 2lz̈θ̇2 + 4lżθ̇ θ̈ + z̈2 + 4ż2θ̇2) (10.874)

There are two applied forces on m: the gravitational force −mĝ and the elastic tension
force Fk = −kz sin θ ı̂ + kz cos θ ̂ . The virtual displacement of m can be found from
(10.870):

δx = δz sin θ + δθ l cos θ (10.875)

δy = −δz cos θ + δθ l sin θ (10.876)

x

y

m
θ g

o
k

Figure 10.52 An elastic pendulum.
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Therefore, the virtual work of the applied forces is

δW = −kz sin θ δx + (kz cos θ − mg) δy

= −kz sin θ (δz sin θ + δθ l cos θ)

+ (kz cos θ − mg) (−δz cos θ + δθ l sin θ)

= (gm cos θ − kz) δz + (−glm sin θ) δθ (10.877)

and the generalized forces Qz and Qθ associated with z and θ are

Qz = gm cos θ − kz Qθ = −mgl sin θ (10.878)

Now the Gibbs–Appell equations (10.862) and (10.863),

∂G

∂z̈
− Qz = 0

∂G

∂θ̈
− Qθ = 0 (10.879)

would be

z̈ − (z + l0) θ̇2 − g cos θ + k

m
z = 0 (10.880)

(z + l0)
2 θ̈ + 2 (z + l0) żθ̇ + g (z + l0) sin θ = 0 (10.881)

10.11.5 � Kane Method

The Kane equation of motion is
Qi = Q∗

i (10.882)

where Qi is the generalized applied force and Q∗
i the generalized inertia force associ-

ated with mi :

Qj =
N∑

i=1

Fi · ∂vi

∂q̇j

(10.883)

Q∗
j = d

dt

∂K

∂q̇j

− ∂K

∂qj
(10.884)

where K is the kinetic energy of the system and ∂vi/∂q̇j is the partial velocity vector
indicating the change in vi for a change in q̇j .

Proof : Consider a dynamic system of N particles whose positions ri , i = 1, 2, . . . , N ,
are expressed by n generalized coordinates qj, j = 1, 2, . . . , n:

ri = ri (q1, q2, . . . , qn, t) i = 1, 2, . . . , N (10.885)

The velocity of each particle is

vi = dri

dt
= ∂ri

∂qj
q̇j + ∂ri

∂t
(10.886)
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which provides

vij = ∂vi

∂q̇j

= ∂ri

∂qj
= ∂ai

∂q̈j

(10.887)

The term vij = ∂vi/∂q̇j is called the partial velocity vector and indicates the change
in vi given a change in q̇j .

Let us begin with the fundamental equation of dynamics (10.303),

N∑
i=1

(mi r̈i − Fi ) · δri = 0 (10.888)

and rewrite it as Equation (10.302):

N∑
i=1

(
mi r̈i − Fi − FCi

) = 0 (10.889)

where Fi is the given force on mi and FCi
is the constraint force, where we always

have
N∑

i=1

FCi
· δri = 0 (10.890)

The Kane equations of motion are obtained by projecting the equilibrium equations
(10.889) on the partial velocity direction:

N∑
i=1

mi r̈i · ∂vi

∂q̇j

=
N∑

i=1

(
Fi · ∂vi

∂q̇j

− FCi
· ∂vi

∂q̇j

)
(10.891)

The constraint forces FCi
are assumed to satisfy

N∑
i=1

FCi
· ∂vi

∂q̇j

=
N∑

i=1

FCi
· ∂ri

∂qj
= 0 (10.892)

which is equivalent to D’Alembert’s principle (10.890), which states that the virtual
work of constraint forces is zero:

N∑
i=1

FCi
· δri =

N∑
i=1

FCi
· ∂ri

∂qj
δqj = 0 (10.893)

Substituting (10.892) into (10.891), we write the Kane equations of motion as

Qi = Q∗
i (10.894)

where Qi is the generalized applied force and Q∗
i is the generalized inertia force

associated with mi :

Qj =
N∑

i=1

Fi · ∂vi

∂q̇j

(10.895)
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Q∗
j =

N∑
i=1

mi r̈i · ∂vi

∂q̇j

=
N∑

i=1

mi r̈i · ∂ri

∂qj

= d

dt

N∑
i=1

mi ṙi · ∂ri

∂qj
−

N∑
i=1

mi ṙi · d

dt

∂ri

∂qj

= d

dt

N∑
i=1

mivi · ∂vi

∂q̇j

−
N∑

i=1

mivi · ∂vi

∂qj

= d

dt

∂K

∂q̇j

− ∂K

∂qj
(10.896)

The kinetic energy of the system is given as

K =
N∑

i=1

(
1

2
mivi · vi

)
(10.897)

The generalized applied force Qi and the generalized inertia force Q∗
i in the Kane

equation (10.894) can be determined from Equations (10.895) and (10.896).
Consider a rigid body that is made of N rigidly connected particles mi . The angu-

lar velocity GωB and acceleration GαB = Gω̇B of the body are expressed in terms
of the generalized coordinates qj and velocities q̇j . The translational velocity vi and
acceleration ai of the body are calculated at the mass center C. By defining the partial
angular velocity vector as

ωij = ∂ωi

∂q̇j

(10.898)

we can calculate the generalized applied and inertia forces as

Qi = vij ·
N∑

i=1

Fi + ωij ·
N∑

i=1

ri × Fi (10.899)

Q∗
i = vij ·

(
N∑

i=1

mi

)
Gai + ωij · GI GαB

= vij ·
(

N∑
i=1

mi

) (
B
GaB + B

GωB × BvB

)
+ ωij · [ BI B

Gω̇B + B
GωB × (

BI B
GωB

)]
(10.900)

In a rigid body with mass m = ∑N
i=1 mi under the resultant force system of F and M,

the above generalized applied and inertia forces simplify to

Qi = vij · F + ωij · M (10.901)

Q∗
i = vij · m (

B
GaB + B

GωB × BvB

)
+ ωij · [ BI B

Gω̇B + B
GωB × (

BI B
GωB

)]
(10.902)

�
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Example 686 � Double Pendulum and Kane Equations Figure 10.53 illustrates a
double pendulum with massless rods of lengths a and b and concentrated masses m1

and m2. Let us use the angles θ1 and θ2 between g and the rods as the generalized
coordinates of the system. The position vectors of m1 and m2 are

r1 = a sin θ1 ı̂ + a cos θ1 ̂ (10.903)

r2 = (a sin θ1 + b sin θ2) ı̂ + (a cos θ1 + b cos θ2) ̂ (10.904)

Differentiation provides the velocity vi of mi and the kinetic energy of the system K :

v1 = aθ̇1 cos θ1 ı̂ − aθ̇1 sin θ1 ̂ (10.905)

v2 = (
aθ̇1 cos θ1 + bθ̇2 cos θ2

)
ı̂ − (

aθ̇1 sin θ1 + bθ̇2 sin θ2
)
̂ (10.906)

K = 1
2m1a

2θ̇2
1 + 1

2m2
(
a2θ̇2

1 + 2abθ̇1θ̇2 cos (θ1 − θ2) + b2θ̇2
2

)
(10.907)

To determine the equation of motion using the Kane method, we need to determine the
partial velocities vij. The unit vectors ûi in directions θi are

ûi = − sin θi ı̂ + cos θi ̂ (10.908)

Therefore, the partial velocities vij are

v11 = ∂v1

∂θ̇1
= a cos θ1 ı̂ − a sin θ1 ̂ (10.909)

v12 = ∂v1

∂θ̇2
= 0 (10.910)

v21 = ∂v2

∂θ̇1
= a cos θ1 ı̂ − a sin θ1 ̂ (10.911)

v22 = ∂v2

∂θ̇2
= b cos θ2 ı̂ − b sin θ2 ̂ (10.912)

The inner products of the active forces Fi ,

F1 = m1g ̂ F2 = m2g ̂ (10.913)

x

y

m1

a

θ1

g

o

b

θ2
m2

Figure 10.53 A double pendulum.
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and the partial velocities (10.909)–(10.912) provide the generalized active forces Qi :

Q1 = F1 · v11 + F2 · v21 = −m1ga sin θ1 − m2ga sin θ1 (10.914)

Q2 = F1 · v12 + F2 · v22 = −m2gb sin θ2 (10.915)

Using the kinetic energy equation (10.907), we determine the generalized inertia forces:

Q∗
j = d

dt

∂K

∂θ̇j

− ∂K

∂θj

(10.916)

Q∗
1 = d

dt

{
m1a

2θ̇1 + m2
[
a2θ̇1 + 2abθ̇2 cos(θ1 − θ2)

]}
+ m2[abθ̇1θ̇2 sin(θ1 − θ2)] (10.917)

Q∗
2 = m2

d

dt

[
abθ̇1 cos(θ1 − θ2) + b2θ̇2

]
− m2

[
abθ̇1θ̇2 sin(θ1 − θ2)

]
(10.918)

Therefore, the Kane equations of motion are

d

dt

[
m1a

2θ̇1 + m2
(
a2θ̇1 + abθ̇2 cos (θ1 − θ2)

)] + m2
(
abθ̇1θ̇2 sin (θ1 − θ2)

)
= −m1ga sin θ1 − m2ga sin θ1 (10.919)

m2
d

dt

(
abθ̇1 cos (θ1 − θ2) + b2θ̇2

) − m2
(
abθ̇1θ̇2 sin (θ1 − θ2)

)
= −m2gb sin θ2 (10.920)

Taking the derivatives and simplifying, we determine the following equations of motion:

(m1 + m2) a2θ̈1 + m2abθ̈2 cos (θ1 − θ2) + m2abθ̇2
2 sin (θ1 − θ2)

+ (m1 + m2) ga sin θ1 = 0 (10.921)

m2b
2θ̈2 + m2abθ̈1 cos (θ1 − θ2) − m2abθ̇2

1 sin (θ1 − θ2)

+ m2gb sin θ2 = 0 (10.922)

10.11.6 � Nielsen Method

If L = L (qi, q̇i , t) is the Lagrangian and Qi is the nonpotential generalized force of
a dynamic system, then the equations of motion of the system may be found by the
Nielsen equation:

2
d

dt

∂L̇
∂q̈i

− ∂L̇
∂q̇i

= Qi (10.923)

Proof : Consider a dynamic system with the Lagrangian

L = L (qi, q̇i , t) i = 1, 2, . . . , n (10.924)
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Suppose the system is also subject to nonpotential generalized forces Q1, Q2, . . ., Qn:

Qi = Qi (qi, q̇i , t) (10.925)

The Lagrange equations are given as

d

dt

∂L
∂q̇i

− ∂L
∂qi

− Qi = 0 i = 1, 2, . . . , n (10.926)

The time derivative of L,

L̇ = ∂L
∂q̇i

q̈i + ∂L
∂qi

q̇i + ∂L
∂t

(10.927)

shows that
∂L̇
∂q̈i

= ∂L
∂q̇i

(10.928)

Using the Lagrange equation (10.926), a time derivative of this equation yields

d

dt

∂L̇
∂q̈i

= d

dt

∂L
∂q̇i

= ∂L
∂qi

+ Qi (10.929)

From the equations

d

dt

∂L
∂q̇i

= ∂2L
∂q̇i∂q̇j

q̈j + ∂2L
∂q̇i∂qj

q̇j + ∂2L
∂q̇i∂t

(10.930)

∂L̇
∂q̇i

= ∂2L
∂q̇i∂q̇j

q̈j + ∂2L
∂qi∂qj

q̇j + ∂2L
∂q̇i∂t

+ ∂L
∂qi

(10.931)

we find
∂L̇
∂q̇i

= d

dt

∂L
∂q̇i

+ ∂L
∂qi

(10.932)

Substituting for ∂L/∂qi from (10.929) generates the Nielsen equation:

2
d

dt

∂L̇
∂q̈i

− ∂L̇
∂q̇i

= Qi (10.933)

The Nielsen method is also called the Mangerone–Deleanu method. �

Example 687 � A Double Pendulum Consider a double pendulum as shown in
Figure 10.53. Using θ1 and θ2 as the generalized coordinates, the kinetic energy of the
system is found in (10.907):

K = 1
2m1a

2θ̇2
1 + 1

2m2
[
a2θ̇2

1 + 2abθ̇1θ̇2 cos (θ1 − θ2) + b2θ̇2
2

]
(10.934)

Calculating the potential energy as

V = −m1ga cos θ1 − m2g (a cos θ1 + b cos θ2) (10.935)
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we find
L = K − V

= 1
2m1a

2θ̇2
1 + 1

2m2
[
a2θ̇2

1 + 2abθ̇1θ̇2 cos (θ1 − θ2) + b2θ̇2
2

]
+ m1ga cos θ1 + m2g (a cos θ1 + b cos θ2) (10.936)

The time derivative of L is given as

L̇ = (m1 + m2) a2θ̇1θ̈1 + m2b
2θ̇2θ̈2

+ m2abθ̈1θ̇2 cos (θ1 − θ2) + m2abθ̇1θ̈2 cos (θ1 − θ2)

− m2abθ̇2
1 θ̇2 sin (θ1 − θ2) + m2abθ̇1θ̇

2
2 sin (θ1 − θ2)

− m1gaθ̇1 sin θ1 − m2g
(
aθ̇1 sin θ1 + bθ̇2 sin θ2

)
(10.937)

The required partial derivatives of L̇ are

∂L̇
∂θ̇1

= (m1 + m2) a2θ̈1 + m2abθ̈2 cos (θ1 − θ2) − 2m2abθ̇1θ̇2 sin (θ1 − θ2)

+ m2abθ̇2
2 sin (θ1 − θ2) − m1ga sin θ1 − m2ga sin θ1 (10.938)

∂L̇
∂θ̇2

= m2b
2θ̈2 + m2abθ̈1 cos (θ1 − θ2) − m2abθ̇2

1 sin (θ1 − θ2)

+ 2m2abθ̇1θ̇2 sin (θ1 − θ2) − m2gb sin θ2 (10.939)

∂L̇
∂θ̈1

= (m1 + m2) a2θ̇1 + m2abθ̇2 cos (θ1 − θ2)

∂L̇
∂θ̈2

= m2b
2θ̇2 + m2abθ̇1 cos (θ1 − θ2) (10.940)

d

dt

∂L̇
∂θ̈1

= (m1 + m2) a2θ̈1 + m2abθ̈2 cos (θ1 − θ2)

− m2abθ̇2
(
θ̇1 − θ̇2

)
sin (θ1 − θ2) (10.941)

d

dt

∂L̇
∂θ̈2

= m2b
2θ̈2 + m2abθ̈1 cos (θ1 − θ2)

− m2abθ̇1
(
θ̇1 − θ̇2

)
sin (θ1 − θ2) (10.942)

Therefore, the equations of motion of the system would be

(m1 + m2) a2θ̈1 + m2abθ̈2 cos (θ1 − θ2) + m2abθ̇2
2 sin (θ1 − θ2)

+ (m1 + m2) ga sin θ1 = 0 (10.943)

m2b
2θ̈2 + m2abθ̈1 cos (θ1 − θ2) − m2abθ̇2

1 sin (θ1 − θ2)

+ m2gb sin θ2 = 0 (10.944)
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Example 688 � Nielsen Equation for Nonpotential Forces If there is no potential
force, then the Nielsen equation simplifies to

2
d

dt

∂K̇

∂q̈i

− ∂K̇

∂q̇i

= Qi (10.945)

We may use Equation (10.929),

d

dt

∂K̇

∂q̈i

= ∂K

∂qi

+ Qi (10.946)

to derive another form of the Nielsen equation:

∂K̇

∂q̇i

− 2
∂K

∂qi

= Qi i = 1, 2, . . . , n (10.947)

Example 689 � Tzénoff Method and Higher Derivatives of L Employing higher
derivatives of the Lagrangian, L̈,

...
L, . . . , and repeating the procedure used to derive

the Nielson equation, we can find new methods of dynamics.
The second derivative of L = L (qi, q̇i , t) is

L̈ = d

dt
L̇ = d

dt

(
∂L
∂q̇i

q̈i + ∂L
∂qi

q̇i + ∂L
∂t

)
= ∂L

∂q̇i

...
q i + ∂2L

∂q̇2
i

q̈2
i + ∂2L

∂q2
i

q̇2
i + ∂2L

∂t2
+ ∂L

∂qi

q̈i

+ 2
∂2L

∂qi∂q̇i

q̇i q̈i + 2
∂2L
∂q̇i∂t

q̈i + 2
∂2L
∂qi∂t

q̇i (10.948)

which yields
∂L̈
∂q̈i

= ∂L
∂q̇i

(10.949)

Let us take a time derivative of this equation and use the Lagrange equation (10.926)
to get

d

dt

∂L̈
∂

...
q i

= d

dt

∂L
∂q̇i

= ∂L
∂qi

+ Qi (10.950)

From Equation (10.948) and the Lagrange equation, we have

∂L̈
∂q̈i

= 2

(
∂2L
∂q̇2

i

q̈i + ∂2L
∂qi∂q̇i

q̇i + ∂2L
∂q̇i∂t

)
+ ∂L

∂qi

= 2

(
d

dt

∂L
∂q̇i

)
+ ∂L

∂qi

= 2Qi + 3
∂L
∂qi

(10.951)

which can be written as
1

2

(
∂L̈
∂q̈i

− 3
∂L
∂qi

)
= Qi (10.952)
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Substituting ∂L/∂qi from (10.950) yields

3
d

dt

∂L̈
∂

...
q i

− ∂L̈
∂q̈i

= Qi (10.953)

Equations (10.952) and (10.953) are called Tzénoff equations. If there is no potential
force, then these equations simplify to

1

2

(
∂K̈

∂q̈i

− 3
∂K

∂qi

)
= Qi (10.954)

3
d

dt

∂K̈

∂
...
q i

− ∂K̈

∂q̈i

= Qi (10.955)

Considering the Nielson equation (10.923) and the Tzénoff equation (10.953), we
can derive a generalized method of dynamics for a given Lagrangian and its rth-order
time derivative:

(r − 1)
d

dt

∂L(r)

∂q
(r+1)
i

− ∂L(r)

∂q
(r)
i

= Qi (10.956)

1

2

(
∂K(r)

∂q
(r)
i

− (r − 1)
∂K

∂qi

)
= Qi (10.957)

KEY SYMBOLS

a constant value, acceleration,
a, b constant parameter curves, length of bars, time functions
a = r̈ acceleration vector
A constant, amplitude, general coordinate frame

Appell function
A,B, C,D coefficients of a differential constraint
B body coordinate frame, local coordinate frame,

general coordinate frame
c constant value, damping, a constant coefficient
c constant vector
C constant value, mass center
d distance between two points, derivative operator

differential of possible displacement operator
d translation vector
D derivative operator
e eccentricity
E Eulerian space, mechanical energy
f constraint function, general function, cyclic frequency
fC configuration degree of freedom
fS state degree of freedom
F force value
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F force vector, force function
FC constraint force
FG given force
g general function, gravitational acceleration
G global coordinate frame, fixed coordinate frame

Gibbs–Appell function
H Hamiltonian
I = [I ] mass moment
I = [I] identity matrix
ı̂, ̂ , k̂ local coordinate axes unit vectors
Î , Ĵ , K̂ global coordinate axes unit vectors
J Jacobian
k stiffness of spring
K kinetic energy
l length
L number of holonomic constraint
L rotational momentum
m mass, point mass, number of rigid bodies in a mechanical

system
M torque, moment
n number of particles in a dynamic system,

number of generalized coordinates
N dimension of configuration space
N contact force
p momentum integral of motion, constant-coefficient

generalized momentum
p momentum
P point mass, body point, fixed point in B, time function
q generalized coordinate, time function, constant coefficient
q̇ generalized velocity
q generalized position vector
q̇ generalized velocity vector
Q transformation matrix of rotation about a global axis, torque
r position vector
rij element of row i and column j of a matrix
R radius of a circle, rotation transformation matrix
R set of real numbers
s sin, a member of S, characteristic value, generalized coordinate

alternative generalized coordinates
S physical space
SC configuration trajectory, SC-trajectory
SE event trajectory, SE-trajectory
SF flash trajectory, SF -trajectory
SG generalized state space
SS state trajectory, SS-trajectory
ST state–time trajectory, ST -trajectory
t time
tc critical time
T time domain set, tension force
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u coordinate of configuration space
replaced variable for x in regularization

ût unit tangent vector
ui ith component of u
u̇i ith component of u̇
u position vector in configuration space
u̇ velocity vector in configuration space
v = ṙ velocity vector
v velocity, coordinate of configuration space
V potential energy
W work
WA actual work
WV virtual work
x, y, z local coordinate axes, coordinates in a Cartesian frame
X,Y,Z global coordinate axes
XC configuration space, SC -space
XE event space, SE-space
XF flash space, SF -space
XS state space, SS-space
XT state–time space, ST -space
Z constraint of motion

Greek
α, β, γ angles
δ virtual operator, variation operator
δij Kronecker delta
ε time increment
λ Lagrange multiplier
µ friction coefficient, integrating factor
ξ damping ratio
τ replaced variable for t in regularization
φ rotation of coordinate frame
ϕ, θ, ψ rotation angles about local axes, Euler angles
ω,ω angular frequency
ωN natural frequency

Symbol
L Lagrangian
Re real
Im imaginary
⊥ vertical component
� arbitrary displacement
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
∇ gradient
� specific point
⊗ binary operation
(S, ⊗) group
∞ infinity

′ derivative of a function with respect to its argument
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EXERCISES

1. Possible Configuration Trajectory Examine the following paths in the (x, y)-plane and
determine which one can be a configuration trajectory:

(a) x = t, y = 1/t

(b) x = t, (y2 + t)2 − a2
(
t − y2

) = 0

(c) x = a sin ωt, y = ex

(d) x = a sin ωt, (y2 + by + x2)2 − a2(x2 + y2) = 0

(e) x = sinh t, y = cosh t

(f) v2 = 2(x sin x + cos x)

(g) v2 = 4x − x2

2. Constraint Particle on a Table Consider a particle that rests on a smooth horizontal
table at point A as shown in Figure 10.54. The particle is attached by a string of length a

to a fixed point B on the table at a distance b from point C.

(a) Determine the constraint of the particle and its degree of freedom and suggest proper
generalized coordinates.

(b) Assume that the points A, B, and C are initially on the same straight line. The table
is then made to rotate with a constant angular velocity ω. Express the coordinates of
the particle.

(c) Determine the kinetic energy of the particle:

K = 1
2m

(
Ẋ2 + Ẏ 2

)
(d) Employ the following Lagrange equation and find the equation of motion of the

particle:
d

dt

∂K

∂θ̇
+ ∂K

∂θ
= 0

X

a

ωt

Y

A

B

C

b
θ

Figure 10.54 A particle attached to a point on a table.
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3. Two Particles with a Given Distance Particles P1 (x1, y1, z1) and P2 (x2, y2, z2) are
moving such that their distance d must follow a given function of time d = f (t). Determine
the equations of constraints in finite and infinitesimal displacements when:

(a) The particles are free to move in 3D Cartesian space.

(b) P1 is moving on the x-axis by x1 = g(t).

(c) P1 is moving on the sphere x2 + y2 + z2 = R.

4. Constraints of a Ping Pong Ball Figure 10.55 illustrates a ping pong table, two rackets,
and a ball. Determine the constraints of the ball center if it remains in the (X, Y )-plane
and the rockets are able to move up and down only.

Y

R

h

X

(X,Y)
a

a

Figure 10.55 A side view of a ping pong table.

5. Billiard Ball Consider a billiard table of size a × b.

(a) Write the constraints of the ball center if there is only one ball of size R on the table.

(b) Write the constraints of a ball center if there are 10 more balls of size R on the table.

6. � Differential Constraint and Integrability Determine which of the following defer-
ential constraints is total and determine the holonomic constraint:
(a)

(t + 2/x)dx + x dt = 0
(b) (

x − t3) dx + (
x3 + t

)
dt = 0

(c) (
2tx4 + sin x

)
dx + (

4t2x3 + t cos x
)

dt = 0

7. A Sliding Stick The sliding stick in Figure 10.56 has one DOF. If we show the position
of the center by (x, y) and the angle by θ , write the constraint equations.

y

R

h

A

B

x

C

θ

(x,y)

l

Figure 10.56 A sliding stick.
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8. Velocity of a Constraint Particle Consider a particle m which is under the following
two holonomic constraints:

fi (x, y, z) = 0 i = 1, 2

Show that the velocity vector v of the particle is subjected to the condition

v = ḟi∣∣∇fi
∣∣2 ∇fi + ci ci ⊥ ∇fi i = 1, 2

and the acceleration vector a of the particle is subjected to the condition

a = D2fi∣∣∇fi
∣∣2 ∇fi + bi bi ⊥ ∇fi i = 1, 2

where c and b are arbitrary constant vectors.

9. � A Stick between Two Circular Walls Determine the constraints of the stick in
Figure 10.57 if the ends A and B cannot leave the walls.

R

Y

X
R

R

GB

A

C1 C2

Figure 10.57 A stick between two circular walls.

10. Constraint of a Rolling Disc on a Curve Determine the constraints on the motion of a
rolling disc on a given path, as shown in Figure 10.58.

Y

X

G R2
C

Y = f (X )

Figure 10.58 A rolling disc on a curve.
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11. Constraint of a Bicycle on a Curve Figure 10.59 illustrates a bicycle that is moving on
a given path. Determine the constraints on the bar AB if the wheels roll without slip.

Y

X

l

G

R1

R2
B

A

Y = f(X )

Figure 10.59 A bicycle on a curve.

12. Differential Constraint Consider the following differential constraints:

(a)
q̇1 + q̇2/q2 − q̇3/q2 = 0

(b)
q̇1q2q3 + q1q̇2q3 + q1q2q̇3 = 0

Check if they are exact or integrable.

13. Chasing Problem Figure 10.60 shows a particle A that is moving on the X-axis with a
given function of time. A chasing point B is going toward A with a velocity v. What is
the required constraint if v is supposed to point A at every time t?

v

x(t)

B(X,Y)

X

Y

r

A(x,0)

Figure 10.60 A moving point B is pointing another moving point A.
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14. � Differential Constraint and Integrability Determine which of the following defer-
ential constraints is total and determine the holonomic constraint:

(a)
(t + 2/x) dx + x dt = 0

(b) (
x − t3) dx + (

x3 + t
)

dt = 0

(c) (
2tx4 + sin x

)
dx + (

4t2x3 + t cos x
)

dt = 0

15. Equilibrium Position of Two Pivoted Massive Bars Using virtual work:

(a) Determine the equilibrium angle θ for the system of Figure 10.61 if the free length of
the spring is at θ = 45 deg.

y
l

x

k
θ

gmm

Figure 10.61 Two pivoted massive bars.

(b) What should the stiffness k be to have an equilibrium position at θ = 30 deg?

16. Equilibrium Position of Two Pivoted Massive Bars Figure 10.62 illustrates two pivoted
massive bars on a frictionless circle of radius R. Employ virtual work and determine the
equilibrium angle θ for the system.

y

l

x

θ

gmm

R

Figure 10.62 Two pivoted massive bars on a circle of radius R.

17. A Constrained Moving Bar Point A of the bar in Figure 10.63 is constrained to move
on the x-axis according to a given function xA = f (t). Determine the constraints of the
motion of the bar if:

(a) The motion of the bar is such that the midpoint P is moving parallel to the y-axis.
Determine the coordinates of B.
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(b) The angular motion of θ is based on a given function θ = g(t). Determine the coor-
dinates of P and B. Determine f (t) and g(t) such that B moves on an ellipse.

(c) f (t) = a sin ω1t and g(t) = a sin ω2t . Discuss the path of motion of B for different
ratios of ω1/ω2.

y

l

x
θ

B

A

P

Figure 10.63 A constrained moving bar.

18. Equilibrium of a Double Pendulum A double pendulum with massive bars is illustrated
in Figure 10.64. If a horizontal force F is applied at the tip point of the pendulum, what
would be the equilibrium positions of the pendulum?

x

y

m1

a

θ1

g

o

b

θ2

m2

F

Figure 10.64 Equilibrium positions of a double pendulum with an applied force.

19. � Routhian and Energy Show that the energy of a dynamic system is given as

E = q̇
∂L
∂q̇

+ ṡ
∂L
∂ṡ

− L = q̇p + ṡ
∂L
∂ṡ

− L

which in terms of the Routhian would be

E = R − ṡ
∂L
∂ṡ

20. � Routhian for a Symmetric Top Determine the Lagrangian and Routhian of a sym-
metric top in an external gravitational field, in terms of the Eulerian angles (ϕ,θ ,ψ).
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21. Two Elastically Connected Particles A particle P1 moves in a horizontal plane along
the following circle:

x1 = R cos θ y1 = R sin θ

A second particle P2 is constrained to move on the following space curve:

x2 = R sin ϕ y2 = R sin ϕ z2 = h sin ϕ

The two particles are connected by a linear spring with stiffness k.

(a) Determine the Lagrangian and equations of motion of the dynamic system.

(b) Determine the Hamiltonian equations of motion.



Part IV

Dynamics

Dynamics is the science of motion and describes why and how a motion occurs when
a force system is applied on a dynamic system. The motion can be considered as the
evolution of the position and orientation, and their time derivatives.





11

Rigid Body and Mass Moment

In analyzing the motion of rigid bodies, two types of integrals arise that belong to
the geometry of the body. The first type defines the mass center and appears when
the translational motion of the body is considered. The second is the second moment
of mass , which appears when the rotational motion of the body is considered. The
second moment of mass is also called the mass moment, centrifugal moment , moment
of inertia , or deviation moment .

11.1 RIGID BODY

A set of point masses with constant relative distances is called a rigid body . We attach
a fixed coordinate frame B to the rigid body and call it a body frame. The body frame
may be set at any arbitrary point; however, we usually set B at the mass center of
the body. Because the coordinates of the point masses are constant in the body frame,
we examine the position and orientation of the body frame with respect to a global
coordinate frame G to determine the motion of the rigid body.

A constraint-free rigid body has six degrees of freedom. We express the freedoms
of a rigid body as three translations and three rotations of the body frame.

Proof : Consider n point masses that are connected to each other with fixed connections.
The system is called rigid if and only if the distance between any two particles remains
constant for all time, regardless of the applied force system. To connect n particles to
each other, n (n − 1)/2 connections are needed. So, there are n (n − 1)/2 holonomic
constraints among the n particles of a rigid body:

rij =
√(

xi − xj

)2 + (
yi − yj

)2 + (
zi − zj

)2 = const (11.1)

i, j = 1, 2, . . . , n

However, not all of these constraints are independent.
Figure 11.1 illustrates a rigid body that is made by five rigidly connected particles.

The first three particles make a planar rigid body by only three possible connections.
Connecting a fourth particle to the first three makes a four-particle rigid body with six
connections. Considering each particle as a ball joint, we lose the rigidity of m1, m2, m3,
or m4 upon removal of any one of the six connections among the four particles. Such
a system of connected particles, in which the number of connections is the minimum
required, is called just rigid .

Because a free particle has three DOF, we need only three holonomic constraints to
take its freedoms. Therefore, we can add a fifth particle m5 to the first four particles by

1033
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m3

m1

m2

m4

m5

X

Y

Z
G

z

y

B

O

x

Figure 11.1 A rigid body that is made up of five rigidly connected particles.

connecting m5 to only three non-colinear other particles. The body would be overrigid
if we connect m5 to the fourth particle. Similarly, a sixth particle m6 may have five
connections with only three of them required.

Let us assume that m is the number of particles in excess of 3, so n = 3 + m. Each
particle which is added to the first three requires three additional non-colinear connec-
tions to make a just-rigid body. Therefore, the least number of rigid connections between
n = 3 + m particles of a rigid body is 3 + 3m = 3 + 3 (n − 3) = 3n − 6. Because n free
particles have 3n DOF, a rigid body of n particles will have fC = 6 DOF:

fC = 3n − (3n − 6) = 6 (11.2)

Being overrigid will not change the DOF of the rigid body. This is because we take
the DOF of a particle by using three connections. Any extra connection is redundant
and will not change the DOF of the particle and the rigid body. �

Example 690 Alternative Explanation of DOF of a Rigid Body A single particle
has one DOF if it is restricted to movement on a curve. It has two DOF if it moves on
a surface. A particle that moves freely in space has three DOF.

Two particles that are rigidly connected have five DOF because the first particle
can freely move in space and the second particle is restricted to movement on a spherical
surface around the first one. The radius of the sphere is the length of the connection.
Now, consider n rigidly connected particles and single out one of the particles. It
has three DOF. A second particle is at a constant distance from the first one and
gives two more DOF. A third particle can only move on a circle about the axis con-
necting the first two particles, so it provides one additional DOF. We can assume that
every other particle is connected to the first three and hence provides no more DOF.
Therefore, when the motions of the first three particles are specified, the motions of
all other particles of the rigid body are uniquely determined. The DOF of the body
would be

fC = 3 + 2 + 1 = 6 (11.3)
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Example 691 � Rigid-Body Motion Theorem The rigid-body motion theorem states:
The position of all points of a rigid body is determined by the position of three of its
points provided the points are not colinear.

Proof : Consider a rigid body at a fixed position in a global coordinate frame G and
three non-coplanar points A,B,C of the body occupy the same global coordinates.
Consider a fourth point D of the body and suppose there exist two distinct global
positions D1 and D2 of D in G. Imagine the tetrahedrons ABCD1 and ABCD2 that
have a common base ABC and correspondingly equal edges. So, the points D1 and
D2 are symmetrically placed with respect to the plane ABC, and therefore they cannot
be brought into complete coincidence. This is however contrary to the assumption
that the first and second positions of the tetrahedron ABCD are ABCD1 and ABCD2,
respectively. The unique body point D cannot have different body coordinates, and
therefore it cannot have different global coordinates as well. �

11.2 ELEMENTS OF THE MASS MOMENT MATRIX

In rotational dynamics of rigid bodies, geometric mass distribution integrals appear
that are independent of the motion of the body. Because of this independence, we may
analyze the integrals beforehand and simplify derivation of the equations of motion.

Every rigid body has a 3 × 3 mass moment or moment of inertia matrix [I ]
denoted by

[I ] =

 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (11.4)

The diagonal elements Iij, i = j , are called polar moments of inertia,

Ixx = Ix =
∫

B

(
y2 + z2) dm (11.5)

Iyy = Iy =
∫

B

(
z2 + x2) dm (11.6)

Izz = Iz =
∫

B

(
x2 + y2) dm (11.7)

and the off-diagonal elements Iij , i �= j , are called products of inertia,

Ixy = Iyx = −
∫

B

xy dm (11.8)

Iyz = Izy = −
∫

B

yz dm (11.9)

Izx = Ixz = −
∫

B

zx dm (11.10)
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The elements of [I ] are only functions of the mass distribution of the rigid body and
may be defined by a single equation

Iij =
∫

B

(
r2δij − xixj

)
dm i , j = 1,2,3 (11.11)

where δij is Kronecker’s delta (1.125). The elements Iij may also be shown by the
following equations:

Iii =
∫

B

(
x2

i + x2
j

)
dm i �= j �= k (11.12)

Iij = −
∫

B

xixj dm i �= j (11.13)

The elements of [I ] are moments of inertia about a body coordinate frame attached
to a point of the body. Therefore, I is a frame-dependent quantity and must be written
with a frame indicator, BI , to show the frame in which it is computed:

BI =
∫

B

 y2 + z2 −xy −zx

−xy z2 + x2 −yz

−zx −yz x2 + y2

 dm (11.14)

=
∫

B

(
r2I − r rT) dm =

∫
B

−r̃ r̃ dm (11.15)

Proof : Consider n particles of a rigid body with masses mi , i = 1, 2, . . . , n, at positions
ri in a body coordinate frame B. Assume that the rigid body has a fixed point in the
global coordinate frame G and turns about an instant axis of rotation with angular
velocity GωB . The fixed point is the common origin of G and B. The kinetic energy
of the rigid body can be found by summation of the kinetic energies of all masses:

K = 1

2

n∑
i=1

v2
i mi = 1

2

n∑
i=1

(ω × ri ) · (ω × ri ) mi

= ω2
x

2

n∑
i=1

(
y2

i + z2
i

)
mi + ω2

y

2

n∑
i=1

(
z2
i + x2

i

)
mi + ω2

z

2

n∑
i=1

(
x2

i + y2
i

)
mi

− ωxωy

n∑
i=1

xiyi mi − ωyωz

n∑
i=1

yizi mi − ωzωx

n∑
i=1

zixi mi (11.16)

The summation over the masses and their coordinates are independent of the com-
ponents of angular velocity. Let us introduce the local moment of inertia matrix as

BI =
n∑

i=1

 y2
i + z2

i −xiyi −zixi

−xiyi z2
i + x2

i −yizi

−zixi −yizi x2
i + y2

i

mi (11.17)

where the elements are

Ixx =
n∑

i=1

[
mi

(
y2

i + z2
i

)]
(11.18)
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Iyy =
n∑

i=1

[
mi

(
z2
i + x2

i

)]
(11.19)

Izz =
n∑

i=1

[
mi

(
x2

i + y2
i

)]
(11.20)

Ixy = Iyx = −
n∑

i=1

(mixiyi) (11.21)

Iyz = Izy = −
n∑

i=1

(miyizi) (11.22)

Izx = Ixz = −
n∑

i=1

(mizixi) (11.23)

Now, we can rewrite the kinetic energy of the body as

K = 1
2

(
Ixxω

2
x + Iyyω

2
y + Izzω

2
z

)
−Ixyωxωy − Iyzωyωz − Izxωzωx (11.24)

When the number of particles is infinity and the rigid body is a continuous and
compact solid, the summations must be replaced by the integral of the kinetic energy
of a mass element dm over the whole body:

K = 1

2

∫
B

v2dm = 1

2

∫
B

(ω × r) · (ω × r) dm

= ω2
x

2

∫
B

(
y2 + z2) dm + ω2

y

2

∫
B

(
z 2 + x 2 ) dm + ω2

z

2

∫
B

(
x 2 + y2 ) dm

− ωxωy

∫
B

xy dm − ωyωz

∫
B

yz dm − ωz ωx

∫
B

zx dm (11.25)

Introducing the mass moment matrix (11.15) with elements (11.5)–(11.10), we are able
to write the kinetic energy as (11.24).

The kinetic energy can be rearranged to a matrix multiplication form:

K = 1
2

G
BωT

B
BI G

BωB = 1
2

G
BωB · BL (11.26)

We may utilize the homogeneous position vectors and define a more general
moment of inertia I , called the pseudo–inertia matrix:

BI =
∫

B

r rT dm (11.27)

=



∫
B

x2 dm
∫
B

xy dm
∫
B

xz dm
∫
B

x dm∫
B

xy dm
∫
B

y2 dm
∫
B

yz dm
∫
B

y dm∫
B

xz dm
∫
B

yz dm
∫
B

z2 dm
∫
B

z dm∫
B

x dm
∫
B

y dm
∫
B

z dm
∫
B

dm
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which can be expanded to

BI =



−Ixx + Iyy + Izz

2
Ixy Ixz mxC

Iyx

Ixx − Iyy + Izz

2
Iyz myC

Izx Izy

Ixx + Iyy − Izz

2
mzC

mxC mzC myC m


(11.28)

where

 xC

yC

zC

 =



1

m

∫
B

x dm

1

m

∫
B

y dm

1

m

∫
B

z dm


= BrC (11.29)

and BrC is the position of the mass center in the body frame. This vector is zero
if the body frame is central . A body frame is central if it is at the mass center of
the body. �

Example 692 Mass Moment of a Brick and Spherical Rigid Body Consider a homo-
geneous rectangular brick with mass m, volume V , density ρ = m/V , length l, width
w, and height h, as shown in Figure 11.2.

The local central coordinate frame is attached to the brick at its mass center. The
mass moment matrix of the brick can be found by the integral method. We begin by

w

h
l

x

y
z

B

X

Y

Z

G

O

Figure 11.2 A homogeneous rectangular brick.
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calculating

Ixx =
∫

B

(
y2 + z2) dm =

∫
V

(
y2 + z2) ρdV = m

lwh

∫
V

(
y2 + z2) dV

= m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2

(
y2 + z2) dx dy dz

= m

12

(
w2 + h2) (11.30)

which shows that Iyy and Izz can be calculated similarly:

Iyy = m

12

(
h2 + l2) (11.31)

Izz = m

12

(
l2 + w2) (11.32)

The coordinate frame B is central and symmetric. The products of inertia in such
a frame are zero. To show this, we examine Ixy :

Ixy = Iyx = −
∫

B

xy dm =
∫

v

xyρ dv

= m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2
xy dx dy dz = 0 (11.33)

Therefore, the mass moment matrix for the rigid rectangular brick in its central frame is

BI =


1
2m

(
w2 + h2

)
0 0

0 1
2m

(
h2 + l2

)
0

0 0 1
2m

(
l2 + w2

)
 (11.34)

Assuming that
l = w = h = a (11.35)

we have

BI =


1
6ma2 0 0

0 1
6ma2 0

0 0 1
6ma2

 (11.36)

A rigid body that has a mass moment matrix with equal diagonal elements and no
off-diagonal elements, such as (11.36), is called a spherical rigid body .

Example 693 Mass Center The mass center of a body B that occupies the volume
V with a local density ρ (x, y, z) is a point C at which∫

V

ρ Br dV = 0 (11.37)
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Indicating the global position vector of C by GrC , we have

GrC =
∫
V

ρ Gr dV∫
V

ρ dV
(11.38)

Example 694 � Mass Center Kinematics Let us show the mass center rC of a rigid
body B by

rC = r0 + 1

m

∫
V

(r − r0) dm (11.39)

where
m =

∫
V

ρ dm dm = ρ dV (11.40)

and r0 is the position of an arbitrary point of B.

1. The expression (11.39) is independent of r0.
2. rC is a unique point in the B-frame such that∫

(r − rC) dm = 0 (11.41)

3. rC is in the interior of the convex hull of the B-body.

Proof : To check that the definition of rC is independent of r0, we change r0 to another
point r1:

r1 + 1

m

∫
V

(r − r1) dm = 1

m

∫
V

(r − r0) dm

+ 1

m

∫
V

(r0 − r1) dm + (r1 − r0) + r0

= 1

m

∫
V

(r − r0) dm + (r0 − r1) + (r1 − r0) + r0

= r0 + 1

m

∫
V

(r − r0) dm (11.42)

Using the definition of rC and (11.42), we have

1

m

∫
V

(r − r0) dm = m(rC − rC) = 0 (11.43)

Now assume r1 is an arbitrary point with the property that∫
V

(r − r1) dm = 0 (11.44)



11.2 Elements of the Mass Moment Matrix 1041

Then, by (11.42), we have

rC = 1

m

∫
V

(r − r1) dm + r1 (11.45)

which shows that rC is unique:

rC = r1 (11.46)

If rC is on the boundary of the rigid body B or not in B, then there exists a plane
passing through rC such that there are points in B which lie on one side of the plane
but there are no points in B on the opposite side of the plane. In other words, there
exists an r such that the set S1 is nonempty,

S1 = {r ∈ B | (r − rC) > 0} (11.47)

but there exists an r such that the set S2 is empty:

S2 = {r ∈ B | (r − rC) < 0} (11.48)

It implies that ∫
V

(r − rC) dm > 0 (11.49)

which contradicts (11.44). �

Example 695 � Relative Diagonal Moments of Inertia Using the definitions for
mass moments (11.5)–(11.7), it is seen that [I ] is symmetric:

Iij = Iji i �= j (11.50)
Furthermore, we have∫

B

r2dm =
∫

B

(
x2 + y2 + z2) dm = 1

2

(
Ixx + Iyy + Izz

)
(11.51)

which is called the mass moment about the origin.
Every diagonal element of [I ] is less than the sum of the other two diagonal

elements:

Ixx + Iyy ≥ Izz (11.52)

Iyy + Izz ≥ Ixx (11.53)

Izz + Ixx ≥ Iyy (11.54)

Noting that
(y − z)2 ≥ 0 (11.55)

we have (
y2 + z2) ≥ 2yz (11.56)
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and therefore, every diagonal element of [I ] is less than the sum of the off-diagonal
elements that are not on the same row and column of the element:

Ixx ≥ 2
∣∣Iyz

∣∣ (11.57)

Iyy ≥ 2 |Izx | (11.58)

Izz ≥ 2
∣∣Ixy

∣∣ (11.59)

We may combine these equations and show them by index notation:

Iii + Ijj ≥ Ikk i �= j �= k (11.60)

Iii ≥ 2
∣∣Ijk

∣∣ i �= j �= k (11.61)

IiiIjj ≥ I 2
ij i �= j (11.62)

Example 696 � Short Notation of the Elements of Mass Moment Matrix Taking
advantage of the Kronecker delta (1.125) we may write the elements of the mass
moment matrix Iij in the short notation forms

Iij =



∫
B

((
x2

1 + x2
2 + x2

3

)
δij − xixj

)
dm (11.63)∫

B

(
r2δij − xixj

)
dm (11.64)

∫
B

(
3∑

k=1

xkxkδij − xixj

)
dm (11.65)

where

x1 = x x2 = y x3 = z (11.66)

Example 697 � Mass Moment with Respect to a Plane, a Line, and a Point The
mass moment of a system of particles may be defined with respect to a plane, a line, or
a point as the sum of the products of the mass of the particles times the square of the
perpendicular distances from the particles to the plane, line, or point. For a continuous
solid body, the sum would be a definite integral over the volume of the body.

The mass moments with respect to the xy-, yz-, and zx-plane are

Iz2 =
∫

B

z2 dm (11.67)

Iy2 =
∫

B

y2 dm (11.68)

Ix2 =
∫

B

x2 dm (11.69)
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The mass moments with respect to the x-, y-, and z-axis are

Ix =
∫

B

(
y2 + z2) dm (11.70)

Iy =
∫

B

(
z2 + x2) dm (11.71)

Iz =
∫

B

(
x2 + y2) dm (11.72)

and therefore,
Ix = Iy2 + Iz2 (11.73)

Iy = Iz2 + Ix2 (11.74)

Iz = Ix2 + Iy2 (11.75)

The moment of inertia with respect to the origin is

Io =
∫

B

(
x2 + y2 + z2) dm = Ix2 + Iy2 + Iz2

= 1
2

(
Ix + Iy + Iz

)
(11.76)

Because the choice of the coordinate frame is arbitrary, we can say that the mass moment
with respect to a line is the sum of the mass moments with respect to any two mutually
orthogonal planes that pass through the line. The mass moment with respect to a point has
a similar meaning for three mutually orthogonal planes intersecting at the point.

Example 698 � Geometry-Dependent Integrals Any integral in the form∫
B

xiyj zkdm (11.77)

that is performed over the volume of a rigid body B, where, i, j , and k are constant
integers, is a geometry-dependent integral. It determines the mass center C if

i + j + k = 1 (11.78)

and the mass moment of inertia I if

i + j + k = 2 (11.79)

There is no physical definition for i + j + k > 2 yet.

Example 699 Radius of Gyration Consider a rigid body with mass m. Assume that
the entire mass of the body is concentrated in a particle at a distance k from the point,
line, or plane with respect to which the mass moment is I . If k is chosen such that

mk2 = I (11.80)

then k is called the radius of gyration with respect to the point, line, or plane.
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If k is calculated for a line or plane that passes through the mass center, then it is
called the principal radius of gyration kC . The principal radius of gyration kC has the
minimum value of k. Assume I is the mass moment of a body with respect to a given
axis and k is the radius of gyration about the axis. Let kC be the principal radius of
gyration about a parallel axis that passes through the mass center. Assume xC , yC , zC

are the coordinates of the mass center. If the coordinates of a point with respect to C

are (a, b, c), then we have

x = xC + a y = yC + b z = zC + c (11.81)

∑
miai =

∑
mibi =

∑
mici = 0 (11.82)

mk2
C =

∑
mi

(
a2

i + b2
i + c2

i

)
(11.83)

Let us calculate the mass moment about an axis, say the z-axis:

mk2 =
∑

mi

(
x2

i + y2
i

) =
∑

mi

(
(xC + ai)

2 + (yC + b)2)
=

∑
mi

(
a2

i + b2
i

) + m
(
x2

C + y2
C

)
+ 2xC

∑
miai + 2yC

∑
miyi (11.84)

If r is the perpendicular distance between the two axes, then

r2 = x2
C + y2

C (11.85)

and therefore,

mk2 = mk2
C + mr2 (11.86)

Because r2 is always nonnegative, a principal radius of gyration is smaller than the
radius of gyration for any other parallel axis. This is true for any plane, line, or
point.

11.3 TRANSFORMATION OF MASS MOMENT MATRIX

Mass moments can be transformed from a coordinate frame B1 to another coordinate
frame B2, both installed at the mass center of the body, according to the rotated-axes
theorem:

2I = 2R1
1I 2RT

1 (11.87)

Mass moments of inertia can be transformed from a central frame B1 to another frame
B2 which is parallel to B1 according to parallel-axes theorem:

2I = 1I + m 2d̃1
2d̃T

1 (11.88)
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y1
y2

B1

B2z2

z1

x2

x1

O

Figure 11.3 Two coordinate frames with a common origin at mass center of a rigid body.

where 2d̃1 is the matrix form of the position vector 2d1 of B1 in B2:

2d̃1 =

 0 − 2dz
2dy

2dz 0 − 2dx

− 2dy
2dx 0

 (11.89)

Proof : Two coordinate frames with a common origin are shown in Figure 11.3. The
angular velocity and angular momentum of a rigid body transform from frame B1 to
B2 by vector transformation:

2ω = 2R1
1ω (11.90)

2L = 2R1
1L (11.91)

However, L and ω are related according to

1L = 1I 1ω 2L = 2I 2ω (11.92)

and therefore,

2L = 2R1
1I 2RT

1
2ω = 2I 2ω (11.93)

It shows how to transfer the moment of inertia from a coordinate frame B1 to a rotated
frame B2:

2I = 2R1
1I 2RT

1 (11.94)

Now consider a coordinate frame B1 at 2d1 as shown in Figure 11.4. Frame B2

moves in a fixed frame B1 such that their axes remain parallel. The angular velocities
of B1 and B2 are equal and the angular momentum of the rigid body transforms from
the frame B1 to B2 by

2ω1 = 1ω2 = ω (11.95)
2L = 1L + ( 2d1 × m 2v1

)
(11.96)



1046 Rigid Body and Mass Moment

y1
y2

B2

B1z2

z1

x2

x1

2d1o2 o1

Figure 11.4 A central coordinate frame B1 and a translated frame B2.

Therefore,

2L = 1L + m 2dC × (
ω× 2dC

) = 1L +
(
m 2d̃1

2d̃T
1

)
ω

=
(

1I + m 2d̃1
2d̃T

1

)
ω (11.97)

which shows how to transfer the moment of inertia from frame B1 to a parallel frame B2:

2I = 1I + m 2d̃1
2d̃T

1 (11.98)

The relative translational vectors of two parallel coordinate frames B1 and B2 are
opposite:

1d2 = − 2d1 (11.99)

We can show the relative frames as in Figure 11.5 and rewrite Equation (11.97) as

2I = 1I + m 1d̃2
1d̃T

2 (11.100)

y1
y2

B2

B1
z2

z1

x2

x1

1d2o2 o1

Figure 11.5 A central coordinate frame B1 and a translated frame B2.
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because for any skew-symmetric matrix r̃ we have

r̃ r̃T = r̃T r̃ = (−r̃) (−r̃)
T (11.101)

The parallel-axes theorem is also called the Huygens–Steiner theorem . �

Example 700 Translation of the Inertia Matrix The moment of inertia matrix of the
rigid brick shown in Figure 11.6 in the central and symmetric frame B(oxyz) is given
in Equation (11.35). The moment of inertia matrix in the parallel frame G can be found
by applying the parallel-axes transformation formula (11.97):

GI = BI + m Gd̃C
Gd̃T

C (11.102)

The position vector of the mass center is

GdC = 1

2

 l

w

h

 (11.103)

and therefore,

Gd̃C = 1

2

 0 −h w

h 0 −l

−w l 0

 (11.104)

which yields

GI =


1
3h2m + 1

3mw2 − 1
4 lmw − 1

4hlm

− 1
4 lmw 1

3h2m + 1
3 l2m − 1

4hmw

− 1
4hlm − 1

4hmw 1
3 l2m + 1

3mw2

 (11.105)

Assuming

l = 8 h = 3 w = 1 (11.106)

w

h
l

x

y

z
B

X

Y

Z

G

O C

Figure 11.6 A rigid rectangular link in the principal and nonprincipal frames.
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from Equation (11.34) we have

BI =


5
6m 0 0

0 73
12m 0

0 0 65
12m

 (11.107)

and
GI = BI + m Gd̃C

Gd̃T
C (11.108)

=


10
3 m −2m −6m

−2m 73
3 m − 3

4m

−6m − 3
4m 65

3 m

 (11.109)

For l = h = w = a, we have

GI = ma2

6

 1 0 0

0 1 0

0 0 1

 + ma2

4

 0 −1 1

1 0 −1

−1 1 0


 0 −1 1

1 0 −1

−1 1 0


T

×


2
3ma2 − 1

4ma2 − 1
4ma2

− 1
4ma2 2

3ma2 − 1
4ma2

− 1
4ma2 − 1

4ma2 2
3ma2

 (11.110)

Example 701 Superposition According to the definition of mass moments in Equation
(11.17) or (11.11), we are able to split a rigid body to arbitrary sections and add the
mass moments of the individual sections to determine the mass moment of the body.

For example, let us determine the mass moment matrix BI of the whole cube of
Figure 11.7 by splitting it into eight smaller cubes each of mass m/8. Using Equation
(11.104) for l = h = w = a/2, we find BI for cube 1:

BI1 =
∫

B

 y2 + z2 −xy −zx

−xy z2 + x2 −yz

−zx −yz x2 + y2

 dm

= 1

32


2
3ma2 − 1

4ma2 − 1
4ma2

− 1
4ma2 2

3ma2 − 1
4ma2

− 1
4ma2 − 1

4ma2 2
3ma2

 (11.111)

By changing the sign of x, we find

BI2 = 1

32


2
3ma2 1

4ma2 1
4ma2

1
4ma2 2

3ma2 − 1
4ma2

1
4ma2 − 1

4ma2 2
3ma2

 (11.112)
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Y

X

Z

G

a/2

B

y

a/2

a/2

a/2

a/2

a/2

1

2
4

3
z

5

6
8

x

Figure 11.7 A cube as a superposition of eight smaller cubes.

Similarly,

BI3 = 1

32


2
3ma2 − 1

4ma2 1
4ma2

− 1
4ma2 2

3ma2 1
4ma2

1
4ma2 1

4ma2 2
3ma2

 (11.113)

BI4 = 1

32


2
3ma2 1

4ma2 − 1
4ma2

1
4ma2 2

3ma2 1
4ma2

− 1
4ma2 1

4ma2 2
3ma2

 (11.114)

BI5 = 1

32


2
3ma2 − 1

4ma2 1
4ma2

− 1
4ma2 2

3ma2 1
4ma2

1
4ma2 1

4ma2 2
3ma2

 (11.115)

BI6 = 1

32


2
3ma2 1

4ma2 − 1
4ma2

1
4ma2 2

3ma2 1
4ma2

− 1
4ma2 1

4ma2 2
3ma2

 (11.116)

BI7 = 1

32


2
3ma2 − 1

4ma2 − 1
4ma2

− 1
4ma2 2

3ma2 − 1
4ma2

− 1
4ma2 − 1

4ma2 2
3ma2

 (11.117)

BI8 = 1

32


2
3ma2 1

4ma2 1
4ma2

1
4ma2 2

3ma2 − 1
4ma2

1
4ma2 − 1

4ma2 2
3ma2

 (11.118)

Combining the eight mass moment matrices Ii, i = 1, 2, . . . , 8, we have
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BI = BI1 + BI2 + BI3 + BI4 + BI5 + BI6 + BI7 + BI8

=


1
6ma2 0 0

0 1
6ma2 0

0 0 1
6ma2

 (11.119)

Example 702 A Rotating Arm Figure 11.8 shows a rotating arm with a body coor-
dinate frame B1. Let us assume that 1I1 is the mass moment matrix of the arm about
its mass center C:

1I1 =
 Ix 0 0

0 Iy 0
0 0 Iz

 (11.120)

From the transformation matrix

0R1 = RZ,θ =
 cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (11.121)

we can determine 0I1:

0I1 = RZ,θ
1I1 RT

Z,θ = 0R1

 Ix 0 0

0 Iy 0

0 0 Iz

 0RT
1

=

 Ix cos2 θ + Iy sin2 θ
(
Ix − Iy

)
cos θ sin θ 0(

Ix − Iy

)
cos θ sin θ Iy cos2 θ + Ix sin2 θ 0

0 0 Iz

 (11.122)

Y

y1

x1

X
m

B1

B0

θ

l

C

Figure 11.8 A rotating arm.
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Example 703 2R Planar Manipulator Mass Moments A 2R manipulator that has
massive arms is shown in Figure 11.9. The transformation matrices between coordinate
frames B1, B2, and B0 are

0R1 = RZ,θ1 =

 cos θ1 − sin θ1 0

sin θ1 cos θ1 0

0 0 1

 (11.123)

1R2 = RZ,θ2 =

 cos θ2 − sin θ2 0

sin θ2 cos θ2 0

0 0 1

 (11.124)

0R2 = Rz,θ1+θ2 =

 cos (θ1 + θ2) − sin (θ1 + θ2) 0

sin (θ1 + θ2) cos (θ1 + θ2) 0

0 0 1

 (11.125)

If we have the mass moment matrices in the local frames B1 and B2, we can determine
the mass moment matrices in the global coordinate frame B0:

0I1 = RZ,θ1
1I1 RT

Z,θ1
= 0R1

 Ix1 0 0

0 Iy1 0

0 0 Iz1

 0RT
1

=

 Ix1c
2θ1 + Iy1s

2θ1
(
Ix1 − Iy1

)
cθ1sθ1 0(

Ix1 − Iy1

)
cθ1sθ1 Iy1c

2θ1 + Ix1s
2θ1 0

0 0 Iz1

 (11.126)

x2
y2

y0

y1

x1

x0
m1

m2

B1B0

C1

C2

θ2

θ1

l1

l 2

c1

c 2

B2

Figure 11.9 A 2R manipulator with massive arms.
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0I2 = 0R2
2I2

0RT
2 = 0R2

 Ix2 0 0
0 Iy2 0
0 0 Iz2

 0RT
2

=

 Ix2c
2θ12 + Iy2s

2θ12
(
Ix2 − Iy2

)
cθ12sθ12 0(

Ix2 − Iy2

)
cθ12sθ12 Iy2c

2θ12 + Ix2s
2θ12 0

0 0 Iz2

 (11.127)

θ12 = θ1 + θ2 (11.128)

Example 704 � General Mass Moment Transformation Consider two body coor-
dinates B and B1 that are respectively installed at the mass center C of a rigid body
and at a point A as shown in Figure 11.10. The coordinate frame B1 is at a different
orientation than B. To determine the relationship between the mass moments of 1I and
BI , we may set up a new body coordinate B2 at A to be parallel with B1:

B2 ‖ B1 (11.129)

The relation between 2I and 1I is a rotation:
1I = 1R2

2I 1RT
2 (11.130)

The relation between 2I and BI is a translation. Showing the translation vector by
Br2 = BrA, we have

2I = BI + m Br̃2
Br̃T

2 (11.131)

Substituting (11.131) in (11.130) provides the relation of 1I and BI :

1I = 1R2
(

BI + m Br̃2
Br̃T

2

) 1RT
2

= 1R2
BI 1RT

2 + m 1R2
(

Br̃2
Br̃T

2

) 1RT
2 (11.132)

y2
y

B

B2

z

z2

x

x2

1d2C A

y1

B1z1

x1

Figure 11.10 Two body coordinates B and B1 that are respectively installed at points C and
A of a rigid body.



11.3 Transformation of Mass Moment Matrix 1053

Let us write (11.130) and (11.131) as
2I = 2R1

1I 2RT
1 (11.133)

BI = 2I − m Br̃2
Br̃T

2 (11.134)
to determine BI for a given 1I :

BI = 2I − m Br̃2
Br̃T

2

= 2R1
1I 2RT

1 − m Br̃2
Br̃T

2 (11.135)

Example 705 � Mass Moment of a Cube in Two Frames Figure 11.11 illustrates a
cube with side a in a global coordinate frame G and the following mass moment matrix:

GI =


2
3ma2 − 1

4ma2 − 1
4ma2

− 1
4ma2 2

3ma2 − 1
4ma2

− 1
4ma2 − 1

4ma2 2
3ma2

 (11.136)

Another coordinate B is set at the corner (a, a, a) such that the y-axis is along the
diagonal of the cube and the x-axis is parallel to the (X, Y )-plane. To determine BI ,
we need to find GRB first. The unit vectors of B in G are

̂ = Î + Ĵ + K̂√
3

= 1√
3

 1
1
1

 (11.137)

ı̂ = r11Î + r12Ĵ =
 r11

r12

0

 (11.138)

k̂ = r31Î + r32Ĵ + r33K̂ =
 r31

r32

r33

 (11.139)

and therefore,

GRB =


r11

1√
3

r31

r12
1√
3

r32

0
1√
3

r33

 (11.140)

Using GRB
GRT

B = I yields

GRB =



√
2

2

1√
3

−
√

6

6

−
√

2

2

1√
3

−
√

6

6

0
1√
3

√
6

3


(11.141)
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Y

X

Z

x

y

z B

G

a a

a

Figure 11.11 Mass moment of a cube in two frames.

Let us rewrite Equation (11.131) using the notation in Figure 11.11:

BI = GRB

(
GI + m Gr̃B

Gr̃T
B

)
GRT

B (11.142)

Employing

Gr̃B =
 0 −a a

a 0 −a

−a a 0

 (11.143)

we can determine BI given GI :

BI = GRB

(
GI + m Gr̃B

Gr̃T
B

)
GRT

B

= ma2

 2.957 0.58926 −1.5266

0.58926 3.5549 0.93737

−1.5266 0.93737 1.4882

 (11.144)

Example 706 � Mass Moment and Change of Reference Point Consider a rigid
body B with a body coordinate frame B at the mass center C and frames B1 and B2 at
points A and P , respectively, as shown in Figure 11.12. Let us assume that when the
body coordinate frame is at A the mass moment matrix is given as 1I . To determine
2I when 1I is given, we establish the relationships of 1I and 2I with the central mass
moment BI :

BI = BR1
1I BRT

1 − m Br̃1
Br̃T

1 (11.145)

2I = 2RB
BI 2RT

B + m 2RB

(
Br̃2

Br̃T
2

) 2RT
B (11.146)
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x y

z

B

B1

dmA

x2

B2

y2

z1

y1

C

P

1rm

Brm

z2

2rm

x1

Br1

Br2

Figure 11.12 A rigid body B with three body coordinates B, B1, and B2 at points C, A, and P .

Elimination of BI provides the relationship between 1I and 2I :

2I = 2RB

(
BR1

1I BRT
1 − m Br̃1

Br̃T
1

) 2RT
B

+ m 2RB

(
Br̃2

Br̃T
2

) 2RT
B

= 2RB
BR1

1I BRT
1

2RT
B − m 2RB

(
Br̃1

Br̃T
1

) 2RT
B

+ m 2RB

(
Br̃2

Br̃T
2

) 2RT
B

= 2R1
1I 2RT

1 + m 2RB

(
Br̃2

Br̃T
2 − Br̃1

Br̃T
1

) 2RT
B (11.147)

Example 707 Mass Moment of a Rigid Body about an Axis Let α, β, γ be the
direction cosines of a line l which passes through the origin of a coordinate frame
B, as shown in Figure 11.13. Consider rigidly connected n point masses mi . Assume
ri = xi ı̂ + yi ̂ + zi k̂ is the position vector of a point mass mi and di is the perpendicular
distance of mi to l. The mass moment of the rigid body about l in B is

BIl =
n∑

i=1

mid
2
i (11.148)

Because û = αı̂ + β̂ + γ k̂ is a unit vector on l, we have

d2
i = (

ri × û
)2 = (γyi − βzi)

2 + (αzi − γ xi)
2 + (βxi − αyi)

2

= (
y2

i + z2
i

)
α2 + (

x2
i + z2

i

)
β2 + (

x2
i + y2

i

)
γ 2

− 2xiyiαβ − 2xiziαγ − 2yiziβγ (11.149)
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mi

l

x y

z

û

B

ri

di

Figure 11.13 Mass moment of a particle about a line l.

and therefore,

BIl = Ixxα
2 + Iyyβ

2 + Izzγ
2 + 2Ixyαβ + 2Iyzβγ + 2Ixzαγ (11.150)

From Equation (11.149), we may calculate the mass moment about any line through
O if the mass moment with respect to the coordinate frame B is known.

Example 708 Mass Moment of a Cone about a Side Line Equation (11.149) calcu-
lates the mass moment of a rigid body about a line with direction cosines α, β, γ if the
mass moment of the body with respect to the coordinate frame B is known. Let us use
the equation to calculate the mass moment of the cone in Figure 11.14 about the side
lines l1 sitting in the (x, y)-plane and about the line l2 ⊥ l1, both passing through O.

A principal body coordinate frame B is attached to the cone at its apex with x as
its axis of symmetry. The mass moments of the cone in B are

Ixx = 3
10ml2 (11.151)

Iyy = Izz = 3
5ml2

(
cos2 α + 1

4 sin2 α
)

(11.152)

where l is the slant length of the cone and m is its mass. The line l1 is indicated by

ûl1 = ı̂ cos α + k̂ sin α (11.153)

z

α y

B

l1

x

l2

Figure 11.14 A cone with a body coordinate at its apex and x as its axis of symmetry.
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and therefore, Equation (11.149) yields

BIl1 = 3
4ml2 sin2 α

(
cos2 α + 1

5

)
(11.154)

Similarly, we can indicate line l2 by

ûl2 = −ı̂ sin α + k̂ cos α (11.155)

which yields

BIl2 = ml2 ( 3
4 sin4 α − 21

20 sin2 α + 3
5

)
(11.156)

Example 709 � Index Notation and Rotation of Frame Consider a mass moment
matrix 1I of a body B in a coordinate frame B1 attached to B at point O. Another
coordinate frame B2 at O is related to B1 by a rotation transformation matrix 2R1:

2r = 2R1
1r (11.157)

2xi =
3∑

k=1

rik
1xk (11.158)

The elements of 2I are

2Iij =
∫

B

(
r2δij − 2xi

2xj

)
dm i, j = 1, 2, 3 (11.159)

Substituting for 2xi and 2xj yields

2Iij = δij

∫
B

r2 dm −
3∑

k=1

3∑
l=1

rik rj l

∫
B

2xk
2xl dm (11.160)

However, ∫
B

2xk
2xl dm = δkl

∫
B

r2 dm − 1Ikl (11.161)

and therefore,

2Iij = δij

∫
B

r2 dm +
3∑

k=1

3∑
l=1

rik rj l

(
1Ikl − δkl

∫
B

r2 dm

)

= δij

∫
B

r2 dm +
3∑

k=1

3∑
l=1

rik rj l
1Ikl − δij

∫
B

r2 dm

=
3∑

k=1

3∑
l=1

rik rj l
1Ikl (11.162)
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Similarly, if we have the mass moment 2I of a rigid body in a rotated frame B2, we
can determine the mass moment of the body in a nonrotated frame 1I :

1Iij =
3∑

k=1

3∑
l=1

rki rlj
2Ikl (11.163)

11.4 PRINCIPAL MASS MOMENTS

If a local coordinate frame Oxyz is oriented such that the products of inertia vanish,
the local coordinate frame is called the principal coordinate frame and the associ-
ated mass moments are called principal mass moments . Principal axes and principal
mass moments are eigenvalues and eigenvectors of the mass moment matrix [I ]. The
principal mass moments can be found by solving the following equation for I :∣∣∣∣∣∣

Ixx − I Ixy Ixz

Iyx Iyy − I Iyz

Izx Izy Izz − I

∣∣∣∣∣∣ = 0 (11.164)

det
([

Iij

] − I
[
δij

]) = 0 (11.165)

Equation (11.164) is a cubic equation in I and provides three principal mass moments:

I1 = Ix I2 = Iy I3 = Iz (11.166)

Associated to each principal mass moment Ii , there exist a principal axis ui which can
be found from the equation

[[I ] − Ii [I]] ui = 0 (11.167)

Proof : Referring to Equation (11.93) for the transformation of the mass moment to a
rotated frame B2, let us assume that we can find a frame in which 2I is a diagonal
matrix:

2I =
 I1 0 0

0 I2 0
0 0 I3

 (11.168)

In such a frame, we have

2R1
1I = 2I 2R1 (11.169)

or  Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 r11 r12 r13

r21 r22 r23

r31 r32 r33


=

 I1 0 0
0 I2 0
0 0 I3

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (11.170)
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which shows that I1, I2, and I3 are eigenvalues of 1I . These eigenvalues can be found
by solving the following equation for λ:∣∣∣∣∣∣

Ixx − λ Ixy Ixz

Iyx Iyy − λ Iyz

Izx Izy Izz − λ

∣∣∣∣∣∣ = 0 (11.171)

The eigenvalues λ = I1, λ = I2, and λ = I3 are principal mass moments , and their
associated eigenvectors are called principal directions . The coordinate frame made by
the eigenvectors is the principal body coordinate frame.

According to the determination method of mass moments in Equation (11.15),
there exists a mass moment matrix for any coordinate frame at any point of a rigid
body. Also, there are principal values and axes for any mass moment matrix.

If a body has three planes of symmetry which are mutually perpendicular, then these
planes are the principal planes . The triad that is made by intersecting perpendicular
planes is the principal coordinate frame of the body. �

Example 710 Principal Moments of Inertia Consider the mass moment matrix

I =
 20 −2 0

−2 30 0
0 0 40

 (11.172)

To determine the principal moments of inertia, we set up the determinant (11.164),∣∣∣∣∣∣
20 − λ −2 0

−2 30 − λ 0
0 0 40 − λ

∣∣∣∣∣∣ = 0 (11.173)

which leads to the characteristic equation

(20 − λ) (30 − λ) (40 − λ) − 4 (40 − λ) = 0 (11.174)

Three roots of Equation (11.173) are

I1 = 30.385 I2 = 19.615 I3 = 40 (11.175)

and therefore, the principal moment of inertia matrix is

I =
 30.385 0 0

0 19.615 0
0 0 40

 (11.176)

Although in this example we have I3 >I1 >I2, it is traditional to sort the principal
mass moments such that

I1 ≥ I2 ≥ I3 (11.177)
or

I1 ≤ I2 ≤ I3 (11.178)
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Example 711 Principal Coordinate Frame Consider the mass moment matrix

I =
 20 −2 0

−2 30 0
0 0 40

 (11.179)

The direction of a principal axis xi with direction cosines (αi, βi, γi) is established by
solving for direction cosines: Ixx − Ii Ixy Ixz

Iyx Iyy − Ii Iyz

Izx Izy Izz − Ii

αi

βi

γi

 =
 0

0
0

 (11.180)

These three equations are not independent because

α2
i + β2

i + γ 2
i = 1 (11.181)

Therefore, we should use (11.180) and the two equations of (11.179) to determine
αi, βi, γi .

For the first principal moment of inertia I1 = 30.385, we have 20 − 30.385 −2 0
−2 30 − 30.385 0
0 0 40 − 30.385

 cos α1

cos β1

cos γ1

 =
 0

0
0

 (11.182)

or
−10.385 cos α1 − 2 cos β1 + 0 = 0 (11.183)

−2 cos α1 − 0.385 cos β1 + 0 = 0 (11.184)

0 + 0 + 9.615 cos γ1 = 0 (11.185)
and we obtain

α1 = 79.1 deg (11.186)

β1 = 169.1 deg (11.187)

γ1 = 90.0 deg (11.188)

Using I2 = 19.615 for the second principal axis, 20 − 19.62 −2 0
−2 30 − 19.62 0
0 0 40 − 19.62

 cos α2

cos β2

cos γ2

 =
 0

0
0

 (11.189)

we obtain

α2 = 10.9 deg (11.190)

β2 = 79.1 deg (11.191)

γ2 = 90.0 deg (11.192)
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The third principal axis is for I3 = 40, 20 − 40 −2 0
−2 30 − 40 0
0 0 40 − 40

 cos α3

cos β3

cos γ3

 =
 0

0
0

 (11.193)

which yields
α3 = 90.0 deg (11.194)

β3 = 90.0 deg (11.195)

γ3 = 0.0 deg (11.196)

Example 712 Principal Rotation Matrix Consider the body inertia matrix

I =


2

3
−1

2
−1

2

−1

2

5

3
−1

4

−1

2
−1

4

5

3

 (11.197)

The eigenvalues and eigenvectors of I are

I1 = 0.2413 w1 =
 2.351

1
1

 (11.198)

I2 = 1.8421 w2 =
−0.851

1
1

 (11.199)

I3 = 1.9167 w3 =
 0

−1
1

 (11.200)

The normalized eigenvector matrix W is equal to the transpose of the required trans-
formation matrix to make the inertia matrix diagonal:

W =

 | | |
w1 w2 w3

| | |

 = 2RT
1 (11.201)

=

 0.8569 −0.5156 0.0

0.36448 0.60588 −0.70711

0.36448 0.60588 0.70711
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We may verify that

2I = 2R1
1I 2RT

1 = WT 1I W (11.202)

=
 0.2413 −1 × 10−4 0.0

−1 × 10−4 1.842 1 −1 × 10−19

0.0 0.0 1.916 7


≈

 I1 0 0
0 I2 0
0 0 I3



Example 713 � Coefficients of the Characteristic Equation The determinant
(11.171) for calculating the principal moments of inertia,∣∣∣∣∣∣

Ixx − λ Ixy Ixz

Iyx Iyy − λ Iyz

Izx Izy Izz − λ

∣∣∣∣∣∣ = 0 (11.203)

leads to a third-degree equation of λ called the characteristic equation:

λ3 − a1λ
2 + a2λ − a3 = 0 (11.204)

The coefficients of the characteristic equation are called the principal invariants
of [I ]. The coefficients can directly be found from the equations

a1 = Ixx + Iyy + Izz = tr [I ] (11.205)

a2 = IxxIyy + IyyIzz + IzzIxx − I 2
xy − I 2

yz − I 2
zx

=
∣∣∣∣ Ixx Ixy

Iyx Iyy

∣∣∣∣ +
∣∣∣∣ Iyy Iyz

Izy Izz

∣∣∣∣ +
∣∣∣∣ Ixx Ixz

Izx Izz

∣∣∣∣
= 1

2

(
a2

1 − tr
[
I 2

]) = 1
2

(
(tr [I ])2 − tr

[
I 2

])
(11.206)

a3 = IxxIyyIzz + IxyIyzIzx + IzyIyxIxz

− (
IxxIyzIzy + IyyIzxIxz + IzzIxyIyx

)
= IxxIyyIzz + 2IxyIyzIzx − (

IxxI
2
yz + IyyI

2
zx + IzzI

2
xy

)
= det [I ] (11.207)

As an example let us find the principal mass moments of [I ] in (11.172):

I =
 20 −2 0

−2 30 0
0 0 40

 (11.208)
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The principal invariants of [I ] are
a1 = tr [I ] = 90 (11.209)

a2 = 1
2

(
(tr [I ])2 − tr

[
I 2

]) = 1
2

(
902 − 2908

) = 2596 (11.210)

a3 = det [I ] = 23,840 (11.211)

and therefore, the characteristic equation of [I ] is

λ3 − 90λ2 + 2596λ − 23,840 = 0 (11.212)
It has the following roots:

λ1 =
√

29 + 25 = 30.385

λ2 = 25 −
√

29 = 19.615

λ3 = 40 (11.213)

Example 714 � Principal Mass Moments are Coordinate Invariants The roots of
the inertia characteristic equation are the principal mass moments and are all real but
not necessarily different. The principal mass moments are extreme. This means that the
principal mass moments determine the smallest and the largest values of Iii for a rigid
body in the considered body frame B. Any translation of B changes the principal mass
moments and the principal directions. The principal values of Iii do not depend on the
orientation of B. So, the solutions of the characteristic equation are not dependent on
the orientation of B. However, the principal directions are functions of the orientation
of B. In other words, if I1, I2, and I3 are the principal mass moments for B1I , the
principal mass moments for B2I are also I1, I2, and I3 when

B2I = B2RB1
B1I B2RT

B1
(11.214)

We conclude that I1, I2, and I3 are orientation invariants of the matrix [I ] and therefore
any quantity that depends on I1, I2, and I3 is also orientation invariant. The matrix
[I ] has only three independent invariants and every other invariant can be expressed
in terms of I1, I2, and I3.

Since I1, I2, and I3 are the solutions of the characteristic equation of [I ] given in
(11.204), we may write the determinant (11.171) in the form

(λ − I1) (λ − I2) (λ − I3) = 0 (11.215)

The expanded form of this equation is

λ3 − (I1 + I2 + I3) λ2 + (I1I2 + I2I3 + I3I1) a2λ − I1I2I3 = 0 (11.216)

By comparing (11.216) and (11.204), we conclude that

a1 = Ixx + Iyy + Izz = I1 + I2 + I3 (11.217)

a2 = IxxIyy + IyyIzz + IzzIxx − I 2
xy − I 2

yz − I 2
zx

= I1I2 + I2I3 + I3I1 (11.218)

a3 = IxxIyyIzz + 2IxyIyzIzx − (
IxxI

2
yz + IyyI

2
zx + IzzI

2
xy

)
= I1I2I3 (11.219)
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Being able to express the coefficients a1, a2, and a3 as functions of I1, I2, and I3 deter-
mines that the coefficients of the characteristic equation are also orientation invariant.

Example 715 � Principal Frame at Two Points of a Rigid Body Figure 11.15
illustrates a cube with side a along with two coordinate frames G and B at two
different corners with the following mass moment matrices:

GI = ma2

 0.66667 −0.25 −0.25
−0.25 0.66667 −0.25
−0.25 −0.25 0.66667

 (11.220)

BI = GRB

(
GI + m Gr̃B

Gr̃T
B

)
GRT

B

= ma2

 2.957 0.58926 −1.5266
0.58926 3.5549 0.93737

−1.5266 0.93737 1.4882

 (11.221)

The coordinate frame B is set at the corner (a, a, a) such that the y-axis is along the
diagonal of the cube and the x-axis is parallel to the (X, Y )-plane, and therefore,

GRB =
 0.70711 0.57735 −0.40825

−0.70711 0.57735 −0.40825
0 0.57735 0.8165

 (11.222)

The principal mass moments and axes of GI are

GI1 = 0.916 67ma2 Gu1 =
 0

0.70711
−0.70711

 (11.223)

Y

X

Z

x

y

z B

G

a a

a

Figure 11.15 Mass moment of a cube at two corner frames.
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GI2 = 0.916 67ma2 Gu2 =
 0.81650

−0.40825
−0.40825

 (11.224)

GI3 = 0.166 67ma2 Gu3 =
 0.57735

0.57735
0.57735

 (11.225)

The principal mass moments and axes of BI are

BI1 = 3.916 7ma2 Bu1 =
 0.20564

0.94945
0.2372

 (11.226)

BI2 = 3.916 7ma2 Bu2 =
 0.83773

−0.04.549
−0.54418

 (11.227)

BI3 = 0.166 72ma2 Bu3 =
 0.50588

−0.31062
0.80474

 (11.228)

KEY SYMBOLS

a side length of a cube
a, b, c coordinates with respect to C

a1, a2, a3 principal invariants, coefficients of characteristic equation
B body coordinate frame, local coordinate frame
c cosine
C mass center
d distance between two points
d translation vector
d̃ skew-symmetric matrix of the vector d
fC configuration DOF
G global coordinate frame, fixed coordinate frame
h height
I identity matrix
I = [I ] mass moment matrix
I1, I2, I3 principal mass moments
Iij element of row i and column j of [I ]
Io mass moment about the origin
ı̂, ̂ , k̂ local coordinate axes unit vectors
Î , Ĵ , K̂ global coordinate axes unit vectors
k radius of gyration
K kinetic energy
L moment of momentum
l length, slant length of a cone



1066 Rigid Body and Mass Moment

m mass, number of particles exceeding 3
n number of particles in a rigid body
O common origin of B and G

P body point, fixed point in B

r position vector
ri elements of r
rij distance between point Pi and Pj

r̃ skew symmetric matrix of the vector r
R rotation transformation matrix
s sin
S set
û unit vector
u normalized eigenvector
v velocity vector
V volume
w eigenvector
W normalized eigenvector matrix
x, y, z local coordinate axes
X,Y,Z global coordinate axes

Greek
α, β, γ direction cosines
δij Kronecker delta
λ eigenvalue, characteristic value
ρ density
ω,ω angular velocity

Symbol
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
DOF degree of freedom, degrees of freedom
‖ parallel
⊥ perpendicular

EXERCISES
1. Mass Center of a Hemisphere

(a) Determine the position of the mass center of the uniform solid hemisphere in
Figure 11.16.

(b) Using the result of part (a), show that the mass center of a complete uniform sphere
with geometric center at the origin of G is at the origin.

2. Mass Moment of a Hemisphere

(a) Determine the mass moment matrix GI of the uniform solid hemisphere in Figure 11.16.

(b) Attach a body coordinate frame B parallel to G at the mass center C of the uniform solid
hemisphere in Figure 11.16 and determine the mass moment matrix BI of the hemisphere.

(c) Determine the principal mass moments and frames of the hemisphere in B and G.

(d) Using the result of (a), determine the mass moment matrix of a complete uniform
sphere with geometric center at the origin of G.

(e) Determine the mass moment matrix of a uniform sphere on a table in a coordinate
frame at the contact point.
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R

X Y

Z

G

Figure 11.16 A solid hemisphere.

Y

X

Z

x

y

z B

G

a
a

a

m

Figure 11.17 A displaced and rotated frame.

3. � A Displaced and Rotated Frame Figure 11.17 illustrates the same cube and frames
G and B as in Example 705.

(a) Determine the principal mass moment matrices of the cube in both frames G and B.

(b) Determine the mass moment BI by transforming GI .

(c) Determine the mass moment GI by transforming BI .

(d) Determine the principal coordinate frames of the cube in both frames G and B.

4. Mass Center 1. Determine the position of the mass center of the shaded area in
Figures 11.18 (a) and (b).

5. Mass Center 2. Determine the position of the mass center of the shaded area in
Figures 11.19 (a) and (b).

6. Circular Cylinder with an Oblique Plane Face. Figure 11.20 illustrates a right-circular
cylinder with an oblique plane face. Assume h1 is the greatest height of a side of
the cylinder, h2 is the shortest height of a side of the cylinder, and R is the radius of the
cylinder. Then, the area of the curved surface AS , the total area A, and the volume V of
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the cylinder are
AS = πR (h1 + h2)

A = πR

h1 + h2 + R +
√

R2 + (h1 + h2)
2

2


V = 1

2πR2 (h1 + h2)

x

y B

R
R

x

y B

R
R

(a) (b)

Figure 11.18 A portion of a half circle cut by similar circles.

x

y B

(a) (b)

R
R

R

x

y B

R
R

R

Figure 11.19 Intersection of a triangle and a circle.

x

h2

y

z

h1

o

C

B
P

Figure 11.20 A circular cylinder with an oblique plane face.
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(a) Show that the coordinates of the mass center C are

xC = 0 yC = 0

zC = 1
4 (h1 + h2) + 1

16

(h1 − h2)
2

(h1 + h2)

(b) Determine the mass moment matrix in B.

(c) Determine the principal mass moments of BI and the principal coordinate frame at o.

(d) Translate BI to a parallel coordinate frame at C.

(e) Determine the principal mass moments of CI and the principal coordinate frame at C.

(f) Determine the transformation between the principal coordinate frames at o and C.

(g) Translate BI to a parallel coordinate frame at P .

(h) Determine the principal mass moments of PI and the principal coordinate frame at P .

(i) Determine the transformation between the principal coordinate frames at C and P .

7. � Cylindrical Wedge Figure 11.21 illustrates a cylindrical wedge. Assume R is the
radius of the cylinder, h is the height of the wedge, 2a is the base chord of the wedge,
b is the greatest perpendicular distance from the base chord to the wall of the cylinder
measured perpendicular to the axis of the cylinder, and α is the angle subtended at the
center o of the normal cross section by the base chord. Then, the area of the curved surface
AS and the volume V of the cylindrical wedge are

AS = 2Rh

b

(
(b − R)

α

2
+ a

)
V = h

3b

(
a
(
3R2 − a2) + 3R2 (b − R)

α

2

)
(a) Determine the coordinates of the mass center C.

(b) Determine the mass moment matrix in B.

(c) Determine the principal mass moments of BI and the principal coordinate frame at o.

(d) Translate BI to a parallel coordinate frame at C.

(e) Determine the principal mass moments of CI and the principal coordinate frame at C.

(f) Determine the transformation between the principal coordinate frames at o and C.

x

h

y

z

C B
a

R

b

α
o

Figure 11.21 A cylindrical wedge.
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x

h

y

z

B

a

b

o

Cs

Figure 11.22 A frustrum of a right-circular cone.

8. Frustrum of a Right-Circular Cone Figure 11.22 illustrates a frustrum of a right-circular
cone. Assume a and b are radii of the base and top circles, h is the height of the cone,
and s is the side length of the cone.

s =
√

h2 + (a − b)2

Given the area of the curved surface AS , total area A, and volume V of the cylindrical
wedge are

AS = πs (a + b)

A = πs (a + b) + π
(
a2 + b2)

V = 1
3 πh

(
a2 + ab + b2

)
(a) Show that the coordinates of the mass center C are

xC = 0 yC = 0

zC = 1

4
h

a2 + 2ab + 3b2

a2 + ab + b2

(b) Determine the mass moment matrix in B.

(c) Determine the principal mass moments of BI .

(d) Translate BI to a parallel coordinate frame at C.

(e) Determine the principal mass moments of CI .

(f) Extend the above results for a complete cone.

(g) Determine the principal mass moments for a parallel coordinate frame at the apex of
the complete cone.
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9. Mass Moment of a Cubic Rigid Body Consider a cubic rigid body B with a coordinate
frame B(Oxyz) at the geometric center of the cube a × a × a. The body is rotating in
a global coordinate frame G(OXYZ) with angular velocity GωB . Determine the the mass
moment matrix of B if the density ρ of the cube is:

(a) ρ = m

V
= m

a × a × a
= const

(b) ρ = cr r =
√

x2 + y2 + z2

(c) ρ = x2 |y| |z|
(d) ρ = x2 (a/2 − y)

10. Cubic Equations and Real Principal Moments The solution of a cubic equation

ax3 + bx2 + cx + d = 0

where a �= 0 can be found in a systematic way. Transform the equation to a new form with
discriminant 4p3 + q2,

y3 + 3py + q = 0

using the transformation x = y − b/3a, where

p = 3ac − b2

9a2
q = 2b3 − 9abc + 27a2d

27a3
.

The solutions are then

y1 = 3
√

α − 3
√

β

y2 = e2πi/3 3
√

α − e4πi/3 3
√

β

y3 = e4πi/3 3
√

α − e2πi/3 3
√

β

where

α = −q +
√

q2 + 4p3

2
β = −q +

√
q2 + 4p3

2

For real values of p and q, if the discriminant is positive, then one root is real and two
roots are complex conjugates. If the discriminant is zero, then there are three real roots, of
which at least two are equal. If the discriminant is negative, then there are three unequal
real roots. Apply this theory for the characteristic equation of the matrix [I ] and show that
the principal moments of inertia are real.
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Rigid-Body Dynamics

Employing Newton and Euler equations of motion (2.58) and (2.59) for a particle, we
develop the equations of motion of rigid bodies. We usually express the equations of
motion of rigid bodies in a local Cartesian coordinate frame attached to their mass
center. It is a more practical method.

12.1 RIGID-BODY ROTATIONAL CARTESIAN DYNAMICS

Consider a rigid body B with a fixed point in a global coordinate frame G, as shown in
Figure 12.1. The rotational equation of motion of the rigid body is the Euler equation

GM =
Gd

dt
GL (12.1)

BM =
Gd

dt
BL = B L̇ + B

GωB × BL

= BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.2)

where L is the angular momentum of the body,

GL = GI GωB (12.3)
BL = BI B

GωB (12.4)

and I is the mass moment matrix of the rigid body B,

BI =
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (12.5)

GI =
IXX IXY IXZ

IYX IYY IYZ

IZX IZY IZZ

 (12.6)

The expanded forms of the B-expression of the Euler equation are

Mx = Ixx ω̇x + Ixy ω̇y + Ixz ω̇z − (
Iyy − Izz

)
ωyωz

− Iyz
(
ω2

z − ω2
y

) − ωx

(
ωzIxy − ωyIxz

)
(12.7)

My = Iyx ω̇x + Iyy ω̇y + Iyz ω̇z − (Izz − Ixx ) ωzωx

− Ixz
(
ω2

x − ω2
z

) − ωy

(
ωxIyz − ωzIxy

)
(12.8)

1072
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X Y

Z

x

G

Bz

BrP dmO

df

P

y

Figure 12.1 A body point mass moving with velocity GvP and acted on by force df.

Mz = Izx ω̇x + Izy ω̇y + Izz ω̇z − (
Ixx − Iyy

)
ωxωy

− Ixy
(
ω2

y − ω2
x

) − ωz

(
ωyIxz − ωxIyz

)
(12.9)

which reduce to the following set of equations in the principal coordinate frame:

M1 = I1ω̇1 − (I2 − I3) ω2ω3 (12.10)

M2 = I2ω̇2 − (I3 − I1) ω3ω1 (12.11)

M3 = I3ω̇3 − (I1 − I2) ω1ω2 (12.12)

The principal coordinate frame in which the off-diagonal elements Iij , i �= j , are zero
is denoted by numbers 123 to indicate the first, second, and third principal axes . The
body coordinate frame is assumed to sit at the fixed point of the body.

The kinetic energy of a rotating rigid body is given as

K = 1
2

B
GωB · BL = 1

2
B
GωT

B
BI B

GωB (12.13)

= 1
2

(
Ixxω

2
x + Iyyω

2
y + Izz ω

2
z

)
− Ixyωxωy − Iyz ωyωz − Izxωzωx (12.14)

which in the principal coordinate frame reduces to

K = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(12.15)

Proof : Let mi be the mass of the ith particle of a rigid body B made of n particles and
let ri = Bri be the Cartesian position vector of mi in a central body-fixed coordinate
frame Oxyz:

ri = Bri = [
xi yi zi

]T
(12.16)
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Assume that ω = B
GωB is the angular velocity of the rigid body with respect to the

G-frame expressed in the body coordinate frame:

ω = B
GωB = [

ωx ωy ωz

]T
(12.17)

The angular momentum of mi is

BLi = ri × mi ṙi = mi [ri × (ω × r i )]

= mi [(ri · ri) ω − (ri · ω) ri]

= mir
2
i ω − mi (ri · ω) ri (12.18)

Hence, the angular momentum of the rigid body is

BL = ω

n∑
i=1

mir
2
i −

n∑
i=1

mi (ri · ω) ri (12.19)

Substitution of ri and ω gives

BL =
(
ωxı̂ + ωŷ + ωzk̂

) n∑
i=1

mi

(
x2

i + y2
i + z2

i

)
−

n∑
i=1

mi

(
xiωx + yiωy + ziωz

) ·
(
xi ı̂ + yi ̂ + zi k̂

)
(12.20)

and therefore,

BL =
n∑

i=1

mi

(
x2

i + y2
i + z2

i

)
ωxı̂ +

n∑
i=1

mi

(
x2

i + y2
i + z2

i

)
ωŷ

+
n∑

i=1

mi

(
x2

i + y2
i + z2

i

)
ωzk̂ −

n∑
i=1

mi

(
xiωx + yiωy + ziωz

)
xi ı̂

−
n∑

i=1

mi

(
xiωx + yiωy + ziωz

)
yi ̂

−
n∑

i=1

mi

(
xiωx + yiωy + ziωz

)
zi k̂ (12.21)

or

BL =
n∑

i=1

mi

[(
x2

i + y2
i + z2

i

)
ωx − (

xiωx + yiωy + ziωz

)
xi

]
ı̂

+
n∑

i=1

mi

[(
x2

i + y2
i + z2

i

)
ωy − (

xiωx + yiωy + ziωz

)
yi

]
̂

+
n∑

i=1

mi

[(
x2

i + y2
i + z2

i

)
ωz − (

xiωx + yiωy + ziωz

)
zi

]
k̂ (12.22)
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which can be rearranged as

BL = ωx

n∑
i=1

mi

(
y2

i + z2
i

)
ı̂ − ωy

n∑
i=1

mixiyi ı̂ − ωz

n∑
i=1

mixizi ı̂

+ ωy

n∑
i=1

mi

(
z2
i + x2

i

)
̂ − ωz

n∑
i=1

miyizi ̂ − ωx

n∑
i=1

miyixi

+ ωz

n∑
i=1

mi

(
x2

i + y2
i

)
k̂ − ωx

n∑
i=1

mizixi k̂ − ωy

n∑
i=1

miziyi (12.23)

By introducing the mass moment matrix [I ] with elements Iij as

Ixx =
n∑

i=1

[
mi

(
y2

i + z2
i

)]
(12.24)

Iyy =
n∑

i=1

[
mi

(
z2
i + x2

i

)]
(12.25)

Izz =
n∑

i=1

[
mi

(
x2

i + y2
i

)]
(12.26)

Ixy = Iyx = −
n∑

i=1

(mixiyi) (12.27)

Iyz = Izy = −
n∑

i=1

(miyizi) (12.28)

Izx = Ixz = −
n∑

i=1

(mizixi) (12.29)

we can rewrite the angular momentum in a concise form,

Lx = Ixxωx + Ixyωy + Ixz ωz (12.30)

Ly = Iyxωx + Iyyωy + Iyz ωz (12.31)

Lz = Izxωx + Izyωy + Izz ωz (12.32)

or in a matrix form,
BL = BI · B

GωB (12.33)Lx

Ly

Lz

 =
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

ωx

ωy

ωz

 (12.34)

In a solid rigid body that is a continuous media, the summations will be replaced by
integrations over the volume of the body. So the elements of [I ] that are only functions
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of the mass distribution of the rigid body will be defined by

Iij =
∫

B

(
r2δij − xixj

)
dm i, j = 1, 2, 3 (12.35)

where δij is Kronecker’s delta (1.125).
The B-expression of the Euler equation of motion for a rigid body is

BM =
Gd

dt
BL (12.36)

where BM is the B-expression of the resultant external moments applied on the rigid
body. Because BL is a B-vector, its time derivative in the global coordinate frame is

Gd BL
dt

= B L̇ + B
GωB × BL (12.37)

and therefore the vectorial expression of the Euler equation is

BM = B L̇ + B
GωB × BL = BI B

Gω̇B + B
GωB × (

BI B
GωB

)
(12.38)

Expansion of this equation provides the most general form of the equation of motion
in a Cartesian body frame:

BM = (
Ixx ω̇x + Ixy ω̇y + Ixz ω̇z

)
ı̂

+ (
Iyx ω̇x + Iyy ω̇y + Iyz ω̇z

)
̂

+ (
Izx ω̇x + Izy ω̇y + Izz ω̇z

)
k̂

+ ωy

(
Ixz ωx + Iyz ωy + Izz ωz

)
ı̂

− ωz

(
Ixyωx + Iyyωy + Iyz ωz

)
ı̂

+ ωz

(
Ixxωx + Ixyωy + Ixz ωz

)
̂

− ωx

(
Ixz ωx + Iyz ωy + Izz ωz

)
̂

+ ωx

(
Ixyωx + Iyyωy + Iyz ωz

)
k̂

− ωy

(
Ixxωx + Ixyωy + Ixz ωz

)
k̂ (12.39)

We may separate the components of the Euler equation to get the scalar form of the
general Euler equations of motion for a rigid body in a body frame:

Mx = Ixx ω̇x + Ixy ω̇y + Ixz ω̇z − (
Iyy − Izz

)
ωyωz

− Iyz
(
ω2

z − ω2
y

) − ωx

(
ωzIxy − ωyIxz

)
(12.40)

My = Iyx ω̇x + Iyy ω̇y + Iyz ω̇z − (Izz − Ixx ) ωzωx

− Ixz
(
ω2

x − ω2
z

) − ωy

(
ωxIyz − ωzIxy

)
(12.41)

Mz = Izx ω̇x + Izy ω̇y + Izz ω̇z − (
Ixx − Iyy

)
ωxωy

− Ixy
(
ω2

y − ω2
x

) − ωz

(
ωyIxz − ωxIyz

)
(12.42)
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Assume that we can rotate the body frame about its origin to find an orientation that
makes Iij = 0 for i �= j . In such a coordinate frame, which is called a principal frame,
the Euler equations simplify to

M1 = I1ω̇1 − (I2 − I3) ω2ω3 (12.43)

M2 = I2ω̇2 − (I3 − I1) ω3ω1 (12.44)

M3 = I3ω̇3 − (I1 − I2) ω1ω2 (12.45)

The kinetic energy of a rigid body may be found by the integral of the kinetic energy
of a mass element dm over the whole body:

K = 1

2

∫
B

v2dm = 1

2

∫
B

(ω × r) · (ω × r) dm

= ω2
x

2

∫
B

(
y2 + z2) dm + ω2

y

2

∫
B

(
z2 + x2) dm + ω2

z

2

∫
B

(
x2 + y2) dm

− ωxωy

∫
B

xy dm − ωyωz

∫
B

yz dm − ωzωx

∫
B

zx dm

= 1

2

(
Ixxω

2
x + Iyyω

2
y + Izz ω

2
z

)
− Ixyωxωy − Iyz ωyωz − Izxωzωx (12.46)

The kinetic energy can be rearranged to a matrix multiplication form:

K = 1
2

B
GωT

B
BI B

GωB = 1
2

B
GωB · BL (12.47)

When the body frame is principal, the kinetic energy will simplify to

K = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(12.48)

Euler equation (12.1), or its B-expression (12.2), is the law of the rotational motion
of a rigid body. It is an independent law and cannot be derived from Newton’s second
law. Similar to the Newton equation of motion, the Euler equation of motion is a
simplified model of rotational motions. The limits of applicability of the Euler equation
are the same as the Newton equation, expressed in Example 106. �

Example 716 Why Body Coordinate Frame? Let us derive the global expressions of
the Euler equation,

GM =
Gd GL

dt
= GL̇ (12.49)

GL = GI GωB (12.50)

by collecting the angular momentum of individual particles of a rigid body. Let mi be
the mass of the ith particle of a rigid body B which is made of n particles and let Gri

be the Cartesian position vector of mi in a global coordinate frame OXYZ :

Gri = [
X Y Z

]T
(12.51)



1078 Rigid-Body Dynamics

Assume that GωB is the angular velocity of the rigid body with respect to the ground:

GωB = [
ωX ωY ωZ

]T
(12.52)

Gri = GRB
Bri (12.53)

The angular momentum of mi in G is

GLi = Gri × mi
Gṙi = mi

[
Gri × (

GωB × Gri

)]
= mi

[(
Gri · Gri

)
GωB − (

Gri · GωB

)
Gri

]
= mir

2
i GωB − mi

(
Gri · GωB

)
Gri (12.54)

Therefore, the angular momentum of the rigid body is

GL = GωB

n∑
i=1

mir
2
i −

n∑
i=1

mi

(
Gri · GωB

)
Gri (12.55)

Substitution of Gri and GωB gives

GL =
(
ωXı̂ + ωY ̂ + ωZk̂

) n∑
i=1

mi

(
X2

i + Y 2
i + Z2

i

)
−

n∑
i=1

mi (XiωX + YiωY + ZiωZ) ·
(
Xiı̂ + Yî + Zik̂

)
(12.56)

and therefore,

GL = ωX

n∑
i=1

mi

(
Y 2

i + Z2
i

)
ı̂

− ωY

n∑
i=1

miXiYi ı̂ − ωZ

n∑
i=1

miXiZi ı̂

+ ωY

n∑
i=1

mi

(
Z2

i + X2
i

)
̂

− ωZ

n∑
i=1

miYiZi ̂ − ωX

n∑
i=1

miYiXi

+ ωZ

n∑
i=1

mi

(
X2

i + Y 2
i

)
k̂

− ωX

n∑
i=1

miZiXik̂ − ωY

n∑
i=1

miZiYi (12.57)

By introducing the mass moment matrix GI with elements GIij as

GIij = ∫
B

(
r2δij − XiXj

)
dm i, j = 1, 2, 3 (12.58)

X1 ≡ X X2 ≡ Y X3 ≡ Z (12.59)
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we can rewrite the angular momentum in a concise form:

GL = GIGωB (12.60)LX

LY

LZ

 =
IXX IXY IXZ

IYX IYY IYZ

IZX IZY IZZ

ωX

ωY

ωZ

 (12.61)

The elements of GI are related to the elements of BI by direction cosines rij :

GI = GRB
BI GRT

B (12.62)

GIij =
3∑

k=1

3∑
l=1

rki rlj
BIkl (12.63)

When the body B is turning in G, the direction cosines rij and hence the rotation matrix
GRB are variable. Therefore, in general, GI is a function of orientation of B in G:

GI = GI (ϕ, θ, ψ) (12.64)

So, the global expression of the Euler equation becomes

GM = G d

dt
GL = Gİ GωB + GI Gω̇B (12.65)

Having a time-varying GI makes the equations of motion very complicated and gener-
ally unsolvable. However, the body expression of the Euler equation provides a great
advantage by having a constant BI .

Example 717 � Time Derivative of a Variable Mass Moment Matrix The G-
derivative of a global mass moment matrix GI is

Gİ = Gω̃B
GI − GI Gω̃B (12.66)

where
Gİ = G d

dt

(
GRB

BI GRT
B

)
= GṘB

BI GRT
B + GRB

BI GṘT
B

= GṘB

(
GRT

B
GI GRB

)
GRT

B + GRB

(
GRT

B
GI GRB

)
GṘT

B

= (
GṘB

GRT
B

)
GI

(
GRB

GRT
B

) + (
GRB

GRT
B

)
GI

(
GRB

GṘT
B

)
= Gω̃B

GI + GI Gω̃T
B = Gω̃B

GI − GI Gω̃B (12.67)

Therefore, we can write the G-expression of the Euler equation as

GM = G d

dt
GL = G d

dt

(
GIGωB

) = Gİ GωB + GI Gω̇B

= (
Gω̃B

GI
)

GωB − (
GI Gω̃B

)
GωB + GI Gω̇B (12.68)
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Example 718 Solution of Euler Equations Euler equations (12.10)–(12.12) can be
integrated in closed form only in a few special cases. It is basically because the right-
hand side of the equations are nonlinear and coupled. The general solution of the
equations has not developed yet.

We may distinguish two types of problems:

1. The components of the external moment are zero:
BM = 0 (12.69)

This type of problem is called torque-free motion. Having a zero moment, we
solve Euler equations for angular accelerations and write them as

ω̇1 = I2 − I3

I1
ω2ω3 (12.70)

ω̇2 = I3 − I1

I2
ω3ω1 (12.71)

ω̇3 = I1 − I2

I3
ω1ω2 (12.72)

Integrability of torque-free equations depends on the relations of the principal
mass moments I1, I2, I3. Most classical integrable problems of rigid bodies are
of this type.

2. The moment components BM1, BM2, and BM3 are known functions of angular
velocities ω1, ω2, ω3, orientation parameters ϕ, θ,ψ , and t :

BM1 = M1 (ω1, ω2, ω3, ϕ, θ, ψ, t) (12.73)
BM2 = M2 (ω1, ω2, ω3, ϕ, θ, ψ, t) (12.74)
BM3 = M3 (ω1, ω2, ω3, ϕ, θ, ψ, t) (12.75)

Although type 2 includes type 1, the application and method of their solutions
are different. Being a function of angular velocity

BM =B M
(
B
GωB

)
(12.76)

means that the source of the moment BM is rotating together with the body. In
such cases the rigid body is said to be self-excited .

The solution again begins by transforming Euler equations to a set of three
first-order ordinary equations for ω̇1, ω̇2, ω̇3:

ω̇1 = I2 − I3

I1
ω2ω3 − M1

I1
(12.77)

ω̇2 = I3 − I1

I2
ω3ω1 − M2

I2
(12.78)

ω̇3 = I1 − I2

I3
ω1ω2 − M3

I3
(12.79)

Depending on the mass moments I1, I2, I3 and the simplicity of BM, we ana-
lytically or numerically solve these equations for ω1 = ω1 (t), ω2 = ω2 (t),
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ω3 = ω3 (t). Then the problem reduces to a new set of coupled first-order
ordinary differential equations to determine the orientation of B in G.

Depending on the generalized coordinates, the orientation of B in G may be
expressed by following methods:

1. Rotation about the Cartesian body frame as given in Equations (8.76)–(8.78):
B
GωB = ω1 ı̂ + ω2 ̂ + ω3 k̂ = α̇ ı̂ + β̇ ̂ + γ̇ k̂ (12.80)

α̇ = ω1 (α, β, γ, t) (12.81)

β̇ = ω1 (α, β, γ, t) (12.82)

γ̇ = ω1 (α, β, γ, t) (12.83)

2. A set of Euler angles as given in Appendix B. Equations (8.99) and (4.188) are
the most common sets:

B
GωB = ω1 ı̂ + ω2̂ + ω3k̂ = ϕ̇êϕ + θ̇ êθ + ψ̇ êψ

=
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇

 (12.84)

 ϕ̇

θ̇

ψ̇

 = 1

sin θ

 sin ψ cos ψ 0
sin θ cos ψ − sin θ sin ψ 0

− cos θ sin ψ − cos θ cos ψ 1

ωx

ωy

ωz

 (12.85)

3. Euler parameters as given in Equation (8.155):
←→̇
e = 1

2
←→e ←→

B
GωB (12.86)

ė0 = −ω1e1 − ω2e2 − ωze3 (12.87)

ė1 = ω1e0 − ω2e3 + ωze2 (12.88)

ė2 = ω2e0 + ω1e3 − ωze1 (12.89)

ė3 = ω2e1 − ω1e2 + ωze0 (12.90)

Euler parameters also cover the angle–axis and quaternion representations.

Example 719 A Rotating Arm Figure 12.2 shows a rotating arm with a body coor-
dinate frame B. The transformation matrix between B and G and the angular velocity
of the arm are given as

GRB = RZ,θ =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (12.91)

B
GωB = GRT

B
GṘB = θ̇ k̃ = θ̇

0 −1 0
1 0 0
0 0 0

 (12.92)
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Yy1

x1

X

m

B
G

 

l

C θ

Figure 12.2 A rotating arm.

Assuming a principal mass moment matrix

BI =

Ix 0 0

0 Iy 0

0 0 Iz

 (12.93)

we have

BM = B L̇ + B
GωB × BL = BI B

Gω̇B + B
GωB × (

BI B
GωB

)
(12.94)

or Mx

My

Mz

 =
 0

0
Izθ̈

 (12.95)

Using the transformation matrix GRB , we can determine GI :

GI = GRB
BI GRT

B = GRB

Ix 0 0

0 Iy 0

0 0 Iz

 GRT
B

=

Ix cos2 θ + Iy sin2 θ
(
Ix − Iy

)
cos θ sin θ 0(

Ix − Iy

)
cos θ sin θ Iy cos2 θ + Ix sin2 θ 0

0 0 Iz

 (12.96)

To determine the G-expression of the Euler equation, we should transform B
GωB and

B
Gω̃B to G:

Gω̃B = GRB
B
Gω̃B

GRT
B = θ̇ K̃ = θ̇

0 −1 0
1 0 0
0 0 0

 (12.97)

GωB = GRB
B
GωB = θ̇ K̂ =

0
0
θ̇

 (12.98)
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Therefore, the G-expression of the Euler equation of the rotating arm is

GM = G d

dt
GL = G d

dt

(
GIGωB

) = Gİ GωB + GI Gω̇B

= (
Gω̃B

GI
)

GωB + (
GI Gω̃T

B

)
GωB + GI Gω̇B

= Izθ̈ (12.99)
or MX

MV

MZ

 =
 0

0
Izθ̈

 (12.100)

When a rigid body is turning about a globally fixed principal axis, the B- and
G-expressions of the Euler equations look alike.

Example 720 Steady Rotation of a Freely Rotating Rigid Body The Newton–Euler
equations of motion for a rigid body are

GF = m Gv̇ (12.101)
BM = I B

Gω̇B + B
GωB ×B L (12.102)

Consider a situation where the resultant applied force and moment on the body are
zero:

F = 0 (12.103)

M = 0 (12.104)

Based on the Newton equation, the velocity of the mass center will be constant in the
global coordinate frame. However, the Euler equations reduce to

ω̇1 = I2 − I3

I1
ω2ω3 (12.105)

ω̇2 = I3 − I1

I22
ω3ω1 (12.106)

ω̇3 = I1 − I2

I3
ω1ω2 (12.107)

showing that the angular velocity of a force-free rigid body can also be constant if

I1 = I2 = I3 (12.108)

angular velocity ω can also be constant if two principal moments of inertia, say I1 and
I2, are zero and the third angular velocity, in this case ω3, is initially zero or if the
angular velocity vector is initially parallel to a principal axis.

Example 721 Required Torques to Turn a Disc on a Turntable Consider a uniform
disc with mass m, radius R, and mass moment [I ] that is mounted on a horizontal shaft
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as shown in Figure 12.3. The shaft is mounted on a table and is turning with constant
angular velocity θ̇2 = ω with respect to the table. If the table is also turning with
angular velocity θ̇1 = �, then we are able to calculate how much force is supported
by the bearings of the shaft.

x0

z0

θ2

θ1

z2x1 B0

B1

B2

l

z1

y0

x2

y1

R
y2

C

Figure 12.3 A turning disc on a turning table.

The mass center C of the disc is motionless. We attach a global coordinate frame
B0 at C. We also attach a frame B1 to the table at C and a principal coordinate frame
B2 to the disc. The transformation matrices between the coordinate frames are

0R1 = RZ,θ1 =
cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

 (12.109)

1R2 = RX,θ2 RY,90

=
1 0 0

0 cos θ2 − sin θ2

0 sin θ2 cos θ2

 cos( 1
2π) 0 sin( 1

2π)

0 1 0
− sin( 1

2π) 0 cos( 1
2π)


=

 0 0 1
sin θ2 cos θ2 0

− cos θ2 sin θ2 0

 (12.110)

0R2 = 0R1
1R2 (12.111)

=
− sin θ1 sin θ2 − cos θ2 sin θ1 cos θ1

cos θ1 sin θ2 cos θ1 cos θ2 sin θ1

− cos θ2 sin θ2 0
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The relative angular velocities of B0, B1, and B2 are

0ω1 =
0

0
�

 1ω2 =
ω

0
0

 (12.112)

and the angular velocities of the disc in the global frame are

0ω2 =
ω cos θ1

ω sin θ1

�

 2
0ω2 =

ω1

ω2

ω3

 =
−� cos θ2

� sin θ2

ω

 (12.113)

where
0ω̃2 = 0ω̃1 + 0

1ω̃2 = 0ω̃1 + 0R1 1ω̃2
0RT

1

=
0 −� 0

� 0 0
0 0 0

 + 0R1

0 0 0
0 0 −ω

0 ω 0

 0RT
1

=
 0 −� ω sin θ1

� 0 −ω cos θ1

−ω sin θ1 ω cos θ1 0

 (12.114)

2
0ω̃2 = 0RT

2 0ω̃2
0R2

=
 0 −ω � sin θ2

ω 0 � cos θ2

−� sin θ2 −� cos θ2 0

 (12.115)

Taking a time derivative of 2
0ω2, we have

2
0ω̇2 =

ω̇1

ω̇2

ω̇3

 =
�ω sin θ2

�ω cos θ2

0

 (12.116)

Substituting (12.113) and (12.116) into (12.10)–(12.12) provides Euler equations of
motion:

2M1 = I1�ω sin θ2 − (I2 − I3) �ω sin θ2 (12.117)
2M2 = I2�ω cos θ2 + (I3 − I1) �ω cos θ2 (12.118)
2M3 = (I1 − I2) �2 sin θ2 cos θ2 (12.119)

For the uniform disc, we have I1 = I2, and therefore, these equations simplify to

2M1 = I3�ω sin θ2 (12.120)
2M2 = I3�ω cos θ2 (12.121)
2M3 = 0 (12.122)

It shows that the third component of the required moment 2M in B2 is zero and the
other two components are periodic functions of θ2.
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To determine the forces in bearings, we should express M in B1 because the
bearings are part of the table:

1M = 1R2
2M

=
 0 0 1

sin θ2 cos θ2 0
− cos θ2 sin θ2 0

I3�ω sin θ2

I3�ω cos θ2

0

 =
 0

�ωI3

0

 (12.123)

There is only a y-component for the applied moment of the table to the shaft. Since
1My1 has a constant value, the couple forces F that generate 1My1 are also constant,
as shown in Figure 12.4:

F = �ωI3

2l
(12.124)

The moment in the global frame is periodic function of θ1:

0M = 0R2
2M =

−�ωI3 sin θ1

�ωI3 cos θ1

0

 (12.125)

Let us also examine the required moment to turn the table. The disc makes the mass
moment of the table asymmetric:

0I1 �= 0I2 �= 0I3 (12.126)

Substituting the constant angular velocity 0ω1 from (12.112) into Euler equations
(12.10)–(12.12), we have

0M1 = 0 0M2 = 0 0M3 = 0 (12.127)

So, as long as � is constant, no moment is needed to keep the table turning.

z0

θ2

θ1

z2x1

B1

B2

l

z1

x2

y1

R y2

F

F

Figure 12.4 Bearing forces F on the shaft.
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Example 722 A Turning Disc about a Diagonal on a Turntable Let us change
the direction of the disc of Figure 12.3 to be mounted as shown in Figure 12.5. The
uniform disc has a mass m, radius R, and mass moment [I ]. The disc is turning about
its diagonal with constant angular velocity θ̇2 = ω in B1, which is a fixed coordinate
frame on the table at the mass center of disc C. The table is also turning with angular
velocity θ̇1 = � in the global frame B0. The mass center of the disc is motionless. We
attach a principal coordinate frame B2 to the disc and express Euler equations in B2.

The transformation matrices between the coordinate frames are given in Equations
(12.109)–(12.111). Employing the angular velocity and acceleration of (12.113) and
(12.116), we get the same Euler equations of motion as (12.117)–(12.119):

M1 = I1�ω sin θ2 − (I2 − I3) �ω sin θ2 (12.128)

M2 = I2�ω cos θ2 + (I3 − I1) �ω cos θ2 (12.129)

M3 = (I1 − I2) �2 sin θ2 cos θ2 (12.130)

For the diagonal configuration of the disc, we have I3 = I2, and therefore, these
equations simplify to

M1 = I1�ω sin θ2 (12.131)

M2 = (2I2 − I1) �ω cos θ2 (12.132)

M3 = (I1 − I2) �2 sin θ2 cos θ2 (12.133)

which shows that all component of the required moment 2M = [M1,M2, M3]T in B2

are periodic functions of θ2. Let us transform 2M to B1 to see what is the applied
moment of the table to the shaft. The moment that the table applies to the shaft

x0

z0

θ2

θ1

z2x1 B0

B1

B2

l

z1

y0

x2

y1

R

y2

C

Figure 12.5 A turning disc about its diagonal on a turning table.
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through the bearings is given as

1M = 1R2
2M

=

 0 0 1

sin θ2 cos θ2 0

− cos θ2 sin θ2 0


 I1�ω sin θ2

(2I2 − I1) �ω cos θ2

(I1 − I2) �2 sin θ2 cos θ2



=
 1

2 (I1 − I2) �2 sin 2θ2

�ω (I2 − (I1 − I2) cos 2θ2)

− (I1 − I2) �ω sin 2θ2

 (12.134)

The second and third components of 1M are provided by bearings and are supporting
reaction moments. However, having a nonzero first component of 1M in (12.134)
compared to (12.123) is interesting. The torque 1Mx is the required torque to keep the
shaft turning when the table is rotating with angular velocity �. So, this shaft needs
a motor to apply 1Mx to be turned about the x1-axis.

Example 723 Required Torque to Turn a Cylinder on a Turntable Let us consider a
uniform cylinder that is turning by a shaft on a turning table, as shown in Figure 12.6.

x0

z0

θ2

θ1

z2x1 B0

B1

B2

l

z1

y0

x2

y1

y2

Figure 12.6 A uniform cylinder is turning by a shaft on a turning table.

The cylinder is turning with constant angular velocity θ̇2 = ω in B1, which is a
fixed coordinate frame on the table at the mass center of the cylinder. The table is
turning with angular velocity θ̇1 = � in the global frame B0. The mass center of the
cylinder is motionless. If B2 is the principal coordinate frame of the cylinder, then the
transformation matrices between the coordinate frames are the same as in Equations
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(12.109)–(12.111). Employing the angular velocity and acceleration of (12.113) and
(12.116), we get the same Euler equations of motion as (12.117)–(12.119):

M1 = I1�ω sin θ2 − (I2 − I3) �ω sin θ2 (12.135)

M2 = I2�ω cos θ2 + (I3 − I1) �ω cos θ2 (12.136)

M3 = (I1 − I2) �2 sin θ2 cos θ2 (12.137)

For the cylinder configuration shown in Figure 12.6, we have I3 = I2, and therefore,
the equations simplify to

M1 = I1�ω sin θ2 (12.138)

M2 = (2I2 − I1) �ω cos θ2 (12.139)

M3 = (I1 − I2) �2 sin θ2 cos θ2 (12.140)

These equations are exactly the same as (12.128)–(12.130), which confirms that the
dynamic characteristics of rigid bodies in a principal frame are determined by the
eigenvalues and eigenvectors of [I ], not by the actual geometric shape of the body.

Transforming 2M to B1, we have

1M = 1R2
2M

=


1
2 (I1 − I2)�2 sin 2θ2

�ω (I2 − (I1 − I2) cos 2θ2)

− (I1 − I2) �ω sin 2θ2

 (12.141)

If � is very small, then 1Mx is almost zero. However, the required torque to turn the
shaft increases rapidly with increasing �.

Example 724 Angular Momentum of a Two-Link Manipulator A two-link manipu-
lator is shown in Figure 12.7. Link A rotates with angular velocity ϕ̇ about the z-axis
of its local coordinate frame. Link B is attached to link A and has angular velocity
ψ̇ with respect to A about the xA-axis. Let us attach coordinate frames A and B to
links A and B such as shown in the figure. We assume that A and G were coincident
at ϕ = 0; therefore, the transformation matrix between A and G is

GRA =
cos ϕ(t) − sin ϕ(t) 0

sin ϕ(t) cos ϕ(t) 0
0 0 1

 (12.142)

The frame B is related to A by Euler angles ϕ = 90 deg, θ = 90 deg, and ψ = ψ ;
hence,

ARB =
cπcψ − cπsπsψ −cπsψ − cπcψsπ sπsπ

cψsπ + cπcπsψ −sπsψ + cπcπcψ −cπsπ

sπsψ sπcψ cπ


− cos ψ sin ψ 0

sin ψ cos ψ 0
0 0 −1

 (12.143)
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xA

zA

yA

r

AG

B

Z

X

ψ

Y

zB

xB

ϕ.

.

Figure 12.7 A two-link manipulator.

and therefore,

GRB = GRA
ARB

=
− cos ϕ cos ψ − sin ϕ sin ψ cos ϕ sin ψ − cos ψ sin ϕ 0

cos ϕ sin ψ − cos ψ sin ϕ cos ϕ cos ψ + sin ϕ sin ψ 0
0 0 −1

 (12.144)

The angular velocities of A in G and B in A are

GωA = ϕ̇K̂ (12.145)

AωB = ψ̇ ı̂A (12.146)

The coordinate frames A and B are assumed to be principal, so the mass moment
matrices for the arms A and B can be defined as

AIA =
IA1 0 0

0 IA2 0
0 0 IA3

 (12.147)

BIB =
IB1 0 0

0 IB2 0
0 0 IB3

 (12.148)

To analyze multibodies, we should transform all of the kinematic characteristics of the
bodies to a common coordinate frame. Most times the global frame is the simplest and
the best choice. To determine the total angular momentum of the system, we transform
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the mass moment matrices to the global frame:
GIA = GRA

AIA
GRT

A (12.149)

=

IA1 cos2 ϕ + IA2 sin2 ϕ
(
IA1 − IA2

)
cos ϕ sin ϕ 0(

IA1 − IA2

)
cos ϕ sin ϕ IA2 cos2 ϕ + IA1 sin2 ϕ 0

0 0 IA3


GIB = GRB

BIB
GRT

B (12.150)

=


IB1 cos2 β − IB2 sin2 β −1

2

(
IB1 − IB2

)
sin 2β 0

−1

2

(
IB1 − IB2

)
sin 2β IB2 cos2 β − IB1 sin2 β 0

0 0 IB3


β = ψ − ϕ (12.151)

The total angular momentum of the manipulator is
GL = GLA + GLB (12.152)

where

GLA = GIA GωA =
 0

0
ϕ̇IA3

 (12.153)

GLB = GIB GωB = GIB

(
G
AωB + GωA

)
(12.154)

= GIB

(
GRA AωB + GωA

) = GIB

ψ̇ cos ϕ

ψ̇ sin ϕ

ϕ̇



=


ψ̇

(
IB1 cos2 β − IB2 sin2 β

)
cos ϕ − 1

2 ψ̇ (sin 2β sin ϕ)
(
IB1 − IB2

)
ψ̇

(
IB2 cos2 β − IB1 sin2 β

)
sin ϕ − 1

2 ψ̇ (sin 2β cos ϕ)
(
IB1 − IB2

)
ϕ̇IB3



Example 725 Kinetic Energy of a Planar Rigid Vehicle Consider the planar model
of a rigid vehicle as examined in Example 565. The kinetic energy of the vehicle in a
planar motion is

K = 1

2
GvT

B m GvB + 1

2
GωT

B
GI GωB

= 1

2

vX

vY

0

T

m

vX

vY

0

 + 1

2

 0
0

ωZ

T

GI

 0
0

ωZ


= 1

2
mv2

X + 1

2
mv2

Y + 1

2
I3ω

2
Z

= 1

2
m

(
Ẋ2 + Ẏ 2) + 1

2
Iz ψ̇2 (12.155)
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where
GI = GRB

BI GRT
B

=

cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1


I1 0 0

0 I2 0

0 0 I3


cos ψ − sin ψ 0

sin ψ cos ψ 0

0 0 1


T

=

I1 cos2 ψ + I2 sin2 ψ (I1 − I2) sin ψ cos ψ 0

(I1 − I2) sin ψ cos ψ I2 cos2 ψ + I1 sin2 ψ 0

0 0 I3

 (12.156)

and

GvB =
vX

vY

0

 =
Ẋ

Ẏ

0

 (12.157)

GωB =
 0

0
ωZ

 =
0

0
r

 =
0

0
ψ̇

 (12.158)

Example 726 � Energy and Momentum Ellipsoids Consider a freely rotating rigid
body with an attached principal coordinate frame. Having M = 0 provides a motion
under a constant angular momentum and a constant kinetic energy:

L = I ω = const (12.159)

K = 1
2ωT I ω = const (12.160)

Because the length of the angular momentum L is constant, the equation

L2 = L · L = L2
x + L2

y + L2
z

= I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 (12.161)

introduces an ellipsoid in the (ω1, ω2, ω3) coordinate frame, called the momentum ellip-
soid . The tip of all possible angular velocity vectors must lie on the surface of the momen-
tum ellipsoid. The kinetic energy also defines an energy ellipsoid in the same coordinate
frame so that the tip of the angular velocity vectors must also lie on its surface:

K = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(12.162)

Therefore, the dynamics of the moment-free motion of a rigid body requires that the
corresponding angular velocity ω(t) satisfy both Equations (12.161) and (12.162) and
therefore lie on the intersection of the momentum and energy ellipsoids.

For a better visualization, let us define the ellipsoids in the (Lx, Ly, Lz) coordinate
system as

L2
x + L2

y + L2
z = L2 (12.163)
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L2
x

2I1K
+ L2

y

2I2K
+ L2

z

2I3K
= 1 (12.164)

Equation (12.163) is a sphere and Equation (12.164) defines an ellipsoid with
√

2IiK

as semiaxes. To have a meaningful motion, these two shapes must intersect. The inter-
section forms a trajectory, such as shown in Figure 12.8.

L1

L3

Energy
ellipsoid

Momentum
ellipsoid

L2

Figure 12.8 Intersection of the momentum and energy ellipsoids.

We conclude that for a given angular momentum there are maximum and minimum
limit values for possible kinetic energy. Assuming

I1 >I3 >I3 (12.165)

the limits of possible kinetic energy are

Kmin = L2

2I1
(12.166)

Kmax = L2

2I3
(12.167)

and the corresponding motions are turning about the axes I1 and I3, respectively.

Example 727 � Alternative Derivation of Euler Equation of Motion Consider a
rigid body with a fixed point as shown in Figure 12.9. A small mass dm at Grdm is
under a small force df. Let us show the moment of the small force df by dm:

Gdm = Grdm × Gdf = Grdm × Gv̇dm dm (12.168)

The angular momentum dl of dm is equal to

Gdl = Grdm × Gvdm dm (12.169)
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Figure 12.9 A small mass dm at Grdm of a rigid body with a fixed point at O is under a small
force df.

and according to (12.3), we have

dm =
Gd

dt
dl (12.170)

Grdm × df =
Gd

dt

(
Grdm × Gvdm dm

)
(12.171)

Integrating over the body gives∫
B

Grdm × df =
∫

B

Gd

dt

(
Grdm × Gvdm dm

)
=

Gd

dt

∫
B

(
Grdm × Gvdm dm

)
(12.172)

However, utilizing
Grdm = GdB + GRB

Brdm (12.173)

where GdB is the global position vector of the central body frame, simplifies the left-
hand side of the integral to∫

B

Grdm × df =
∫

B

(
GdB + GRB

Brdm
) × df

=
∫

B

GdB × df +
∫

B

G
Brdm × df

= GdB × GF + GMC (12.174)
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where MC is the resultant of the external moment about the body mass center C. The
right-hand side of Equation (12.172) is given as

Gd

dt

∫
B

(
Grdm × Gvdm dm

)
=

Gd

dt

∫
B

((
GdB + GRB

Brdm
) × Gvdm dm

)
=

Gd

dt

∫
B

(
GdB × Gvdm

)
dm +

Gd

dt

∫
B

(
G
Brdm × Gvdm

)
dm

=
Gd

dt

(
GdB ×

∫
B

Gvdmdm

)
+

Gd

dt
LC

= GḋB ×
∫

B

Gvdmdm + GdB ×
∫

B

Gv̇dmdm + d

dt
LC (12.175)

We use LC for angular momentum about the body mass center. Since the body frame
is at the center of mass, we have∫

B

Grdm dm = m GdB = m GrC (12.176)

∫
B

Gvdmdm = m GḋB = m GvC (12.177)

∫
B

Gv̇dmdm = m Gd̈B = m GaC (12.178)

and therefore,
Gd

dt

∫
B

(
Grdm × Gvdm dm

) = GdB × GF +
Gd

dt
GLC (12.179)

Substituting (12.174) and (12.179) into (12.172) provides the Euler equation of motion
in the global frame, indicating that the resultant of the externally applied moments
about C is equal to the global derivative of the angular momentum about C:

GMC =
Gd

dt
GLC (12.180)

The Euler equation in the body coordinate frame can be found by transforming (12.180)
into B:

BMC = GRT
B

GMC = GRT
B

Gd

dt
LC =

Gd

dt
GRT

B LC =
Gd

dt
BLC

= B L̇C + B
GωB × BLC (12.181)
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12.2 � RIGID-BODY ROTATIONAL EULERIAN DYNAMICS

Euler equations for the rotational dynamics of a rigid body may be expressed by using
Euler angles and frequencies:

Mϕ sin θ = ϕ̈
(
I1 sin2 ψ + I2 cos2 ψ

)
sin θ − θ̈ (I2 − I1) cos ψ sin ψ

+ (I1 − I2) ϕ̇2 cos θ cos ψ sin θ sin ψ + ϕ̇θ̇ (I1 + I2 − I3) cos θ

+ 2ψ̇ϕ̇(I1 − I2) cos ψ sin θ sin ψ + θ̇ ψ̇ [(I1 − I2) cos 2ψ − I3] (12.182)

Mθ = ϕ̈ (I1 − I2) cos ψ sin θ sin ψ + θ̈
(
I1 sin2 ψ + I2 cos2 ψ

)
− ϕ̇2(I1 sin2 ψ + I2 cos2 ψ − I3) cos θ sin θ

+ ϕ̇ψ̇ [I3 + (I1 − I2) cos 2ψ] sin θ − θ̇ ψ̇(I1 − I2) sin 2ψ (12.183)

Mψ sin θ = ϕ̈
(
I3 − I1 sin2 ψ − I2 cos2 ψ

)
cos θ sin θ + ψ̈I3 sin θ

− θ̈ (I1 − I2) cos θ sin ψ cos ψ − ϕ̇2 (I1 − I2) cos θ sin ψ cos ψ

+ θ̇2 (I1 − I2) sin θ sin ψ cos ψ − θ̇ ψ̇ (I3 + (I1 − I2) cos 2ψ) cos θ

− ϕ̇θ̇
[
I3 cos 2θ + (I1 − I2)(1 − 2 sin2 θ cos2 ψ) − 2I1 cos2 θ

]
− 2ψ̇ϕ̇ (I1 − I2) cos θ sin ψ sin θ cos ψ (12.184)

Proof : Let us recall the B-expression of the angular velocity and acceleration of B in
G as given in Equations (4.182) and (9.82) based on Euler angles and frequencies:

B
GωB =

ωx

ωy

ωz

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇


=

ϕ̇ sin θ sin ψ + θ̇ cos ψ

ϕ̇ cos ψ sin θ − θ̇ sin ψ

ψ̇ + ϕ̇ cos θ

 (12.185)

B
GαB =

Bd

dt
B
GωB (12.186)

=


(
θ̈ + ϕ̇ψ̇ sin θ

)
cos ψ + (

ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇
)

sin ψ(
ϕ̈ sin θ + θ̇ ϕ̇ cos θ − θ̇ ψ̇

)
cos ψ − (

θ̈ + ϕ̇ψ̇ sin θ
)

sin ψ

ϕ̈ cos θ + ψ̈ − θ̇ ϕ̇ sin θ


Substituting (12.185) and (12.186) in the B-expression of the principal Euler equations
(12.10)–(12.12) shows that

M1 = [
(ϕ̈ sin θ − θ̇ ψ̇ + θ̇ ϕ̇ cos θ) sin ψ + (θ̈ + ψ̇ϕ̇ sin θ) cos ψ

]
I1

+ (
ψ̇ + ϕ̇ cos θ

) (
θ̇ sin ψ − ϕ̇ cos ψ sin θ

)
(I2 − I3) (12.187)

M2 = [(ϕ̈ sin θ − θ̇ ψ̇ + θ̇ ϕ̇ cos θ) cos ψ − (θ̈ + ψ̇ϕ̇ sin θ) sin ψ]I2

+ (
ψ̇ + ϕ̇ cos θ

) (
θ̇ cos ψ + ϕ̇ sin θ sin ψ

)
(I1 − I3) (12.188)
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M3 = (
θ̇ cos ψ + ϕ̇ sin θ sin ψ

) (
θ̇ sin ψ − ϕ̇ cos ψ sin θ

)
(I1 − I2)

+ (
ϕ̈ cos θ + ψ̈ − θ̇ ϕ̇ sin θ

)
I3 (12.189)

These three coupled ordinary differential equations of ϕ̈, θ̈ , ψ̈ are Cartesian expressions
of Euler equations in a principal body coordinate frame B (O123), using Euler angles
ϕ, θ, ψ of case 9 in Appendix B. The terms M1, M2, and M3 are components of applied
moment M in the orthogonal principal body frame B (O123).

Reducing a Cartesian B-vector to its Eulerian components along ûϕ, ûθ , ûψ

of the nonorthogonal Euler frame E(Oϕθψ) is based on Equation (4.182). There-
fore, the applied moment M(M1,M2, M3) is related to its Eulerian components
M(Mϕ,Mθ, Mψ) by

BM = BRE
EM (12.190)M1

M2

M3

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

Mϕ

Mθ

Mψ


=

Mθ cos ψ + Mϕ sin θ sin ψ

Mϕ cos ψ sin θ − Mθ sin ψ

Mψ + Mϕ cos θ

 (12.191)

An inversion determines the Eulerian components based on the Cartesian components:Mϕ

Mθ

Mψ

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

−1 M1

M2

M3


= 1

sin θ

 sin ψ cos ψ 0
sin θ cos ψ − sin θ sin ψ 0

− cos θ sin ψ − cos θ cos ψ 1

M1

M2

M3

 (12.192)

The individual components of EM are

Mϕ = 1

sin θ
(M2 cos ψ + M1 sin ψ) (12.193)

Mθ = M1 cos ψ − M2 sin ψ (12.194)

Mψ = − 1

sin θ
(M2 cos θ cos ψ − M3 sin θ + M1 cos θ sin ψ) (12.195)

Let us substitute the Cartesian components of BM from (12.187)–(12.189) to find the
rotational equations of motion of a rigid body in the Eulerian frame:

Mϕ sin θ = (
ϕ̈ sin θ + 2ϕ̇θ̇ cos θ

)
I1

+
(

−[θ̈ + (
ϕ̇ cos θ + 2ψ̇

)
ϕ̇ sin θ ] cos ψ sin ψ

+ (
ϕ̈ sin θ − 2ψ̇ θ̇

)
cos2 ψ + θ̇

(
ϕ̇ cos θ + ψ̇

)) (I1 − I2)

− (
ψ̇ + ϕ̇ cos θ

)
θ̇ I3 (12.196)
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Mθ = (
θ̈ − ϕ̇2 sin θ cos θ

)
I1

+
( (

ϕ̈ sin θ − 2ψ̇ θ̇
)

cos ψ sin ψ − ψ̇ϕ̇ sin θ

−θ̈ sin2 ψ + (
2ψ̇ θ̇ + ϕ̇2 cos θ

)
sin θ cos2 ψ

)
(I1 − I2)

+ (
ψ̇ + ϕ̇ cos θ

)
ϕ̇ sin θI3 (12.197)

Mψ sin θ = −[(ϕ̈ sin θ + 2θ̇ ϕ̇ cos θ) cos θ ]I1

+

 − (
θ̈ + 2ϕ̇ψ̇ sin θ

)
cos θ cos ψ sin ψ

+ [
(ϕ̈ sin θ − 2ψ̇ θ̇ ) cos θ − 2θ̇ ϕ̇ sin2 θ

]
cos2 ψ

− (
ϕ̇2 − θ̇2

)
sin θ cos ψ sin ψ + θ̇

(
ϕ̇ + ψ̇ cos θ

)
 (I1 − I2)

− [
(ψ̈ + ϕ̈ cos θ) sin θ + ψ̇ θ̇ cos θ + ϕ̇θ̇ (2 cos2 θ − 1)

]
I3 (12.198)

These equations can also be rearranged and are presented as Equations (12.182)–
(12.184).

The Euler equations in the Euler frame are generally complicated and cannot be
easily solved analytically. �

Example 728 � Axisymmetric Rigid Body and Euler Equations When a rigid body
is axisymmetric, the Euler equations in the Euler frame are much simpler. Assume
I1 = I2 = I . Then,

Mϕ = I ϕ̈ + ϕ̇θ̇ (2I − I3) cot θ − θ̇ ψ̇I3/ sin θ (12.199)

Mθ = I θ̈ − ϕ̇2(I − I3) cos θ sin θ + ϕ̇ψ̇I3 sin θ (12.200)

Mψ = ϕ̈ (I3 − I ) cos θ + ψ̈I3 − θ̇ ψ̇I3 cot θ

− 1

sin θ
ϕ̇θ̇

(
I3 cos 2θ − 2I cos2 θ

)
(12.201)

Example 729 � General Euler Equation in Eulerian Frame The general form of
the Euler equations in the Eulerian frame can be determined by substituting BM from
(12.191), B

GωB from (12.185), and B
Gω̇B from (12.186) into the equations

Mx = Ixx ω̇x + Ixy ω̇y + Ixz ω̇z − (
Iyy − Izz

)
ωyωz

− Iyz
(
ω2

z − ω2
y

) − ωx

(
ωzIxy − ωyIxz

)
(12.202)

My = Iyx ω̇x + Iyy ω̇y + Iyz ω̇z − (Izz − Ixx ) ωzωx

− Ixz
(
ω2

x − ω2
z

) − ωy

(
ωxIyz − ωzIxy

)
(12.203)

Mz = Izx ω̇x + Izy ω̇y + Izz ω̇z − (
Ixx − Iyy

)
ωxωy

− Ixy
(
ω2

y − ω2
x

) − ωz

(
ωyIxz − ωxIyz

)
(12.204)
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Example 730 � A Common Mistake The applied moment M(M1, M2,M3) is related
to its Eulerian components M

(
Mϕ, Mθ, Mψ

)
by Equation (4.182):

BM = BRE
EM (12.205)M1

M2

M3

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

Mϕ

Mθ

Mψ


The matrix BRE is not a rotational transformation matrix and is not necessarily orthog-
onal. Therefore, we cannot find EM by using the transpose of BRE :

EM �= BRT
E

BM (12.206)

A common mistake in a few textbooks is to use BRT
E instead of BR−1

E in the determi-
nation of EM.

Example 731 � Matrix Form of Eulerian Equations We may rearrange Equations
(12.182)–(12.184) and write them in the formMϕ

Mθ

Mψ

 = [A]

 ϕ̈

θ̈

ψ̈

 + [B]

 ϕ̇

θ̇

ψ̇

 (12.207)

where

[A] =


I1 sin2 ψ + I2 cos2 ψ − (I2 − I1)

cos ψ sin ψ

sin θ
0

(I1 − I2) cos ψ sin θ sin ψ I1 sin2 ψ + I2 cos2 ψ 0(
I3 − I1 sin2 ψ − I2 cos2 ψ

)
cos θ − (I1 − I2) cot θ sin ψ cos ψ I3


(12.208)

[B] =
b11 b12 b13

b21 b22 b23

b31 b32 b33

 (12.209)

where
b11 = 1

2 (I1 − I2) ϕ̇ cos θ sin 2ψ

b21 = − 1
2 ϕ̇(I1 sin2 ψ + I2 cos2 ψ − I3) sin 2θ (12.210)

b31 = −ϕ̇ (I1 − I2) cot θ sin ψ cos ψ

b12 = ϕ̇ (I1 + I2 − I3) cot θ + ψ̇
(I1 − I2) cos 2ψ − I3

sin θ

b22 = 0

b32 = −ϕ̇
I3 cos 2θ + (I1 − I2)(1 − 2 sin2 θ cos2 ψ) − 2I1 cos2 θ

sin θ
(12.211)

+ θ̇ (I1 − I2) sin ψ cos ψ
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b13 = ϕ̇ (I1 − I2) sin 2ψ

b23 = ϕ̇ (I3 + (I1 − I2) cos 2ψ) sin θ − θ̇ (I1 − I2) sin 2ψ

b33 = −2ϕ̇ (I1 − I2) cos θ sin ψ cos ψ (12.212)

− θ̇ (I3 + (I1 − I2) cos 2ψ) cot θ

Example 732 � Angular Acceleration of Eulerian Equations Let us rearrange
Equations (12.182)–(12.184) to determine the Eulerian accelerations independently:

I1I2ϕ̈ sin2 θ = Mϕ

[
(I1 − I2) cos2 ψ + I2

]
sin θ − Mθ (I1 − I2) sin ψ cos ψ

+ ϕ̇2 [(I1 − I2)I3 + I 2
2 − I 2

1

]
sin2 θ cos θ sin ψ cos ψ

+ ϕ̇θ̇
{[

(I1 − I2)I3 + I 2
2 − I 2

1

]
cos2 ψ + I2(I3 − I1 − I2)

}
cos θ sin θ

+ θ̇ ψ̇
{[

(I1 − I2)I3 + I 2
2 − I 2

1

]
cos2 ψ + I2(I3 + I1 − I2) sin θ

}
+ ψ̇ϕ̇

[
(I1 − I2)I3 + I 2

2 − I 2
1

]
sin2 θ sin ψ cos ψ (12.213)

I1I2θ̈ sin θ = Mθ

(
I1 sin2 ψ + I2 cos2 ψ

) − Mϕ (I1 − I2) sin θ sin ψ cos ψ

+ ϕ̇2 {[(I1 − I2)I3 + I 2
2 − I 2

1

]
cos2 ψ + I1(I1 − I3)

}
cos θ sin2 θ

+ ϕ̇θ̇
[
(I1 − I2)I3 + I 2

2 − I 2
1

]
cos ψ sin ψ cos θ sin θ

+ ϕ̇ψ̇
{[

(I1 − I2)I3 + I 2
2 − I 2

1

]
cos2 ψ + I1(I1 − I2 − I3)

}
sin2 θ

+ ψ̇ θ̇
[
(I1 − I2)I3 + I 2

2 − I 2
1

]
sin θ sin ψ cos ψ (12.214)

I1I2I3ψ̈ sin2 θ = MθI3 (I1 − I2) cos θ cos ψ sin ψ + MψI1I2 sin θ

− MϕI2 (I1 − I3) sin θ cos θ sin2 ψ

− ϕ̇2 (2I1I2 (I1 − I2) + I2I3 (I2 − I3)

+I3I1 (I3 − I1)) cos2 θ sin2 θ cos ψ sin ψ

+ ϕ̇2I1I2 (I1 − I2) cos ψ sin ψ

− θ̇2 (I1I2 (I1 − I2)) sin2 θ cos ψ sin ψ

+ ϕ̇θ̇ [2I1I2 (I1 − I2) + I2I3 (I2 − I3)

+ I3I1 (I3 − I1)] cos2 θ sin θ cos2 ψ

+ ϕ̇θ̇ [2I1I2 (I1 − I2) cos2 ψ − I1I2(I1 − I2) − I1I2I3] sin θ

+ ϕ̇θ̇ [I1I2(I1 − I2) + I2I3(I2 − I3)] cos2 θ sin θ

− ϕ̇ψ̇[I2I3(I2 − I3) + I3I1(I3 − I1)] cos θ sin2 θ cos ψ sin ψ

− ψ̇ θ̇ [I2I3(I2 − I3) + I3I1(I3 − I1)] cos θ sin θ cos2 ψ

+ ψ̇ θ̇ [I2I3(I2 − I3) − I1I2I3] cos θ sin θ (12.215)
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If the rigid body is axisymmetric, I1 = I2 = I , then these equations will simplify to

I ϕ̈ = Mϕ + ϕ̇θ̇ (I3 − 2I ) cot θ + θ̇ ψ̇I3/sin θ (12.216)

I θ̈ = Mθ + ϕ̇2(I − I3) cos θ sin θ − ϕ̇ψ̇I3 sin θ (12.217)

ψ̈I3 = Mψ + −ϕ̈ (I3 − I ) cos θ + θ̇ ψ̇I3 cot θ

+ 1

sin θ
ϕ̇θ̇

(
I3 cos 2θ − 2I cos2 θ

)
(12.218)

12.3 RIGID-BODY TRANSLATIONAL DYNAMICS

Figure 12.10 illustrates a moving body B in a global frame G. Assume that the body
coordinate frame B is attached at the mass center C of the rigid body. The Newton
equation of motion for the whole body in the global coordinate frame is

GF = m GaB (12.219)

This equation can be expressed in the body coordinate frame as

BF = m B
GaB + m B

GωB × BvB (12.220)Fx

Fy

Fz

 =

m
(
v̇x − (

vyωz − vzωy

))
m

(
v̇y − (vzωx − vxωz)

)
m

(
v̇z − (

vxωy − vyωx

))
 (12.221)

In these equations, GaB is the global acceleration vector of the body at C, m is the
total mass of the body, and F is the resultant of the external forces acted on the body
at C.

X Y

Z

x

G

B

z

BrP

O

df

y

C
GrPP

dm

GdB

Figure 12.10 A moving body B in a global frame G .
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Proof : A body coordinate frame at the center of mass is called a central frame. If the
frame B is a central frame, then the center of mass C is defined such that∫

B

BrP dm = 0 (12.222)

Assume that an infinitesimal external force df is acted on dm at point P that is at BrP .
The global position vector of dm is related to its local position vector by

GrP = GdB + GRB
BrP (12.223)

where GdB is the global position vector of the central body frame, and therefore,∫
B

GrP dm =
∫

B

GdB dm + GRB

∫
m

BrP dm =
∫

B

GdB dm

= GdB

∫
B

dm = m GdB (12.224)

The time derivative of both sides shows that

m GḋB = m GvB =
∫

B

GṙP dm =
∫

B

GvP dm (12.225)

and another derivative shows that

m Gv̇B = m GaB =
∫

B

Gv̇P dm (12.226)

However, we have df = Gv̇P dm, and therefore,

m GaB =
∫

B

df (12.227)

The integral on the right-hand side includes all the forces acting on particles in the
body. The internal forces cancel one another out, so the net result is the vector sum of
all the externally applied forces F, and therefore,

GF = m GaB = m Gv̇B (12.228)

Transforming this equation to the body coordinate frame, we have

BF = BRG
GF = m BRG

GaB = m B
GaB

= m BaB + m B
GωB × BvB (12.229)

We use the G-expression of the Newton equation (12.228) when the observer is
in the G-frame. In this case, the observer is interested in the motion of the body with
respect to herself. We use the B-expression of the Newton equation (12.229) when the
observer is in the B-frame and moves with the body. In either case, the result of the
analysis would be a set of differential equations. �

Example 733 A Wound Ribbon Figure 12.11 illustrates a ribbon of negligible weight
and thickness that is wound tightly around a uniform massive disc of radius R and
mass m. The ribbon is fastened to a rigid support, and the disc is released to roll down
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x

X

T

mg

B

Y

y

G

R

O

θ

Figure 12.11 A disc is falling by unwinding a ribbon.

vertically. There are two forces acting on the disc during the motion, its weight mg

and the tension of the ribbon T . The translational equation of motion of the disc is
expressed easier in the global coordinate frame:∑

FY = −mg + T = mŸ (12.230)

The rotational equation of motion is simpler if expressed in the body coordinate frame:∑
Mz = T R = BI B

Gω̇B + B
GωB × BIB

GωB = I θ̈ (12.231)

There is a constraint between the coordinates Y and θ :

Y = Y0 − Rθ (12.232)

To solve the motion, let us eliminate T between (12.230) and (12.231) to obtain

mŸ = −mg + I

R
θ̈ (12.233)

and use the constraint to eliminate Ÿ :

θ̈ = mg

(I/R + mR)
(12.234)

Now, we can find T and Ÿ :

T = I

R
θ̈ = I

mR2 + I
mg (12.235)

Ÿ = − mR2

mR2 + I
g (12.236)

For a point mass with I = 0, the falling acceleration is the same as the free fall of a
particle. However, being a rigid body and having I �= 0, the falling acceleration of the
disc is reduced. This is because the kinetic energy of the disc splits between rotation
and translation.
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Example 734 Rigid-Vehicle Newton–Euler Dynamics Figure 12.12 illustrates a rigid
vehicle in planar motion. A global coordinate frame G is attached to the ground and
a local coordinate frame B is attached to the vehicle at its mass center C. The Z- and
z-axes are parallel, and the orientation of the frame B is indicated by the heading angle
ψ between the x- and X-axes. The definitions of kinematics and relative angles are the
same as explained in Example 565.

Analysis of ground, air, or space vehicles is more practical when the observer
moves with the vehicle. Therefore, in vehicle dynamics we usually employ the B-
expression of Newton–Euler equations. We do this especially because applied forces
such as traction, braking, and trust are generated by the vehicle and have simple expres-
sion in B.

The velocity vector of the vehicle of Figure 12.12, expressed in the body coordinate
frame, is

BvC =
vx

vy

0

 (12.237)

where vx is the forward component and vy is the lateral component of v. The equations
of motion of the vehicle in the body coordinate frame are

BF = BRG
GF = BRG

(
m GaB

) = m B
GaB

= m B v̇B + m B
GωB × BvB (12.238)

BM =
Gd

dt
BL = B

GL̇B = BL̇ + B
GωB × BL

= BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.239)

vx

ψ

β

B
G

X

Y

C

x

y

v

d

vy

O

Fx

Fy

Figure 12.12 A rigid vehicle in planar motion is under a forward traction force Fx and a lateral
force Fy .
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The force, moment, and kinematic vectors for the rigid vehicle are

BFC =
Fx

Fy

0

 BMC =
 0

0
Mz

 (12.240)

B v̇C =
v̇x

v̇y

0

 B
GωB =

 0
0
ωz

 B
Gω̇B =

 0
0
ω̇z

 (12.241)

Let us assume that B is the principal coordinate frame of the vehicle to have a diagonal
mass moment matrix:

BI =
I1 0 0

0 I2 0
0 0 I3

 (12.242)

Substituting these vectors and matrices in the equations of motion
(12.238)–(12.239) provides the equations

BF = m B v̇B + m B
GωB × BvB (12.243)

= m

v̇x

v̇y

0

 + m

 0
0
ωz

 ×
vx

vy

0

 =
mv̇x − mωzvy

mv̇y + mωzvx

0


BM = BI B

Gω̇B + B
GωB × (

BI B
GωB

) =
I1 0 0

0 I2 0
0 0 I3

 0
0
ω̇z


+

 0
0
ωz

 ×
I1 0 0

0 I2 0
0 0 I3

 0
0
ωz

 =
 0

0
I3 ω̇z

 (12.244)

The first two Newton equations and the third Euler equation are the only nonzero
equations that make a set of three equations of motion for the planar rigid vehicle:

Fx = m v̇x − mωz vy (12.245)

Fy = m v̇y + mωz vx (12.246)

Mz = ω̇z Iz (12.247)

Because the equations of motion are derived in the body frame, the global position
vector of the mass center, Gd, does not appear in the equations.

Example 735 Global–Body Transformation of Planar Vehicle Equations Consider
a rigid vehicle in planar motion as shown in Figure 12.12. The global coordinate frame
is given as G, and B indicates a body coordinate frame that is attached to the vehicle
at its mass center C. Let us derive a planar rigid-vehicle equations of motion in the
global coordinate frame and transform them to the body frame and rederive Equations



1106 Rigid-Body Dynamics

(12.245)–(12.247) in the B-frame. The only angle between B and G is the yaw angle
ψ , so the transformation matrix GRB is

GRB =
cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

 (12.248)

The global expression of the velocity vector is

GvC = GRB
BvC (12.249)vX

vY

0

 =
cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

vx

vy

0


=

vx cos ψ − vy sin ψ

vy cos ψ + vx sin ψ

0

 (12.250)

and therefore, the global acceleration of the vehicle isv̇X

v̇Y

0

 =


(
v̇x − ψ̇ vy

)
cos ψ − (

v̇y + ψ̇ vx

)
sin ψ(

v̇y + ψ̇ vx

)
cos ψ + (

v̇x − ψ̇ vy

)
sin ψ

0

 (12.251)

The global Newton equation of motion and the force vector transformation are

GFC = m Gv̇C (12.252)
GFC = GRB

BFC (12.253)

Therefore, the B-expression for the equations of motion is

BFC = GRT
B

GFC = m GRT
B

Gv̇C (12.254)

Substituting the associated vectors generates the Newton equations of motion in the
body coordinate frame:Fx

Fy

0

 = m GRT
B


(
v̇x − ψ̇ vy

)
cos ψ − (

v̇y + ψ̇ vx

)
sin ψ(

v̇y + ψ̇ vx

)
cos ψ + (

v̇x − ψ̇ vy

)
sin ψ

0


= m

v̇x − ψ̇ vy

v̇y + ψ̇ vx

0

 (12.255)

Applying the same procedure for moment transformation,

GMC = GRB
BMC 0

0
MZ

 =
cos ψ − sin ψ 0

sin ψ cos ψ 0
0 0 1

 0
0

Mz

 =
 0

0
Mz

 (12.256)
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we find the Euler equation in the body coordinate frame:

Mz = ω̇z Iz (12.257)

Example 736 The Roll Model Vehicle Dynamics Figure 12.13 illustrates a vehicle
with a body coordinate frame B(Cxyz) at the mass center C. The x-axis is a longitudinal
axis passing through C and directed forward. The y-axis goes laterally to the left from
the driver’s viewpoint. The z-axis makes the coordinate system a right-hand triad. When
the car is parked on a flat horizontal road, the z-axis is perpendicular to the ground,
opposite to the gravitational acceleration g. The equations of motion of the vehicle are
usually expressed in B(Cxyz).

The angular orientation and angular velocity of the vehicle are expressed by three
angles—roll ϕ, pitch θ , and yaw ψ —and their rates—roll rate p, pitch rate q, and
yaw rate r:

p = ϕ̇ q = θ̇ r = ψ̇ (12.258)

The vehicle force system (F, M) is the resultant of external forces and moments that the
vehicle receives from the ground and environment. The force system may be expressed
in the body coordinate frame as

BF = Fxı̂ + Fŷ + Fzk̂ (12.259)

BM = Mxı̂ + Mŷ + Mzk̂ (12.260)

The roll model vehicle dynamics can be expressed by four kinematic variables:
the forward motion x, the lateral motion y, the roll angle ϕ, and the yaw angle ψ . In
this model, we do not consider vertical movement z and pitch motion θ . So, there are
two holonomic constraints among the six coordinates x, y, z, θ, ψ :

z − z0 = 0 θ = 0 (12.261)

Cx

z

Fx

Mz

Mx

ψ

p

r

y
Fy

X Y

ZB G

ψ ϕ
d

g

Figure 12.13 A vehicle with roll and yaw rotations.
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A global coordinate frame G is fixed on the ground. The orientation of B can
be expressed by the heading angle ψ between the x- and X-axes and the roll angle ϕ

between the z- and Z-axes. The global position vector of the mass center is denoted
by Gd.

The rigid-body equations of motion in the body coordinate frame are

BF = BRG
GF = BRG

(
m GaB

) = m B
GaB

= m B v̇B + m B
GωB × BvB (12.262)

BM =
Gd

dt
BL = B

GL̇B = BL̇ + B
GωB × BL

= BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.263)

The B-expressions of the velocity and acceleration vectors of the vehicle are

BvC =

vx

vy

0

 B v̇C =

v̇x

v̇y

0

 (12.264)

where vx is the forward component and vy is the lateral component of Bv. The angular
velocity and acceleration vectors for the rigid vehicle are

B
GωB =

ωx

0

ωz

 =

p

0

r

 B
Gω̇B =

ω̇x

0

ω̇z

 =

ṗ

0

ṙ

 (12.265)

We may assume that the body coordinate is the principal coordinate frame of the vehicle
to have a diagonal mass moment matrix:

BI =

I1 0 0

0 I2 0

0 0 I3

 (12.266)

Substituting the above vectors and matrices in the Newton–Euler equations of motion
provides the equations

BF = m B v̇B + m B
GωB × BvB (12.267)Fx

Fy

0

 = m

v̇x

v̇y

0

 + m

ωx

0

ωz

 ×

vx

vy

0



=

mv̇x − mωzvy

mv̇y + mωzvx

mωxvy

 (12.268)

BM = BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.269)
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0
Mz

 =
I1 0 0

0 I2 0
0 0 I3

ω̇x

0
ω̇z


+

ωx

0
ωz

 ×
I1 0 0

0 I2 0
0 0 I3

ωx

0
ωz


=

 I1ω̇x

I1ωxωz − I3ωxωz

I3ω̇z

 (12.270)

The first two Newton equations are the equations of motion in the x- and y-directions:[
Fx

Fy

]
=

[
mv̇x − mωzvy

mv̇y + mωzvx

]
(12.271)

The first and third Euler equations are the equations of motion about the x- and z-axes:[
Mx

Mz

]
=

[
I1ω̇x

I3ω̇z

]
(12.272)

Therefore, a rolling rigid vehicle has a motion with four DOF which are translations
in the x- and y-directions and rotations about the x- and z-axes. The Newton–Euler
equations of motion for such a rolling rigid vehicle in the body coordinate frame B are

Fx = m v̇x − mr vy (12.273)

Fy = m v̇y + mr vx (12.274)

Mz = Izω̇z = Izṙ (12.275)

Mx = Ixω̇x = Ixṗ (12.276)

Example 737 Motion of a Six-DOF Vehicle Consider a spacecraft or an airplane
such as shown in Figure 12.14 that moves in space. Such a vehicle has six DOF. To
develop the equations of motion, we define the kinematic characteristics as

BvC =
vx

vy

vz

 B v̇C =
v̇x

v̇y

v̇z

 (12.277)

B
GωB =

ωx

ωy

ωz

 B
Gω̇B =

ω̇x

ω̇y

ω̇z

 (12.278)

The acceleration vector of the vehicle in the body coordinate frame is

Ba = B v̇B + B
GωB × BvB =

v̇x + ωyvz − ωzvy

v̇y + ωzvx − ωxvz

v̇z + ωxvy − ωyvx

 (12.279)
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Roll

Pitch

Yaw

x

y

z

ϕ

ψ

θ

Figure 12.14 An airplane with six-DOF motions.

and therefore, Newtons equations of motion for the vehicle areFx

Fy

Fz

 = m

v̇x + ωyvz − ωzvy

v̇y + ωzvx − ωxvz

v̇z + ωxvy − ωyvx

 (12.280)

To find the Euler equations of motion,

BM = BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.281)

we need to define the mass moment matrix and perform the required matrix calculations.
Assume the body coordinate system is the principal coordinate frame. So,

BI B
Gω̇B +B

G ωB × (
BI B

GωB

)
=

I1 0 0
0 I2 0
0 0 I3

ω̇x

ω̇y

ω̇z

 +
ωx

ωy

ωz

 ×
I1 0 0

0 I2 0
0 0 I3

ωx

ωy

ωz


=

ω̇xI1 − ωyωzI2 + ωyωzI3

ω̇yI2 + ωxωzI1 − ωxωzI3

ω̇zI3 − ωxωyI1 + ωxωyI2

 (12.282)

and therefore, the Euler equations of motion for the vehicle areMx

My

Mz

 =
ω̇xI1 − ωyωzI2 + ωyωzI3

ω̇yI2 + ωxωzI1 − ωxωzI3

ω̇zI3 − ωxωyI1 + ωxωyI2

 (12.283)

Example 738 Magnus Force and Soccer Ball An expert soccer player is able to kick
a ball to move on a curved path. To explain how a ball is able to curve through the air,
we need to review the Magnus effect. Figure 12.15 illustrates a simplified side view of
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Figure 12.15 Magnus force on a spinning and moving cylinder.

a spinning ball about the y-axis that is moving with velocity v through air. According
to the Magnus equation, the air will apply a lift force FL on the ball,

BFL = mCL
B
GωB × Bv = mCL

vyωz − vzωy

vzωx − vxωz

vxωy − vyωx

 (12.284)

where CL is a parameter that depends on the speed v and diameter D of the ball,
density ρ, and viscosity µ of the air. The body coordinate frame B is attached to the
center of the ball, but B is not turning with the spin of the ball. The ball is also under
a drag force FD ,

BFD = − 1
2ρmACD

(
Bv · Bv

) Bv∣∣ Bv
∣∣ (12.285)

= − 1
2ρmACD

√
v2

x + v2
y + v2

z

vx

vy

vz

 (12.286)

in which A is the frontal area of the ball in contact with the air and CD is the drag
coefficient.

Although the reason for the Magnus force is the viscosity of the air and the
boundary layer around the cylinder, let us assume that the resultant moment is zero and
therefore the angular velocity of the ball remains constant during the motion. Under
this condition, the translational equations of motion of the ball are

BF =

m
(
v̇x − (

vyωz − vzωy

))
m

(
v̇y − (vzωx − vxωz)

)
m

(
v̇z − (

vxωy − vyωx

))
 (12.287)
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BF = BFL + BFD + mg

=


mCL

(
vyωz − vzωy

) − 1
2AmρvxCD

√
v2

x + v2
y + v2

z

mCL (vzωx − vxωz) − 1
2AmρvyCD

√
v2

x + v2
y + v2

z

−mg + mCL

(
vxωy − vyωx

) − 1
2AmρvzCD

√
v2

x + v2
y + v2

z

 (12.288)

In a simple case with the initial conditions

Bv =

vx

0

0

 B
GωB =

 0

0

ωz

 = const CD = 0 (12.289)

we have
v̇x = vyωz (12.290)

v̇y = − (1 + CL) vxωz (12.291)

v̇z = −g (12.292)

12.4 CLASSICAL PROBLEMS OF RIGID BODIES

There are some classical problems of rigid bodies in which equations of motion can be
integrated analytically. We examine these classical problems to review the application
of Euler–Newton equations of motion in engineering, physics, and mathematics.

If there is any integral of motion, the best method to develop an analytic solution
is employing the integral of motion and reduce the number of equations.

The dynamics of a rigid body depends solely on the mass and principal mass
moments of the body. Two rigid bodies are called equimomental if they have the
same mass and principal mass moments. The equations of motion and dynamics of
equimomental rigid bodies are identical subject to equivalent force systems.

12.4.1 Torque-Free Motion

The torque-free motion of rigid bodies is an applied classical example with many
applications. There are three integrable types of torque-free motions:

1. Spherical torque-free motion, I1 = I2 = I3

2. Axisymmetric torque-free motion, I1 = I2 �= I3

3. Asymmetric torque-free motion, I1 �= I2 �= I3

Torque-free problems of rigid bodies present two integrals of motion: angular
momentum conservation L and energy conservation K :

B
GωB · BI B

GωB = 2K (12.293)

BI 2 B
Gω2

B = L2 (12.294)
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The integrals of motion in the principal coordinate frame are

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = 2K (12.295)

I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 = L2 (12.296)

Using these two integrals of motion to eliminate two out of three Euler equations is the
first step in the analytic treatment of torque-free rigid-body dynamics. Both constants
of motion K and L2 are nonnegative numbers that would be zero only when the rigid
body has zero angular velocity.

Proof : Let us determine the inner product of B
GωB and BI B

GωB by the Euler equation
of motion (12.404):

B
GωB · (BI B

Gω̇B + B
GωB × BI B

GωB

)
= B

GωB · BI B
Gω̇B

= 1

2

d

dt

(
B
GωB · BI B

GωB

) = 0 (12.297)

BI B
GωB · (BI B

Gω̇B + B
GωB × BI B

GωB

)
= BI B

GωB · BIB
G ω̇B

= 1

2

d

dt

(
BIB

GωB

)2 = 0 (12.298)

These two total differentials lead to two integrals of motion:

B
GωB · BI B

GωB = 2K (12.299)

BI 2 B
Gω2

B = L2 (12.300)

where K is the kinetic energy and L is the angular momentum of the rigid body. The
expanded forms of the integrals of motion are

L2 = (
Ixxωx + Ixyωy + Ixz ωz

)2

+ (
Iyxωx + Iyyωy + Iyz ωz

)2

+ (
Izxωx + Izyωy + Izz ωz

)2
(12.301)

K = 1
2

(
Ixxω

2
x + Iyyω

2
y + Izz ω

2
z

)
− Ixyωxωy − Iyz ωyωz − Izxωzωx (12.302)

These integrals of motion have simpler expressions in the principal frame B (1, 2, 3):

3∑
i=1

Iiω
2
i = 2K = I1ω

2
1 + I2ω

2
2 + I3ω

2
3 (12.303)

3∑
i=1

I 2
i ω2

i = L2 = 2DK = I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 (12.304)
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Generally speaking, employing integrals of motion simplifies the analytic solution
of Euler dynamic equations. However, if we ignore their existence, they would be
automatically satisfied when the differential equations of motion are integrated. �

Example 739 Kinetic Energy of a Rolling Disc Figure 12.16 illustrates a disc of
mass m and radius r that is rolling on a circular path of radius R. To determine the
kinetic energy of the disc, we attach body B and global G coordinate frames as shown
in the figure. The rotation of B is shown by angle θ and is measured from the X-axis.
The position of the disc center C is measured by the angle ϕ, also from the X-axis.

The kinetic energy of the disc has two parts:

1. The translational kinetic energy K1 when the disc is considered as a point mass
at C:

K1 = 1
2mGvC · GvC (12.305)

2. The rotational kinetic energy K2 when the disc is rotating about a stationary
mass center C:

K2 = 1
2

B
GωB · BI B

GωB (12.306)

The mass moment matrix of the disc is

BI =
 1

4mR2 0 0
0 1

4mR2 0
0 0 1

2mR2

 (12.307)

Let us use the instantaneous center which is the contact point with the ground. The
angular velocity of the disc would be:

B
GωB = R − r

r
ϕ̇ k̂ (12.308)

GωB = R − r

r
ϕ̇ K̂ (12.309)

X

Y

x

y

 

θ

ϕ

B

G

O

r

R

C

Figure 12.16 A rolling disc on a circular path.
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and therefore, the velocity of C is

GvC = GrC × GωB =
 (R − r) cos ϕ

− (R − r) sin ϕ

0

 ×

 0
0

R − r

r
ϕ̇



=


−1

r
ϕ̇ (R − r)2 sin ϕ

−1

r
ϕ̇ (R − r)2 cos ϕ

0

 (12.310)

So, the kinetic energy of the disc is

K = 1

2
mGvC · GvC + 1

2
B
GωB · BI B

GωB

= 1

2

m

r2
ϕ̇2 (R − r)4 + 1

r2
ϕ̇2I3 (R − r)2

= 1

2
m

1

r2

(
2R2 − 2Rr + r2) (R − r)2 ϕ̇2 (12.311)

12.4.2 Spherical Torque-Free Rigid Body

A rigid body is called spherical or centrosymmetric if

I1 = I2 = I3 (12.312)

In this case, Euler equations (12.10)–(12.12) will be linear and decoupled:

I1ω̇1 = 0 (12.313)

I1ω̇2 = 0 (12.314)

I3ω̇3 = 0 (12.315)

The solution of these equations indicates that the rigid body will continue its rotation
with constant angular velocity:

I1ω1 = ω1 (0) = ω10 (12.316)

I1ω2 = ω2 (0) = ω20 (12.317)

I3ω3 = ω3 (0) = ω30 (12.318)

Proof : Having a rigid body with equal principal mass moments is the simplest situation
in rigid-body dynamics. To have equal principal mass moments, a rigid body must have
infinity planes of symmetry, such as spheres and cubes. In a spherical rigid body, every
line that goes through the mass center is a principal axis. So, the dynamics of the body
is independent of its attitude.

Euler equations are dynamically coupled by the variable ωi that appears in
equations for Mj , j �= i. They are also parametrically coupled by the difference of the
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x
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Z
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ϕ
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ψ
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Y

G

Figure 12.17 A suspended rigid body with a fixed point at geometric center.

principal mass moments. When the principal mass moments Ii, i = 1, 2, 3, are equal,
the equations uncoupled as Equations (12.313)–(12.315). The uncoupled equations are
the simplest differential equations with solutions (12.316)–(12.318). The suspended
body in Figure 12.17 is a symmetric rigid body with a fixed point at its mass center if
its width, height, and length are equal. �

12.4.3 Axisymmetric Torque-Free Rigid Body

A rigid body is called axisymmetric or axially symmetric if

I1 = I2 �= I3 (12.319)

The torque-free Euler equations of an axisymmetric rigid body are

I1ω̇1 − (I1 − I3) ω2ω3 = 0 (12.320)

I1ω̇2 − (I3 − I1) ω3ω1 = 0 (12.321)

I3ω̇3 = 0 (12.322)

It provides a harmonic solution for angular velocity B
GωB :

ω1(t) = ωθ cos �t (12.323)

ω2(t) = ωθ sin �t (12.324)

ω3 = I1

I3 − I1
� (12.325)
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The constant parameter � is the angular speed of projection of B
GωB on the (x, y)-plane.

Angular velocity B
GωB has a constant length and uniformly sweeps a constant cone in

the B-frame.

Proof : Assuming a principal body coordinate frame B (Oxyz) ≡ B (O123)

and substituting I2 = I1 in Euler equations (12.10)–(12.12) generate Equations
(12.320)–(12.322). The third equation is a total differential, which shows that the
third component of B

GωB is always constant:

ω3 = C1 (12.326)

Let us introduce an axillary constant frequency �:

� = I3 − I1

I1
ω3 (12.327)

Now we can write the first and second Euler equations as

ω̇1 + �ω2 = 0 (12.328)

ω̇2 − �ω1 = 0 (12.329)

Multiplying (12.328) by ω1 and (12.329) by ω2 and then adding the two equations
yield

ω1ω̇1 + ω2ω̇2 = 0 (12.330)

This is a total differential with the integral√
ω2

1 + ω2
2 = ωθ = C2 (12.331)

The ωθ -component of B
GωB lies in the (x, y)-plane and ω3 is the component of

B
GωB on the z-axis. Therefore, the magnitude of the angular velocity remains constant:∣∣B

GωB

∣∣ =
√

ω2
1 + ω2

2 + ω2
3 =

√
C2

1 + C2
2 = C3 (12.332)

By taking a time derivative of (12.328) and (12.329), we can decouple the
equations:

ω̈1 + �2ω1 = 0 (12.333)

ω̈2 + �2ω2 = 0 (12.334)

The solutions of these equations are

ω1(t) = A sin (�t − α) (12.335)

ω2(t) = B sin (�t − β) (12.336)

where α, β, A, and B are related to the initial conditions ω10 = ω1(0), ω20 = ω2(0),
ω̇10 = ω̇1(0), and ω̇20 = ω̇2(0):

ω10 = −A sin α ω20 = −B sin β (12.337)

ω̇10 = A� cos α ω̇20 = B� cos β (12.338)
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Because of (12.331), the tip point of the ωθ -component of B
GωB in the (x, y)-plane

turns on a circle. Therefore, we must have

A = B (12.339)

α = β ± 1
2π (12.340)

which yields

A =
√

ω2
10 + ω2

20 = ωθ = C2 (12.341)

α = arctan
−ω10�

ω̇10
(12.342)

With no loss of generality, we may assume α = 0 and write the solutions as

ω1(t) = ωθ cos �t (12.343)

ω2(t) = ωθ sin �t (12.344)

The component ω3 is the angular speed of the rigid body about the z-axis and � is the
angular speed of B

GωB about the z-axis. The tip point of the ωθ -component of B
GωB in

the (x, y)-plane turns about the z-axis with a constant angular velocity �. Therefore,
the angular velocity vector B

GωB uniformly sweeps a constant cone with the z-axis as
the axis of symmetry.

Depending on I3 and I1, the body can turn faster or slower than B
GωB . For a flat disc

with I3 >I1, we find that the θ -axis rotates faster than the x-axis in the same direction,
and for an elongated body with I3 < I1, the θ -axis rotates slower than the x-axis in the
opposite direction. For I3 = 2I1, we have � = ω3. The special case I3 = I1 provides
� = 0, and therefore, the axis of angular velocity B

GωB remains motionless. �

Example 740 A Rotating Disc on a Needle Figure 12.18 illustrates a homogeneous
disc of mass m and radius R that is suspended at its center on a needle. We attach a
body frame B at the center of the disc such that the z-axis is perpendicular to the disc
and the (x, y)-plane is the face plane of the disc. We give an initial rotation GωB = ω0

about an axis that makes an angle α with the z-axis, looking for the consequent motion
of the disc.

The mass moment matrix of the disc is

BI =


1
4mR2 0 0

0 1
4mR2 0

0 0 1
2mR2

 (12.345)

Let us assume that the initial angular velocity in the (y, z)-plane is

B
GωB (0) = ω0 sin α ̂ + ω0 cos α k̂ (12.346)

The motion is torque free; therefore, the third Euler equation provides

ω3 = ω0 cos α = const (12.347)
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Figure 12.18 A suspended disc on a needle.

and the first and second Euler equations become

ω̇1 + ω2ω0 cos α = 0 (12.348)

ω̇2 − ω1ω0 cos α = 0 (12.349)

These equations are the same as (12.333) and (12.334) with solutions

ω1(t) = ω0 cos �t (12.350)

ω2(t) = ω0 sin �t (12.351)

ω0 = ωθ =
√

ω2
10 + ω2

20 � = ω0 cos α (12.352)

To determine the motion of the disc in G, we recall the relationship of Euler
frequencies and the B-expression of angular velocity (8.99):ωx

ωy

ωz

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇

 (12.353)

It provides three coupled differential equations to be solved for ϕ (t), θ (t), ψ (t): ϕ̇

θ̇

ψ̇

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

−1 ω0 cos �t

ω0 sin �t

ω0 cos α



=


ω0

sin θ
sin (ψ + �t)

ω0 cos (ψ + �t)

ω0 cos α − ω0 cot θ sin (ψ + �t)

 (12.354)
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Example 741 � Dynamic Discussion and Solution of Example 740 A person work-
ing in dynamics is called a dynamician. The duties of a dynamician are modeling,
determining the equations of motion, interpreting the solution of equations of motion,
and predicting or designing the parameters to obtain a desired solution. In this process,
obtaining the solutions is the job of mathematicians. However, mathematicians provide
us some tools, algorithms, methods, and sample solved problems to be used for analyz-
ing new problems. As an illustrative example, we examine the results of Example 740.

The set of Equations (12.354) are nonlinear and coupled, with no known general
solution. Many dynamic problems of rigid body reach this step or they stop at the
starting point where the Euler equations cannot be decoupled. Numerical or approximate
solutions are the best methods to evaluate the behavior of a system. Approximate
solution methods may be based on linearization, perturbations, or short- or long-term
asymptotes. However, none are better that analytic solutions. The best solution to be
used to analyze, approximate, predict, examine, and design is the analytic one. Analytic
solutions provide a big picture of the behavior of a dynamic system, with clear images
of the relative importance of parameters. All approximate solutions have blind spots
and none can provide a complete solution.

Let us employ a numerical solution and briefly examine the behavior of the disc
of Example 740 by analyzing ϕ (t), θ (t), ψ (t). Interestingly, the mass and mass
moment of the disc are not involved in the differential equations for orientation angles.
Substituting (12.352) in (12.354) shows that there are only two parameters involved,
ω0 and α:  ϕ̇

θ̇

ψ̇

 =


ω0

sin θ
sin (ψ + ω0t cos α)

ω0 cos (ψ + ω0t cos α)

ω0 cos α − ω0 cot θ sin (ψ + ω0t cos α)

 (12.355)

For simplicity, we assume
α = 0 (12.356)

to turn the disc about its axis of symmetry and simplify the equations: ϕ̇

θ̇

ψ̇

 =


ω0

sin θ
sin (ψ + ω0t)

ω0 cos (ψ + ω0t)

ω0 − ω0 cot θ sin (ψ + ω0t)

 (12.357)

Let us set ω0 to a constant value:

ω0 = 10 rad/s (12.358)

Without loss of generality, we may set the initial conditions of ϕ and ψ to zero:

ϕ (0) = 0 ψ (0) = 0 (12.359)

Having α = 0 makes the equations singular at θ = 0. The angles ϕ and ψ are not
distinguishable at θ = 0 and the disc can stay in that position regardless of the value
of ω0. So, let us set the initial θ to a small value and examine the behavior of the disc,

θ (0) = 0.1 rad ≈ 5.7 deg (12.360)
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and find the responses of ϕ (t), θ (t), ψ (t) as shown in Figures 12.19–12.21, respec-
tively. All of these figures show a periodic behavior. The periodic behavior of θ (t)

indicates that the disc will tilt up to a maximum value and return to θ = 0. Figure 12.21
shows that starting with nonzero ψ (0) = ω0 = 10 rad/s generates a positive periodic
behavior for ψ̇ . To make sure that the repeating behaviors of ϕ (t) and θ (t) are peri-
odic, we may plot the phase portraits of the variables. To make sure that the periods
of the repeating behavior of the variables are equal, we may plot the variables with
respect to each other. As an example, we show ϕ versus θ in Figure 12.22. One closed
loop indicates an equal period.

Now we may change the values of the initial condition θ (0) to see the reaction
of the disc to these different values. Figures 12.23–12.26 illustrate the same coordi-
nates as Figures 12.19–12.22 and compare the dynamic behavior for different initial
conditions. The time responses of the variables become smoother by increasing θ (0).
Less fluctuation in Figure 12.25 for ψ (t) along with decreasing the maximum devi-
ation of ϕ (t) and θ (t) from zero suggests that we may have a mirror behavior for
θ (0) > 90 deg. Figure 12.26 shows that by increasing θ (0) the periodic behaviors of
ϕ (t) and θ (t) become more similar.

t [s]

[rad]

ϕ
α = 0
ω0 = 10 rad/s

Figure 12.19 Time response of ϕ (t) for θ (0) = 0.1 rad.

t [s]

[rad]

θ

α = 0
ω0 = 10 rad/s

Figure 12.20 Time response of θ (t) for θ (0) = 0.1 rad.
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t [s]

[rad]

ψ

α = 0
ω0 = 10 rad/s

Figure 12.21 Time response of ψ (t) for θ (0) = 0.1 rad.

[rad]

ϕ

α = 0
ω0 = 10 rad/s

θ [rad]

Figure 12.22 Time response of ϕ (t) versus θ (t) for θ (0) = 0.1 rad.

θ0 = 0.01

θ0 = 0.1

θ0 = 0.5θ0 = 1

[rad]

ϕ

α = 0
ω0 = 10 rad/s

t [s]

Figure 12.23 Time response of ϕ (t) for different θ (0).
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θ0 = 0.01θ0 = 0.1

θ0 = 0.5θ0 = 1

[rad]

θ

α = 0
ω0 = 10 rad/s

t [s]

Figure 12.24 Time response of θ (t) for different θ (0).

t [s]

θ0 = 0.01

θ0 = 0.1

θ0 = 0.5

θ0 = 1

ψ 
[rad]

α = 0
ω0 = 10 rad/s

Figure 12.25 Time response of ψ (t) versus θ (0).

θ0 = 0.1

θ0 = 0.01

θ0 = 0.5

θ0 = 1

ϕ 
[rad]

α = 0
ω0 = 10 rad/s

θ [rad]

Figure 12.26 Time response of ϕ (t) versus θ (t) for different θ (0).
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The set of equations (12.357) suggests that increasing the parameter ω0 will pro-
duce the same type of behavior with different amplitude and smaller period. Figures
12.27–12.30 illustrate the same behaviors as Figures 12.19–12.22 for

ω0 = 20 rad/s (12.361)

ϕ 
[rad]

α = 0
ω0 = 20 rad/s

t [s]

Figure 12.27 Time response of ϕ (t) for θ (0) = 0.1 rad.

θ 
[rad]

α = 0
ω0 = 20 rad/s

t [s]

Figure 12.28 Time response of θ (t) for θ (0) = 0.1 rad.

ψ 
[rad]

α = 0
ω0 = 20 rad/s

t [s]

Figure 12.29 Time response of ψ (t) for θ (0) = 0.1 rad.
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ϕ 
[rad]

α = 0
ω0 = 20 rad/s

θ [rad]

Figure 12.30 Time response of ϕ (t) versus θ (t) for θ (0) = 0.1 rad.

They show that increasing ω0 decreases the amplitudes and periods of variables and
increases their smoothness.

If the behavior of the system is clear for α = 0 and different initial conditions and
spins, then it is time to examine the variables ϕ (t), θ (t), ψ (t) for α �= 0. This is left
for the reader to do.

Example 742 � Variable Mass Moments Consider a symmetric rigid body with
I1 = I2. Assume that the elements of a principal mass moment matrix are variable
such that the product mass moments remain zero:

Bİ =
İ1 0 0

0 İ1 0
0 0 İ3

 (12.362)

The torque-free Euler equations become

Gd

dt
BL = BI B

Gω̇B + BİB
GωB +B

G ωB × (
BIB

GωB

) = 0 (12.363)

or
I1ω̇1 + İ1ω1 + (I3 − I1) ω2ω3 = 0 (12.364)

I1ω̇2 + İ1ω2 − (I3 − I1) ω3ω1 = 0 (12.365)

I3ω̇3 + İ3ω3 = 0 (12.366)

Equation (12.366) is a total differential and can be integrated:

I3ω3 = C1 (12.367)

Multiplying (12.364) by ω1 and (12.365) by ω2 and adding them lead to

I1ω̇θ + İ1ωθ = 0 (12.368)

ωθ =
√

ω2
1 + ω2

2 (12.369)
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which can be integrated:
I1ωθ = C2 (12.370)

Equations (12.367) and (12.370) are components of angular momentum BL and show
that the angle of nutation θ remains constant when the mass moments change as in
(12.362).

Introducing an angle α such that

dα

dt
= I3 − I1

I1
ω3 (12.371)

we can combine Equations (12.364) and (12.365) to obtain a second-order differential
equation for I1ω1:

d2 (I1ω1)

dα2
+ I1ω1 = 0 (12.372)

The solution provides

ω1 = ωθ cos α (12.373)

ω2 = ωθ sin α (12.374)

with

α =
∫

I3 − I1

I1
ω3 dt (12.375)

and

ωθ = I1 (t0)

I1
ωθ (t0) = I10

I1
ωθ0 (12.376)

Example 743 � Application of Variable Mass Moments Satellites usually have long
appendages, such as antennas, that should be opened in space. Furthermore, we attach
extensible arms to satellites to control their rotation by changing the length of the
arms. An extensible member of a satellite is called a boom. Depending on the rigidity
of the extended member, we may assume the satellite and its booms are rigid bodies
or flexible solid bodies.

Let us consider an axisymmetric satellite with

BI =

200 0 0

0 100 0

0 0 100

 kg m2 (12.377)

Four particles each of mass m = 6 kg uniformly extend radially from the mass center
of the satellite. The final length of the extended arms is l = 50 m from the mass center.
The satellite was initially turning such that θ and its angular momentum are

θ = 6 deg (12.378)

L = 1000 kg m2 rad2/s2 (12.379)
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where θ is the angle between L and the z-axis. The rotational kinetic energy of the
satellite is

K0 = 1

2

(
I1ω

2
z0 + I3ω

2
θ0

) = L2

2

(
cos2 θ

I30
+ sin2 θ

I10

)

= 10002

2

(
cos2 θ

200
+ sin2 θ

100

)
= 2527.3 J (12.380)

The new mass moments of the satellite are

I1 = I10 + 2
(

1
3

)
ml2 = 10,200 kg m2 (12.381)

I3 = I30 + 4
( 1

3

)
ml2 = 20,100 kg m2 (12.382)

The components of the new angular velocity are

ωz = L cos θ

I3
= 1000 cos 6

20100
= 0.049479 rad/s (12.383)

ωθ = L sin θ

I1
= 1000 sin 6

10200
= 0.010248 rad/s (12.384)

and the new kinetic energy of the satellite is

K = 1

2

(
I1ω

2
z + I3ω

2
z

) = L2

2

(
cos2 θ

I3
+ sin2 θ

I1

)

= 1000

2

(
cos2 θ

20,100
+ sin2 θ

10,200

)
= 25.139J (12.385)

The difference in kinetic energy is due to the internal friction and braking reaction of
the motors.

Example 744 A Spherical Neutron Star Consider a neutron star with radius R whose
surface vibrates slowly such that its principal mass moments are harmonic functions
of time t :

I1 = I2 = 2
5mR2 (1 + ε cos �t) (12.386)

I3 = 2
5mR2

(
1 − 1

2ε cos �t
)

(12.387)

ε � mR2 (12.388)

Substituting these mass moments in Euler equations for a variable mass moment body,

d

dt
(I1ω1) + (I3 − I1) ω2ω3 = 0 (12.389)

d

dt
(I1ω2) − (I3 − I1) ω3ω1 = 0 (12.390)

d

dt
(I3ω3) = 0 (12.391)
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provides
d

dt
(I1ω1) − 3

2I0εω2ω3 cos �t = 0 (12.392)

d

dt
(I1ω2) + 3

2I0εω3ω1 cos �t = 0 (12.393)

d

dt
(I3ω3) = 0 (12.394)

I0 = 2
5mR2 (12.395)

Equation (12.394) has the solution

ω3 = ω30

1 − ε sin �t
(12.396)

where ω3 is a weakly time dependent function.
If the frequency of expansion of the star is much less than the third component of

angular velocity,

� � ω3 (12.397)

then
d

dt
I1 = − 2

5mR2�ε sin �t ≈ 0 (12.398)

and we have
I1ω̇1 − 3

2I0εω2ω3 cos �t = 0 (12.399)

I1ω̇2 + 3
2I0εω3ω1 cos �t = 0 (12.400)

Substituting ω3 from (12.396), we have

I1ω̇1 − 3

2
I0ε

ω30 cos �t

1 − ε sin �t
ω2 = 0 (12.401)

I1ω̇2 + 3

2
I0ε

ω30 cos �t

1 − ε sin �t
ω1 = 0 (12.402)

12.4.4 � Asymmetric Torque-Free Rigid Body

A rigid body is called asymmetric if

I1 �= I2 �= I3 (12.403)

When there is no external torque on a rigid body, the B-expression of the Euler equation
of rotational motion (12.2) reduces to

BI B
Gω̇B + B

GωB × BI B
GωB = 0 (12.404)
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which provides three scalar equations in the principal coordinate frame:

I1ω̇1 − (I2 − I3) ω2ω3 = 0 (12.405)

I2ω̇2 − (I3 − I1) ω3ω1 = 0 (12.406)

I3ω̇3 − (I1 − I2) ω1ω2 = 0 (12.407)

Employing the conservation of energy and angular momentum,

I1ω
2
1 + I2ω

2
2 + I3ω

2
3 = 2K (12.408)

I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 = L2 = 2DK (12.409)

where

D = I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3

I1ω
2
1 + I2ω

2
2 + I3ω

2
3

(12.410)

the set of Euler equations reduces to a differential equation to determine ω2:

ω̇2 =
√

(I1 − I2) (I2 − I3)

I1I3

(
a2 − ω2

2

) (
b2 − ω2

2

)
(12.411)

a2 = 2K (D − I3)

I2 (I2 − I3)
b2 = 2K (I1 − D)

I2 (I1 − I2)
(12.412)

Assuming I1 >I2 >I3, the solution of this equation depends on the relative values of
D and I2.

If D < I2, then

ω1 =
√

L2 − 2KI3

I1 (I1 − I3)
cn(τ, k) (12.413)

ω2 =
√

L2 − 2KI3

I2 (I2 − I3)
sn(τ, k) (12.414)

ω3 = −
√

2KI1 − L2

I3 (I1 − I3)
dn(τ, k) (12.415)

If D = I2, then

ω1 =
√

2K (I2 − I3)

I1 (I1 − I3)

1

cosh τ
(12.416)

ω2 =
√

2K

I2
tanh τ (12.417)

ω3 =
√

2K (I1 − I2)

I3 (I1 − I3)

1

cosh τ
(12.418)
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If D >I2, then

ω1 =
√

L2 − 2KI3

I1 (I1 − I3)
dn(τ, k) (12.419)

ω2 =
√

2KI1 − L2

I2 (I1 − I2)
sn(τ, k) (12.420)

ω3 = −
√

2KI1 − L2

I3 (I1 − I3)
cn(τ, k) (12.421)

where sn(τ, k) is the Jacobi elliptic function of τ , k:

k = D − I3

D − I1

I1 − I2

I2 − I3
(12.422)

τ = (t − t0)

√
(I1 − I2)

(
L2 − 2KI3

)
I1I2I3

(12.423)

y = sn(t, k) = sin(ϕ) (12.424)

F(y, k) =
∫ ϕ

0

dϕ√
1 − k2 sin2 ϕ

(12.425)

Proof : The solution of the Euler equation of rotational motion (12.404) is based on
two integrals of motion of kinetic energy K and angular momentum L. The expanded
forms of the integrals of motion in the principal frame are

3∑
i=1

Iiω
2
i = 2K = I1ω

2
1 + I2ω

2
2 + I3ω

2
3 (12.426)

3∑
i=1

I 2
i ω2

i = L2 = I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 = 2DK (12.427)

D = I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3

I1ω
2
1 + I2ω

2
2 + I3ω

2
3

(12.428)

The parameter D has the same physical dimension as I and is introduced to simplify
the equations. Assuming

I1 > I2 >I3 (12.429)

we can transform the integrals of motion (12.426)–(12.427) to the following forms by
multiplying Equation (12.426) with I1 and with I3, respectively, and subtracting both
equations separately from (12.427):

I1 − D = I2 (I1 − I2) ω2
2 + I3 (I1 − I3) ω2

3

2K
(12.430)
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D − I3 = I1 (I1 − I3) ω2
1 + I2 (I2 − I3) ω2

2

2K
(12.431)

Now, instead of using the three Euler equations (12.405)–(12.407), we use the second
Euler equation (12.406) along with the new forms of integrals of motion (12.430) and
(12.431). Solving these equations for ω3 and ω1 provides

ω2
3 = I2 (I1 − I2)

I3 (I1 − I3)

(
b2 − ω2

2

)
(12.432)

b2 = 2K (I1 − D)

I2 (I1 − I2)
(12.433)

ω2
1 = I2 (I2 − I3)

I1 (I1 − I3)

(
a2 − ω2

2

)
(12.434)

a2 = 2K (D − I3)

I2 (I2 − I3)
(12.435)

The parameters a and b are nonnegative and are related to each other:

a2 − b2 = 2
K

I2

D − I2

I1 − I2

I1 − I3

I2 − I3
(12.436)

Substituting (12.432) and (12.432) in the second Euler equation (12.406) provides a
differential equation for ω2:

ω̇2 =
√

(I2 − I3)

I1

(I1 − I2)

I3

(
a2 − ω2

2

) (
b2 − ω2

2

)
(12.437)

The solution of the equation can be expressed by an integral:∫
dω2√(

a2 − ω2
2

) (
b2 − ω2

2

) = s2 (t − t0)

√
(I1 − I2) (I2 − I3)

I1I3
(12.438)

The parameter s2 indicates the resultant sign of the two square roots. It will be found
from initial conditions.

The integral on the left-hand side is the elliptic integral introduced in Section 2.3.3.
To reduce it to a normal form, we distinguish three cases:

1. a2 < b2 or D < I2

2. a2 >b2 or D > I2

3. a2 = b2 or D = I2

Case 1. Let us rewrite Equation (12.438) in the form∫
1

a

dω2√(
1 − ω2

2/a
2
) (

1 − ω2
2/b

2
) = s2b (t − t0)

√
(I1 − I2) (I2 − I3)

I1I3
(12.439)
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To simplify the equation and clarify the effect of the integrals of motion, we may use
the parameters

y = ω2

a
k = a

b
(12.440)

τ = b (t − t0)

√
(I1 − I2) (I2 − I3)

I1I3

= (t − t0)

√
2K (I1 − D) (I2 − I3)

I1I2I3
(12.441)

and write the equation in the familiar form of an elliptic integral:∫
dy√(

1 − y2
) (

1 − k2y2
) = s2τ (12.442)

The solution of (12.442) is the Jacobi elliptic function of τ :

y = s2 sn(τ, k) (12.443)

or

ω2 = ay = s2

√
2K (D − I3)

I2 (I2 − I3)
sn(τ, k) (12.444)

Substituting ω2 in Equations (12.432) and (12.434),

ω3 = I2 (I1 − I2)

I3 (I1 − I3)

[
b2 − sn2(τ, k)

]
(12.445)

ω1 = I2 (I2 − I3)

I1 (I1 − I3)

[
a2 − sn2(τ, k)

]
(12.446)

and employing the identities

sn2(τ, k) + cn2(τ, k) = 1 (12.447)

dn2(τ, k) + k2 sn2(τ, k) = 1 (12.448)

we obtain the solutions for ω1 and ω3:

ω1 = s1

√
2K (D − I3)

I1 (I1 − I3)
cn(τ, k) (12.449)

ω3 = s3

√
2K (I1 − D)

I3 (I1 − I3)
dn(τ, k) (12.450)

The parameters s1 and s3 are also signs of the square roots, which will be determined
from initial conditions. Knowing that

d

dτ
sn(τ, k) = cn(τ, k) dn(τ, k) (12.451)
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yields
s1s2s3 = −1 (12.452)

There are four combinations of signs satisfying this relationship.
Case 2. Employing the same method as case 1, we find

ω1 = s1

√
2K (D − I3)

I1 (I1 − I3)
dn(τ, k) (12.453)

ω2 = s2

√
2K (I1 − D)

I2 (I1 − I2)
sn(τ, k) (12.454)

ω3 = s3

√
2K (I1 − D)

I3 (I1 − I3)
cn(τ, k) (12.455)

where
k = a

b
(12.456)

τ = (t − t0)

√
2K (I1 − I2) (D − I3)

I1I2I3
(12.457)

Case 3. The solutions of cases 1 and 2 approach each other when D → I2, and
we have

k = 1 (12.458)

ω1 = s1

√
2K (I2 − I3)

I1 (I1 − I3)

1

cosh τ
(12.459)

ω2 = s2

√
2K

I2
tanh τ (12.460)

ω3 = s3

√
2K (I1 − I2)

I3 (I1 − I3)

1

cosh τ
(12.461)

If τ → ∞, then ω2 → 0, ω3 → 0, and ω2 → s2
√

2K/I2, which is a permanent rotation
about the second principal axis.

Torque-free rigid body equations are applied to celestial bodies which are almost
free of external torques. They also apply on a body which is suspended frictionless
such that its mass center is stationary. Figure 12.17 illustrates an example of such a
suspended rigid body. �

Example 745 � Orientation of B in G We are able to determine the time behavior
of the components of B

GωB . To determine the orientation of B in G for a given B
GωB ,

we should select a set of generalized orientation coordinates and use the associated
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method of Example 718. Let us select the Euler angles as the generalized coordinates.
Using the associated transformation matrix BRG of Equation (4.142),

BRG = Rz,ψRx,θRz,ϕ

=

 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (12.462)

we can express BL in global coordinates:

BL = BRG
GL (12.463)

Because of the conservation of angular momentum, BL is fixed and hence GL is also
assigned a fixed axis in G: ∣∣BL

∣∣ = ∣∣GL
∣∣ = L (12.464)

If we select the Z-axis on GL, thenI1ω1

I2ω2

I3ω3

 = BRG

0

0

L

 =

L sin θ sin ψ

L sin θ cos ψ

L cos θ

 (12.465)

Two of the orientation angles can be found by comparison:

cos θ = I3ω3

L
(12.466)

tan ψ = I1ω1

I2ω2
(12.467)

To find ϕ, we may use Equation (4.188): ϕ̇

θ̇

ψ̇

 = 1

sin θ

 sin ψ cos ψ 0

sin θ cos ψ − sin θ sin ψ 0

− cos θ sin ψ − cos θ cos ψ 1


ω1

ω2

ω3

 (12.468)

and determine ϕ̇ as a function of components of B
GωB :

ϕ̇ = ω2
cos ψ

sin θ
+ ω1

sin ψ

sin θ
(12.469)

Substituting ω1 and ω2 from (12.465), we obtain an equation to determine ϕ:

ϕ̇ = L

I2
cos2 ψ + L

I1
sin2 ψ (12.470)

Example 746 � Minimum and Maximum Values for D Satisfying both Equations
(12.426) and (12.427) requires minimum and maximum values for D. Assuming
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I1 >I2 >I3, we can determine the limits of D by multiplying Equation (12.426)
with I1 and with I3, respectively, and subtracting both equations separately from
(12.427):

D = I1 − I2 (I1 − I2) ω2
2 + I3 (I1 − I3) ω2

3

I1ω
2
1 + I2ω

2
2 + I3ω

2
3

(12.471)

D = I3 − I1 (I1 − I3) ω2
1 + I2 (I2 − I3) ω2

2

I1ω
2
1 + I2ω

2
2 + I3ω

2
3

(12.472)

The fractions on the right-hand side of these equations are nonnegative. Therefore, the
limits of D are

I1 >D >I3 (12.473)

where I1 and I3 are the extreme values of D for which the equations of motion have
real solution.

Example 747 � Polhode The integrals of motion (12.426) and (12.427) introduce
two equations that the components of B

GωB must satisfy. These equations geometrically
indicate two intersecting ellipsoids in an orthogonal frame (ω1, ω2, ω3). The
intersection of the ellipsoids is called a polhode and indicates the path of the tip point
of ω.

Example 748 � Poinsot Geometric Interpretation of Motion The energy integral of
motion (12.426) indicates that the inner product of angular velocity B

GωB and angular
momentum BL = BI B

GωB is constant:

B
GωB · BL = 2K = I1ω

2
1 + I2ω

2
2 + I3ω

2
3 (12.474)

The angular momentum integral of motion (12.427) states that the inner product of
angular momentum BL = BI B

GωB by itself is constant:

BL · BL = L2 = I 2
1 ω2

1 + I 2
2 ω2

2 + I 2
3 ω2

3 (12.475)

which shows that the magnitude and direction of BL are both constant. The constant
vector BL indicates an invariant plane in the B-frame. The projection of B

GωB on the
invariant direction of BL is constant. It follows that any increment �ω between two
arbitrary moments of time is perpendicular to BL:

BL · � B
GωB = 0

This equation defines the invariant plane. This geometric interpretation of the integrals
of motion and the invariant plane is illustrated in Figure 12.31.
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x

y

z

B

O
ω

∆ω

L

2T/L
Invariant plane

Invariant direction

Figure 12.31 Poinsot geometric interpretation of possible angular velocity and momentum.

Example 749 � Duffing Equation Representation Let us take a time derivative of
torque-free Euler equations (12.405)–(12.407):

ω̈1 = b1 (ω̇2ω3 + ω2ω̇3) (12.476)

ω̈2 = b2 (ω̇3ω1 + ω3ω̇1) (12.477)

ω̇3 = b3 (ω̇1ω2 + ω1ω̇2) (12.478)

b1 = I2 − I3

I1
b2 = I3 − I1

I2
b3 = I1 − I2

I3
(12.479)

Substitution of ω̇1, ω̇2, ω̇3 from (12.405)–(12.407) provides

ω̈1 = b1ω1
(
b2ω

2
3 + b3ω

2
2

)
(12.480)

ω̈2 = b2ω2
(
b3ω

2
1 + b1ω

2
3

)
(12.481)

ω̇3 = b3ω3
(
b1ω

2
2 + b2ω

2
1

)
(12.482)

We can solve (12.474) and (12.475) for ω2 and ω3:

ω2
2 = 2I3K − L2

I2 (I3 − I2)
− I1 (I3 − I1)

I2 (I3 − I2)
ω2

1 (12.483)

ω2
3 = 2I2K − L2

I3 (I2 − I3)
− I1 (I2 − I1)

I3 (I2 − I3)
ω2

1 (12.484)

Substituting these equations in (12.480) yields

ω̈1 + (I1 − I2)
(
2I3K − L2

) − (I3 − I1)
(
2I2K − L2

)
I1I2I3

ω1

+ 2 (I1 − I2) (I1 − I3)

I2I3
ω3

1 = 0 (12.485)
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Similarly, we can obtain

ω̈2 + (I2 − I3)
(
2I3K − L2

) − (I1 − I2)
(
2I2K − L2

)
I1I2I3

ω2

+ 2 (I2 − I3) (I2 − I1)

I3I1
ω3

2 = 0 (12.486)

ω̈3 + (I3 − I1)
(
2I3K − L2

) − (I2 − I3)
(
2I2K − L2

)
I1I2I3

ω3

+ 2 (I3 − I1) (I3 − I2)

I1I2
ω3

3 = 0 (12.487)

Equations (12.485)–(12.487) are interdependent uncoupled Duffing equations with con-
stant coefficients of the form

ü + k1u + k3u
3 = 0 (12.488)

They are interdependent because the parameters I1, I2, I3, K, L must be consistent.
Let us rewrite the equations in the simpler forms

ω̈1 + P1ω1 + Q1ω
3
1 = 0 (12.489)

ω̈2 + P2ω2 + Q2ω
3
2 = 0 (12.490)

ω̈3 + P3ω3 + Q3ω
3
3 = 0 (12.491)

Because there is no term associated with ω̇i , these equations are of the form (2.165)
and have first integrals. Substituting ω̈i = ω̇i dω̇i/dω, the first integrals of these
equations are

ω̇2
1 + 1

2P1ω
2
1 + 1

4Q1ω
4
1 = Cx (12.492)

ω̇2
2 + 1

2P2ω
2
2 + 1

4Q2ω
4
2 = Cy (12.493)

ω̇2
3 + 1

2P3ω
2
3 + 1

4Q3ω
4
3 = Cz (12.494)

The integral constants Cx , Cy , Cz can be found by setting ω = 0 and using
(12.413)–(12.415):

Cx = −
(
L2 − 2KI2

) (
L2 − 2KI3

)
I 2

1 I2I3
(12.495)

Cy = −
(
L2 − 2KI3

) (
L2 − 2KI1

)
I1I

2
2 I3

(12.496)

Cz = −
(
L2 − 2KI1

) (
L2 − 2KI2

)
I1I2I

2
3

(12.497)
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Example 750 � Rotational Stability of a Rigid Body about Principal Axes Consider
a rigid body in a principal coordinate frame,

I =
I1 0 0

0 I2 0
0 0 I3

 (12.498)

that is turning about the z-axis:

B
GωB =

 0
0
ω0

 (12.499)

To examine the stability of this rotation, we perturb B
GωB by adding a small angular

velocity δ B
GωB = [

εx εy εz

]T
:

B
GωB + δ B

GωB =
 εx

εy

ω0 + εz

 =
ω1

ω2

ω3

 (12.500)

For torque-free motion, the angular momentum remains constant and Equations
(12.405)–(12.407) apply. Substituting the perturbed angular velocity in (12.407) and
ignoring the nonlinear terms, we have

ω̇3 = 0 (12.501)

ω0 + εz = const (12.502)

From Equations (12.405) and (12.406), after ignoring the nonlinear terms, we find

ω̇1 = I2 − I3

I1
ω0ω2 (12.503)

ω̇2 = I3 − I1

I2
ω0ω1 (12.504)

Let us eliminate ω1 between (12.503) and (12.504) to get a second-order differential
equation with constant coefficients:

ω̇2 + I3 − I1

I1

I3 − I2

I2
ω2

0ω2 = 0 (12.505)

This equation provides a finite and hence stable solution if the coefficient of ω2 is
positive. Therefore, the rotation of a rigid body about a principal z-axis is stable if

I3 >I1 and I3 >I2 (12.506)

or if
I3 < I1 and I3 < I2 (12.507)

For
I2 < I3 < I1 or I1 >I3 >I2 (12.508)

the solution of (12.505) is unstable and ω2 increases with time.
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To have a stable rotation of a rigid body about a principal axis, it must be about
the axis of the maximum or minimum mass moment.

For example, Figure 12.32 illustrates a prismatic brick with the following mass
moment matrix:

BI = m

12

(
w2 + h2

)
0 0

0
(
h2 + l2

)
0

0 0
(
l2 + w2

)
 (12.509)

w < h < l (12.510)

Torque-free rotation of the brick is stable only about the axes x1 and x2 with the
minimum and maximum principal mass moments.

w

h
l

x1

B

O

x2

x3

Figure 12.32 A prismatic brick with principal mass moments I1 < I3 < I2.

Example 751 � Rotational Stability of a Rigid Body about Principal Axes The angu-
lar momentum of torque-free rotation of a solid body will remain constant; however,
the kinetic energy of the body can decrease by internal damping. The stable attitude
is when the kinetic energy is the smallest possible for a given angular momentum.

Consider a solid body that at a time t = 0 has the principal mass moment matrix

I =
I1 0 0

0 I2 0
0 0 I3

 (12.511)

and is turning with an angular velocity B
GωB and angular momentum BL:

B
GωB =

ω10

ω20

ω30

 (12.512)

BL0 =

I1ω10

I2ω20

I3ω30

 L2
0 =

√
I 2

1 ω2
10 + I 2

2 ω2
20 + I 2

3 ω2
30 (12.513)
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The total mechanical energy of the solid body is its kinetic energy K , which at time
t = 0 is

K0 = 1
2

(
I1ω

2
10 + I2ω

2
20 + I3ω

2
30

)
(12.514)

Now we assume that the solid body is not rigid. So, it is made of real materials and
its energy is dissipated during small deformations. The mass moment matrix of such a
solid body in the principal coordinate frame B (O123) of the undeformed solid body
would be

I =
 I1 I12 I13

I21 I2 I23

I31 I32 I3

 (12.515)

Because the deformation of the solid body is assumed to be very small, the products
of inertias are much smaller than the polar terms. So, we may ignore the changes in
the principal mass moments I1, I2, I3.

To have continuous dissipation of energy, let us assume that the products of inertias
are harmonic functions of time. So deformation of the solid body is a result of small
vibrations in the principal coordinate frame. Let us assume that at time t = tf the kinetic
energy reaches the smallest possible value for the given L. At that time, no further
deformation and dissipation occur. The mass moment matrix returns to its principal
from, and the solid body becomes rigid with constant rotation about the principal axis.
Let us assume this axis is the z-axis such that the final angular velocity is

B
GωB =

 0
0

ωf

 (12.516)

At t ≥ tf , the angular momentum must be colinear with B
GωB :

BL =
 0

0
I3ωf

 (12.517)

Because during 0 ≤ t ≤ tf no external torque is applied on the body, its angular
momentum must remain constant:

Lf = L0 (12.518)

The conservation of angular momentum provides

ωf =
√

I 2
1

I 2
3

ω2
10 + I 2

2

I 2
3

ω2
20 + ω2

30 (12.519)

The final kinetic energy is

Kf = 1

2
I3ω

2
f = 1

2

(
ω2

10
I1

I3
I1 + ω2

20
I2

I3
I2 + ω2

30I3

)
(12.520)

The final kinetic energy is assumed to have the minimum possible magnitude. This
assumption is correct only if we have

I3 >I1 and I3 >I2 (12.521)



12.4 Classical Problems of Rigid Bodies 1141

From the stability conditions of rigid-body rotation (12.506) and (12.507), we know
that the rotation is unstable if I3 is the intermediate principal mass moment. Therefore,
only a rotation about the principal axis of maximum mass moment is stable for a solid
body with dissipating energy of small deformation.

The rotation of a torque-free solid body about one of the principal axes is stable only
if the rotation is about the axis with the largest mass moment. Rotations about the axes
of intermediate and minimum mass moments are unstable. Any other form of rotation
is also unstable and decays toward the stable terminal rotation. When angular velocity
and angular momentum vectors are colinear, there is no internal energy dissipation.
When angular velocity and angular momentum vectors are not colinear, energy drawn
from the rotating body and angular velocity change until ω becomes colinear with L
on the axis with the maximum mass moment.

12.4.5 General Motion

An unconstraint rigid body has six DOF and, hence, it needs six coordinates to specify
its configuration. The traditional way to define the motion of a rigid body is to decouple
the translational and rotational motions to analyze the motion of the mass center and
the motion about the mass center. If a rigid body is under a force system

(
GF, GM

)
,

then the G-expressions of the translational and rotational equations of motion of the
body are

GF =
Gd

dt
Gp = m GaB = m Gv̇B (12.522)

GM =
Gd

dt
GL = GI GαB = GI Gω̇B (12.523)

We refer to the first one as the Newton equation of motion and the second one as the
Euler equation of motion. In these equations, GF is the G-expression of the resultant
of all external forces at the mass center C of the body and GM is the G-expression of
the resultant of all external moments on the body. The vector GaB is the acceleration
of point C, and GαB is the angular acceleration of B in G. The constant m is the mass
of the body and GI is the mass moment matrix of the body as calculated in G.

We attach a body coordinate frame B (oxyz) to the rigid body at C and express
the equations of motion in B:

BF = m B
GaB + m B

GωB × BvB (12.524)

BM = BI B
Gω̇B + B

GωB × (
BI B

GωB

)
(12.525)

Although the B- and G-expressions of equations of motion can equivalently describe
the motion of a rigid body, the B-expression of the Euler equation has great advantage
by having a constant mass moment matrix GI .

Proof : Figure 12.33 illustrates a rigid body B that has a general motion in the global
coordinate frame G. We attach a body frame B at a point o. Application of the Euler
theorem about the rigid-body motion with a fixed point allows us to analyze the general
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Figure 12.33 A rigid body B in a general motion.

motion of a rigid body by considering the motion of a point o plus the motion of the
body about o. To show this, let us determine the kinetic energy of the body.

Point o is an arbitrary fixed point in B, and point C is the mass center of B. The
velocity of a mass particle dm at P is

GvP = GṙP = GḋB + GωB × (
GrP − GdB

)
= GḋB + GωB × G

B rP (12.526)

and hence its kinetic energy is
dK = 1

2 dm GvP · GvP (12.527)

To determine the total kinetic energy, we integrate dT over the whole body:

K = 1

2

∫
B

Gv2
P dm

= 1

2
m Gḋ2

B + m GḋB · (GωB × G
BrP

) + 1

2
G
BωT

B
BI G

BωB (12.528)

Moving the B-frame from o to C provides G
BrP = 0 and simplifies K to

K = 1

2

∫
B

Gv2
P dm = 1

2
m Gḋ2

B + 1

2
G
BωT

B
BI G

BωB (12.529)

By choosing the mass center C as the interesting point of a rigid body and as the
origin of the body coordinate frame B, we decouple the translational and rotational
motions of the rigid body. In translational dynamics, we ignore the rotational motion
of the body and consider it as a particle at C with mass m. The G-expression of
the Newton equation (2.24), which will be written as (12.522) to indicate the global
coordinate frame, has the simplest expression. However, when the applied force is
generated by the rigid body or moves with it, the B-expression of the Newton equation
may be easier to work with. The translational equation of motion of a rigid body in the
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B-frame (12.524) has been derived in Section 12.3. The B-expression of the Newton
equation provides three second-order scalar differential equations:Fx

Fy

Fz

 =
m[v̇x − (

vyωz − vzωy

)
]

m[v̇y − (vzωx − vxωz)]

m[v̇z − (
vxωy − vyωx

)
]

 (12.530)

Because in translational motion a rigid body is treated as a particle at its mass center,
the orientation of the body coordinate frame will not affect the equations of motion.
Therefore, there is no superior orientation for B.

The rotational equation of motion of a rigid body (12.523) has a simple form
in the G-frame. However, the mass moment matrix is not necessarily constant in G.
To have a constant [I ], we should transform the Euler equation to the B-frame, as
given in (12.525). Furthermore, when the applied moment is generated by the rigid
body or moves with it, the B-expression of the Euler equation is easier to work with.
The rotational equation of motion of a rigid body in the B-frame (12.525) has been
derived in Section 12.1. The B-expression of the Euler equation provides three second-
order scalar differential equations. Because in rotational motion a rigid body is treated
as a collection of rigidly connected particles, the orientation of the body coordinate
frame will affect the equations of motion by changing [I ]. Therefore, there is always a
superior orientation for B in which the mass moment matrix becomes diagonal. Euler
equations get the simplest form in such a principal coordinate frame:M1

M2

M3

 =
I1ω̇1 − (I2 − I3) ω2ω3

I2ω̇2 − (I3 − I1) ω3ω1

I3ω̇3 − (I1 − I2) ω1ω2

 (12.531)

The B-expression of the Euler equation is usually the best option to analyze the rota-
tional motion of a rigid body.

The decoupling process of translation and rotation conceptually simplifies the anal-
ysis of motion of a rigid body. However, the equations of motion for translational and
rotational motions are mathematically coupled and should be solved together. �

Example 752 Rolling Disc on an Inclined Plane A homogeneous disc with mass m

and radius R rolls without slipping on an inclined ground plane such that the plane of
the disc remains perpendicular to the ground. Figure 12.34 illustrates the rolling disc
and the required coordinate frames.

The ground plane is inclined by an angle α with respect to the horizontal plane.
The global frame G(Î , Ĵ , K̂) is defined with gravitational acceleration g = −gK̂, as
shown in the figure. To indicate the inclined ground, we attach a temporary coordinate
frame G1 (OX1Y1Z1) to the ground such that the Z1-axis is set perpendicular to the
inclined ground. The ground plane is indicated by axes X1 and Y1. Let us attach a
principal coordinate frame B(ı̂, ̂ , k̂) to the mass center C of the disc such that the
y-axis is perpendicular to the disc plane.

We also attach a frame B1 (Cx1y1z1) to the disc at C such that y1 and y are colinear
and the (x1, y1)-plane is coplanar with the (x, y)-plane. The frame B1 moves with the
disc but does not turn about the disc axis. The (x, y)-plane is always parallel to the
(X1, Y1)-plane.
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The transformation between B and B1 is a rotation ϕ about the y-axis:

B1RB =
 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

 (12.532)

The transformation between B1 and G1 is a rotation θ about the Z1-axis:

G1RB1 =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (12.533)

The transformation between G1 and G is a rotation α about the Y -axis:

GRG1 =
 cos α 0 sin α

0 1 0
− sin α 0 cos α

 (12.534)

There are two external forces acting on the disc: the gravitational force mg at C

and the ground reaction force at the contact point P . We also assume there is a moment
M that keeps the disc perpendicular to the ground. The moment M has a magnitude
Q and is on the x1-axis:

B1M = −Q ı̂1 (12.535)

Let us show the reaction force at P by F. It seems that F has the simplest expression
in B1. So, we assume that

B1F = Fx1
1 ı̂1 + Fy1

1̂1 + Fz1
1k̂1

= Fx1 ı̂1 + Fy1 ̂1 + Fz1 k̂1 (12.536)

We may drop the left superscript 1 from ı̂1, ̂1, k̂1 because the left superscript B1

on F indicates the coordinate frame. The G- and B1-expressions of the gravitational
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force W are
GW = −mg K̂ (12.537)

B1W = B1RG1
G1RG mg = −mg G1RT

B1
GRT

G1
K̂

= mg

 cos θ sin α

− sin θ sin α

− cos α

 (12.538)

Showing the position vector of C by r,

Gr = XÎ + Y Ĵ + (R cos α) K̂ (12.539)

we have the translational equations of motion as

m
(
ẌÎ + Ÿ Ĵ + Z̈K̂

)
= GF + GW

=
 Fx1 cos θ cos α − Fy1 cos α sin θ + Fz1 sin α

Fx1 sin θ + Fy1 cos θ

Fx1 cos θ sin α + Fy1 sin θ sin α − Fz1 cos α − mg

 (12.540)

because
GF = GRB1

B1F (12.541)

We may also express the translational equations of motion in the equivalent global
frame G1. Let us show the position vector of C by r,

G1r = X1 Î1 + Y1 Ĵ1 + R K̂1 (12.542)

We have the translational equations of motion as

m
(
Ẍ1

1Î + Ÿ1
1Ĵ

)
= G1F + G1W (12.543)

=
Fx1 cos θ − Fy1 sin θ + gm sin α

Fy1 cos θ + Fx1 sin θ

Fz1 − gm cos α


where

G1 W = G1RG
GW = mg

 sin α

0
− cos α

 (12.544)

G1F = G1RB1
B1F =

Fx1 cos θ − Fy1 sin θ

Fy1 cos θ + Fx1 sin θ

Fz1

 (12.545)

To obtain the rotational equations of motion, let us find the mass moment matrix
of the disc and angular velocity of B:

BI =
 1

4mR2 0 0
0 1

2mR2 0
0 0 1

4mR2

 (12.546)
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B
GωB = B

G1
ωB1 + B

B1
ωB = BRG1

0
0
θ̇

 + BRB1

0
ϕ̇

0


=

−θ̇ sin ϕ

ϕ̇

θ̇ cos ϕ

 =
ωx

ωy

ωz

 (12.547)

Therefore, the angular momentum of the disc would be

BL = BI B
GωB = 1

4mR2

−θ̇ sin ϕ

2ϕ̇

θ̇ cos ϕ

 (12.548)

Substituting these matrices in the Euler equation provides the rotational equations of
motion:

BM =
Gd

dt
BL = B L̇ + B

GωB × BL

= mR2

4

−θ̈ sin ϕ − θ̇ ϕ̇ cos ϕ

2ϕ̈

θ̈ cos ϕ − θ̇ ϕ̇ sin ϕ

 + mR2

4

−θ̇ ϕ̇ cos ϕ

0
−θ̇ ϕ̇ sin ϕ


= 1

4mR2

−θ̈ sin ϕ − 2θ̇ ϕ̇ cos ϕ

2ϕ̈

θ̈ cos ϕ − 2θ̇ ϕ̇ sin ϕ

 (12.549)

The external moment BM comes from the contribution of the reaction force F at P and
the required torque Q that keeps the disc upright:

BM = BRB1

(
B1M + B1rP × B1F

)
= BRB1

−Q

0
0

 +
 0

0
−R

 ×
Fx1

Fy1

Fz1


=

− (
Q − RFy1

)
cos ϕ

−RFx1

− (
Q − RFy1

)
sin ϕ

 (12.550)

Therefore, the set of Euler equations of motion is given as(
RFy1 − Q

)
cos ϕ

RFx1(
RFy1 − Q

)
sin ϕ

 = 1

4
mR2

−θ̈ sin ϕ − 2θ̇ ϕ̇ cos ϕ

−2ϕ̈

θ̈ cos ϕ − 2θ̇ ϕ̇ sin ϕ

 (12.551)

If we transform the equations to B1, then they will have a simple expression:
B1M = B1RB

BM

=
RFy1 − Q

−RFx1

0

 =

− 1
2R2mθ̇ϕ̇

1
2R2mϕ̈

1
4R2mθ̈

 (12.552)

Solution of Equations (12.552) is simpler than (12.551).
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There exist two holonomic constraints in this system:

Z1 − R = 0 (12.553)

ωx1 = 0 (12.554)

There is also a nonholonomic constraint due to the pure rolling condition. The contact
point of the disc must be at rest. Therefore, the velocity of point P is zero in both
coordinate frames G and B:

B1 ṙP = G1 ṙP = 0 (12.555)

Ẋ1 Î1 + Ẏ1 Ĵ1 = G1RB

(
B
G1

ωB × BrP

) =
−Rϕ̇ cos θ

−Rϕ̇ sin θ

0


BrP = BRB1

B1rP

=
 cos ϕ 0 sin ϕ

0 1 0
− sin ϕ 0 cos ϕ

T  0
0

−R

 =
 R sin ϕ

0
−R cos ϕ

 (12.556)

The constraint equation provides two first-order differential relationships that must be
satisfied:

Ẋ1 = −Rϕ̇ cos θ Ẏ1 = −Rϕ̇ sin θ (12.557)

The three translational equations of (12.543) and the three rotational equations
of (12.552) along with the constraint equations should be solved for the position and
orientation of the disc. From the third equation of (12.552), we have

θ̇ = C1 = const C1 = θ̇ (0) (12.558)

θ = C1t + C2 C2 = θ (0) (12.559)

Then, we can eliminate Fy1 between the first two equations of (12.543),

mẌ1 cos θ + mŸ1 sin θ = Fx1 + gm sin α cos θ (12.560)

and eliminate Fx1 by the second equation of (12.552),

Ẍ1 cos θ + Ÿ1 sin θ = − 1
2Rϕ̈ + g sin α cos θ (12.561)

and Ẍ1, Ÿ1 by (12.557),
Rϕ̈ = 2g sin α cos θ (12.562)

We have θ = θ (t). So,

ϕ̈ = 2
g

R
sin α cos (C1t + C2) = C3 cos (C1t + C2) (12.563)

C3 = 2
g

R
sin α (12.564)
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Integration of this equation yields

ϕ̇ = C3

C1
sin (C2 + tC1) + ϕ̇ (0) (12.565)

ϕ = −C3

C2
1

cos (C2 + tC1) + ϕ̇ (0) t + ϕ (0) (12.566)

Substituting ϕ̇ in Equations (12.557), we find X and Y as functions of t :

Ẋ1 = −R

(
C3

C1
sin (C2 + tC1) + ϕ̇ (0)

)
cos (C2 + tC1) (12.567)

X = 1

2

R

C2
1

C3 cos2 (C2 + tC1) + X (0) (12.568)

Ẏ1 = −R

(
C3

C1
sin (C2 + tC1) + ϕ̇ (0)

)
sin (C2 + tC1) (12.569)

Y = 1

4

R

C2
1

C3[sin 2 (C2 + tC1) − 2tC1] + Y (0) (12.570)

Having X, Y, θ, ϕ as functions of time, we are able to determine Fx1, Fy1,Q from
Equations (12.552) and (12.543),

Fx1 = − 1
2mRϕ̈ = −mg sin α cos (C1t + C2) (12.571)

Fy1 = −2RC3 cos 2 (C2 + tC1) + mg sin α sin 2 (C2 + tC1)

2 cos (C1t + C2)
(12.572)

Q = R

(−2RC3 cos 2 (C2 + tC1) + mg sin α sin 2 (C2 + tC1)

2 cos (C1t + C2)

)
+ 1

2R2mC1

(
C3

C1
sin (C2 + tC1) + ϕ̇ (0)

)
(12.573)

and Fz1 is already calculated from the third equation of (12.543),

Fz1 = gm cos α (12.574)

Example 753 � Axisymmetric Rigid Body under Planar Moment Assume that an
axisymmetric rigid body is under an external moment M,

BM = M1 (t) ı̂ + M2 (t) ̂ (12.575)

The Euler equation of motion with such a moment becomesM1

M2

0

 =
I1ω̇1 − (I1 − I3) ω2ω3

I2ω̇2 − (I3 − I1) ω3ω1

I3ω̇3

 (12.576)
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The third equation shows that the third component of angular velocity is constant:

ω3 = C1 (12.577)

Introducing an axillary constant frequency �,

� = I1 − I1

I1
ω3 (12.578)

reduces the first two Euler equations to

ω̇1 − �ω2 = M1

I1
ω̇2 + �ω1 = M2

I1
(12.579)

By introducing the two complex variables

η = ω1 + i�ω2 (12.580)

Q = M1

I1
+ i

M2

I1
(12.581)

we may combine the two equations of (12.579):

η̇ + iη = Q (12.582)

This is a first-order equation and has the solution

η = e−i�t

(
η0 +

∫ t

0
Q ei�τ dτ

)
(12.583)

We can separate the real and imaginary parts of the solution to obtain

ω1 (t) = ω10 cos �t + ω20 sin �t

+
∫ t

0

(
M1

I1
cos � (τ − t) + M2

I1
sin �(τ − t)

)
dτ (12.584)

ω2 (t) = ω20 cos �t − ω20 sin �t

+
∫ t

0

(
M1

I1
sin � (τ − t) + M2

I1
cos �(τ − t)

)
dτ (12.585)

Example 754 � Axisymmetric Rigid Body under a Moment Consider an axisym-
metric rigid body that is under an external moment M,

BM = M1 (t) ı̂ + M2 (t) ̂ + M3 (t) k̂ (12.586)

The Euler equation of motion with such a moment becomesM1

M2

M3

 =
I1ω̇1 − (I1 − I3) ω2ω3

I2ω̇2 − (I3 − I1) ω3ω1

I3ω̇3

 (12.587)
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The third equation can be integrated first:

ω3 (t) = ω30 + 1

I3

∫ t

0
M3 (τ ) dτ (12.588)

We may introduce an axillary variable α that is considered a known function of time:

α =
∫ t

0
ω3 (τ ) dτ (12.589)

Using α, we can redefine the variables in the first and second Euler equations as

ω̇i = dωi

dα
α̇ = ω′

i (α) ω3 (t) i = 1, 2 (12.590)

where the prime indicates the derivative with respect to α. Using these expressions the
first two Euler equations become

ω′
1 − �ω2 = M1 (t (α))

I1ω3 (t (α))
ω′

2 + �ω1 = M2 (t (α))

I1ω3 (t (α))
(12.591)

� = I1 − I1

I1
ω3 (12.592)

Equations (12.591) are mathematically identical to (12.579) in Example 753 with the
new independent variable α instead of t . So, following, the same procedure, we find
their solutions as

ω1 (α) = ω10 cos �α + ω20 sin �α

+
∫ α

0

(
M1

I1ω3
cos �(τ − α) + M2

I1ω3
sin �(τ − α)

)
dτ (12.593)

ω2 (α) = ω20 cos �α − ω20 sin �α

+
∫ α

0

(
M1

I1ω3
sin � (τ − α) + M2

I1ω3
cos �(τ − α)

)
dτ (12.594)

Example 755 Top Dynamics A top is an axisymmetric rigid body that is rotating
about a fixed point in a constant gravitational field. The fixed point is on the axis of
symmetry at a distance l from the body mass center C. We attach a body coordinate
frame B and a global frame G at the fixed point O. Figure 12.35 illustrates a top with
mass moment [I ]:

BI =
I1 0 0

0 I1 0
0 0 I3

 (12.595)

Let us choose Euler angles ϕ, θ , ψ as the generalized coordinates to describe the motion
of B in G. The rotation of the top about its axis of symmetry is the spin ψ . The angle
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between the axis of symmetry and the Z-axis is the nutation θ , and the rotation of the
axis of symmetry about the Z-axis is the precession ϕ:

BRG =
 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (12.596)

The moment caused by gravity is

BM = BrC × m Bg =
0

0
l

 × mg BRG

 0
0

−1


=

0
0
l

 × mg

−sθsψ

−cψsθ

−cθ

 = mgl

 cos ψ sin θ

− sin ψ sin θ

0

 (12.597)

Substituting BM in the B-expression of Euler equations (12.531), we have

mgl

 cos ψ sin θ

− sin ψ sin θ

0

 =
I1ω̇1 − (I1 − I3) ω2ω3

I2ω̇2 − (I3 − I1) ω3ω1

I3ω̇3

 (12.598)

Solving for angular accelerations provides the differential equations

I1ω̇1 = (I1 − I3) ω2ω3 + mgl cos ψ sin θ (12.599)

I2ω̇2 = (I3 − I1) ω3ω1 − mgl sin ψ sin θ (12.600)

I3ω̇3 = 0 (12.601)
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The components of angular velocity can be expressed by Euler angles as given in (9.81):

B
GωB =

ω1

ω2

ω3

 =
θ̇ cos ψ + ϕ̇ sin θ sin ψ

ϕ̇ cos ψ sin θ − θ̇ sin ψ

ψ̇ + ϕ̇ cos θ

 (12.602)

Employing (12.602) and solving the first two equations for ϕ̇ and θ̇ provide three
differential equations to determine the Euler angles of the top:

I1θ̈ + (
I3

(
ψ̇ + ϕ̇ cos θ

) − I1ϕ̇ cos θ
)
ϕ̇ sin θ − mgl sin θ = 0 (12.603)

I1ϕ̈ sin θ + 2I1θ̇ ϕ̇ cos θ − I3θ̇
(
ψ̇ + ϕ̇ cos θ

) = 0 (12.604)

I3
d

dt

(
ψ̇ + ϕ̇ cos θ

) = 0 (12.605)

These equations have three integrals of motion. The first one is

ψ̇ + ϕ̇ cos θ = ω3 = const (12.606)

Using the first integral of motion, the first and second equations become

I1θ̈ + (I3ω3 − I1ϕ̇ cos θ) ϕ̇ sin θ − mgl sin θ = 0 (12.607)

I1ϕ̈ sin θ + 2I1θ̇ ϕ̇ cos θ − I3θ̇ω3 = 0 (12.608)

Multiplying the second equation by sin θ provides the second integral of motion:

d

dt

(
I1ϕ̇ sin2 θ + I3ω3 cos θ

) = 0 (12.609)

I1ϕ̇ sin2 θ + I3ω3 cos θ = L (12.610)

The third integral of motion appears when we multiply Equation (12.607) by θ̇ and
(12.608) by ϕ̇ sin θ and add them:

d

dt
[I1

(
ϕ̇2 sin2 θ + θ̇2) + 2mgl cos θ ] = 0 (12.611)

I1
(
ϕ̇2 sin2 θ + θ̇2) + 2mgl cos θ = 2E − I3ω

2
3 (12.612)

where
E = mgl cos θ + 1

2Ix

(
ω2

x + ω2
y

) + Izω
2
z (12.613)

These are the same integrals of motion derived in Example 672.
Having three integrals of motion, we should be able to find the three equations for

ϕ̇, θ̇ , ψ̇ :

ϕ̇ = ϕ̇ (ϕ, θ, ψ, t) θ̇ = θ̇ (ϕ, θ, ψ, t) ψ̇ = ψ̇ (ϕ, θ, ψ, t) (12.614)

Equation (12.609) can be used to find ϕ̇ directly:

ϕ̇ = L − I3ω3 cos θ

I1 sin2 θ
(12.615)
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Substituting ϕ̇ in (12.611) and (12.606) results in the equations for θ̇ and ψ̇ :

I1θ̇
2 = 2E − I3ω

2
3 − 2mgl cos θ − (L − I3ω3 cos θ)2

I1 sin2 θ
(12.616)

ψ̇ = ω3 − L − I3ω3 cos θ

I1 sin2 θ
cos θ (12.617)

The decoupled Equation (12.616) is the key to calculate the orientation angles ϕ, θ ,
ψ . Upon calculating θ , the angles ϕ and ψ can be found by integrating (12.615) and
(12.617).

To solve (12.616), we employ a new variable,

u = cos θ u̇ = θ̇ sin θ (12.618)

to simplify the equation:

u̇2 =
(
2E − I3ω

2
3 − 2mglu

) (
1 − u2

)
I1

− (L − I3ω3u)2

I 2
1

(12.619)

The right-hand side of this equation is a continuous cubic polynomial function of u:

p (u) = 2E − I3ω
2
3 − 2mglu

I1

(
1 − u2) − (L − I3ω3u)2

I 2
1

= 2mgl

I1
u3 −

(
2E − I3ω

2
3

I1
+ I 2

3

I 2
1

ω2
3

)
u2

+
(

2L
I3ω3

I 2
1

− 2mgl

I1

)
u +

(
2E − I3ω

2
3

I1
− L2

I 2
1

)
(12.620)

The real roots of p (u) indicate the steady-state motions of the top. For u̇2 ≥ 0 and
u = cos θ , the right-hand side accepts only limited values of u:

−1 ≤ u ≤ 1 (12.621)

For u = +1, −1, the polynomial has negative values. Furthermore, we have

lim
u→±∞ p (u) = ±∞ (12.622)

and therefore, p (u) has at least one real root for u> 1. Now the nonnegative condi-
tion u̇2 ≥ 0 dictates that p (u) must have two real roots for −1 < u < 1 or a double
root. Therefore, p (u) should have a plot similar to Figure 12.36 with three roots
u1, u2, u3:

u1 ≤ u2 < u3 (12.623)

The roots u1 and u2, which indicate the maximum and minimum values of θ , have either
equal or opposite signs. Both cases are physically possible and are considered special
cases in the dynamics of tops. These special cases are associated with θ = θ0 = const

and ω3 = 0.
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u

p(u)

u = 1u = −1

u1 u2 u3

Figure 12.36 Qualitative plot of p (u) versus u.

Let us rewrite Equation (12.619) as

u̇2 = 2mgl

I1
(u − u1) (u − u2) (u − u3) (12.624)

Calculating the roots u1, u2, u3 and introducing a new variable v,

v2 = u − u1

u2 − u1
(12.625)

transform Equation (12.624) to

v̇2 = mgl

2I1
(u3 − u1)

(
1 − v2) (1 − k2v2) (12.626)

0 ≤ k2 = u2 − u1

u3 − u1
≤ 1 (12.627)

Separation of variables leads to an elliptic integral of the first kind with modulus k:∫ v

v0

dv√(
1 − v2

) (
1 − k2v2

) =
√

mgl

2I1
(u3 − u1) (t − t0) = τ (12.628)

The solution of the integral is
v = snτ (12.629)

which provides the following solution for θ :

cos θ = cos θ1 + (cos θ2 − cos θ1) sn2τ (12.630)

cos θ1 = u1 cos θ2 = u2 (12.631)

Therefore, ϕ̇, θ , and ψ̇ are elliptic functions of time. The period of these functions is
half the period of snτ . The superposition of periodic changes of θ(t) onto a precession
about the Z-axis with a periodically changing angular velocity ϕ̇ (t) generates a wavy
motion of the z-axis. It can be visualized on a sphere with the center at the fixed point
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Figure 12.37 Path of the top symmetry axis on a sphere when ϕ̇ (t) is changing between two
positive extreme values.
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Z

ψ

ϕ

Y

θ
z

Figure 12.38 Path of the top symmetry axis on a sphere when ϕ̇ (t) is changing between
negative and positive values.

of the top. The intersection point of the z-axis of the body with this sphere generates
paths which indicate the periodic changes of θ (t) and of ϕ̇ (t).

The general paths of motion of the symmetry axis of the top are illustrated in
Figures 12.37–12.39. Figure 12.37 depicts the situation in which ϕ̇ (t) is changing
between two positive extreme values. Figure 12.38 shows the path of the z-axis when
ϕ̇ (t) is changing between negative and positive values. Figure 12.39 depicts the situ-
ation in which ϕ̇ (t) is changing between zero and a positive maximum. The periodic
dance motion of the top with θ (t) which is superimposed on the precessional motion
is called nutation.
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Figure 12.39 Path of the top symmetry axis on a sphere when ϕ̇ (t) is changing between
negative and positive values.

Example 756 � Special Cases of Top Dynamics Some special cases of top dynamics
have simpler equations of motion with simpler interpretations. Consider the top kine-
matics shown in Figure 12.35 and its dynamic equations of motion (12.603)–(12.605):

1. ω3 = 0. This case is equivalent to a planar pendulum in which θ is the only
time-dependent variable. The equations of motion reduce to only one equation:

I1θ̈ − mgl sin θ = 0 (12.632)

The planar pendulum case has energy conservation as the only integral of
motion:

I1θ̇
2 + 2mgl cos θ = 2E (12.633)

2. θ = θ0 = const. This case is dependent on constant precession angular velocity.
Equation (12.608) yields ϕ̇ = const and Equation (12.605) leads to ψ̇ = const.
Therefore, the axis of symmetry of the top is moving with a constant preces-
sion angular velocity ψ̇ around a circular cone with the central Z-axis. These
conditions make a quadratic equation of (12.607) to determine ϕ̇:

−I1ϕ̇
2 sin θ cos θ + I3ω3ϕ̇ sin θ − mgl sin θ = 0 (12.634)

ϕ̇ =


ω3I3

2I1 cos θ

(
1 +

√
1 − 4glmI1

ω2
3I

2
3

cos θ

)
cos θ �= 0

gl
m

ω3I3
cos θ = 0

(12.635)
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12.5 MULTIBODY DYNAMICS

We consider multibodies as a set of rigid bodies connected to each other by revolute or
prismatic joints. Most of the mechanical devices are multibodies. Each body is called
a link. We follow the method of assigning numbers and coordinate frames of links as
described in Chapter 7.

Figure 12.40 illustrates a link (i) of a multibody along with the velocity and
acceleration vectorial characteristics. Figure 12.41 illustrates a free-body diagram of
link (i). The force 0Fi−1 and moment 0Mi−1 are the global expressions of the resultant
force and moment that link (i − 1) applies to link (i) at joint i. Similarly, 0Fi and 0Mi

are the global expressions of the resultant force and moment that link (i) applies to
link (i + 1) at joint i + 1. We measure and show the force systems (0Fi−1, 0Mi−1) and
(0Fi , 0Mi) at the origin of the coordinate frames Bi−1 and Bi , respectively. The sums
of the external loads acting on link (i) are shown by

∑ 0Fei
and

∑ 0Mei
.

A multibody with n links will have n sets of Newton–Euler equations. To simplify
the solution of the equations, it is better to express all of them in one coordinate frame.
The global frame G ≡ 0B is the best frame. The G-expressions of Newton–Euler
equations (12.219) and (12.1) have the simplest forms:∑

0F = m 0v̇ (12.636)∑
0M = 0L̇ (12.637)

The Newton–Euler equations of motion for link (i) in the global coordinate
frame are

0Fi−1 − 0Fi +
∑

0Fei
= mi

0ai (12.638)

zi

xi−1

xi

oi

oi−1

Bi

Bi−1

Joint i
Joint i+1

zi−1

X

Z

O

G

ri

Y0di−1

Gdi

Link (i)

0ai

Ci

di−1

di

di

.

..

..

0vi

i−1 d i

ni mi

0αi

0ωi

di−1

.

Figure 12.40 A link (i) and its kinematic characteristics.
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Bi−1
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X

Z

O

G
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Y0di−1

Gdi

Link (i)
Ci

i−1 d i

ni mi

Joint i
Action joint

Joint i+1
Reaction joint

−Fi

−Mi

Fi−1

Mi−1

Figure 12.41 A link (i) and its force system.

0Mi−1 − 0Mi +
∑

0Mei

+ (
0di−1 − 0ri

) × 0Fi−1 − (
0di − 0ri

) × 0Fi = 0Ii 0αi (12.639)

Proof : The force system at the distal end of link (i) is made of a force 0Fi and a
moment 0Mi measured at the origin of Bi and expressed in B0. The right subscript on
0Fi and 0Mi is a number indicating link (i) and its coordinate frame Bi .

At joint i + 1 there is always an action force 0Fi where link (i) applies to link
(i + 1) and a reaction force − 0Fi where link (i + 1) applies to link (i). Therefore, on
link (i) there is always an action force 0Fi−1 coming from link (i − 1), and a reaction
force − 0Fi coming from link (i + 1). The action force is called the driving force, and
the reaction force is called the driven force. Similarly, at joint i + 1 there is always
an action moment 0Mi where link (i) applies to link (i + 1), and a reaction moment
− 0Mi where link (i + 1) applies to link (i). So, on link (i) there is always an action
moment 0Mi−1 coming from link (i − 1), and a reaction moment − 0Mi coming from
link (i + 1). The action moment is called the driving moment , and the reaction moment
is called the driven moment .

A link (i) is under two joint force systems: a driving force system (0Fi−1, 0Mi−1)
at the origin of the coordinate frame Bi−1 and a driven force system (0Fi , 0Mi)
at the origin of the coordinate frame Bi . The driving force system (0Fi−1, 0Mi−1)
gives motion to link (i) and the driven force system (0Fi , 0Mi) gives motion to
link (i + 1).

In addition to the action and reaction force systems, there might be some external
forces acting on link (i) where their resultant makes a force system (

∑ 0Fei
,
∑ 0Mei

)
at the mass center Ci . In a multibody application, weight is usually the only external
load on the middle links. There are also reactions from the environment that are extra
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external force systems on the base and end-effector links. The force and moment that
the base actuator applies to the first link are 0F0 and 0M0, and the force and moment
that the end-effector applies to the environment are 0Fn and 0Mn. If weight is the only
external load on link (i) and it is in the − 0k̂0 direction, then we have∑

0Fei
= mi

0g = −mi g 0k̂0 (12.640)∑
0Mei

= 0ri × mi
0g = − 0ri × mi g 0k̂0 (12.641)

where g is the gravitational acceleration vector.
As shown in Figure 12.40, we indicate the global position of the mass center of

link (i) by 0ri and the global positions of the origin of body frames Bi and Bi−1 by
0di and 0di−1, respectively. The link’s velocities 0vi , 0ωi and accelerations 0ai , 0αi

are measured and shown at Ci . The physical properties of link (i) are specified by its
mass mi and mass moment 0Ii about the link’s mass center Ci .

Newton’s equation of motion determines that the sum of the forces applied to link
(i) is equal to the mass of the link times its acceleration at Ci :

0Fi−1 − 0Fi +
∑

0Fei
= mi

0ai (12.642)

To write the Euler equation, in addition to the action and reaction moments, we
must add the moments of the action and reaction forces about Ci . The moments of −Fi

and Fi−1 are −mi × Fi and ni × Fi−1, where mi is the position vector of oi from Ci

and ni is the position vector of oi−1 from Ci . Therefore, the Euler equation of motion
for link (i) is

0Mi−1 − 0Mi +
∑

0Mei
+ 0ni × 0Fi−1 − 0mi × 0Fi = 0Ii 0αi (12.643)

If we express the position vectors of ni and mi by

0ni = 0di−1 − 0ri (12.644)
0mi = 0di − 0ri (12.645)
0

i−1 di = 0mi − 0ni (12.646)

then Equation (12.643) will be the same as Equation (12.639).
There are 2n vectorial equations of motion for an n-link multibody. However,

there are 2(n + 1) forces and moments involved. Therefore, one set of force systems
(usually Fn and Mn) must be specified to solve the equations and find the joints’ force
and moment. �

Example 757 A Link with Spherical Joint Figure 12.42 illustrates a link attached to
the ground by a spherical joint at O. The free-body diagram of the link is made of an
external force GFe and moment GMe at the end point, gravity mg, and driving force
GF0 and moment GM0 at the joint. The Newton–Euler equations for the link are

GF0 + GFe + mg K̂ = m GaC (12.647)
GM0 + GMe + Gn × GF0 + Gm × GFe = GI GαB (12.648)
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Figure 12.42 A link with a spherical joint.

Example 758 Turning Arms Let us consider the turning uniform arm shown in
Figure 12.43(a). Figure 12.43(b) illustrates the free-body diagram of the arm and
its relative position vectors m and n:

0m =


l

2
cos θ

l

2
sin θ

0

 0n =


− l

2
cos θ

− l

2
sin θ

0

 (12.649)

The positions of C and B1 are
0r1 = − 0n (12.650)
0d1 = − 0n + 0m (12.651)

F0

Y

y1

x1

X

m

Q0

Q0
mg

n

m
B1

B0

C

θ

l 1

(a) (b)

Figure 12.43 A turning uniform arm.
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where 0r1 indicates the position of C and 0d1 indicates the position of B1, both in B0.
Knowing that the arm is turning about the Z-axis, we have

0ω1 = θ̇ K̂ (12.652)

0α1 = 0ω̇1 = θ̈ K̂ (12.653)
0g = −g Ĵ (12.654)

0aC = 0α1 × 0r1 − 0ω1 × (
0ω1 × 0r1

)

=


− l

2
θ̈ sin θ + l

2
θ̇2 (cos θ)

l

2
θ̈ cos θ + l

2
θ̇2 sin θ

0

 (12.655)

The forces on the arm are

0F0 =
FX

FY

FZ

 0Fe =
0

0
0

 (12.656)

0M0 =
QX

QY

QZ

 0Me =
0

0
0

 (12.657)

Let us assume that 1I1 is the principal mass moment matrix of the arm about its mass
center:

1I1 =

Ix 0 0

0 Iy 0

0 0 Iz

 (12.658)

Employing the rotation transformation matrix

0R1 = RZ,θ =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (12.659)

we determine that

0I1 = RZ,θ
1I1 RT

Z,θ = 0R1

Ix 0 0

0 Iy 0

0 0 Iz

 0RT
1

=

Ix cos2 θ + Iy sin2 θ
(
Ix − Iy

)
cos θ sin θ 0(

Ix − Iy

)
cos θ sin θ Iy cos2 θ + Ix sin2 θ 0

0 0 Iz

 (12.660)

Substituting the above information in the Newton–Euler equations of the arm,

GF0 + GFe + mg K̂ = m GaC (12.661)
GM0 + GMe + Gn × GF0 + Gm × GFe = GI GαB (12.662)
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provides the equations of motion

0F0 + 0Fe + m1g = m 0aC (12.663)FX

FY

FZ

 =

 − 1
2ml

(
θ̈ sin θ − θ̇2 cos θ

)
1
2ml

(
θ̈ cos θ + θ̇2 sin θ

) + mg

0

 (12.664)

0M0 + 0Me + 0n × 0F0 + 0m × 0Fe = I 0α1 (12.665)

QX

QY

QZ

 =



l

2
FZ sin θ

− l

2
FZ cos θ

Izθ̈ + l

2
FY cos θ − l

2
FX sin θ

 (12.666)

Let us substitute the force components from (12.664) to determine the components of
the driving moment 0M0:

QX

QY

QZ

 =


0
0(

Iz + m1l
2

4

)
θ̈ + 1

2
mgl cos θ

 (12.667)

Therefore, Q0 = QZ is the required torque to turn the arm about the Z-axis:

Q0 = (
Iz + 1

4m1l
2
)
θ̈ + 1

2 mgl cos θ (12.668)

Let us consider the motion of the long arm of a clock, as shown in Figure 12.44(a).
The arm is supposed to turn with a constant angular velocity ω:

ω = θ̇ = 2π

60
rad/min = 6 deg/min (12.669)

Having zero angular acceleration means the motor of the clock should be able to apply
a variable torque Q0,

Q0 (θ) = mga cos θ (12.670)

where θ is measured from the horizontal axis, as shown in Figure 12.43(a). The torque
Q0 is positive for 90 deg < θ < −90 deg or 0 < t < 30 min and negative for −90 deg <

θ < −270 deg or 30 min < t < 60 min.
Besides the actuator torque Q0 and gravitation force mg, there are also a constant

frictional torque Qf and a resistive viscous torque Qc = cθ̇ that apply on the arm. So,
a better model of the dynamics is

Q0 = (
Iz + m1a

2) θ̈ + mga cos θ + Qf + cθ̇ (12.671)

which shows that we still need a fluctuating torque to have a constant angular velocity:

Q0 (θ) = mga cos θ + Qf + cω (12.672)
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Q0

mg

l
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Figure 12.44 A clock with two unbalanced rotating arms in (a) and balanced rotating arms
in (b).

The motors of stationary clocks are supposed to apply a constant and uniform torque.
The best way to reduce the effect of the variable term of Equation (12.672) is to shorten
a. Having a counterbalance and designing the hands of the clock with a = 0 as are
shown in Figure 12.44(b) can solve the problem.

Example 759 Dynamics of a Four-Bar Linkage Linkages are connected multibodies
that make a closed loop. The first and the last links of a linkage are usually con-
nected to the ground link. Figure 12.45(a) illustrates a closed-loop four-bar linkage
and Figure 12.45(b) illustrates the free-body diagrams of its links. The positions of the
mass centers and the position vectors of 0ni and 0mi for each link are known. The
Newton–Euler equations for link (i) are

0Fi−1 − 0Fi + mig Ĵ = mi
0ai (12.673)

0Mi−1 − 0Mi + 0ni × 0Fi−1 − 0mi × 0Fi = Ii 0αi (12.674)

The ground link is not moving, and therefore, we have three sets of equations:

0F0 − 0F1 + m1g Ĵ = m1
0a1 (12.675)

0M0 − 0M1 + 0n1 × 0F0 − 0m1 × 0F1 = I1 0α1 (12.676)

0F1 − 0F2 + m2g Ĵ = m2
0a2 (12.677)

0M1 − 0M2 + 0n2 × 0F1 − 0m2 × 0F2 = I2 0α2 (12.678)

0F2 − 0F3 + m3g Ĵ = m2
0a2 (12.679)

0M2 − 0M3 + 0n3 × 0F2 − 0m3 × 0F3 = I3 0α3 (12.680)

Let us assume that there is no friction in the joints and the mechanism is planar. The
force vectors are in the (X, Y )-plane, and the moments are parallel to the Z-axis. So,
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Figure 12.45 A four-bar linkage and free-body diagram of each link.

the equations of motion simplify to

0F0 − 0F1 + m1g Ĵ = m1
0a1 (12.681)

0M0 + 0n1 × 0F0 − 0m1 × 0F1 = I1 0α1 (12.682)

0F1 − 0F2 + m2g Ĵ = m2
0a2 (12.683)

0n2 × 0F1 − 0m2 × 0F2 = I2 0α2 (12.684)

0F2 − 0F3 + m3g Ĵ = m2
0a3 (12.685)

0n3 × 0F2 − 0m3 × 0F3 = I3 0α3 (12.686)

where 0M0 is the driving torque of the mechanism. These three vectorial equations
provide nine scalar equations for the following nine unknowns:

F0x, F0y, F1x, F1y, F2x, F2y, F3x, F3y,M0 (12.687)

We can rearrange the set of equations in a matrix form as

[A] x = b (12.688)
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where

[A] =



1 0 −1 0 0 0 0 0 0

0 1 0 −1 0 0 0 0 0

−n1y n1x m1y −m1x 0 0 0 0 1

0 0 1 0 −1 0 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 −n2y n2x m2y −m2x 0 0 0

0 0 0 0 1 0 −1 0 0

0 0 0 0 0 1 0 −1 0

0 0 0 0 −n3y n3x m3y −m3x 0


(12.689)

x =



F0x

F0y

F1x

F1y

F2x

F2y

F3x

F3y

M0


b =



m1a1x

m1a1y − m1g

I1α1

m2a2x

m2a2y − m2g

I2α2

m3a3x

m3a3y − m3g

I3α3


(12.690)

The matrix [A] describes the geometry of the mechanism, the column matrix x is
the unknown forces, and the column matrix b indicates the dynamic terms. To solve
the dynamics of the four-bar mechanism, we must calculate the accelerations 0ai and
0αi and then find the required driving moment 0M0 and the joint forces.

Example 760 A Turning Arm with a Tip Mass Carrying masses are regular functions
of mechanical machinery. The carrying mass will change the position of the mass center
as well as the mass moment properties of the machine. To see the effect of such a
massive load on the required actuating force systems, let us consider the uniform arm
of Figure 12.46(a) with a hanging mass m2 at the tip point. Figure 12.46(b) illustrates
the FBD of the arm. Adding m2 to the system moves the mass center of the arm to 1r1:

1r1 = m1

m1 + m2

l/2

0

0

 + m2

m1 + m2

l

0
0



=


m1 + 2m2

2 (m1 + m2)
l

0
0

 =

rx

0

0

 (12.691)
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Figure 12.46 A uniform rotating arm with a hanging weight m2 at the tip point.

The relative position vectors m and n of arm (1), which is the only link of the system,
are

1n1 = − 1r1 = −rx ı̂ (12.692)
1m1 = lı̂ − 1r1 = (l − rx) ı̂ (12.693)
0d1 = − 1n1 + 1m1 = lı̂ (12.694)

0m = 0R1
1m1 =

(l − rx) cos θ

(l − rx) sin θ

0

 (12.695)

0n = 0R1
1n1 =

−rx cos θ

−rx sin θ

0

 (12.696)

0r = − 0n =
rx cos θ

rx sin θ

0

 (12.697)

0R1 = RZ,θ =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (12.698)

The gravitational acceleration vector g and the kinematics of the arm are

0ω1 = θ̇ K̂ 0α1 = 0ω̇1 = θ̈ K̂ g = −g Ĵ (12.699)

0aC = 0α1 × 0r1 + 0ω1 × (
0ω1 × 0r1

)
=

−rx θ̈ sin θ − rx θ̇
2 cos θ

rxθ̈ cos θ − rx θ̇
2 sin θ

0

 (12.700)
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The forces on the arm are

0F0 =

FX

FY

FZ

 0Fe =

 0

− (m1 + m2) g

0

 (12.701)

0M0 =

QX

QY

QZ

 0Me =

0

0

0

 (12.702)

Let us assume that 1I1 is the principal mass moment matrix of the arm about its center,

1I1 =

Ix 0 0

0 Iy 0

0 0 Iz

 (12.703)

Then the mass moment matrix of the arm about the common mass center at 1r1 is

1I1 =

Ix 0 0

0 Iy 0

0 0 I3

 (12.704)

I3 = Iz + m1

(
rx − l

2

)2

+ m2 (l − rx)
2 (12.705)

Because the equations of motion should be written in B0, we use the transformation
matrix 0R1 to determine 0I1:

0I1 = RZ,θ
1I1 RT

Z,θ = 0R1

Ix 0 0

0 Iy 0

0 0 I3

 0RT
1

=

Ix cos2 θ + Iy sin2 θ
(
Ix − Iy

)
cos θ sin θ 0(

Ix − Iy

)
cos θ sin θ Iy cos2 θ + Ix sin2 θ 0

0 0 I3

 (12.706)

Substituting the above information in the equations of motion

0F0 + 0Fe = (m1 + m2)
0aC (12.707)

0M0 + 0Me + 0n × 0F0 + 0m × 0Fe = 0I0 0αB (12.708)

provides the following set of scalar equations:

0F0 + 0Fe = (m1 + m2)
0aC (12.709)FX

FY

FZ

 =

 − (m1 + m2) rx

(
θ̈ sin θ + θ̇2 cos θ

)
(m1 + m2)

(
rx θ̈ cos θ − rx θ̇

2 sin θ + g
)

0

 (12.710)
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0M0 + 0Me + 0n × 0F0 + 0m × 0Fe = 0I1 0α1 (12.711)QX

QY

QZ

 =


rxFZ sin θ

−rxFZ cos θ

I3θ̈ − rxFX sθ

+[rxFY + (m1 + m2) g (l − rx)]cθ

 (12.712)

To calculate the driving moment 0M0, we substitute the force components from the
Newton equation (12.710) into the Euler equation (12.712):QX

QY

QZ

 =

 0

0(
I3 + (m1 + m2) r2

x

)
θ̈ + (m1 + m2) lg cos θ

 (12.713)

Substituting rx from (12.691) provides the required driving torque Q0:

Q0 = QZ = [Iz + m1

(
rx − l

2

)2

+ m2 (l − rx)
2 + (m1 + 2m2)

2

4 (m1 + m2)
l2]

+ (m1 + m2) gl cos θ (12.714)

Example 761 2R Planar Manipulator Newton–Euler Dynamics The 2R planar
manipulators are applied controlled multibodies that can be seen in many robotic
designs. An example of a 2R manipulator and its free-body diagram are shown in

Figure 12.47. Assume G
(
Î , Ĵ , K̂

)
= B0 is the global coordinate frame of the manip-

ulator. The driving torques of the actuators are parallel to the Z-axis and are indicated
by Q0 and Q1. The Newton–Euler equations of motion for the first link are

0F0 − 0F1 + m1g Ĵ = m1
0a1 (12.715)

0Q0 − 0Q1 + 0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.716)

and the equations of motion for the second link are

0F1 + m2g Ĵ = m2
0a2 (12.717)

0Q1 + 0n2 × 0F1 = 0I2 0α2 (12.718)

So, there are four equations for four unknowns F0, F1, Q0, and Q1. Let us set these
equations in matrix form as

[A] x = b (12.719)

[A] =



1 0 0 −1 0 0
0 1 0 0 −1 0

n1y −n1x 1 −m1y m1x −1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 n2y −n2x 1


(12.720)
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F0

x2
y2

y0

y1

x1

x0

m1

m2

Q0

Q1

Q0

−F1

F1

m1g

m2g

−Q1

n1
m1

n 2

m 2

B1B0

C1

C2

θ2

θ1

l1

l 2

B2

Q1

Figure 12.47 Free-body diagram of a 2R planar manipulator.

x =



F0x

F0y

Q0

F1x

F1y

Q1


b =



m1a1x

m1a1y − m1g
0I1α1

m2a2x

m2a2y − m2g
0I2α2


(12.721)

The matrix A is constant. Having the column matrix b at any time, we can calculate
the column matrix x to have the joint force and torques.

Example 762 Actuator Torques of a 2R Manipulator In multibody dynamics, we
usually do not need to find the joint forces. Actuator commands, in this case the joint
torques, are more interesting because we use them to control a multibody. In Example
761 we found four equations for the joint force system of the 2R manipulator shown
in Figure 12.47:

0F0 − 0F1 + m1g Ĵ = m1
0a1 (12.722)

0Q0 − 0Q1 + 0n1 × 0F0 − 0m1 × 0F1 = 0I1 0α1 (12.723)
0F1 + m2g Ĵ = m2

0a2 (12.724)
0Q1 + 0n2 × 0F1 = 0I2 0α2 (12.725)
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We may eliminate the joint forces F0 and F1 from the four equations of motion
(12.722)–(12.725) and reduce the number of equations to two for the two torques
Q0 and Q1. Eliminating F1 between (12.724) and (12.725) provides

0Q1 = 0I2 0α2 − 0n2 ×
(
m2

0a2 − m2g Ĵ
)

(12.726)

and eliminating F0 and F1 between (12.722) and (12.723) gives

0Q0 = 0Q1 + 0I1 0α1 + 0m1 ×
(
m2

0a2 − m2g Ĵ
)

− 0n1 ×
(
m1

0a1 − m1g Ĵ + m2
0a2 − m2g Ĵ

)
(12.727)

The forces F1 and F0, if we are interested, are

0F1 = m2
0a2 − m2g Ĵ (12.728)

0F0 = m1
0a1 + m2

0a2 − (m1 + m2) g Ĵ (12.729)

12.6 � RECURSIVE MULTIBODY DYNAMICS

An advantage of the Newton–Euler equations of motion in a multibody application is
that we can calculate the joint forces of one link at a time. Therefore, starting from the
end-effector link, we can analyze the links one by one and end up at the base link or
vice versa. For such an analysis, we need to re-form the Newton–Euler equations of
motion to work in the interested link’s frame.

The backward-recursive Newton–Euler equations of motion for link (i) in its body
coordinate frame Bi are

iFi−1 = iFi −
∑

iFei
+ mi

i
0ai (12.730)

iMi−1 = iMi −
∑

iMei
− (

idi−1 − iri

) × iFi−1

+ (
idi − iri

) × iFi + iIi
i
0αi + i

0ωi × iIi
i
0ωi (12.731)

where
ini = idi−1 − iri (12.732)

imi = idi − iri (12.733)

When the driving force system (iFi−1, iMi−1) is found in frame Bi , we can transform
them to the frame Bi−1,

i−1Fi−1 = i−1Ti
iFi−1 (12.734)

i−1Mi−1 = i−1Ti
iMi−1 (12.735)

and apply the Newton–Euler equation for link (i − 1). The negative of the converted
force system acts as the driven force system (− i−1Fi−1, − i−1Mi−1) for link (i − 1).
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The forward-recursive Newton–Euler equations of motion for the link (i) in its
body coordinate frame Bi are

iFi = iFi−1 +
∑

iFei
− mi

i
0ai (12.736)

iMi = iMi−1 +
∑

iMei
+ (

idi−1 − iri

) × iFi−1

− (
idi − iri

) × iFi − iIi
i
0αi − i

0ωi × iIi
i
0ωi (12.737)

where
ini = idi−1 − iri (12.738)

imi = idi − iri . (12.739)

When the reaction force system (iFi , iMi) is found in frame Bi , we can transform them
to frame Bi+1:

i+1Fi = iT −1
i+1

iFi (12.740)

i+1Mi = iT −1
i+1

iMi (12.741)

The negative of the converted force system acts as the action force system (− i+1Fi ,
− i+1Mi) for the link (i + 1).

Proof : The Euler equation for a rigid link in the body coordinate frame is

BM =
Gd

dt
BL = B L̇ + B

GωB × BL

= iIi iαi + B
GωB × iIi iωi (12.742)

where L is the angular momentum of the link:

BL = BI B
GωB (12.743)

We may solve the Newton–Euler equations of motion (12.638) and (12.639) for the
action force system

0Fi−1 = 0Fi −
∑

0Fei
+ mi

0ai (12.744)

0Mi−1 = 0Mi −
∑

0Mei
− (0di−1 − 0ri

) × 0Fi−1

+ (0di − 0ri

) × 0Fi +
0d

dt
0Li (12.745)

and then transform the equations to the coordinate frame Bi attached to link (i) to
make the backward-recursive form of the Newton–Euler equations of motion:

iFi−1 = 0T −1
i

0Fi−1 = iFi −
∑

iFei
+ mi

i
0ai (12.746)
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iMi−1 = 0T −1
i

0Mi−1

= iMi −
∑

iMei
− (

idi−1 − iri

) × iFi−1

+ (
idi − iri

) × iFi +
0d

dt
iLi

= iMi −
∑

iMei
− (

idi−1 − iri

) × iFi−1

+ (
idi − iri

) × iFi + iIi
i
0αi + i

0ωi × iIi
i
0ωi (12.747)

The process of starting from link (i) and deriving the equations of motion of the
previous link (i − 1) is called the backward Newton–Euler equations of motion. We
may also start from link (i) and derive the equations of motion of the next link (i + 1).
This method is called the forward Newton–Euler equations of motion . Employing the
Newton–Euler equations of motion (12.730) and (12.731), we can write them in a
forward-recursive form in the coordinate frame Bi attached to the link (i):

iFi = iFi−1 +
∑

iFei
− mi

i
0ai (12.748)

iMi = iMi−1 +
∑

iMei
+ (

idi−1 − iri

) × iFi−1

− (
idi − iri

) × iFi − iIi
i
0αi − i

0ωi × iIi
i
0ωi (12.749)

ini = idi−1 − iri (12.750)
imi = idi − iri (12.751)

Using the forward Newton–Euler equations of motion (12.748) and (12.749), we can
calculate the reaction force system (iFi , iMi) by having the action force system (iFi−1,
iMi−1). When the reaction force system (iFi , iMi) is found in frame Bi , we can
transform them to frame Bi+1:

i+1Fi = iT −1
i+1

iFi (12.752)

i+1Mi = iT −1
i+1

iMi (12.753)

The negative of the converted force system acts as the action force system (− i+1Fi ,
− i+1Mi) for the link (i + 1) and we can apply the Newton–Euler equation to the link
(i + 1).

The forward Newton–Euler equations of motion allow us to start from a known
action force system (1F0, 1M0), where the base link applies to the link (1), and calculate
the action force of the next link. Therefore, analyzing the links of a multibody one by
one, we end up with the force system where the end effector applies to the environment.

Using the forward- or backward-recursive Newton–Euler equations of motion
depends on the measurement and sensory system of the multibody. �

Example 763 � Recursive Dynamics of a 2R Planar Manipulator Consider the
2R planar manipulator shown in Figure 12.48. The manipulator is carrying a force
system at the end point. We use this manipulator to show how to develop the dynamic
equations for a serial multibody.
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Figure 12.48 A 2R planar manipulator carrying a load at the end point.

The backward-recursive Newton–Euler equations of motion for the first link are

1F0 = 1F1 −
∑

1Fe1 + m1
1
0a1

= 1F1 − m1
1g + m1

1
0a1 (12.754)

1M0 = 1M1 −
∑

1Me1 − (1d0 − 1r1
) × 1F0

+ (1d1 − 1r1
) × 1F1 + 1I1

1
0α1 + 1

0ω1 × 1I1
1
0ω1

= 1M1 − 1n1 × 1F0 + 1m1 × 1F1

+ 1I1
1
0α1 + 1

0ω1 × 1I1
1
0ω1 (12.755)

and the backward-recursive equations of motion for the second link are

2F1 = 2F2 −
∑

2Fe2 + m2
2
0a2

= −m2
2g − 2Fe + m2

2
0a2 (12.756)

2M1 = 2M2 −
∑

2Me2 − (2d1 − 2r2
) × 2F1

+ (2d2 − 2r2
) × 2F2 + 2I2

2
0α2 + 2

0ω2 × 2I2
2
0ω2

= − 2Me − 2m2 × 2Fe − 2n2 × 2F1

+ 2I2
2
0α2 + 2

0ω2 × 2I2
2
0ω2 (12.757)
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The manipulator consists of two R‖R(0) links; therefore, their transformation matrices
i−1Ti are of class (D.1). Substituting di = 0 and ai = li produces the transformation
matrices

0T1 =


cos θ1 − sin θ1 0 l1 cos θ1

sin θ1 cos θ1 0 l1 sin θ1

0 0 1 0

0 0 0 1

 (12.758)

1T2 =


cos θ2 − sin θ2 0 l2 cos θ2

sin θ2 cos θ2 0 l2 sin θ2

0 0 1 0

0 0 0 1

 (12.759)

The homogeneous mass moment matrices are

1I 1 = m1l
2
1

12


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 2I 2 = m2l
2
2

12


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 (12.760)

The homogeneous moment of the inertia matrix is obtained by appending a zero row
and column to the I -matrix.

The position vectors are

1n1 =


−l1/2

0
0
0

 2n2 =


−l2/2

0
0
0

 (12.761)

1m1 =


l1/2

0
0
0

 2m2 =


l2/2

0
0
0

 (12.762)

1r1 = − 1n1
2r2 = − 2n1 + 2m2 − 2n2 (12.763)

The angular velocities and accelerations are

1
0ω1 =


0
0
θ̇1

0

 2
0ω2 =


0
0

θ̇1 + θ̇2

0

 (12.764)

1
0α1 =


0
0
θ̈1

0

 2
0α2 =


0
0

θ̈1 + θ̈2

0

 (12.765)
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The translational acceleration of C1 is

1
0a1 = 1

0α1 × (− 1m1
) + 1

0ω1 × (1
0ω1 × (− 1m1

)) + 1
0d̈1

=


− 1

2 l1θ̇
2
1

1
2 l1θ̈1

0

0

 (12.766)

where
1d̈1 = 2 1a1 (12.767)

The translational acceleration of C2 is

2
0a2 = 2

0α2 × (− 2m2
) + 2

0ω2 × [2
0ω2 × (− 2m2

)] + 2
0d̈2

=


− 1

2 l2
(
θ̇1 + θ̇2

)2

1
2 l2

(
θ̈1 + θ̈2

)
0

0

 (12.768)

where
2d̈2 = 2 2a2 (12.769)

The gravitational acceleration vectors in the links’ frame are

1g = 0T −1
1

0g =


−g sin θ2

g cos θ2

0
0

 (12.770)

2g = 0T −1
2

0g =


−g sin (θ1 + θ2)

g cos (θ1 + θ2)

0
0

 (12.771)

The external load is usually given in the global coordinate frame. We must transform
them to the interested link’s frame to apply the recursive equations of motion. Therefore,
the external force system expressed in B2 is

2Fe = 0T −1
2

0Fe =


Fex cos (θ1 + θ2) + Fey sin (θ1 + θ2)

Fey cos (θ1 + θ2) − Fex sin (θ1 + θ2)

0
0

 (12.772)

2Me = 0T −1
2

0Me =


0
0

Me

0

 (12.773)
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Now, we begin from the final link and calculate its action force system. The backward
Newton equation for link (2) is

2F1 = −m2
2g − 2Fe + m2

2
0a2 =


2F1x

2F1y

0

0

 (12.774)

where
2F1x = − 1

2 l2m2
(
θ̇1 + θ̇2

)2 − Fex cos (θ1 + θ2)

− (
Fey − gm2

)
sin (θ1 + θ2) (12.775)

2F1y = 1
2 l2m2

(
θ̈1 + θ̈2

) + Fex sin (θ1 + θ2)

− (
Fey + gm2

)
cos (θ1 + θ2) (12.776)

and the backward Euler equation for link (2) is

2M1 = − 2Me − 2m2 × 2Fe − 2n2 × 2F1

+ 2I2
2
0α2 + 2

0ω2 × 2I2
2
0ω2 =


0

0
2M1z

0

 (12.777)

where
2M1z = −Me + l2Fex sin (θ1 + θ2) − l2Fey cos (θ1 + θ2)

+ 1
3 l2

2m2
(
θ̈1 + θ̈2

) − 1
2gl2m2 cos (θ1 + θ2) (12.778)

Finally the action force on link (1) is

1F0 = 1F1 − m1
1g + m1

1
0a1

= 1T2
2F1 − m1

1g + m1
1
0a1 =


1F0x

1F0y

0

0

 (12.779)

where
1F0x = −Fex cos θ1 − (

Fey − gm1
)

sin θ1

− 1
2 l2m2

(
θ̈1 + θ̈2

)
sin θ2 − 1

2 l2m2
(
θ̇1 + θ̇2

)2
cos θ2

+ gm2 sin (2θ2 + θ1) − 1
2 l1m1θ̇

2
1 (12.780)

1F0y = Fex sin θ1 − (
Fey + gm1

)
cos θ1

+ 1
2 l2m2

(
θ̈1 + θ̈2

)
cos θ2 − 1

2 l2m2
(
θ̇1 + θ̇2

)2
sin θ2

− gm2 cos (2θ2 + θ1) + 1
2 l1m1θ̈1 (12.781)
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and the action moment on link (1) is

1M0 = 1M1 − 1n1 × 1F0 + 1m1 × 1F1

+ 1I1
1
0α1 + 1

0ω1 × 1I1
1
0ω1

= 1T2
2M1 − 1n1 × 1F0 + 1m1 × 1T2

2F1

+ 1I1
1
0α1 + 1

0ω1 × 1I1
1
0ω1 =


0
0

1M0z

0

 (12.782)

where
1M0z = −Me + 1

3 l2
2m2

(
θ̈1 + θ̈2

) + 1
3 l2

1m1θ̈1

− (
Fey l2 + 1

2gl2m2
)

cos (θ1 + θ2)

− 1
2 l1m1g cos θ1 + Fex l2 sin (θ1 + θ2) (12.783)

Example 764 � Actuator’s Force and Torque Applying a backward-recursive force
analysis ends up with a set of known force systems at joints. Each joint is driven by a
motor known as an actuator that applies a force in a P joint or a torque in an R joint.
When the joint i is prismatic, the force of the driving actuator is along the zi−1-axis,

Fm = 0k̂T
i−1

0Fi (12.784)

showing that the k̂i−1-component of the joint force Fi is supported by the actuator.
The ı̂i−1- and ̂i−1-components of Fi must be supported by the bearings of the joint.
Similarly, when the joint i is revolute, the torque of the driving actuator is along the
zi−1-axis,

Mm = 0k̂T
i−1

0Mi (12.785)

showing that the k̂i−1-component of the joint torque Mi is supported by the actuator.
The ı̂i−1- and ̂i−1-components of Mi must be supported by the bearings of the joint.

KEY SYMBOLS

0 zero vector
a acceleration, length
a acceleration vector
A body coordinate frame
[A] coefficient matrix
b vector of known values
B body coordinate frame, local coordinate frame
c cos, constant coefficient
C mass center
d distance between two points
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d translation vector
D mass moment equivalent
e Euler parameter
E (Oϕθψ) Eulerian local frame
F, F force
g gravitational acceleration vector
G global coordinate frame, fixed coordinate frame
I, [I ] mass moment
I, [I] identity matrix
ı̂, ̂ , k̂ local coordinate axis unit vectors
Î , Ĵ , K̂ global coordinate axis unit vectors
k1, k2 coefficients of Duffing equation
K kinetic energy
l length
L, L angular momentum
m mass
m, n position vectors of C of a link in its frame
M, M moment
n number of links of a multibody,

number of particles of a rigid body
p roll rate
P a body point, a fixed point in B

q pitch rate
Q torque
r yaw rate
r position vector
rij the element of row i and column j of a matrix
R rotation transformation matrix, radius
s sin, sign
t time
T homogenous transformation matrix, Tension force
v velocity vector
W gravitational force η

x, y, z local coordinate axes
x vector of unknown values
X,Y,Z global coordinate axes

Greek
α angular acceleration
α angular acceleration vector
α, β, γ rotation angles about global axes
δij Kronecker delta
η complex frequency
θ pitch
ρ density
τ time parameter
ϕ roll
ϕ, θ, ψ rotation angles about local axes, Euler angles
ϕ̇, θ̇ , ψ̇ Euler frequencies
ψ yaw
ωx, ωy, ωz angular velocity components



Exercises 1179

ω,ω angular velocity vector
� angular velocity

Symbol
‖ parallel
⊥ perpendicular
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
DOF degree of freedom, degrees of freedom
FBD free body diagram
cn(u, k) Jacobi elliptic function
sn(u, k) Jacobi elliptic function
dn(u, k) Jacobi elliptic function

EXERCISES

1. Kinetic Energy of a Cubic Rigid Body Consider a cubic rigid body B with a coordinate
frame B (Oxyz ) at the geometric center of the cube a × a × a. The body is rotating in
a global coordinate frame G (OXYZ ) with angular velocity GωB . Determine the kinetic
energy of B if the density ρ of the cube is:

(a) ρ = m/V = m/(a × a × a) = const

(b) ρ = cr, r =
√

x2 + y2 + z2

(c) ρ = x2 |y| |z|
(d) ρ = x2(a/2 − y)

2. A Tilted Disc on a Turntable Assume the rotating disc of Figure 12.3 in Example 721
is mounted in an angle α as shown in Figure 12.49.

(a) Determine the Euler equations of motion of the disc.

(b) Show that the equations will reduce to (12.117)–(12.119) for α = 0 and reduce to
(12.128)–(12.130) for α = 90 deg with a proper renaming of the principal axes of the
disc.

z0

z2B2

B1

z1

x1

x2

R

B0

α

Figure 12.49 A tilted turning disc on a turning table.
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3. � Expression for L2 When M = 0, dL/dt = 0 and hence L and L · L are constant.
Determine the expression of BL · BL for a general rigid body with a mass moment matrix
[I ] and simplify the equation for a principal coordinate in which [I ] is diagonal.

4. � Expression for M2 Determine the expression M2 =B M · BM for a general rigid
body. Then simplify M2 for a principal coordinate frame, an asymmetric rigid body, and
a symmetric rigid body.

5. � Expression for K2 Determine the expression of K2 for a general rigid body.

6. � Expression for Derivatives of K Determine dK/dω, dK2/dω, dK/dωr , dK2/dωr ,
r = 1, 2, 3.

7. Dynamic Characteristics of a Torque-Free Rigid Body Consider a rigid body with the
following principal mass moment matrix and initial angular velocity at t = 0:

BI =
I1 0 0

0 I2 0
0 0 I3

 =
I1 0 0

0 I2 0
0 0 I3

 kg m2

B
GωB =

ω1

ω2

ω3

 =
 5

10
150

 rad/s

Determine L2 and K of the rigid body.

8. A Sliding Ladder A uniform rod of mass m and length 2a is placed like a ladder on
a frictionless ground and wall, as shown in Figure 12.50. It is released from θ (0) = θ0.
Determine the angle θm at which the rod loses contact with the ground or wall.

y

m

x

g

o

α

2a

F1

F2

mg

Figure 12.50 A uniform rod of mass m and length 2a on a frictionless ground and wall.

9. � Angular Velocity for a Constant K Consider a symmetric rigid body with a constant
kinetic energy K .

(a) If ω1 = 0 and ω2 = ω sin t , then what is ω2?

(b) If ω1 �= 0 and ω2 = ω sin t , then what is ω2?
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10. � Quasi-Kinetic Energy Determine the following expressions:

(a)
N3 = 1

3

∫
B

v3dm

(b)
N4 = 1

4

∫
B

v4dm

(c)
N5 = 1

5

∫
B

v5dm

(d) Is there a general rule to determine Nn based on N2 = K = 1
2

∫
B

v2dm?

11. Falling Disc Assume the disc of Figure 12.51 has an initial velocity v0 at its center.
Show that the velocity of the disc is

vh =
√

v2
0 + 2mgh

m + I/R

if it rolls without slip and drops a height h on a curved path. The disc has a mass m, radius
R, and mass moment I .

m
x

y

g h

R

G

Figure 12.51 A rolling disc on a curved path.

12. A Turning Pendulum Figure 12.52 illustrates a pendulum of length l with a hung mass
m. The pivot of the pendulum is a circle point that is turning on a circle with radius R and
angular speed ω.

(a) Attach a coordinate frame B to the pendulum and determine the transformation
matrices.

(b) Determine the angular velocity and acceleration of the pendulum.

(c) Use a free-body diagram and the Newton–Euler method to determine the equations of
motion.

(d) Is it possible to decouple the equation for θ from the equations for joint forces?
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X
h

Y

Z

G

m

R

ω

θl

Figure 12.52 A turning pendulum.

13. � Euler Equation for a Rigid Body with Nonuniform Density A rigid body B (Oxyz )

is turning in a global coordinate frame G (OXYZ ) with angular velocity GωB . Determine
the Euler equations of B if the body is a cube with size a × a × a and with the following
densities:

(a) ρ = x2(a/2 − y)

(b) ρ = x2(a/2 − y)(a/2 − z)

(c)
ρ = x2

(a

2
− y

)(
a2

4
− z2

)
14. Gyroscopic Effect A circular disc of mass m and mass moment I about its central axis

rotates about its axis of symmetry with angular velocity �. At the same time, the axis
itself rotates in a horizontal plane with a precessional angular velocity ω as shown in
Figure 12.53. A gravity moment mgl acts on the system. Find the value of ω compatible
with this steady-state motion.

X

ω

G
B

l

z

x

R mZ

Ω

Y

g

Figure 12.53 A rotating disc about its axis of symmetry and about a varietal axis.
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15. A Turning Plate about a Symmetric Line on a Turntable Consider a uniform plate
with mass m, side a, and mass moment [I ] that is mounted on a horizontal shaft as shown
in Figure 12.54. The shaft is mounted on a table and is turning with constant angular
velocity θ̇2 = ω with respect to the table. If the table is also turning with angular velocity
θ̇1 = �, then calculate:

(a) How much force is supported by bearings of the shaft.

(b) The moment 0M in the global frame.

x0

z0

θ2

θ1

z2x1 B0

B1

B2
l

z1

y0

x2

y1

a

y2

C

Figure 12.54 A turning square plate about a shaft on a turning table.

16. A Turning Plate about the Centerline on a Turntable Change the orientation of the
plate of Problem 15 as shown in Figure 12.55 and solve the problem again.

z0

θ2

θ1

z2x1

B1

B2

l

z1

x2

y1

a y2

F

F

Figure 12.55 A turning plate about the centerline on a turntable.
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17. A Turning Plate about Its Diagonal on a Turntable Change the orientation of the plate
of Problem 15 as shown in Figure 12.56 and solve the problem again.

z0

θ2

θ1

z2x1

B1

B2

l

z1

x2
y1

y2

F

F

a

C

Figure 12.56 A turning plate about its diagonal on a turntable.

18. A Turning Half Square Plate about Its Side on a Turntable Change the plate of
Problem 15 to half a square as shown in Figure 12.57 and solve the problem again.

z0

θ2

θ1

z2x1

B1

B2

l
z1

x2
y1

y2

F

F

a
C

a

Figure 12.57 A turning half square plate about its diagonal on a turntable.

19. Axisymmetric Rigid-Body Harmonic Equation Combine Equations (12.328) and
(12.329) to derive the following equations:

ω̈θ ± �2ωθ = 0

ω2
1 + ω2

2 = ω2
θ

Then, discuss the solution for (+) and (−) signs.

20. Axisymmetric Rigid-Body Acceleration Ratio Show that for an asymmetric torque-free
rigid body with I1 = I2 �= I3 we have

ω̈1

ω̈2
= ω̇2

ω̇1
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21. Asymmetric Torque-Free Rigid Body

(a) Prove Equation (12.411).

(b) Using Equations (12.408) and (12.409), reduce Equations (12.405)–(12.407) to a single
equation for ω1.

22. Orientation of B in G In Example 745 assume the body coordinate frame B is not
principal. Discuss if it is possible to determine the orientation of B in G.

23. A Turning Dumbbell Figure 12.58 illustrates a turning dumbbell with a massless rod
of length l and two equal masses m. The bar has an angle θ with respect to the Z-axis,
which is the axis of rotation. Calculate the moment of momentum of the dumbbell and the
required torque to sustain this motion if the angular velocity ω is constant.

X

h

Y

Z

G

m

R

ω

θ
m

Figure 12.58 A turning dumbbell.

24. A Rotating Cone about Its Tip Point Figure 12.59 illustrates a cone of half angle α

and height h at an angle θ with the Z-axis. The cone is turning about the vertical Z-axis
with angular velocity ϕ̇. At the same time, the cone spins about its axis of symmetry with
angular velocity ψ̇ . For given constant θ and ψ̇ , determine ϕ̇.

z

x

y

X Y

Z

ûθ

ûψ

ûϕ

G

B

l

θ

ψ

ϕ

ϕ

Cg

mg

ψ

α

Figure 12.59 A rotating cone about its tip point.
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25. Symmetric Rigid Body with Variable Mass Moments The equations of a spherical
neutron star is reduced to Equations (12.401) and (12.402):

I1ω̇1 − 3

2
I0ε

ω30 cos �t

1 − ε sin �t
ω2 = 0

I1ω̇2 + 3

2
I0ε

ω30 cos �t

1 − ε sin �t
ω1 = 0

Let us rewrite these equations as

ω̇1 − a (t) ω2 = 0 ω̇2 + a (t) ω1 = 0

a (t) = 3

2

I0

I1
ε

ω30 cos �t

1 − ε sin �t

Show that these equations can be reduced to

ω̈1 + b (t) ω̇1 + a2ω1 = 0 b (t) = − ȧ

a

or
ω̈2 + b (t) ω̇2 + a2ω2 = 0 b (t) = − ȧ

a
.

Reduce the equation to a Hill equation and determine c (t),

ü + c (t) u = 0

by using a new variable u:
ω2 = ue−bt/2

26. � Variable Mass Moment Derive the general Euler equations of motion of a rigid body
B with variable mass moment matrix [I ] = [I (t)].

27. A Turning Uniform Link Figure 12.60(a) depicts a triangular link attached to the ground
by a revolute joint at O. The free-body diagram of the link shows the gravity and the driving
force and moment at the joint, as shown in Figure 12.60(b). Determine the Newton–Euler
equations of the triangular link.

F0

Y

y1

x1

X

m1

Q0
Q0

m1g

n
m

B1

B0

C

θ

l1

(a) (b)

g

Figure 12.60 A turning uniform triangular link.
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28. A Turning Uniform Beam with a Tip Mass Consider the uniform massless beam of
Figure 12.61(a) with a hanging mass m2 at the tip point. Figure 12.61(b) illustrates the
free-body diagram of the beam. Determine the equations of motion of the beam.

F0

Y

y1

x1

X

m1

m2

Q0
Q0

m1g
B1

B0

θ

l1

m2g

(a) (b)

Figure 12.61 A turning uniform beam with a tip mass.

29. 2R Planar Manipulator Newton–Euler Dynamics A 2R planar manipulator and its
free-body diagram are shown in Figure 12.62. The torques of actuators are parallel to the
Z-axis and are indicated by Q0 and Q1.
Use the multibody Newton–Euler dynamics and determine the equations of motion to find
the required torques Q0 and Q1 and the joint forces F0 and F1.

F0

x2
y2

y0

y1

x1

x0
m1

m2

Q0

Q1

Q0

−F1

F1

m1g

m2g−Q1

n1
m1

n 2

m 2

B1B0

C1

C2

θ2

θ1

l1

l 2

B2

Figure 12.62 Free body diagram of a 2R palanar manipulator.
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30. Euler Equation of a Rectangular Rigid Body Determine the Euler equations of motion
of a rectangular rigid body a × b × c which is turning in a global frame G(OXYZ ) about
its fixed geometric center if:

(a) GωB = α̇Î

(b) GωB = α̇Î + β̇Ĵ

(c) GωB = α̇Î + β̇Ĵ + γ̇ K̂

31. � 2R Planar Manipulator with Massive Arms and Joints A real 2R planar manipulator
has a massive motor at joint 0 to turn link (1) and a massive motor at joint 1 to turn the
link (2). The manipulator may also carry a massive object by the gripper at the tip point
of link (2). The motor at joint 0 is siting on the ground and its weight will not affect the
dynamics of the manipulator. Use the free-body diagram of Figure 12.63 and determine
the equations of motion of the manipulator.

F0

x2
y2

y0

y1

x1

x0
m1

m2

Q1

Q0

−F1

F1

m11 g

m21g
−Q1

n1

n 2

m 2

B1B0

C1

C2

θ2

θ1 

l1

l 2

m22g

m1

m12 g

B2

Figure 12.63 A 2R planar manipulator with massive arms and massive joints.



13

Lagrange Dynamics

Lagrangian dynamics seeks the equations of motion of a dynamic system in the gen-
eralized configuration space. The Lagrange equation provides n scalar second-order
differential equations for an n-DOF dynamic system. Solution of the equations deter-
mines the time behavior of the generalized coordinates. We are free to select any set of
generalized coordinates so the equations of motion may be simpler to solve in special
generalized spaces.

13.1 LAGRANGE FORM OF NEWTON EQUATIONS

Consider a mechanical system of n point masses mi , i = 1, 2, . . . n. The associated n

Newton equations of motion can be transformed to

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Qr r = 1, 2, . . . n (13.1)

where

Qr =
n∑

i=1

(
Fix

∂fi

∂q1
+ Fiy

∂gi

∂q2
+ Fiz

∂hi

∂qn

)
(13.2)

Equation (13.1) is called the Lagrange equation of motion , where K is the kinetic
energy of the n-DOF system; qr , r = 1, 2, . . . , n, are the generalized coordinates of
the system; F = [

Fix,Fiy,Fiz

]T
is the external force acting on the ith particle of the

system; and Qr is the generalized force associated with qr . The functions fi , gi , hi

determine the Cartesian coordinates xi , yi , zi of mi from the generalized coordinates
qj , j = 1, 2, . . . , n.

Proof : Let (xi, yi, zi) be the Cartesian coordinates of the ith particle in a globally
fixed coordinate frame. Assume that the coordinates of every individual particle are
functions of a set of generalized coordinates q1, q2, . . . , qn and possibly time t :

xi = fi(q1, q2, q3, . . . , qn, t) (13.3)

yi = gi(q1, q2, q3, . . . , qn, t) (13.4)

zi = hi(q1, q2, q3, . . . , qn, t) (13.5)

1189
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If Fxi, Fyi, Fzi are components of the total force acting on the particle mi , then the
Newton equations of motion for the particle would be

Fxi = miẍi (13.6)

Fyi = miÿi (13.7)

Fzi = miz̈i (13.8)

We respectively multiply both sides of these equations by

∂fi

∂qr

∂gi

∂qr

∂hi

∂qr

(13.9)

and add them to get

n∑
i=1

mi

(
ẍi

∂fi

∂qr

+ ÿi

∂gi

∂qr

+ z̈i

∂hi

∂qr

)
=

n∑
i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(13.10)

where n is the total number of particles.
Taking a time derivative of Equation (13.3),

ẋi = ∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + ∂fi

∂q3
q̇3 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t
(13.11)

we find

∂ẋi

∂q̇r

= ∂

∂q̇r

(
∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t

)
= ∂fi

∂qr

(13.12)

and therefore,

ẍi

∂fi

∂qr

= ẍi

∂ẋi

∂q̇r

= d

dt

(
ẋi

∂ẋi

∂q̇r

)
− ẋi

d

dt

(
∂ẋi

∂q̇r

)
(13.13)

However,

ẋi

d

dt

(
∂ẋi

∂q̇r

)
= ẋi

d

dt

(
∂fi

∂qr

)
= ẋi

(
∂2fi

∂q1∂qr

q̇1 + · · · + ∂2fi

∂qn∂qr

q̇n + ∂2fi

∂t∂qr

)
= ẋi

∂

∂qr

(
∂fi

∂q1
q̇1 + ∂fi

∂q2
q̇2 + · · · + ∂fi

∂qn

q̇n + ∂fi

∂t

)
= ẋi

∂ẋi

∂qr

(13.14)

and we have

ẍi

∂ẋi

∂q̇r

= d

dt

(
ẋi

∂ẋi

∂q̇r

)
− ẋi

∂ẋi

∂qr

(13.15)
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which is equal to

ẍi

∂fi

∂qr

= ẍi

ẋi

q̇r

= d

dt

[
∂

∂q̇r

(
1

2
ẋ2

i

)]
− ∂

∂qr

(
1

2
ẋ2

i

)
(13.16)

Following the same procedure, Equations (13.4) and (13.5) provide

ÿi

∂gi

∂qr

= ÿi

ẏi

q̇r

= d

dt

[
∂

∂q̇r

(
1

2
ẏ2

i

)]
− ∂

∂qr

(
1

2
ẏ2

i

)
(13.17)

z̈i

∂hi

∂qr

= z̈i

żi

q̇r

= d

dt

[
∂

∂q̇r

(
1

2
ż2
i

)]
− ∂

∂qr

(
1

2
ż2
i

)
(13.18)

Substituting (13.16), (13.17), and (13.18) on the left-hand side of (13.10) leads to
n∑

i=1

mi

(
ẍi

∂fi

∂qr

+ ÿi

∂gi

∂qr

+ z̈i

∂hi

∂qr

)

=
n∑

i=1

mi

d

dt

[
∂

∂q̇r

(
1

2
ẋ2

i + 1

2
ẏ2

i + 1

2
ż2
i

)]

−
n∑

i=1

mi

∂

∂qr

(
1

2
ẋ2

i + 1

2
ẏ2

i + 1

2
ż2
i

)

= 1

2

n∑
i=1

mi

d

dt

[
∂

∂q̇r

(
ẋ2

i + ẏ2
i + ż2

i

)] − 1

2

n∑
i=1

mi

∂

∂qr

(
ẋ2

i + ẏ2
i + ż2

i

)
= d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

(13.19)

where K is the kinetic energy of the system,

1

2

n∑
i=1

mi

(
ẋ2

i + ẏ2
i + ż2

i

) = K (13.20)

Therefore, the Newton equations of motion (13.6)–(13.8) are converted to

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

=
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(13.21)

From (13.3)–(13.5), the kinetic energy is a function of the generalized coordinates
q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n and time t . The left-hand side of Equation (13.21) includes
the kinetic energy of the whole system and the right-hand side is a generalized force
that shows the effect of changing coordinates from xi to qj on the external forces.

Let us consider a virtual displacement such that the coordinate qr alters to qr + δqr

while the other coordinates q1, q2, q3, . . . , qr−1, qr+1, . . . , qn and time t are unchanged.
So, the coordinates xi , yi , zi of mi are changed to

xi + ∂fi

∂qr

δqr yi + ∂gi

∂qr

δqr zi + ∂hi

∂qr

δqr (13.22)
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and the work done in this virtual displacement by all forces acting on the particles of
the system is

δW =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
δqr (13.23)

Because the work done by internal forces appears in opposite pairs, only the work done
by external forces remains in Equation (13.23). Let us denote the virtual work by

δW = Qr (q1, q2, q3, . . . , qn, t) δqr (13.24)

then we have

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Qr (13.25)

where

Qr =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
(13.26)

Equation (13.25) is the Lagrange form of equations of motion. This equation is true for
all values of r from 1 to n. We thus have n second-order scalar ordinary equations in
which q1, q2, q3, . . . , qn are the dependent variables and t is the independent variable.
The generalized coordinates q1, q2, q3, . . . , qn can be any measurable parameters to
provide the configuration of the system. Because the number of equations and the
number of dependent variables are equal, the equations are theoretically sufficient to
find all qi and determine the motion of all mi .

The term ∂K/∂q̇r is called the generalized momentum pr associated with qr :

pr = ∂K

∂q̇r

(13.27)

So, the Lagrange equation may also be written as

dpr

dt
− ∂K

∂qr

= Qr (13.28)

�

Example 765 Equation of Motion of a Simple Pendulum A simple pendulum is
a point mass suspended by a massless string which has a planar motion. A simple
pendulum in a constant gravitational field is shown in Figure 13.1. Using x and y for
the Cartesian position of m and θ = q as the generalized coordinate, we have

x = f (θ) = l sin θ (13.29)

y = g(θ) = l cos θ (13.30)

K = 1
2m

(
ẋ2 + ẏ2

) = 1
2ml2θ̇2 (13.31)

and therefore,

d

dt

(
∂K

∂θ̇

)
− ∂K

∂θ
= d

dt
(ml2θ̇ ) = ml2θ̈ (13.32)
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l

m

x

y

θ
g

Figure 13.1 A simple pendulum in a constant gravitational field.

The external force components acting on m are

Fx = 0 Fy = mg (13.33)

and therefore the generalized force is given as

Qθ = Fx

∂f

∂θ
+ Fy

∂g

∂θ
= −mgl sin θ (13.34)

Hence, the equation of motion of the pendulum is

ml2θ̈ = −mgl sin θ (13.35)

Example 766 A Pendulum Attached to an Oscillating Mass Figure 13.2 illustrates
a vibrating mass with a hanging pendulum. This mechanical system has two DOF. Let
us use x and θ as the generalized coordinates. Such a pendulum can act as a vibration
absorber for linearized approximation of the equations if designed properly.

l

m

X

Y

k
M

x

θ

Figure 13.2 A pendulum attached to an oscillating mass.
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Beginning with the coordinate relationships

XM = fM = x YM = gM = 0 (13.36)

Xm = fm = x + l sin θ Ym = gm = l cos θ (13.37)

we may find the kinetic energy in terms of the generalized coordinates x and θ :

K = 1
2M

(
Ẋ2

M + Ẏ 2
M

) + 1
2m

(
Ẋ2

m + Ẏ 2
m

)
= 1

2Mẋ2 + 1
2m

(
ẋ2 + l2θ̇2 + 2lẋθ̇ cos θ

)
(13.38)

Then, the left-hand sides of the Lagrange equations are

d

dt

(
∂K

∂ẋ

)
− ∂K

∂x
= (M + m)ẍ + mlθ̈ cos θ − mlθ̇2 sin θ (13.39)

d

dt

(
∂K

∂θ̇

)
− ∂K

∂θ
= ml2θ̈ + mlẍ cos θ (13.40)

The external forces acting on M and m are

FXM
= −kx FYM

= 0 (13.41)

FXm = 0 FYm = mg (13.42)

Therefore, the generalized forces are

Qx = FXM

∂fM

∂x
+ FYM

∂gM

∂x
+ FXm

∂fm

∂x
+ FYm

∂gm

∂x

= −kx (13.43)

Qθ = FXM

∂fM

∂θ
+ FYM

∂gM

∂θ
+ FXm

∂fm

∂θ
+ FYm

∂gm

∂θ

= −mgl sin θ (13.44)

and finally the equations of motion are

(M + m)ẍ + mlθ̈ cos θ − mlθ̇2 sin θ = −kx (13.45)

ml2θ̈ + mlẍ cos θ = −mgl sin θ (13.46)

Example 767 A Running Child on a Plank Figure 13.3 illustrates a rough plank of
length l and mass m1 on a smooth inclined surface at an angle θ . A child of mass m2

runs down the plank and exerts an upward force on the plank. Assume that the child is
running fast enough to keep the plank from slipping while applying a backward force
F on the plank.

Let us indicate the distance of the upper end of the plank from a fixed point on
the slope by x and the distance of the child from the upper end of the plank by y. The
kinetic energy of the system is

K = 1
2m1ẋ

2 + 1
2m2 (ẋ + ẏ)2 (13.47)
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l

m2

y

m1

x

θ

Figure 13.3 A child running on a rough plank that is on a smooth inclined surface.

Taking the required partial derivatives

∂K

∂ẋ
= m1ẋ + m2 (ẋ + ẏ) (13.48)

∂K

∂ẏ
= m2 (ẋ + ẏ) (13.49)

we use the virtual work form of Lagrange equation,[
d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

]
δqr =

n∑
i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
δqr (13.50)

[
m1ẍ + m2 (ẍ + ÿ)

]
δx = (m1 + m2) g sin θδx (13.51)[

m2 (ẍ + ÿ)
]
δy = (F + (m1 + m2) g sin θ) δy (13.52)

to determine the generalized forces and equations of motion:

m1ẍ + m2 (ẍ + ÿ) = (m1 + m2) g sin θ (13.53)

m2 (ẍ + ÿ) = F + m2g sin θ (13.54)

If the plank remains stationary, then

ẍ = 0 (13.55)

and we have

m2ÿ = (m1 + m2) g sin θ (13.56)

F = m2ÿ − m2g sin θ (13.57)

Therefore, the required force is given as

F = m1g sin θ (13.58)
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Let us solve Equation (13.53) and find ẏ:

m2ÿẏ = (m1 + m2) gẏ sin θ (13.59)

m2ẏ
2 = (m1 + m2) gy sin θ + C1 (13.60)

C1 = 0 (13.61)

The speed of the child when she reaches the tip point of the plank is

ẏ =
√

m1 + m2

m2
gl sin θ (13.62)

Example 768 A Sphere on a Table The homogeneous sphere shown in Figure 13.4
is rolling freely on a rough table. Let us examine the possible motions of the sphere.

We attach a fixed coordinate frame G on the table and a body frame B to the
center of the sphere. There is one holonomic constraint between B and G,

Z0 − R = 0 (13.63)

and therefore the sphere has five DOF. Let (X, Y,R) be the coordinates of the center
of the sphere. If ϕ, θ , and ψ are the Euler angles between B and G, then X, Y, ϕ, θ, ψ

are the generalized coordinates of the sphere. The only force that we have to consider
is the friction force F at the contact point with components FX and FY . Using the
radius of gyration k, the kinetic energy of the sphere is

K = 1
2m

[
Ẋ2 + Ẏ 2 + k2

(
ω2

x + ω2
y + ω2

z

)]
(13.64)

Using (4.178), we can define the angular velocity by Euler frequencies,ωx

ωy

ωz

 =
sin θ sin ψ cos ψ 0

sin θ cos ψ − sin ψ 0
cos θ 0 1

 ϕ̇

θ̇

ψ̇

 (13.65)

X

Y

Z

G

z

x

y

B

X

Y

R

O o

Fx

FY

Figure 13.4 A homogeneous sphere that is rolling freely on a rough table.
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and therefore,

K = 1
2m

[
Ẋ2 + Ẏ 2 + k2

(
ϕ̇2 + θ̇2 + ψ̇2 + 2ψ̇ϕ̇ cos θ

)]
(13.66)

Employing the Lagrange form (13.25), we find five equations of motion:

mẌ = FX (13.67)

mŸ = FY (13.68)

mk2 d

dt

(
ψ̇ + ϕ̇ cos θ

) = 0 (13.69)

mk2 d

dt

(
ϕ̇ + ψ̇ cos θ

) = −R sin θ (FX sin ψ − FY cos ψ) (13.70)

mk2 (θ̈ + ψ̇ϕ̇ sin θ
) = −R (FX cos ψ + FY sin ψ) (13.71)

Because there is no slipping, the rolling nonholonomic constraint applies:

Ẋ − Rωy = Ẋ − R
(
ϕ̇ cos ψ sin θ − θ̇ sin ψ

) = 0 (13.72)

Ẏ + Rωx = Ẏ − R
(
θ̇ cos ψ + ϕ̇ sin θ sin ψ

) = 0 (13.73)

We may rewrite Equations (13.70) and (13.71) as

mk2
[

sin ψ
d

dt

(
ϕ̇ + ψ̇ cos θ

) + cos ψ sin θ
(
θ̈ + ψ̇ϕ̇ sin θ

)]
= −RFX sin θ (13.74)

mk2
[

cos ψ
d

dt

(
ϕ̇ + ψ̇ cos θ

) − sin ψ sin θ
(
θ̈ + ψ̇ϕ̇ sin θ

)]
= RFY sin θ (13.75)

Expanding the derivative terms in (13.74) and (13.75) and eliminating ψ̈ by using
(13.69) yield

mk2 [θ̈ cos ψ + ϕ̈ sin θ sin ψ + θ̇ ϕ̇ cos θ sin ψ

+ψ̇ϕ̇ (cos ψ sin θ − sin ψ)
] = −RFX (13.76)

mk2 (−θ̈ sin ψ + ϕ̈ cos ψ sin θ + θ̇ ϕ̇ cos ψ (cos θ − 1)

−ψ̇ϕ̇ sin θ sin ψ
) = RFY (13.77)

The left-hand sides of (13.76) and (13.77) are (d/dt) ωx and (d/dt) ωy , respectively.
So, we have

mk2 d

dt
ωx = −RFX (13.78)

mk2 d

dt
ωy = RFY (13.79)
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Substituting these equations in the derivatives of the constraint equations (13.72) and
(13.73), we get

mk2

R
Ẍ = RFY (13.80)

mk2

R
Ÿ = RFX (13.81)

Comparing them with Equations (13.67) and (13.68) indicates that

Ẍ = 0 Ÿ = 0 (13.82)

and from (13.78), (13.79), and (13.69), we have

d

dt
ωx = 0

d

dt
ωy = 0

d

dt
ωz = 0 (13.83)

and

FX = 0 FY = 0 (13.84)

Hence, the center of the sphere moves on a straight line with a constant velocity, and
the sphere rotates about a locally fixed axis with a constant angular velocity.

Example 769 � Rotational Equations of Motion of a Rigid Body Let us use the
Lagrange equation and find the rotational equations of motion of a rigid body in the
Eulerian frame E (ϕ, θ,ψ).

To simplify the kinetic expression, we usually set a body coordinate at the mass
center to decouple the translational and rotational motions. The rotational kinetic energy
of a rigid body in a principal Cartesian body coordinate frame is

K = 1
2

B
GωT

B
BIB

GωB = 1
2

(
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

)
(13.85)

Using Euler frequencies (12.185),

B
GωB =

ϕ̇ sin θ sin ψ + θ̇ cos ψ

ϕ̇ cos ψ sin θ − θ̇ sin ψ

ψ̇ + ϕ̇ cos θ

 (13.86)

we have

K = 1
2I1

(
ϕ̇ sin θ sin ψ + θ̇ cos ψ

)2 + 1
2I2

(
ϕ̇ cos ψ sin θ − θ̇ sin ψ

)2

+ 1
2I3

(
ψ̇ + ϕ̇ cos θ

)2

= 1
2

(
I1 sin2 θ sin2 ψ + I2 cos2 ψ sin2 θ + I3 cos2 θ

)
ϕ̇2

+ 1
2

(
I1 cos2 ψ + I2 sin2 θ

)
θ̇2 + 1

2I3ψ̇
2

+ [(I1 − I2) cos ψ sin θ sin ψ] ϕ̇θ̇ + (I3 cos θ) ϕ̇ψ̇ (13.87)
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The generalized momenta are

pϕ = ∂K

∂ϕ̇
= (

I1 sin2 θ sin2 ψ + I2 cos2 ψ sin2 θ + I3 cos2 θ
)
ϕ̇

+ [(I1 − I2) cos ψ sin θ sin ψ] θ̇ + (I3 cos θ) ψ̇ (13.88)

pθ = ∂K

∂θ̇
= [(I1 − I2) cos ψ sin θ sin ψ] ϕ̇

+ (
I1 cos2 ψ + I2 sin2 θ

)
θ̇ (13.89)

pψ = ∂K

∂ψ̇
= (I3 cos θ) ϕ̇ + I3ψ̇ (13.90)

The generalized momenta are linear functions of Euler frequencies. So, if we define
the generalized momenta and coordinates by two column matrices p and q,

p =
pϕ

pθ

pψ

 q =
ϕ

θ

ψ

 (13.91)

we can write them in matrix form aspϕ

pθ

pψ

 = [m]

 ϕ̇

θ̇

ψ̇

 (13.92)

where [m] is the inertia matrix of the equation p = [m] q:

[m] =
I1s

2θs2ψ + I2c
2ψs2θ + I3c

2θ (I1 − I2) cψsθsψ I3cθ

(I1 − I2) cψsθsψ I1c
2ψ + I2s

2θ 0
I3cθ 0 I3

 (13.93)

Using the Lagrange equation,

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Qr r = 1, 2, . . . , n (13.94)

the differential equation of rotational motion in the Euler frame are

d

dt

((
I1 sin2 θ sin2 ψ + I2 cos2 ψ sin2 θ + I3 cos2 θ

)
ϕ̇

+ [(I1 − I2) cos ψ sin θ sin ψ] θ̇ + (I3 cos θ) ψ̇

)
= Qϕ (13.95)

d

dt

{
[(I1 − I2) cos ψ sin θ sin ψ] ϕ̇ + (

I1 cos2 ψ + I2 sin2 θ
)
θ̇
}

−
(

ϕ̇2
(
I1 sin2 ψ + I2 cos2 ψ − I3

)
sin θ cos θ

− (I1 − I2) ϕ̇θ̇ cos ψ sin ψ cos θ − I3ϕ̇ψ̇ sin θ

)
= Qθ (13.96)

d

dt

[
(I3 cos θ) ϕ̇ + I3ψ̇

]
−

([
ϕ̇2 (I1 − I2) sin2 θ − θ̇2 (I1 − I2)

]
cos ψ sin ψ

−ϕ̇θ̇ (I1 − I2) sin θ
(
1 − 2 cos2 ψ

) )
= Qψ (13.97)
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where

∂K

∂ϕ
= 0 (13.98)

∂K

∂θ
= ϕ̇2 (I1 sin2 ψ + I2 cos2 ψ − I3

)
sin θ cos θ

− (I1 − I2) ϕ̇θ̇ cos ψ sin ψ cos θ − I3ϕ̇ψ̇ sin θ (13.99)

∂K

∂ψ
= ϕ̇2 (I1 − I2) cos ψ sin ψ sin2 θ − θ̇2 (I1 − I2) cos ψ sin ψ

−ϕ̇θ̇ (I1 − I2) sin θ
(
1 − 2 cos2 ψ

)
(13.100)

Example 770 � Potential Force Field If a system of masses mi is moving in a
potential force field

Fmi
= −∇iV (13.101)

the Newton equations of motion will be

mi r̈i = −∇iV i = 1, 2, . . . , n (13.102)

Using the inner product of the equations of motion with ṙi and adding the equations,

n∑
i=1

mi ṙi · r̈i = −
n∑

i=1

ṙi · ∇iV (13.103)

and then integrating over time,

1

2

n∑
i=1

mi ṙi · ṙi = −
∫ n∑

i=1

ri · ∇iV (13.104)

yield

K = −
∫ n∑

i=1

(
∂V

∂xi

xi + ∂V

∂yi

yi + ∂V

∂zi

zi

)
= −V + E (13.105)

where E is the constant of integration and the mechanical energy of the system, equal
to the sum of the kinetic and potential energies.

Example 771 Kinetic Energy of Earth The two motions of Earth are called revolution
about the sun and rotation about an axis approximately fixed on Earth. Employing ω1

and ω2 to indicate the angular speed of Earth about its axis and the angular speed about
the sun, the kinetic energy of Earth due to its rotation would be
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K1 = 1

2
Iω2

1

= 1

2

2

5

(
5.9742 × 1024) (6,356,912 + 6,378,388

2

)2 ( 2π

24 × 3600

366.25

365.25

)2

= 2.5762 × 1029J (13.106)

and the kinetic energy of Earth due to its revolution is

K2 = 1

2
Mr2ω2

2

= 1

2

(
5.9742 × 1024) (1.49475 × 1011)2

(
2π

24 × 3600

1

365.25

)2

= 2.6457 × 1033J (13.107)

where r is the distance from the sun. The total kinetic energy of Earth is K = K1 + K2.
However, the ratio of the revolutional to rotational kinetic energy is

K2

K1
= 2.6457 × 1033

2.5762 × 1029
≈ 10,000 (13.108)

indicating that the kinetic energy of Earth is mostly due to its revolution about the sun.

Example 772 � A Non-Cartesian Coordinate System The parabolic and Cartesian
coordinate systems are related by the equations.

x = ηξ cos ϕ (13.109)

y = ηξ sin ϕ (13.110)

z = ξ 2 − η2

2
(13.111)

ξ 2 =
√

x2 + y2 + z2 + z (13.112)

η2 =
√

x2 + y2 + z2 − z (13.113)

ϕ = tan−1 y

x
(13.114)

Consider an electron in a uniform electric field along the positive z-axis that is under
the action of an attractive central force field due to the nuclei of the atom:

F = − k

r2
ûr = −∇

(
−k

r

)
(13.115)

The influence of a uniform electric field on the motion of the electrons in atoms is
called the Stark effect , and it is easier to analyze this motion in a parabolic coordinate
system.
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The kinetic energy in a parabolic coordinate system is

K = 1
2m

(
ẋ2 + ẏ2 + ż2

)
= 1

2m
[(

η2 + ξ 2
) (

η̇2 + ξ̇ 2
) + η2ξ 2ϕ̇2

]
(13.116)

and the force acting on the electron is

F = −∇
(

−k

r
+ eEz

)
= −∇

(
− 2k

ξ 2 + η2
+ eE

2

(
ξ 2 − η2)) (13.117)

which leads to the generalized forces

Qη = F · bη = − 4kη(
ξ 2 + η2

)2
+ eEη (13.118)

Qξ = F · bξ = − 4kξ(
ξ 2 + η2

)2 − eEη (13.119)

Qϕ = 0 (13.120)

where bξ , bη, and bϕ are base vectors of the coordinate system:

bξ = ∂r
∂ξ

= η cos ϕı̂ + η sin ϕ̂ + ξ k̂ (13.121)

bη = ∂r
∂η

= ξ cos ϕı̂ + ξ sin ϕ̂ − ηk̂ (13.122)

bϕ = ∂r
∂ϕ

= −ηξ sin ϕı̂ + ηξ cos ϕ̂ (13.123)

Therefore, following the Lagrange method, the equations of motion of the electron are

Qη = d

dt

[
mη̇

(
ξ 2 + η2)] − mη

(
η̇2 + ξ̇ 2) − mηξ 2ϕ̇2 (13.124)

Qξ = d

dt

[
mξ̇

(
ξ 2 + η2)] − mη

(
η̇2 + ξ̇ 2) − mξη2ϕ̇2 (13.125)

Qϕ = d

dt

(
mη2ξ 2ϕ̇2) (13.126)

Example 773 � Explicit Form of Lagrange Equations Assume that the coordinates
of every particle of a dynamic system is a function of the generalized coordinates
q1, q2, q3, . . . , qn but not time t . The kinetic energy of the system made of n massive
particles can be written as

K = 1

2

n∑
i=1

mi

(
ẋ2

i + ẏ2
i + ż2

i

) = 1

2

n∑
j=1

n∑
k=1

ajkq̇j q̇k (13.127)
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where the coefficients ajk are functions of q1, q2, q3, . . . , qn and

ajk = akj (13.128)

The Lagrange equation of motion

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= Qr r = 1, 2, . . . , n (13.129)

will then be

d

dt

n∑
m=1

amr q̇m − 1

2

n∑
j=1

n∑
k=1

ajk

∂qr

q̇j q̇k = Qr (13.130)

or
n∑

m=1

amr q̈m +
n∑

k=1

n∑
n=1

�rknq̇kq̇n = Qr (13.131)

where �ijk is the Christoffel symbol,

�ijk = 1

2

(
∂aij

∂qk

+ ∂aik

∂qj

− ∂akj

∂qi

)
(13.132)

Equation (13.131) indicates that the equations of motion will be a set of n coupled
second-order differential equations in the generalized configuration space.

13.2 LAGRANGE EQUATION AND POTENTIAL FORCE

Assume for some forces F = [
Fix,Fiy,Fiz

]T
there is a function V , called the potential

energy , such that the force is derivable from V :

F = −∇V (13.133)

Such a force is called a potential or conservative force. Then, the Lagrange equation
of motion can be written as

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1, 2, . . . , n (13.134)

where

L = K − V (13.135)

is the Lagrangian of the system and Qr is the nonpotential generalized force.

Proof : Assume the external forces F = [
Fxi,Fyi,Fzi

]T
acting on the system are con-

servative:

F = −∇V (13.136)

The work done by these forces in an arbitrary virtual displacement δq1, δq2, δq3,

. . . , δqn is

∂W = − ∂V

∂q1
δq1 − ∂V

∂q2
δq2 − · · · − ∂V

∂qn

δqn (13.137)
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Then the Lagrange equation becomes

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

= − ∂V

∂q1
r = 1, 2, . . . , n (13.138)

Introducing the Lagrangian function L = K − V converts the Lagrange equation of a
conservative system to

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= 0 r = 1, 2, . . . , n (13.139)

The Lagrangian function L is also called the kinetic potential .
If there is also a nonconservative force F, then the work done by the force is

δW =
n∑

i=1

(
Fxi

∂fi

∂qr

+ Fyi

∂gi

∂qr

+ Fzi

∂hi

∂qr

)
δqr

= Qr δqr (13.140)

and the equation of motion would be

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1, 2, . . . , n (13.141)

where Qr is the nonpotential generalized force doing work in a virtual displacement
of the rth generalized coordinate qr . �

Example 774 A Spherical Pendulum Figure 13.5 illustrates a spherical pendulum
with mass m and length l. The angles ϕ and θ may be used as generalized describing
coordinates of the system.

m

C
l

X Y

Z

ϕ

θ

G

Figure 13.5 A spherical pendulum.
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The Cartesian coordinates of m as a function of the generalized coordinates areX

Y

Z

 =
r cos ϕ sin θ

r sin θ sin ϕ

−r cos θ

 (13.142)

and therefore, the kinetic and potential energies of the pendulum are

K = 1
2m

(
l2θ̇2 + l2ϕ̇2 sin2 θ

)
(13.143)

V = −mgl cos θ (13.144)

The kinetic potential function of this system is then equal to

L = 1
2m

(
l2θ̇2 + l2ϕ̇2 sin2 θ

) + mgl cos θ (13.145)

which leads to the following equations of motion:

θ̈ − ϕ̇2 sin θ cos θ + g

l
sin θ = 0 (13.146)

ϕ̈ sin2 θ + 2ϕ̇θ̇ sin θ cos θ = 0 (13.147)

Example 775 A Controlled Arm Figure 13.6 illustrates a controllable arm. Assume
that there is a viscous friction in the joint where an ideal motor can apply the torque
Q to move the arm. The rotor of an ideal motor has no mass moment by assumption.

The kinetic and potential energies of the arm are

K = 1
2I θ̇2 = 1

2

(
IC + ml2

)
θ̇2 (13.148)

V = −mg cos θ (13.149)

l

θ

Y

X

m, I

Q

O

C

Figure 13.6 A controllable arm.
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where m is the mass and I is the moment of inertia of the pendulum about O. The
Lagrangian of the manipulator is

L = K − V = 1
2I θ̇2 + mg cos θ (13.150)

and therefore, the equation of motion of the manipulator is

M = d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= I θ̈ + mgl sin θ (13.151)

The generalized force M is the contribution of the motor torque Q and the viscous
friction torque −cθ̇ . Hence, the equation of motion of the arm is

Q = I θ̈ + cθ̇ + mgl sin θ (13.152)

Example 776 Elastic Pendulum Figure 13.7 illustrates a planar elastic pendulum. If
at the motionless vertical equilibrium condition the distance between m and the fulcrum
is l0 and the extra stretch of the length is z, then the Cartesian positions of m during
the motion are

x = l sin θ y = −l cos θ (13.153)

l = z + l0 (13.154)

where q1 = z and q2 = θ are the generalized coordinates of the system. The velocity
components of m are

ẋ = ż sin θ + lθ̇ cos θ ẏ = −ż cos θ + lθ̇ sin θ (13.155)

So, the kinetic energy of the pendulum is

K = 1
2m

(
ẋ2 + ẏ2

) = 1
2mż2 + 1

2ml2θ̇2 (13.156)

The gravitational and spring forces are the only external forces on m and are both
potential. The potential energy of the pendulum is

V = mgy + 1
2kz2 = −mgl cos θ + 1

2kz2 (13.157)

x

y

m

θ
g

o

k

Figure 13.7 An elastic pendulum.
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Therefore, the Lagrangian of the system is

L = K − V = 1
2mż2 + 1

2ml2θ̇2 + mgl cos θ − 1
2kz2 (13.158)

Applying the Lagrange equation (13.134),

d

dt

(
∂L
∂ż

)
− ∂L

∂z
= 0

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= 0 (13.159)

we find the following equations of motion:

mz̈ − m(z + l0) θ̇2 − mg cos θ + kz = 0 (13.160)

m(z + l0)
2 θ̈ + 2m(z + l0) żθ̇ + mg (z + l0) sin θ = 0 (13.161)

Example 777 An Ideal 2R Planar Manipulator Dynamics An ideal model of a 2R

planar manipulator is illustrated in Figure 13.8. It is called ideal because we assume
that the links are massless and there is no friction. The masses m1 and m2 are the
masses of the second motor to run the second link and the load at the end point. We
take the absolute angle θ1 and the relative angle θ2 as the generalized coordinates to
express the configuration of the manipulator.

The global positions of m1 and m2 are[
X1

Y2

]
=

[
l1 cos θ1

l1 sin θ1

]
(13.162)[

X2

Y2

]
=

[
l1 cos θ1 + l2 cos (θ1 + θ2)

l1 sin θ1 + l2 sin (θ1 + θ2)

]
(13.163)

y2

Y

y1

x1

X

m1

m2

Q1

Q2

l1

l 2

θ2

θ1

B2

B1

G

x2

Figure 13.8 An ideal model of a 2R planar manipulator.
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and therefore, the global velocities of the masses are[
Ẋ1

Ẏ1

]
=

[−l1θ̇1 sin θ1

l1θ̇1 cos θ1

]
(13.164)

[
Ẋ2

Ẏ2

]
=

[−l1θ̇1 sin θ1 − l2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2
(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

]
(13.165)

The kinetic energy of this manipulator is the sum of the kinetic energies of the masses
and is equal to

K =K1 + K2 = 1
2m1

(
Ẋ2

1 + Ẏ 2
1

) + 1
2m2

(
Ẋ2

2 + Ẏ 2
2

)
= 1

2m1l
2
1 θ̇2

1

+ 1
2m2

[
l2
1 θ̇2

1 + l2
2

(
θ̇1 + θ̇2

)2 + 2l1l2θ̇1
(
θ̇1 + θ̇2

)
cos θ2

]
(13.166)

The potential energy of the manipulator is

V = V1 + V2 = m1gY1 + m2gY2

= m1gl1 sin θ1 + m2g [l1 sin θ1 + l2 sin (θ1 + θ2)] (13.167)

The Lagrangian is then obtained from Equations (13.166) and (13.167),

L = K − V = 1
2m1l

2
1 θ̇2

1 (13.168)

+ 1
2m2

[
l2
1 θ̇2

1 + l2
2

(
θ̇1 + θ̇2

)2 + 2l1l2θ̇1
(
θ̇1 + θ̇2

)
cos θ2

]
− {m1gl1 sin θ1 + m2g [l1 sin θ1 + l2 sin (θ1 + θ2)]}

which provides the required partial derivatives as follows:

∂L
∂θ1

= − (m1 + m2) gl1 cos θ1 − m2gl2 cos (θ1 + θ2) (13.169)

∂L
∂θ̇1

= (m1 + m2) l2
1 θ̇1 + m2l

2
2

(
θ̇1 + θ̇2

)
+ m2l1l2

(
2θ̇1 + θ̇2

)
cos θ2 (13.170)

d

dt

(
∂L
∂θ̇1

)
= (m1 + m2) l2

1 θ̈1 + m2l
2
2

(
θ̈1 + θ̈2

)
+ m2l1l2

(
2θ̈1 + θ̈2

)
cos θ2 − m2l1l2θ̇2

(
2θ̇1 + θ̇2

)
sin θ2 (13.171)

∂L
∂θ2

= −m2l1l2θ̇1
(
θ̇1 + θ̇2

)
sin θ2 − m2gl2 cos (θ1 + θ2) (13.172)

∂L
∂θ̇2

= m2l
2
2

(
θ̇1 + θ̇2

) + m2l1l2θ̇1 cos θ2 (13.173)

d

dt

(
∂L
∂θ̇2

)
= m2l

2
2

(
θ̈1 + θ̈2

) + m2l1l2θ̈1 cos θ2

− m2l1l2θ̇1θ̇2 sin θ2 (13.174)
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Therefore, the equations of motion for the 2R manipulator are

Q1 = d

dt

(
∂L
∂θ̇1

)
− ∂L

∂θ1

= (m1 + m2) l2
1 θ̈1 + m2l

2
2

(
θ̈1 + θ̈2

)
+ m2l1l2

(
2 θ̈1 + θ̈2

)
cos θ2 − m2l1l2θ̇2

(
2θ̇1 + θ̇2

)
sin θ2

+ (m1 + m2) gl1 cos θ1 + m2gl2 cos (θ1 + θ2) (13.175)

Q2 = d

dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2

= m2l
2
2

(
θ̈1 + θ̈2

) + m2l1l2θ̈1 cos θ2 − m2l1l2θ̇1θ̇2 sin θ2

+ m2l1l2θ̇1
(
θ̇1 + θ̇2

)
sin θ2 + m2gl2 cos (θ1 + θ2) (13.176)

The generalized forces Q1 and Q2 are the required forces to drive the generalized
coordinates. In this case, Q1 is the torque of the base motor and Q2 is the torque of
the motor at m1.

The equations of motion can be rearranged to a more systematic form:

Q1 = [
(m1 + m2) l2

1 + m2l2 (l2 + 2l1 cos θ2)
]
θ̈1

+ m2l2 (l2 + l1 cos θ2) θ̈2

− 2m2l1l2 sin θ2 θ̇1θ̇2 − m2l1l2 sin θ2 θ̇2
2

+ (m1 + m2) gl1 cos θ1 + m2gl2 cos (θ1 + θ2) (13.177)

Q2 = m2l2 (l2 + l1 cos θ2) θ̈1 + m2l
2
2 θ̈2

+ m2l1l2 sin θ2 θ̇2
1 + m2gl2 cos (θ1 + θ2) (13.178)

Example 778 � Lagrange Equation from Fundamental Equation Consider a
dynamic system on N particles mi that can be expressed by n generalized coordinates
qi , i = 1, 2, 3, . . . , n. As derived in Example 675, when we substitute the virtual
displacement

δri =
n∑

j=1

∂ri

∂qj

δqj (13.179)

in the fundamental equation of dynamics (10.303),

N/3∑
i=1

(mi r̈i − Fi ) · δri = 0 (13.180)
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we obtain the Lagrange equation (10.739):

d

dt

∂K

∂q̇j

− ∂K

∂qj

− Qj = 0 j = 1, 2, . . . , n (13.181)

Qj =
N/3∑
i=1

Fi · ∂ri

∂qj

(13.182)

where K is the kinetic energy of the system, Qj is the generalized force associated
with coordinate qj , and Fi is the given or applied force associated with mi .

If the applied forces Fi are only functions of positions ri and time t and are
not dependent on velocities ṙi , then these types of forces are derivable from a scalar
potential function:

Fi = −∇V = −∂V

∂xi

ı̂ − ∂V

∂yi

̂ − ∂V

∂zi

k̂ (13.183)

V = V (x1, y1, z1, x2, y2, z3, . . . , xN, yN, zN) (13.184)

The generalized force Qj will then be

Qj = −
(

∂V

∂xi

∂xi

∂qj

+ ∂V

∂yi

∂yi

∂qj

+ ∂V

∂zi

∂zi

∂qj

)
= −∂V (q1, q2, . . . , qn)

∂qj

i = 1, 2, . . . , N j = 1, 2, . . . , n (13.185)

Substituting for Qj , the Lagrange equation (13.181) becomes

d

dt

(
∂K

∂q̇r

)
− ∂K

∂qr

+ ∂V

∂qr

= 0 r = 1, 2, . . . , n (13.186)

Example 779 Lagrange Equations Are Second Order Lagrange equations (13.141)
are ordinary differential equations of second order with respect to the generalized
coordinates qi . To show this, we substitute for K ,

K = K (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) (13.187)

and take the derivatives:
n∑

s=1

∂2K

∂q̇r ∂q̇s

q̈s +
n∑

s=1

∂2K

∂q̇r ∂qs

q̇s + ∂2K

∂q̇r ∂t
− ∂K

∂qr

+ ∂V

∂qr

= Qr (13.188)

Example 780 � Explicit Form of Lagrange Equations In the general case in which
the coefficients ajk in the kinetic energy equation (13.127) given as

K = 1
2ajkq̇j q̇k (13.189)
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are functions of q1, q2, q3, . . . , qn, t , we have(
d

dt

∂

∂q̇r

− ∂

∂qr

)
1

2
ajkq̇j q̇k = d

dt

(
ajsq̇j

) − 1

2

∂ajk

∂qs

q̇j q̇k

= ajsq̈j +
(

∂aks

∂qj

− 1

2

∂ajk

∂qs

)
q̇j q̇k + ∂ajk

∂t
q̇j

= ajsq̈j + �sjk q̇j q̇k + ∂ajk

∂t
q̇j (13.190)

Therefore, the Lagrange equation (13.141) becomes

ajsq̈j + �sjk q̇j q̇k = Qs − ∂V

∂qs

− ∂ajk

∂t
q̇j (13.191)

where �ijk is the Christoffel symbol:

�sjk = 1

2

(
∂akj

∂qs

+ ∂ask

∂qj

− ∂asj

∂qk

)
(13.192)

Example 781 � Dynamic Coupling and Decoupling The kinetic energy in terms of
generalized coordinates is found in Equation (10.522) as

K = 1

2

n∑
i=1

n∑
j=1

aij q̇i q̇j +
n∑

i=1

bi q̇i + c (13.193)

where aij = aji , bi , c are functions of the generalized coordinates qj and time t . To
substitute the generalized expression of K in the Lagrange equation, we find

d

dt

∂K

∂q̇s

= 1

2

n∑
j=1

(
asj + ajs

)
q̈j + 1

2

n∑
j=1

n∑
k=1

(
∂asj

∂qk

+ ∂ajs

∂qk

)
q̇j q̇k

+ 1

2

n∑
j=1

(
∂asj

∂t
+ ∂ajs

∂t

)
q̇j +

n∑
k=1

∂bs

∂qk

+ ∂c

∂qs

(13.194)

∂K

∂qs

= 1

2

n∑
j=1

n∑
k=1

∂aij

∂qs

q̇i q̇j +
n∑

j=1

∂bi

∂qs

q̇i + ∂c

∂qs

(13.195)

Let us re-form the second term of (13.194):

1

2

n∑
j=1

n∑
k=1

∂asj

∂qk

q̇j q̇k + 1

2

n∑
j=1

n∑
k=1

∂ajs

∂qk

q̇j q̇k

= 1

2

n∑
j=1

n∑
k=1

∂asj

∂qk

q̇j q̇k + 1

2

n∑
j=1

n∑
k=1

∂ask

∂qj

q̇j q̇k (13.196)
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It follows that

d

dt

∂K

∂q̇s

− ∂K

∂qs

= 1

2

n∑
j=1

(
asj + ajs

)
q̈j

+
n∑

j=1

n∑
k=1

�kjsq̇j q̇k + 1

2

n∑
j=1

(
∂asj

∂t
+ ∂ajs

∂t

)
q̇j

+ 2
n∑

k=1

�ksq̇k + ∂bs

∂t
− ∂c

∂qs

(13.197)

�kjs = 1

2

(
∂asj

∂qk

+ ∂aks

∂qj

− ∂akj

∂qs

)
(13.198)

�ks = 1

2

(
∂bs

∂qk

− ∂bk

∂qs

)
(13.199)

and therefore, the equations of motion of the system are

n∑
j=1

asj q̈j +
n∑

j=1

n∑
k=1

�kjs q̇j q̇k +
n∑

j=1

∂asj

∂t
q̇j

+2
n∑

k=1

�ksq̇k + ∂bs

∂t
− ∂c

∂qs

= Qs (13.200)

If the matrix
[
asj

]
is not diagonal, these equations are coupled by q̈j . Such a coup-

ling is called dynamic. However, we can always decouple the equations if
[
asj

]
is

nonsingular: ∣∣asj

∣∣ �= 0 (13.201)

To show the nonsingularity of
[
asj

]
, let us consider the kinetic energy equation (13.193)

that must hold for all bounded values of velocity components q̇s . We may assume that
the velocity components are large enough to have

K ≈ 1

2

n∑
i=1

n∑
j=1

aij q̇i q̇j + · · · (13.202)

Now, from

K = 1

2

n∑
s=1

msu̇
2
s ≥ 0 (13.203)

the kinetic energy K in (13.202) is necessarily positive definite, which indicates that
(13.201) holds. So, we may multiply Equation (13.200) by

[
asj

]−1
to remove the
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dynamic coupling of the equations of motion:

q̈r +
n∑

j=1

n∑
k=1

�r
kj q̇j q̇k +

n∑
j=1

(
2�r

j +
n∑

s=1

[ars]−1 ∂asj

∂t

)
q̇j

+
n∑

s=1

[ars]
−1 ∂bs

∂t
−

n∑
s=1

[ars]−1 ∂c

∂qs

= Qr (13.204)

where

Qr =
n∑

s=1

[ars]
−1 Qs (13.205)

�r
kj =

n∑
s=1

[ars]
−1 �kjs (13.206)

�r
j =

n∑
s=1

[ars]
−1 �js (13.207)

when the kinetic energy is not an explicit function of time, the equations of motion
simplify to

q̈r +
n∑

j=1

n∑
k=1

�r
kj q̇j q̇k = Qr (13.208)

Example 782 � Equivalent Lagrangian When we define the Lagrangian function L
as

L = K − V (13.209)

the equations of motion will be obtained from the Lagrange equation (13.134):

d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

= Qr r = 1, 2, . . . , n (13.210)

However, we may define other Lagrangian functions L� that provide the same
equations of motion as (13.210):

L� = cL + d

dt
f (q1, q2, . . . , qn, t) (13.211)

The Lagrangian L� may differ from L by a multiplication constant c and addition of
the time derivative of a function f of generalized coordinates qi and time t . In this
case, we have

d

dt

(
∂L�

∂q̇r

)
− ∂L�

∂qr

= d

dt

(
∂L
∂q̇r

)
− ∂L

∂qr

(13.212)
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Because the Lagrangian function in dynamics is not unique, there is the question
of finding a proper Lagrangian function L for a given dynamic system whose equations
of motion are given. This question is called the inverse-Lagrangian problem .

Example 783 � Lagrangian Is Form Invariant Consider a dynamic system and a
set of generalized coordinates (q1, q2, . . . , qn). Suppose the Lagrangian L of the system
is calculated as

L = L (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) (13.213)

Now, suppose that we choose another set of generalized coordinates (s1, s2, . . . , sn)

to express the same dynamic system. Independence of the generalized coordinates
provides

qi = qi (s1, s2, . . . , sn, t) (13.214)

sj = sj (q1, q2, . . . , qn, t) (13.215)

J =
∣∣∣∣∂qi

∂si

∣∣∣∣ �= 0 (13.216)

∂q̇i

∂ṡi

= ∂qi

∂si

∂q̇i

∂si

= d

dt

∂qi

∂si

(13.217)

Having sj , we may recalculate a new Lagrangian function L� based on new K

and V :

L� = L� (s1, s2, . . . , sn, ṡ1, ṡ2, . . . , ṡn, t) (13.218)

However, we may also substitute qi = qi

(
sj

)
in L and obtain L� and determine the

equations of motion of the system:

L (q1, . . . , qn, q̇1, . . . , q̇n, t) = L� (s1, . . . , sn, ṡ1, . . . , ṡn, t) (13.219)

Let us examine the Lagrange equation for both sets of coordinates:

∂L�

∂q̇r

= ∂L
∂q̇r

∂q̇i

∂ṡi

= ∂L
∂q̇r

∂qi

∂si

(13.220)

d

dt

(
∂L�

∂q̇r

)
=

(
d

dt

∂L
∂q̇r

)
∂qi

∂si

+ ∂L
∂q̇r

(
d

dt

∂qi

∂si

)
(13.221)

∂L�

∂qr

= ∂L
∂qr

∂qi

∂si

+ ∂L
∂q̇r

∂q̇i

∂si

= ∂L
∂qr

∂qi

∂si

+ ∂L
∂q̇r

d

dt

∂qi

∂si

(13.222)

Therefore, we have

d

dt

∂L�

∂q̇r

− ∂L�

∂qr

=
(

d

dt

∂L
∂q̇r

− ∂L
∂qr

)
∂qi

∂si

(13.223)
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which shows that if we change the set of generalized coordinates, the Lagrange equation
would have the same form for the Lagrangian in the new coordinates. Such a property
is called form invariant .

13.3 � VARIATIONAL DYNAMICS

Consider a function f of x(t), ẋ(t), and t :

f = f (x, ẋ, t) (13.224)

The unknown variable x(t), which is a function of the independent variable t , is called
a path . Let us assume that the path is connecting the fixed points x0 and xf during a
given time t = tf − t0. So, x = x(t) satisfies the boundary conditions

x(t0) = x0 x(tf ) = xf (13.225)

The time integral of the function f over x0 ≤ x ≤ xf is J (x) such that its value depends
on the path x(t):

J (x) =
∫ tf

t0

f (x, ẋ, t) dt (13.226)

where J (x) is called an objective function or a functional.
The particular path x(t) that minimizes J (x) must satisfy the following equation:

∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (13.227)

This equation is the Lagrange or Euler–Lagrange differential equation and is in general
of second order.

Proof : To show that a path x = x�(t) is a minimizing path for the functional J (x) =∫ tf
t0

f (x, ẋ, t) dt with boundary conditions (13.225), we need to show that

J (x) ≥ J (x�) (13.228)

for all continuous paths x(t). Any path x(t) satisfying the boundary conditions (13.225)
is called an admissible path . To see that x�(t) is the optimal path, we may examine the
integral J for every admissible path. Let us define an admissible path by superposing
another admissible path y(t) to x�,

x(t) = x� + εy(t) (13.229)

where

y(t0) = y(tf ) = 0 (13.230)

and ε is a small parameter,

ε � 1 (13.231)
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Substituting x(t) in J of Equation (13.226) and subtracting from J (x�) provide

�J = J
[
x� + εy(t)

] − J
(
x�)

(13.232)

=
∫ tf

t0

f (x� + εy, ẋ� + εẏ, t) dt −
∫ tf

t0

f (x�, ẋ�, t) dt

Let us expand f (x� + εy, ẋ� + εẏ, t) about (x�, ẋ�),

f (x� + εy, ẋ� + εẏ, t) = f (x�, ẋ�, t) + ε

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)
+ ε2

(
y2 ∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2 ∂2f

∂ẋ2

)
dt

+ O
(
ε3) (13.233)

and find

�J = εV1 + ε2V2 + O
(
ε3) (13.234)

where

V1 =
∫ tf

t0

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)
dt (13.235)

V2 =
∫ tf

t0

(
y2 ∂2f

∂x2
+ 2yẏ

∂2f

∂x ∂ẋ
+ ẏ2 ∂2f

∂ẋ2

)
(13.236)

The first integral, V1, is called the first variation of J , and the second integral, V2, is
called the second variation of J . All the higher variations are combined and shown
as O

(
ε3
)
. If x� is the minimizing path, then it is necessary that �J ≥ 0 for every

admissible y(t). If we divide �J by ε and make ε → 0, then we find a necessary
condition for x� to be the optimal path as V1 = 0. This condition is equivalent to∫ tf

t0

(
y

∂f

∂x
+ ẏ

∂f

∂ẋ

)
dt = 0 (13.237)

By integrating by parts, we may write∫ tf

t0

ẏ
∂f

∂ẋ
dt =

(
y

∂f

∂ẋ

)tf

t0

−
∫ tf

t0

y
d

dt

(
∂f

∂ẋ

)
dt (13.238)

Because of y(t0) = y(tf ) = 0, the first term on the right-hand side is zero. Therefore,
the minimization integral condition (13.237) for every admissible y(t) reduces to∫ tf

t0

y

(
∂f

∂x
− d

dt

∂f

∂ẋ

)
dt = 0 (13.239)

The terms in the parentheses are continuous functions of t , evaluated on the optimal
path x�, and they do not involve y(t). So, the only way for the bounded integral of
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the parentheses,
(

∂f

∂x
− d

dt
∂f

∂ẋ

)
, multiplied by a nonzero function y(t) from t0 and tf to

be zero is
∂f

∂x
− d

dt

∂f

∂ẋ
= 0 (13.240)

Equation (13.240) is a necessary condition for x = x�(t) to be a solution of the mini-
mization problem (13.226). This differential equation is called the Euler–Lagrange or
Lagrange equation. The second necessary condition to have x = x�(t) as a minimizing
solution is that the second variation, evaluated on x�(t), must be negative. �

Example 784 � Basic Lemma Consider two fixed points x1 and x2 (> x1) and g (x)

as a continuous function for x1 ≤ x ≤ x2. If∫ x2

x1

f (x) g (x) dx = 0 (13.241)

for every choice of the continuous and differentiable function f (x) for which

f (x1) = f (x2) = 0 (13.242)

then

g(x) = 0 (13.243)

identically in x1 ≤ x ≤ x2. This result is called the basic lemma .
To prove the lemma, let us assume that (13.243) does not hold. So, suppose there

is a particular x0 of x in x1 ≤ x0 ≤ x2 for which g (x0) �= 0. At the moment, let us
assume that g (x0) > 0. Because g (x) is continuous, there must be an interval around
x0 such as x10 ≤ x0 ≤ x20 in which g (x) > 0 everywhere. However, (13.241) cannot
then hold for every permissible choice of f (x). A similar contradiction is reached if
we assume g(x0) < 0. Therefore, the lemma is correct.

Example 785 � Lagrange Equation for Extremizing J = ∫ 2
1 ẋ2dt The Lagrange

equation for extremizing the functional

J =
∫ 2

1
ẋ2 dt (13.244)

is
∂f

∂x
− d

dt

∂f

∂ẋ
= −ẍ = 0 (13.245)

which shows that optimal path is

x = C1t + C2 (13.246)

The boundary conditions x(1), x(2) provide C1 and C2. For example, assuming bound-
ary conditions x(1) = 0, x(2) = 3 provides

x = 3t − 3 (13.247)



1218 Lagrange Dynamics

Example 786 � Geodesics The problem of determining the shortest path between
two given points at the same level of a quantitative characteristic is called the geodesic
problem.

An example of a geodesic problem is: What is the shortest arc lying on the surface
of a sphere and connecting two given points? We can generalize the problem as follows.

Given two points on the surface of

g (x, y, z) = 0 (13.248)

what is the equation of the shortest arc lying on (13.248) and connecting the points. Let
us express the equation of the surface in parametric form using parameters u and v:

x = x (u, v) y = (u, v) z = z (u, v) (13.249)

the differential of the arc length may be written as

(ds)2 = (dx)2 + (dy)2 + (dz)2

= P (u, v) (du)2 + 2Q (u, v) du dv + R (u, v) (dv)2 (13.250)

where

P (u, v) =
(

∂x

∂u

)2

+
(

∂y

∂u

)2

+
(

∂z

∂u

)2

(13.251)

R (u, v) =
(

∂x

∂v

)2

+
(

∂y

∂v

)2

+
(

∂z

∂v

)2

(13.252)

Q(u, v) = ∂x

∂u

∂x

∂v
+ ∂y

∂u

∂y

∂v
+ ∂z

∂u

∂z

∂v
(13.253)

If the curves u = const are orthogonal to the curves v = const, the quantity Q is zero.
If the given fixed points on the surface are (u1, v1) and (u2, v2) with u2 >u1 and we
express the arcs and points by

v = v (u) v (u1) = v1 v (u2) = v2 (13.254)

the length of the arc is given by

J =
∫ u2

u1

√
P (u, v) + 2Q (u, v)

dv

du
+ R (u, v)

(
dv

du

)2

(13.255)

Our problem, then, is to find the function v(u) that renders the integral (13.255) a
minimum. Employing the Lagrange equation, we find

∂P

∂v
+ 2

dv

du

∂Q

∂v
+

(
dv

du

)2
∂R

∂v

2

√
P + 2Q

dv

du
+ R

(
dv

du

)2
− d

du


Q + R

dv

du√
P + 2Q

dv

du
+ R

(
dv

du

)2

 = 0 (13.256)
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In the special case where P , Q, and R are explicitly functions of u alone, this last
result becomes

Q + R(dv/du)√
P + 2Q(dv/du) + R (dv/du)2

= C1 (13.257)

If the curves u = const are orthogonal to the curves v = const, we have

v = C1

∫ √
P du√

R2 − C2
1R

(13.258)

Still supposing that Q = 0 but having P and R as explicit functions of v alone,
we have

u = C1

∫ √
Rdv√

P 2 − C2
1P

(13.259)

As a particular case let us consider the geodesic connecting two points on a sphere
with radius r . The most convenient parameters u and v for describing position on the
sphere surface are the colatitude θ and the longitude ϕ:

x = r cos θ sin ϕ y = r sin θ sin ϕ z = r cos ϕ (13.260)

where θ is the angle between the positive z-axis and the line drawn from the sphere
center to the designated point and ϕ is the angle between the (x, z)-plane and the half
plane bounded by the z-axis and containing the designated point. Therefore,

P = r2 sin2 θ R = r Q = 0 (13.261)

ϕ = C1

∫
dv√

r2 sin4 θ − C2
1 sin2 θ

= − sin−1 cot θ√
(r/C1)

2 − 1
+ C2 (13.262)

from which it follows that

r sin θ cos ϕ sin C2 − r sin θ sin ϕ cos C2 − z√
(r/C1)

2 − 1
= 0 (13.263)

Using (13.260) we find that the sphere geodesic lies on the following plane, which
passes through the center of the sphere:

x sin C2 − y cos C2 − z√
(r/C1)

2 − 1
= 0 (13.264)

Therefore the shortest arc connecting two points on the surface of a sphere is the
intersection of the sphere with the plane containing the given points and the center of
the sphere. Such an arc is called a great-circle arc.
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y

xP1

P2

g

Figure 13.9 A curve joining points P1 and P2 and a frictionless sliding point.

Example 787 � Brachistochrone Problem We may use the Lagrange equation and
find the frictionless curve joining points P1 and P2, as shown in Figure 13.9, along
which a particle falling from rest due to gravity travels from the higher to the lower
point in minimum time. This is called the brachistochrone problem.

If v is the velocity of the falling point along the curve, then the time required to
fall an arc length ds is ds/v. Then, the objective function to find the curve of minimum
time is

J =
∫ s2

s1

ds

v
(13.265)

However,

ds =
√

1 + y′2dx y′ = dy

dx
(13.266)

and according to the law of conservation of energy, we have

v =
√

2gy (13.267)

Therefore, the objective function simplifies to

J =
∫ x2

x1

√
1 + y′2

2gy
dx (13.268)

Applying the Lagrange equations, we find

y
(
1 + y′2) = 2R (13.269)

where R is a constant. The optimal curve starting from y(0) = 0 can be expressed by
the two parametric equations

x = R (θ − sin θ) y = R (1 − cos θ) (13.270)

The optimal curve is a cycloid. Examples 181 and 413 show more details and applica-
tion of cycloid curves.

The name of the problem is derived from the Greek words “βραχιστoζ ,” meaning
“shortest” and “χρoνoζ ,” meaning “time.” The brachistochrone problem was originally
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discussed in 1630 by Galileo Galilei (1564–1642) and was solved in 1696 by Johann
and Jacob Bernoulli.

Example 788 � Lagrange Multiplier Assume f (x) is defined on an open interval
x ∈ (a, b) and has continuous first- and second-order derivatives in some neighborhood
of x0 ∈ (a, b). The point x0 is a local extremum of f (x) if

df (x0)

dx
= 0 (13.271)

Assume f (x) = 0, x ∈ Rn, and gi(x) = 0, i = 1, 2, . . . , j , are functions defined on an
open region Rn and have continuous first- and second-order derivatives in Rn. The
necessary condition that x0 is an extremum of f (x) subject to the constraints gi(x) = 0
is that there exist j Lagrange multipliers λi , i = 1, 2, . . . , j , such that

∇
(
s +

∑
λigi

)
= 0 (13.272)

As an example, we can find the minimum of f ,

f = 1 − x2
1 − x2

2 (13.273)

subject to the constraint

g = x2
1 + x2 − 1 = 0 (13.274)

by finding the gradient of f + λg:

∇ [
1 − x2

1 − x2
2 + λ

(
x2

1 + x2 − 1
)] = 0 (13.275)

which leads to

∂f

∂x1
= −2x1 + 2λx1 = 0 (13.276)

∂f

∂x2
= −2x2 + λ = 0 (13.277)

To find the three unknowns x1, x2, and λ, we employ Equations (13.276), (13.277),
and (13.274). There are two sets of solutions as follows:

x1 = 0 x2 = 1 λ = 2

x1 = ±1/
√

2 x2 = 1/2 λ = 1
(13.278)

Example 789 Dido Problem Consider a planar curve y(x) with a constant length
l that connects the points (−R, 0) and (R, 0) as shown in Figure 13.10. The Dido
problem is to find the y (x) that maximized the enclosed area. The objective function
of the Dido problem is

J =
∫ R

−R

y dx (13.279)
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x

y

o R–R

y = (x)
dx

ds

Figure 13.10 Dido problem is to find a planar curve y(x) with a constant length l to maximize
the enclosed area.

However, the constant length provides a constraint equation:

l =
∫ R

−R

ds =
∫ R

−R

√
1 + y′2 dx (13.280)

ds =
√

1 + y′2 dx y′ = dy

dx
(13.281)

Therefore, using the Lagrange multiplier λ, the objective function with constraint
would be

J =
∫ R

−R

[
f
(
y, y′, x

) + λg
(
y, y′, x

)]
dx (13.282)

f = y g =
√

1 + y′2 (13.283)

The Lagrange equation for the constraint objective function (13.282) is

∂f

∂y
− d

dx

∂f

∂y′ + λ

(
∂g

∂y
− d

dx

∂g

∂y′

)
= 0 (13.284)

Equation (13.284) provides

1

λ
= d

dx

y′√
1 + y′2 (13.285)

This differential equation must be solved to determine the maximizing curve y (x).
First integration provides

λy′√
1 + y′2 = x + C1 (13.286)

Solving this equation for y′ yields

y′ = ± (x + C1)√
λ2 − (x + C1)

(13.287)

and a second integration provides

y = ±
√

λ2 − (x + C1) + C2 (13.288)
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Satisfying the boundary conditions (−R, 0) and (R, 0), we have

C1 = C2 = 0 (13.289)

λ = R (13.290)

which indicates that the function y (x) is

x2 + y2 = R2 (13.291)

It is a circle with center at O and radius R.

Example 790 � Several Independent Variables We now derive the differential
equations that must be satisfied by the twice-differentiable functions q1(t), q2(t), . . . ,

qn(t) that extremize the integral J :

J =
∫ t2

t1

f (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) dt (13.292)

The functions q1 (t) , q2 (t) , . . . , qn (t) achieve the given values at the fixed limits of
integration t1 and t2, where t1 < t2.

Let us show the optimal functions by q
�
i (t), i = 1, 2, . . . , n. We may examine the

integral J for every admissible function. An admissible function may be defined by

qi(t) = q
�
i + εyi(t) (13.293)

where

yi(t1) = yi(t2) = 0 (13.294)

and ε is a small parameter,

ε � 1 (13.295)

Consider a function f = f (qi, q̇i , t). The variables qi(t) satisfy the boundary condi-
tions

q1(t1) = q1 q(t2) = q2 (13.296)

Substituting qi(t) in J and subtracting from (13.292) yield.

�J = J
[
q

�
i + εyi(t)

]
− J

(
q

�
i

)
(13.297)

=
∫ tf

t0

f (q
�
i + εyi, q̇

�
i + εẏi , t) dt −

∫ tf

t0

f (q
�
i , q̇

�
i , t) dt

Let us expand f (x� + εy, ẋ� + εẏ, t) about (x�, ẋ�):

f (q�
i + εyi, q̇

�
i + εẏi , t) = f (q

�
i , q̇

�
i , t) + ε

(
yi

∂f

∂qi

+ ẏi

∂f

∂q̇i

)
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+ ε2

(
y2

i

∂2f

∂q2
i

+ 2yi ẏj

∂2f

∂qi ∂q̇j

+ ẏ2
i

∂2f

∂q̇2
i

)
dt

+ O
(
ε3) (13.298)

and find

�J = εV1 + ε2V2 + O
(
ε3) (13.299)

where

V1 =
∫ tf

t0

(
yi

∂f

∂qi

+ ẏj

∂f

∂q̇j

)
dt (13.300)

V2 =
∫ tf

t0

(
y2

i

∂2f

∂q2
i

+ 2yi ẏj

∂2f

∂qi ∂q̇j

+ ẏ2
i

∂2f

∂q̇2
i

)
. (13.301)

If we divide �J by ε and make ε → 0, then we find a necessary condition V1 = 0 for
q

�
i to be the optimal path. By integrating V1 by parts, we may write∫ tf

t0

ẏ1
∂f

∂q̇1
dt =

(
y1

∂f

∂q̇1

)t2

t1

−
∫ t2

t1

y1
d

dt

(
∂f

∂q̇1

)
dt (13.302)

Since y1(t1) = y2(t2) = 0, the first term on the right-hand side is zero and the integral
of V1 reduces to ∫ t2

t1

y1

(
∂f

∂q1
− d

dt

∂f

∂q̇1

)
dt = 0 (13.303)

The terms in parentheses are continuous functions of t evaluated on the optimal path
x�, and they do not involve y1(t). So, the only way for the bounded integral of the
parentheses,

[
∂f /∂q1 − (d/dt)(∂f /∂q̇1)

]
, multiplied by a nonzero function y1(t) to be

zero is if the parentheses are zero. Therefore, the minimization integral condition for
every admissible y1(t) is

∂f

∂q1
− d

dt

∂f

∂q̇1
= 0 (13.304)

Using similar treatment of the successive pairs of terms of (13.302), we derive the
following n conditions to minimize (13.292):

∂f

∂qi

− d

dt

∂f

∂q̇i

= 0 i = 1, 2, . . . , n (13.305)

Therefore, when a definite integral is given which contains n functions to be determined
by the condition that the integral be stationary, we can vary these functions indepen-
dently. So, the Euler–Lagrange equation can be formed for each function separately.
This provides n differential equations.
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Example 791 � Minimum Time and Bang-Bang Control The most practical func-
tion of industrial robots is moving between two points rest to rest. Minimum time
control is what we need to increase industrial robot productivity. The objective of
time-optimal control is to transfer the end effector of a robot from an initial posi-
tion to a desired destination in minimum time. Consider a system with the equation
of motion

ẋ = f (x(t), Q(t)) (13.306)

where Q is the control input and x is the state vector of the system:

x =
[

q
q̇

]
(13.307)

The minimum-time problem is always subject to bounded input, such as

|Q(t)| ≤ Qmax (13.308)

The solution of the time-optimal control problem subject to bounded input is called
bang-bang control. In this solution, at least one of the control variables takes either the
maximum or minimum value at each time. The goal of minimum time control is to
find the trajectory x(t) and input Q(t) starting from an initial state x0(t) and arriving
at the final state xf (t) under the condition that the whole trajectory minimizes the time
integral

J =
∫ tf

t0

dt (13.309)

Let us define a Hamiltonian function H and a generalized momentum vector p,

H(x, Q, p) = pT f (x(t), Q(t)) (13.310)

that provide the two equations

ẋ = ∂H

∂p

T

ṗ = −∂H

∂x

T

(13.311)

Based on the Pontryagin principle, the optimal input Q(t) is the one that minimizes
the function H . Such an optimal input is to apply the maximum effort Qmax or −Qmax

over the entire time interval. When the control command takes a value at the bound-
ary of its admissible region, it is said to be saturated. The vector p is also called a
co-state.

To show the application of bang-bang control, let us consider a linear dynamic
system given by

Q = ẍ (13.312)

or

ẋ = [A] x + bQ (13.313)
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where

x =
[
x1

x2

]
[A] =

[
0 1
0 0

]
b =

[
0
1

]
(13.314)

along with a constraint on the input variable:

Q ≤ 1 (13.315)

By defining a co-state vector

p =
[
p1

p2

]
(13.316)

the Hamiltonian (13.310) becomes

H(x, Q, p) = pT ([A] x + bQ) (13.317)

which provides two first-order differential equations

ẋ = ∂H

∂p

T

= [A] x + bQ (13.318)

ṗ = −∂H

∂x

T

= − [A] p (13.319)

Equation (13.319) is [
ṗ1

ṗ2

]
=

[
0

−p2

]
(13.320)

which can be integrated to find p:

p =
[
p1

p2

]
=

[
C1

−C1t + C2

]
(13.321)

The Hamiltonian is then equal to

H = Qp2 + p1x2 = (−C1t + C2) Q + p1x2 (13.322)

The control command Q only appears in

pT bQ = (−C1t + C2) Q (13.323)

which can be maximized by

Q(t) =
{

1 if −C1t + C2 ≥ 0
−1 if −C1t + C2 < 0

(13.324)

This solution implies that Q(t) has a jump point at t = C2
C1

. The jump point at which
the control command suddenly changes from maximum to minimum or from minimum
to maximum is called the switching point.
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Substituting the control input (13.324) into (13.313) gives us two first-order dif-
ferential equations [

ẋ1

ẋ2

]
=

[
x2

Q

]
(13.325)

which can be integrated to find the path x(t):

[
x1

x2

]
=


[ 1

2 (t + C3)
2 + C4

t + C3

]
if Q = 1[ − 1

2 (t − C3)
2 + C4

−t + C3

]
if Q = −1

(13.326)

The constants of integration C1, C2, C3, and C4 must be calculated based on the
boundary conditions

x0 = x(t0) xf = x(tf ) (13.327)

Eliminating t between equations in (13.326) provides the relationship between the
state variables x1 and x2:

x1 =
{

1
2x2

2 + C4 if Q = 1

− 1
2x2

2 + C4 if Q = −1
(13.328)

These equations show a series of parabolic curves in the (x1, x2)-plane with C4 as a
parameter. The parabolas are shown in Figure 13.11 with the arrows indicating the
direction of motion on the paths. The (x1, x2)-plane is the phase plane.

Considering that there is one switching point in this system, the overall optimal
paths are shown in Figure 13.11(c). As an example, assume the state of the system at
initial and final times are x(t0) and x(tf ), respectively. The motion starts with Q = 1,
which forces the system to move on the control path x1 = 1

2x2
2 + (

x10 − 1
2x2

20

)
up to the

x2

x1

2

1

–1

–2

–6 –4 –2 2 4 6

Q = –1 Q = 1

X(t0)

X(tf)

Figure 13.11 Optimal path for Q = ẍ in the phase plane and the mesh of the optimal paths in
the phase plane.
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intersection point with x1 = − 1
2x2

2 +
(
x1f + 1

2x2
2f

)
. The intersection is the switching

point at which the control input changes to Q = −1. The switching point is at

x1 = 1
4

(
2x10 + 2xf − x2

20 + x2
2f

)
(13.329)

x2 =
√(

x1f + 1
2x2

2f

)
− (

x10 − 1
2x2

20

)
(13.330)

13.4 � HAMILTON PRINCIPLE

The Hamilton principle states: The time integral of the variation of the Lagrangian
function L vanishes along the actual ST-trajectory connecting two ST-points ri (t0)

and ri (t1) in state–time space: ∫ t1

t0

δL dt = 0 (13.331)

Proof : Beginning from the fundamental equation of dynamics (10.303)

n∑
i=1

(mi r̈i − Fi ) · δri = 0 (13.332)

where Fi are the given forces, we have

n∑
i=1

mi r̈i · δri =
n∑

i=1

Fi · δri = δW (13.333)

Using
n∑

i=1

mi r̈i · δri = d

dt

n∑
i=1

mi ṙi · δṙi − δK (13.334)

we can write Equation (13.333) as

d

dt

n∑
i=1

mi ṙi · δṙi = δK + δW (13.335)

On integrating this equation with respect to time over the interval t0 ≤ t ≤ t1, we find[
n∑

i=1

mi ṙi · δṙi

]t1

t0

=
∫ t1

t0

(δK + δW) dt (13.336)

This is the Hamilton principle in the most general form . Let us write this equation for
virtual displacements δri satisfying

δri (t0) = δri (t1) = 0 i = 1, 2, . . . , n (13.337)
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to indicate that the actual motion has a ST-trajectory ri (t) (i = 1, 2, . . . , n) with fixed
end configurations ri (t0) and ri (t1), respectively. Consider a neighboring ST-trajectory
r′
i (t),

r′
i (t) = ri (t) + δri (t) (13.338)

satisfying the same boundary conditions (13.337) as the actual ST-trajectory ri (t).
During the time interval t0 ≤ t ≤ t1, the neighboring ST-trajectory r′

i (t) are such that
the virtual displacements δri satisfy the scleronomic holonomic constraint equations.
Employing (13.338), the Hamilton principle becomes∫ t1

t0

(δK + δW) dt = 0 (13.339)

where δK is the virtual change in kinetic energy which results from the virtual dis-
plasement and δW is the work done by the given forces in the virtual displasement.
Therefore, the Hamilton principle states: The time integral of the sum of the virtual
kinetic energy change and virtual work over any time interval vanishes when the virtual
displacements of the actual motion and the end configurations are given.

We can express application of the Hamilton principle as this: If we compute the
expressions of δK and δW for any arbitrary ST-trajectory and then set the time integral
of their sum equal to zero, we produce a condition that the virtual displacements δri

were made from the actual ST-trajectory. Therefore, we have a condition to calculate
the actual ST-trajectory.

When all given forces are potential, we have

δW = −δV (13.340)

where δV is a variation of the potential energy V . Therefore, the Hamilton principle
becomes ∫ t1

t0

δ (K − V ) dt = 0 (13.341)

By introducing the Lagrangian function L,

L = K − V (13.342)

we write Hamilton principle as Equation (13.331):∫ t1

t0

δL dt = 0 (13.343)

When a system is nonholonomic, we have∫ t1

t0

δL dt �= δ

∫ t1

t0

L dt = 0 (13.344)

However, if a system is holonomic, we may write∫ t1

t0

δL dt = δ

∫ t1

t0

L dt = 0 (13.345)
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The equation

δ

∫ t1

t0

L dt = 0 (13.346)

defines the problem in the calculus of variation to find stationary values of the integral∫ t1

t0

L dt = 0 (13.347)

Therefore, only in holonomic systems does the Hamilton principle reduce to a problem
in the calculus of variation with the Lagrange equation

∂L
∂ri

− d

dt

∂L
∂ ṙi

= 0 (13.348)

Equation (13.340) is interesting because δW is virtual work and is not in general
a variation of W while δV is the variation of V.

The Hamilton principle is considered as the best known integral principle of
mechanics. The Hamilton principle is not, in general, a variational principle. �

Example 792 � The Difference between
∫ t1

t0
δL dt = 0 and δ

∫ t1
t0

L dt = 0 The
meaning of

δ

∫ t1

t0

L dt = 0 (13.349)

is different than ∫ t1

t0

δL dt = 0 (13.350)

Recalling the definitions of d and δ where df = 0 defines the stationary values of f

when t is varied and δf = 0 defines the stationary values of f when t is not varied,
we express the meaning of (13.349) as: The time integral of the Lagrangian function is
stationary along the actual ST -trajectory relative to all other possible trajectories having
the same end points and differing from the actual trajectory by virtual displacements.
However, (13.350) states: The time integral of the variation of the Lagrangian function
L vanishes along the actual ST -trajectory connecting two ST -points ri(t0) and ri(t1) in
the state–time space.

Example 793 � The Central Principle Expansion of the fundamental equation of
dynamics (10.303) is

n∑
i=1

(mi r̈i · δri − Fi · δri) = 0 (13.351)
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Let us take a time derivative of
∑n

i=1 mi ṙi · δri ,

d

dt

n∑
i=1

mi ṙi · δri =
n∑

i=1

mi r̈i · δri +
n∑

i=1

mi ṙi · d

dt
δri

=
n∑

i=1

mi r̈i · δri +
n∑

i=1

mi ṙi · δṙi (13.352)

to derive the identity
n∑

i=1

mi r̈i · δri = d

dt

n∑
i=1

mi ṙi · δri −
n∑

i=1

mi ṙi · δṙi (13.353)

The last term in this identity can be written based on the kinetic energy K :

K = 1

2

n∑
i=1

mi ṙ2
i (13.354)

where

δK = 1

2

n∑
i=1

mi ṙi · δṙi (13.355)

Therefore, we have
n∑

i=1

mi r̈i · δri = d

dt

n∑
i=1

mi ṙi · δri − δK (13.356)

This equation is sometimes called the central principle. It states: The virtual work
done by the inertia forces is equal to the time rate of change of the work done by the
momentum minus the virtual change in kinetic energy.

Example 794 � Hamilton Principle for a Particle on a Surface Consider a mov-
ing particle m on a surface, under its gravitational force. To determine the Hamilton
principle, let us write its kinetic and potential energies:

K = 1
2

(
ẋ2 + ẏ2 + ż2

)
V = mgz (13.357)

The equation of the surface provides a holonomic constraint between the coordinates
of the particle:

z = f (x, y) (13.358)

Therefore, Equation (13.346) is applicable:

δ

∫ t1

t0

(K − V ) dt = δ

∫ t1

t0

m

2

(
ẋ2 + ẏ2 + ż2 − 2mgz

)
dt

= δ

∫ t1

t0

m

2

[
ẋ2 + ẏ2 +

(
∂f

∂x
ẋ + ∂f

∂y
ẏ

)2

− 2mgz

]
dt (13.359)
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Example 795 � Nonholonomic Hamilton Principle Consider a moving particle m

to be acted on by a potential force of potential energy V :

V = V (x, y) (13.360)

Assume the particle is constrained such that the slope of its trajectory is proportional
to time:

ẏ

ẋ
= t (13.361)

This is a nonholonomic constraint; therefore, we should use the general form of the
Hamilton principle (13.331). The kinetic energy of the particle and its variation are

K = 1
2m

(
ẋ2 + ẏ2

)
(13.362)

δK = mẋ δẋ + mẏ δẏ (13.363)

The variation of the potential energy is

δV = ∂V

∂x
δx + ∂V

∂y
δy (13.364)

Using the constraint equation, we have

δL = mẋ δẋ + mẏ δẏ − ∂V

∂x
δx + ∂V

∂y
δy

= mẋ δẋ + (δx + t δẋ) mẋt −
(

∂V

∂x
+ t

∂V

∂y

)
δx

=
[(

1 + t2)mẋ δẋ +
(

mẋt − ∂V

∂x
− t

∂V

∂y

)]
δx (13.365)

Therefore, the Hamilton principle (13.331) would be∫ t1

t0

[(
1 + t2)mẋ δẋ +

(
mẋt − ∂V

∂x
− t

∂V

∂y

)]
δx dt = 0 (13.366)

13.5 � LAGRANGE EQUATION AND CONSTRAINTS

The most general form of the Lagrange equation is

d

dt

∂K

∂q̇i

− ∂K

∂qi

− Qi +
l∑

j=1

λj

∂fj

∂q̇i

= 0 i = 1, 2, . . . , n (13.367)

where K is the kinetic energy, Qi the generalized force, qi the generalized coordinates,
q̇j the generalized velocities, λj the Lagrange multipliers, and fj (j = 1, 2, . . . , 1) the
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nonholonomic constraint on qi :

fj (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) = 0 j = 1, 2, . . . , l (13.368)

So, when a dynamic system is under nonholonomic constraints (13.368), its equations
of motion can be found from the general form of the Lagrange equation (13.367).

Proof : The fundamental equation of dynamics in terms of generalized coordinates is
found in Equation (10.738) as

n∑
j=1

(
d

dt

∂K

∂q̇j

− ∂K

∂qj

− Qj

)
δqj = 0 (13.369)

where the kinetic energy K and the generalized force Q are functions of the gen-
eralized coordinates qj , generalized velocities q̇j , and time t . Let us assume that the
possible generalized velocities q̇j must satisfy the nonholonomic generalized constraints
(13.368):

n∑
k=1

Bjk q̇k + Bj = 0 j = 1, 2, . . . , l (13.370)

Bjk = ∂fj

∂qk

Bj = ∂fj

∂t
(13.371)

Among the possible δqj , we are looking for those that also satisfy (13.369). The virtual
generalized displacements δqj in (13.369) must satisfy the nonholonomic generalized
constraints (10.554):

n∑
k=1

Bjk δqk = 0 j = 1, 2, . . . , l (13.372)

Let us introduce the quantity Rj as

Rj = d

dt

∂K

∂q̇j

− ∂K

∂qj

− Qj (13.373)

and an n-dimensional vector R and an l-dimensional vector Bj as

R = [
R1 R2 · · · Rn

]T
(13.374)

Bj = [
Bj1 Bj2 · · · Bjl

]T
(13.375)

Now, Equations (13.369) and (13.372) become

R · δq = 0 (13.376)

Bj · δq = 0 (13.377)

showing that δq is orthogonal to both R and every Bj . Introducing the Lagrange
multipliers λj , we may combine these two equations:R +

l∑
j=1

λj Bj

 · δq = 0 (13.378)
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which implies that R is in the same direction as
∑l

j=1 λj Bj :

R = −
l∑

j=1

λj Bj (13.379)

To show this, let us assume l = 1 to have B1, indicating an n-dimensional vector
in Q-space. Then, an arbitrary n-dimensional possible displacement vector δq would
lie in the orthogonal plane πB to B1. Now, if R is not on the same axis of B1, it
must have a component R⊥ on πB in an orthogonal direction to δq. Because δq is
an arbitrary virtual displacement vector, it can turn in πB around the B1-axis. Such a
freedom violates the orthogonality of R⊥ and δq. So, R⊥ = 0, and therefore, B1 and
R are colinear. In the general case of Bj (j = 1, 2, . . . , l < n), the orthogonal plane
πB would be an l-dimensional hyperplane in Q-space on which δq lies. Therefore,
(13.379) holds.

Expansion of (13.378) provides

n∑
i=1

 d

dt

∂K

∂q̇i

− ∂K

∂qi

− Qi +
l∑

j=1

λjBij

 δqi = 0 (13.380)

i = 1, 2, . . . , n

where δqi are unconstraint virtual displacements. From Equation (13.380), we deduce
the fundamental theorem of Lagrangian mechanics:

To satisfy Equation ( 13.380), it is necessary and sufficient that

d

dt

∂K

∂q̇i

− ∂K

∂qi

− Qi +
l∑

j=1

λjBij = 0 (13.381)

for every i = 1, 2, . . . , n.
The sufficiency is obvious. To show the necessity, let us assume that one of them is

not zero. Then we may choose the associated δqi in (13.380) to have the same sign as
the nonzero parentheses. Such a combination makes the sum (13.380) positive, which
contradicts the requirement that it be zero.

Equations (13.367) are the Lagrange equations of motion , which are n equations in
n + l unknowns qi , i = 1, 2, . . . , n, and λj , j = 1, 2, . . . , l. The n equations (13.381)
along with the l nonholonomic constraint equations (13.370) provide the exact number
of equations to determine the unknowns. �

Example 796 A Rolling Disc A thin disc with mass m and radius R is rolling without
slipping on a horizontal plane, as is shown in Figure 13.12. To determine its Lagrange
equations of motion, we begin with the kinematics of the disc. Let us attach a body
coordinate frame B to the disc at the mass center C and a global frame G on the
horizontal plane. We use the Euler angles ϕ, θ , ψ to indicate the orientation of B in
G and the coordinates X, Y of the contact point P(X, Y, Z) to indicate the position of
the disc. Because of the holonomic constraint Z = 0, we can use the variables X, Y ,
ϕ, θ , ψ as the required five generalized coordinates.



13.5 � Lagrange Equation and Constraints 1235
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Figure 13.12 A thin disc with mass m and radius R is rolling without slipping on a horizontal
plane.

To determine the transformation matrix GRB , we introduce two intermediate frames
B1 and B2, both at C. The frames B1 and G are related by a rotation ϕ about the z1-axis:

1RG =
 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 (13.382)

The frames B2 and B1 are related by a rotation θ about the y2-axis:

2R1 =
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (13.383)

The frames B and B2 are related by a rotation ψ about the x-axis:

BR2 =
1 0 0

0 cos ψ sin ψ

0 − sin ψ cos ψ

 (13.384)

Therefore,

BRG = BR2
2R1

1RG

=
 cθcϕ cθsϕ −sθ

cϕsθsψ − cψsϕ cψcϕ + sθsψsϕ cθsψ

sψsϕ + cψcϕsθ cψsθsϕ − cϕsψ cθcψ

 (13.385)
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GRB = BRT
G

=
cθcϕ cϕsθsψ − cψsϕ sψsϕ + cψcϕsθ

cθsϕ cψcϕ + sθsψsϕ cψsθsϕ − cϕsψ

−sθ cθsψ cθcψ

 (13.386)

Employing the transformation matrix

GR2 = [2R1
1RG

]T = 1RT 2

G RT
1

=
cos θ cos ϕ − sin ϕ cos ϕ sin θ

cos θ sin ϕ cos ϕ sin θ sin ϕ

− sin θ 0 cos θ

 (13.387)

and the global coordinates of the contact point P(X, Y ), we find the global position
of C:

GrC = GrP + GR2
2
PrC

=
X

Y

0

 + GRB

0
0
R

 =
X + R cos ϕ sin θ

Y + R sin θ sin ϕ

R cos θ

 (13.388)

Taking a time derivative of GrC provides the velocity of the mass center C:

GvC =
Gd

dt
GrC =

Ẋ + Rθ̇ cos θ cos ϕ − Rϕ̇ sin θ sin ϕ

Ẏ + Rθ̇ cos θ sin ϕ + Rϕ̇ cos ϕ sin θ

−Rθ̇ sin θ

 (13.389)

The angular velocity of the disc is
B
Gω̃B = GRT

B
GṘB

=
 0 θ̇ sψ − ϕ̇cθcψ θ̇cψ + ϕ̇cθsψ

ϕ̇cθcψ − θ̇ sψ 0 ϕ̇sθ − ψ̇

−θ̇ cψ − ϕ̇cθsψ ψ̇ − ϕ̇sθ 0

 (13.390)

Therefore, the kinetic and potential energies of the disc are

K = 1
2mGvC ·G vC + 1

2
B
GωT

B
BI B

GωB

= 1
2m

(
Ẋ2 + Ẏ 2

) + 1
2mR2θ̇2 + 1

2mR2ϕ̇2 sin2 θ

+ mRẊ
(
θ̇ cos ϕ cos θ − ϕ̇ sin ϕ sin θ

)
+ mRẎ

(
θ̇ sin ϕ cos θ + ϕ̇ cos ϕ sin θ

)
+ 1

2I1ψ̇
2 + 1

2I2θ̇
2 + 1

4 (I1 + I2) ϕ̇2

− 1
4 (I1 − I2) ϕ̇2 cos 2θ − I1ψ̇ϕ̇ sin θ (13.391)

V = mgR cos θ (13.392)
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where

BI =
I1 0 0

0 I2 0
0 0 I2

 (13.393)

Rolling without slipping provides a vectorial nonholonomic constraints:

GvP = GvC + G ωB × G
C rP = 0 (13.394)

Employing the above kinematic vectors and transformation matrices, we can write the
rolling constraint equation as

GvP = GvC + GRB

(
B
GωB × GR2

2
CrP

)
=

Ẋ − Rψ̇ sin ϕ

Ẏ + Rψ̇ cos ϕ

0

 = 0 (13.395)

The nonholonomic constraints are sceleronomic,

f1 = Ẋ − Rψ̇ sin ϕ = 0 (13.396)

f2 = Ẏ + Rψ̇ cos ϕ = 0 (13.397)

and their Pfaffian forms are

δX − Rδψ sin ϕ = 0 (13.398)

δY + Rδψ cos ϕ = 0 (13.399)

Therefore, the Lagrangian of the disc is

L = K − V (13.400)

and the Lagrange equation is

n∑
i=1

 d

dt

∂L
∂q̇i

− ∂L
∂qi

− Qi +
l∑

j=1

λj

∂fj

∂q̇i

 δqi = 0 (13.401)

i = 1, 2, . . . , n

There is no nonconservative generalized force Qi . Applying the Lagrange equation to
the generalized coordinates X, Y, ϕ, θ, ψ , we find the following equations of motion,
respectively:

d

dt

[
mẊ + mR

(
θ̇ cos ϕ cos θ − ϕ̇ sin ϕ sin θ

)] + λ1 = 0 (13.402)

d

dt

[
mẎ + mR

(
θ̇ sin ϕ cos θ + ϕ̇ cos ϕ sin θ

)] + λ2 = 0 (13.403)
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d

dt

(
1
2mR2ϕ̇ (1 − cos 2θ) − mRẊ sin ϕ sin θ + mRẎ cos ϕ sin θ

−I1
(
ψ̇ − ϕ̇ sin θ

)
sin θ + 1

2I2ϕ̇ (1 + cos 2θ)

)
−mRẊ

(−θ̇ sin ϕ cos θ − ϕ̇ cos ϕ sin θ
)

−mRẎ
(
θ̇ cos ϕ cos θ − ϕ̇ sin ϕ sin θ

) = 0 (13.404)

d

dt

(
mR2θ̇ + mRẊ cos ϕ cos θ + mRẎ sin ϕ cos θ + I2θ̇

)
− 1

2mR2ϕ̇2 sin 2θ − mRẊ
(−θ̇ cos ϕ sin θ − ϕ̇ sin ϕ cos θ

)
−mRẎ

(−θ̇ sin ϕ sin θ + ϕ̇ cos ϕ cos θ
) + I2ϕ̇

2 sin θ cos θ

+I1ϕ̇
(
ψ̇ − ϕ̇ sin θ

)
cos θ − mgR sin θ = 0 (13.405)

I1
d

dt

(
ψ̇ − ϕ̇ sin θ

) − λ1R sin ϕ + λ2R cos ϕ = 0 (13.406)

We may introduce two new variables,

ω = ψ̇ − ϕ̇ sin θ � = ψ̇ (13.407)

and rewrite the equations of motion simpler.
Equations (13.402)–(13.406), and (13.396)–(13.397) are the seven equations that

describe the behavior of the kinematic variables X, Y , ϕ, θ , ψ along with the Lagrange
multipliers λ1 and λ2.

Example 797 � Generality of Lagrange Equation of Motion The Lagrange equation
of motion is more general and can also be employed when the coordinates are not gen-
eralized and the constraints are holonomic. To show this, let us assume the coordinates
(s1, s2, . . . , sn′) are not generalized and their number n′ exceeds the minimum required
number n by l′:

n′ = n + l′ (13.408)

If there are l constraints

fj (s1, s2, . . . , sn′ , t) = 0 i = 1, 2, . . . , l (13.409)

then there are l′ holonomic constraints

fi (s1, s2, . . . , sn′ , t) = 0 i = 1, 2, . . . , l′ (13.410)

whose Pfaffian form is

n′∑
r=1

Birdsr + Bidt = 0 i = 1, 2, . . . , l′ (13.411)

Bir = ∂fi

∂sr

Bi = ∂fi

∂t
(13.412)



13.5 � Lagrange Equation and Constraints 1239

and there are l − l′ nonholonomic constraints

fk (s1, s2, . . . , sn′ , t) = 0 k = l′ + 1, l′ + 2, . . . , l (13.413)

n′∑
r=1

Bkr dsr + Bk dt = 0 k = l′ + 1, l′ + 2, . . . , l (13.414)

Introducing the Lagrange multipliers does not depend on the integrability of the con-
straint equations. Therefore, we can write Lagrange equations of motion as

d

dt

∂K

∂ṡi

− ∂K

∂si

− Qi +
l′∑

j=1

λjBji +
l∑

k=l′+1

λkBki = 0 (13.415)

i = 1, 2, . . . , n′

which can also be written as

d

dt

∂K

∂ṡi

− ∂K

∂si

− Qi +
l∑

r=1

λrBri = 0 i = 1, 2, . . . , n′ (13.416)

Example 798 � Lagrange Equation from Central Principle We may begin with the
central equation (13.356) of Example 793 to derive the Lagrange equation:

N/3∑
i=1

mi r̈i · δri = d

dt

N/3∑
i=1

mi ṙi · δri − δK (13.417)

Let us rewrite the central principle in configuration space as

N∑
i=1

miüi δui = d

dt

N∑
i=1

miu̇i δui − δK (13.418)

Employing

δui =
n∑

k=1

∂ui

∂qk

δqk (13.419)

we have

N∑
i=1

miu̇i δui =
N∑

i=1

miu̇i

n∑
k=1

∂ui

∂qk

δqk =
n∑

k=1

N∑
i=1

(
miu̇i

∂ui

∂qk

)
δqk

=
n∑

k=1

N∑
i=1

(
miu̇i

∂u̇i

∂q̇k

)
δqk (13.420)
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Also, substituting the equations

N∑
i=1

miu̇i δui =
n∑

j=1

∂K

∂q̇j

δqj (13.421)

δK =
n∑

j=1

∂K

∂qj

δqj +
n∑

j=1

∂K

∂q̇j

δq̇j (13.422)

provides

N∑
i=1

miüi δui = d

dt

n∑
j=1

∂K

∂q̇j

δqj −
n∑

j=1

∂K

∂qj

δqj −
n∑

j=1

∂K

∂q̇j

δq̇j

=
n∑

j=1

d

dt

∂K

∂q̇j

δqj −
n∑

j=1

∂K

∂qj

δqj (13.423)

Using the definition of generalized force Qj , we have

N∑
i=1

Fi δui =
N∑

i=1

Fi

n∑
j=1

∂ui

∂qj

δqj =
n∑

j=1

Qj δqj (13.424)

Substituting these results in the fundamental equation of dynamics (10.303),

N∑
i=1

miüi δui −
N∑

i=1

Fi δui = 0 (13.425)

yields
n∑

i=1

(
d

dt

∂K

∂q̇i

− ∂K

∂qi

− Qi

)
δqi = 0 (13.426)

This is the Lagrange equation for holonomic systems. If the system is nonholonomic,
we should add

∑l
j=1 λjBij to the equation of motion.

13.6 CONSERVATION LAWS

Conservation of energy, conservation of momentum, and conservation of the moment
of momentum are the only conservation laws in dynamics. Each conservation law is
a consequence of a symmetry in time or position spaces and appears in the form of
an integral of motion. As reviewed in Section 10.10, if q and q̇ are the generalized
positions and velocities of a dynamic system, then an equation f = c of the form

f (q, q̇, t) = c c = f (q0, q̇0, t0) (13.427)

df

dt
=

n∑
i=1

(
∂f

∂qi

q̇i + ∂f

∂q̇i

q̈i

)
+ ∂f

∂t
= 0 (13.428)
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is an integral of motion . The parameter c where its value depends on initial conditions
is called a constant of motion .

The Lagrangian

L = K − V = L (q, q̇, t) (13.429)

and the following equations of motion describe the dynamic behavior of dynamic
systems:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0 i = 1, 2, . . . , n (13.430)

The Lagrange function is a useful indicator for the existence of a conservation law. If
there exists a conservation law in a dynamic system, the Lagrange equation provides
the integral of motion as the equation of motion.

13.6.1 Conservation of Energy

If the Lagrangian L of a system does not depend explicitly on time t ,

L = K − V = L (q, q̇) (13.431)

then its total time derivative is zero and the mechanical energy E of the system remains
constant:

dL
dt

=
n∑

i=1

∂L
∂qi

q̇i +
n∑

i=1

∂L
∂q̇i

q̈i = 0 (13.432)

E =
n∑

i=1

q̇i

∂L
∂q̇i

− L = K + V (13.433)

A Lagrangian of this form is equivalent to the homogeneity of time and indicates that
the origin of the time axis and the scale of a unit time step are arbitrary.

Proof : Let us substitute ∂L/∂qi from (13.430) in (13.432),

dL
dt

= q̇i

n∑
i=1

d

dt

(
∂L
∂q̇i

)
+

n∑
i=1

∂L
∂q̇i

q̈i =
n∑

i=1

d

dt

(
q̇i

∂L
∂q̇i

)
(13.434)

to obtain

d

dt

(
n∑

i=1

q̇i

∂L
∂q̇i

− L
)

= 0 (13.435)

Therefore, we have an integral of motion

f1 =
n∑

i=1

q̇i

∂L
∂q̇i

− L = E (13.436)
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where E is a constant of motion and f1 is an integral of motion. So, when there is no
t in the Lagrangian of a system, the energy of the system is conserved.

To show that E is the mechanical energy of the system, we may use

n∑
i=1

q̇i

∂L
∂q̇i

=
n∑

i=1

q̇i

∂K

∂q̇i

= 2K (13.437)

and find

f1 = 2K − (K − V ) = K + V = E (13.438)

This is equivalent to the principle of conservation of energy in (2.371). �

Example 799 Jacobi Integral The Jacobi integral is a generalized form of the energy
integral. The necessary conditions for the existence of an energy integral are that
the system be catastatic and all given forces be derivable from a potential energy
V = V (q1, q2, . . . , qn). Under these conditions, L would be independent of t .

The Lagrangian form of the fundamental equation of dynamics (10.303),

n∑
i=1

(
d

dt

∂L
∂q̇i

− ∂L
∂qi

)
δqi = 0 (13.439)

becomes

d

dt

∂L
∂q̇i

= ∂L
∂qi

(13.440)

d

dt

∂L
∂q̇i

= ∂L
∂qi

−
l∑

j=1

λjBij (13.441)

for holonomic and nonholonomic systems, respectively. When the potential energy V

is a function of qi ,

Qi = −∂V

∂qi

(13.442)

and we have

d

dt

∂L
∂q̇i

− ∂L
∂qi

= d

dt

∂K

∂q̇i

− ∂K

∂qi

+ ∂V

∂qi

(13.443)

If the potential energy V is also a function of q̇i and t , then

Qi = d

dt

∂V

∂q̇i

− ∂V

∂qi

(13.444)

and the Lagrange equation may still be written as (13.440) and (13.441).
Let us assume the Lagrangian function does not contain time t explicitly and the

system is catastatic. Therefore the fundamental equation may be written as

n∑
i=1

(
d

dt

∂L
∂q̇i

− ∂L
∂qi

)
q̇i = 0 (13.445)
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Employing the following time derivative

d

dt

(
n∑

i=1

q̇i

∂L
∂q̇i

)
=

n∑
i=1

q̇i

d

dt

∂L
∂q̇i

+
n∑

i=1

q̈i

∂L
∂q̇i

(13.446)

and substituting in (13.445) give

d

dt

(
n∑

i=1

q̇i

∂L
∂q̇i

)
−

n∑
i=1

∂L
∂q̇i

q̈i −
n∑

i=1

∂L
∂q̇i

q̇i = 0 (13.447)

The last two terms together are time derivatives of the Lagrangian L = L (qi, q̇i).
Therefore, Equation (13.447) is a total derivative

d

dt

(
n∑

i=1

q̇i

∂L
∂q̇i

− L
)

= 0 (13.448)

that indicates the Jacobi integral of motion:

n∑
i=1

q̇i

∂L
∂q̇i

− L = h = const (13.449)

13.6.2 Conservation of Momentum

If the Lagrangian L = L (qi, q̇i , t) of an n-DOF system does not depend explicitly on
generalized coordinates qj , 1 ≤ j ≤ n,

L = K − V = L
(
q1, q2, . . . , qj−1, qj+1, . . . , qn, q̇1, q̇2, . . . , qn, t

)
(13.450)

then the total time derivative of the associated generalized momentum pi is zero, and
therefore pi of the system remains constant:

d

dt

∂L
∂q̇j

= 0 (13.451)

pj = ∂L
∂q̇j

= const (13.452)

The coordinate qj , which does not appear explicitly in L, is called the ignorable or
cyclic coordinate. Because qj is a generalized coordinate, the Lagrangian principle of
the conservation of momentum includes both translational and rotational momenta.

Proof : It can happen very often that there are generalized coordinates that do not appear
in the Lagrangian function L, although their associated generalized velocities appear.
If qj is an ignorable coordinate, then

∂L
∂qj

= 0 (13.453)

and from the Lagrange equation we have ∂L/∂q̇j = pj = const.
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We may translate an ignorable coordinate qj and substitute it with q ′
j ,

q ′
j = qj + C (13.454)

where C is a constant. �

Example 800 Two Particles and a String The particles m1 and m2 in Figure 13.13
are connected by a string of length l. The particle m1 freely moves in a horizontal
plane, while m2 is moving on the z-axis. At t = 0, the distance of m1 from the center
hole is r0, its initial velocity is v0 perpendicular to r0, and m2 is not moving. The
system has two DOF with r and ϕ as the generalized coordinates. The kinetic and
potential energies and Lagrangian of the system are

K = 1
2

[
(m1 + m2) ṙ2 + m1r

2ϕ̇2
]

(13.455)

V = −m2g (l − r) + m2g (l − r0) (13.456)

L = 1
2

[
(m1 + m2) ṙ2 + m1r

2ϕ̇2
] − m2gr (13.457)

z

x

ϕG

g

m1

m2

l − r

r

Figure 13.13 The connected particles by a string of length l.

The generalized coordinate ϕ is ignorable and therefore pϕ is conserved:

pϕ = ∂L
∂ϕ̇

= m1r
2ϕ̇ = const (13.458)

Furthermore, L does not depend on time t explicitly. Therefore the energy of the system
is also conserved:

E = 1
2

(
(m1 + m2) ṙ2 + m1r

2ϕ̇2
) + m2gr (13.459)

These two integrals of motion provide two first-order equations to determine the gen-
eralized coordinates r and ϕ.

13.7 � GENERALIZED COORDINATE SYSTEM

The generalized equations of motion of a dynamic system in the generalized curvilinear
coordinate space qi are

Qi = d

dt

∂K

∂q̇i

− ∂K

∂qi

(13.460)
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where K is the kinetic energy of the system,

K = 1
2mv · v (13.461)

qi is the generalized coordinate of the system, and Qi is the generalized force associated
with qi ,

Qi = F · bi = Fx

∂x

∂qi

+ Fy

∂y

∂qi

+ Fz

∂z

∂qi

(13.462)

where bi is the principal base vector of the generalized coordinate system qi .

Proof : Having the Cartesian description of a position vector r,

r = xı̂ + ŷ + zk̂ = x1 ı̂ + x2̂ + x3k̂ (13.463)

we determine the principal base vectors bi of the generalized coordinate system
Q(q1, q2, q3) by

bi = ∂r
∂qi

= biûi = ∂x

∂qi

ı̂ + ∂y

∂qi

̂ + ∂z

∂qi

k̂ (13.464)

bi = |bi | =
√(

∂x

∂qi

)2

+
(

∂y

∂qi

)2

+
(

∂z

∂qi

)2

(13.465)

where the principal unit vectors ûi of the curvilinear coordinate Q-system is

ûi = �rqi∣∣�rqi

∣∣ = ∂r/∂qi

|∂r/∂qi | = 1

bi

bi (13.466)

The generalized principal base vectors bi are assumed to be non-coplanar and hence
independent, where bi is along the partial derivative ∂r/∂qi , which indicates a coordi-
nate curve qi as illustrated in Figure 3.25. The reciprocal base vectors b∗

i and reciprocal
unit vectors û∗

i of the curvilinear coordinate Q-system are defined as:

b∗
i = ∇qi = ∂qi

∂x
ı̂ + ∂qi

∂y
̂ + ∂qi

∂z
k̂ (13.467)

û∗
i = ∇qi

|∇qi | = 1

b∗
i

b∗
i (13.468)

b∗
i = ∣∣b∗

i

∣∣ =
√(

∂qi

∂x

)2

+
(

∂qi

∂y

)2

+
(

∂qi

∂z

)2

(13.469)

If the generalized coordinate system Q (q1, q2, q3) is orthogonal, then

b∗
i = 1

bi

ûi = 1

b2
i

bi (13.470)

We employ the base vectors bi to represent a force vector F =Fxı̂ + Fŷ + Fzk̂:

F = Q1b∗
1 + Q2b∗

2 + Q3b∗
3 =

3∑
i=1

Qib∗
i (13.471)

Qi = F · bi = Fx

∂x

∂qi

+ Fy

∂y

∂qi

+ Fz

∂z

∂qi

(13.472)
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The components Qi of the generalized expression of the force F are the components
of the generalized force.

The generalized equations of motion are the scalar products of the Newton equation
of motion F = ma, with the base vectors bi of the generalized coordinate system. The
scalar product of F and bi is the generalized force Qi as given in (13.472). The covariant
components of the acceleration vector a associated with the generalized coordinates
qi are:

ai = a · bi = ẍ
∂x

∂qi

+ ÿ
∂y

∂qi

+ z̈
∂z

∂qi

(13.473)

To write ai in the proper form, let us rewrite the first term of (13.473) as

ẍ
∂x

∂qi

= d

dt

(
ẋ

∂x

∂qi

)
− ẋ

d

dt

∂x

∂qi

= d

dt

(
ẋ

∂x

∂qi

)
− ẋ

∂ẋ

∂qi

= d

dt

(
ẋ

∂ẋ

∂q̇i

)
− ẋ

∂ẋ

∂qi

= d

dt

∂

∂q̇i

(
1

2
ẋ2

)
− ∂

∂qi

(
1

2
ẋ2

)
(13.474)

Using the same method, we have

ai = d

dt

∂

∂q̇i

(
ẋ2 + ẏ2 + ż2

2

)
− ∂

∂q̇i

(
ẋ2 + ẏ2 + ż2

2

)
=

[
d

dt

∂

∂q̇i

(
1

2
v2

)
− ∂

∂qi

(
1

2
v2
)]

= 1

m

(
d

dt

∂K

∂q̇i

− ∂K

∂q̇i

)
(13.475)

Therefore, we can transform the Newton equation of motion F = ma to a generalized
coordinate system by multiplying with the base vector bi of the system:

F · bi = ma · bi (13.476)

Qi = d

dt

∂K

∂q̇i

− ∂K

∂q̇i

(13.477)

This is the Lagrange equation of motion . It is also applicable to the time-dependent
coordinate transformation:

x = x (qi, t) y = y (qi, t) z = z (qi, t) (13.478)
�

Example 801 � Generalized Forces in Spherical Coordinate System The base vec-
tors of the spherical coordinate system are

b1 = ∂r
∂r

= ûr (13.479)

b2 = ∂r
∂ϕ

= rûϕ = ûϕ × r (13.480)
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b3 = ∂r
∂θ

= r sin ϕ ûθ = k̂ × r (13.481)

Therefore, the generalized forces of a force F in the spherical system are

Q1 = F · b1 = F · ûr = Fr (13.482)

Q2 = F · b2 = ûϕ · (r × F) (13.483)

Q3 = F · b3 = k̂ · (r × F) (13.484)

where Q1 is the component of F in the direction of ûr and has a force dimension;
however, Q2 and Q3 do not have a force dimension and are components of the vector
r × F along ûϕ and k̂, respectively. The vector r × F is the moment of F about the
origin, so the generalized forces Q2 and Q3 have the dimension of moment.

In fact, the generalized force associated with an angular coordinate is always the
component of the torque along the axis about which a change in the angular coordinate
rotates the position vector. Similarly, the generalized force associated with a transla-
tional coordinate is always the component of force along the axis on which a change in
the translational coordinate changes the position vector. The dimension of generalized
force Qi is always such that the dimension of Qi dqi is work.

Example 802 � Generalized Work The small work �W done by the force F when
qi is varied by the small amount �qi is

�W = F · �ri (13.485)

where �ri is the change in the position vector r when qi is varied:

�si = ∂r
∂qi

�qi = �qibi (13.486)

This yields

�W = F · bi�qi = Qi�qi (13.487)

Therefore, the dimension of the term Qi�qi is work. For a general displacement �r,

�s = �q1 b1 + �q2 b2 + �q3 b3 (13.488)

we have

�W = F · �r =
(

3∑
i=1

Qib
�
i

)
·
(

3∑
i=1

�qi bi

)
=

3∑
i=1

Qi�qi (13.489)

where

b�
i · bj = δij (13.490)

The symbol � may be changed to d for actual displacement and to δ for virtual
displacement.
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Example 803 � Generalized Momentum The components of momentum p = mv in
the generalized coordinate system Q (q1, q2, q3) are

pi = p · bi = mv · bi (13.491)

where the three base vectors bi are defined at point (q1, q2, q3). The scalar components
pi of the generalized momentum are called the generalized momentum. The covariant
components of the velocity v are expressed as

vi = v · bi = ∂

∂q̇i

(
1

2
v2

)
(13.492)

and therefore,

pi = ∂K

∂q̇i

(13.493)

K = 1
2mv2 (13.494)

Example 804 � Generalized Momentum in Spherical System Employing the base
vectors of the spherical coordinate system (13.479)–(13.481), the generalized momenta
pi in the spherical system are

pi = p · bi (13.495)

where

p1 = p · b1 = p · ûr = pr (13.496)

p2 = p · b2 = ûϕ · (r × p) (13.497)

p3 = p · b3 = k̂ · (r × p) (13.498)

and p1 = pr is the component of momentum p in the direction of ûr . The generalized
momentum p2 and p3 are the components of the moment of momentum L along ûϕ and
k̂, respectively. The vector r × F is the moment of F about the origin. The generalized
forces Q2 and Q3 thus have the dimension of the moment:

L = r × p (13.499)

The components of the generalized momentum may also be found from Equation
(13.493):

K = 1
2mv · v = 1

2m
(
ṙ2 + r2ϕ̇2 + r2θ̇2 sin2 ϕ

)
(13.500)

where

p1 = ∂K

∂ṙ
= mṙ (13.501)

p2 = ∂K

∂ϕ̇
= mr2ϕ̇ (13.502)

p3 = ∂K

∂θ̇
= mr2θ̇ sin2 ϕ (13.503)
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These results are equivalent to

p = mv = m
(
ṙ ûr + rϕ̇ ûϕ + rθ̇ sin ϕ ûθ

)
(13.504)

The contravariant components v∗
i of the velocity vector v are the generalized velocities

q̇i :

v∗
i = v · b∗

i = ẋ
∂qi

∂x
+ ẏ

∂qi

∂y
+ ż

∂qi

∂z
= q̇i (13.505)

We can define the kinetic energy of a dynamic system using the generalized velocities
and the generalized momenta:

K = 1

2
p · v =

(
3∑

i=1

pib∗
i

)
·
(

3∑
i=1

q̇ibi

)
= 1

2

3∑
i=1

piq̇i (13.506)

Example 805 � Central-Force Motion Let us consider the motion of a particle m

in a plane under the action of a central force:

F = −mω2r = −mω2 (xı̂ + x̂
)

(13.507)

The kinetic energy K of m in the Cartesian coordinate frame is

K = 1
2m

(
ẋ2 + ẏ2

)
(13.508)

and the base vectors are the Cartesian unit vectors

b1 = ı̂ b2 = ̂ (13.509)

Using the kinetic energy (13.508), we find the generalized forces

Q1 = Fx = mẍ = −mω2x (13.510)

Q2 = Fy = mÿ = −mω2y (13.511)

The solutions of these two independent equations are

x = A cos (ωt + ϕ) y = B cos (ωt + θ) (13.512)

where A, B, ϕ, θ are constant and are to be determined from initial conditions
x0, ẋ0, y0, ẏ0.

We may solve the same problem in the cylindrical coordinate system:

K = 1
2m

(
ṙ2 + r2φ̇2

)
(13.513)

b1 = ûr b2 = rûφ (13.514)

Q1 = Fr = −mω2r = d

dt
(mṙ) − mrφ̇2 (13.515)

Q2 = k̂ · (r × F) = k̂ · 0 = 0 = d

dt

(
mr2φ̇

)
(13.516)
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The second equation in the cylindrical coordinate system indicates that the z-component
of the moment of momentum is a constant of motion L:

mr2φ̇ = p2 = Lz = L (13.517)

Because this is a planar problem, the z-component of L is the total magnitude of L.
Employing (13.517), we can write Equation (13.515) in a solvable form:

mr̈ = −mω2r + mrφ̇2 = −mω2r + L2

mr3
(13.518)

Using

r̈ = ṙ
dṙ

dr
(13.519)

the equation of motion (13.518) provides the integral of energy E as the second integral
of motion:

1
2mṙ2 + 1

2mω2r2 + L2

2mr2
= E (13.520)

So, solution of the problem of central-force motion reduces to the integral

t =
∫ r

r0

dr√
(2/m)E − r2ω2 − L2/(m2r2)

(13.521)

Example 806 � A Moving Particle on the Surface of a Sphere Let us examine
the motion of a particle on the surface of a sphere as shown in Figure 13.14. The
particle m is constrained to move on the surface of radius R and is under the action of
gravitational attraction Fg = mg in the direction of −z:

Fg = mg = −mgK̂ = −mg
(
cos ϕûr − sin ϕûϕ

)
(13.522)

The constraint equation f (r, θ, ϕ) = 0 and constraint force FC are

f (r, θ, ϕ) = r − R = 0 (13.523)

FC = λ ∇f = λ (13.524)

The kinetic energy of m in the spherical coordinate system is

K = 1
2mv · v = 1

2m
(
ṙ2 + r2ϕ̇2 + r2θ̇2 sin2 ϕ

)
(13.525)

Employing the Lagrange equation for a system of n DOF under l constraint equations,

d

dt

∂K

∂q̇i

− ∂K

∂q̇i

= Qi +
l∑

j=1

λj∇fj i = 1, 2, . . . , n (13.526)
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X
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mg

Fc

R

θ

θ

ϕ

Figure 13.14 A moving particle on the surface of a sphere.

we find the equations of motion

m
(
r̈ − rϕ̇2 − rθ̇2 sin2 ϕ

) = −mg cos ϕ + λ (13.527)

d

dt

(
mr2ϕ̇

) − mr2θ̇2 sin ϕ cos ϕ = mgr sin ϕ (13.528)

d

dt

(
mr2θ̇ sin2 ϕ

) = 0 (13.529)

Equation (13.527) provides a first integral for a constant z-component of the generalized
moment of momentum:

pz = mR2θ̇ sin2 ϕ = const (13.530)

Substituting pz in (13.528) provides

mR2ϕ̈ = mgR sin ϕ + p2
z cos ϕ

2mR2 sin3 ϕ
(13.531)

This equation is of the form ẍ = f (x) and provides an energy integral of motion:

E = 1
2mR2ϕ̇2 + mgR cos ϕ + p2

z

2mR2 sin2 ϕ
= const (13.532)

Solution of (13.532) is an elliptic integral.

13.8 � MULTIBODY LAGRANGIAN DYNAMICS

The Lagrange method provides a systematic approach to obtain the equations of motion
of multibodies. The Lagrangian of a multibody is defined as the difference between the
kinetic and potential energies:

L = K − V (13.533)
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The Lagrange equation of motion for a multibody can be found by employing the
Lagrange equation

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi

= Qi i = 1, 2, . . . n (13.534)

where qi is the coordinates by which the energies are expressed and Qi is the associated
generalized nonpotential force that drives qi .

We can set the equations of motion for an n-link serial multibody in matrix
form as

D(q) q̈ + H(q, q̇) + G(q) = Q (13.535)

or

D(q) q̈ + C(q, q̇)q̇ + G(q) = Q (13.536)

or in a summation form as
n∑

j=1

Dij (q) q̈j +
n∑

k=1

n∑
m=1

Hikmq̇kq̇m + Gi = Qi (13.537)

where Dij is an n × n inertial-type symmetric matrix,

Dij =
n∑

k=1

(
JT

Dk mk JDk + 1
2 JT

Rk
0Ik JRk

)
(13.538)

The velocity coupling vector is given as

Hijk =
n∑

j=1

n∑
k=1

(
∂Dij

∂qk

− 1

2

∂Djk

∂qi

)
(13.539)

and the gravitational vector as

Gi =
n∑

j=1

mj gT J(i)
Dj (13.540)

Proof : Consider a serial multibody with n links. The kinetic energy of link (i) is

Ki = 1
2

0vT
i mi

0vi + 1
2 0ω

T
i

iIi 0ωi (13.541)

where mi is the mass of the link, iIi is the mass moment matrix of the link in the
link’s frame Bi , 0vi is the global velocity of the link at its mass center C, and 0ωi is
the global angular velocity of the link.

We can express the translational and angular velocity vectors based on the joint
coordinate velocities by employing the Jacobian of the link , Ji :

Ẋi =
[0vi

0ωi

]
=

[
JDi

JRi

]
q̇ = Ji q̇ (13.542)
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The link’s Jacobian Ji is a 6 × n matrix that transforms the instantaneous joint coor-
dinate velocities into the instantaneous link’s translational and angular velocities. The
j th column of Ji is comprised of c(j)

Di and c(j)

Ri , where for j ≤ i we have

c(j)

Di =
{

k̂j−1 × 0
j−1ri for an R joint

k̂j−1 for a P joint
(13.543)

and

c(j)

Ri =
{

k̂j−1 for an R joint
0 for a P joint

(13.544)

where 0
j−1ri is position of C of the link (i) in the coordinate frame Bj−1 expressed in

the base frame. The columns of Ji are zero for j > i.
The kinetic energy K of the whole multibody is then equal to

K =
n∑

i=1

Ki = 1

2

n∑
i=1

(
0vT

i mi
0vi + 1

2
0ω

T
i

0Ii 0ωi

)

= 1

2

n∑
i=1

[
(JDi q̇i )

T mi (JDi q̇i) + 1

2
(JRi q̇i)

T 0Ii (JRi q̇i)

]

= 1

2
q̇T

i

[
n∑

i=1

(
JT

Di mi JDi + 1

2
JT

Ri
0Ii JRi

)]
q̇i (13.545)

where 0Ii is the mass moment matrix of link (i) about its C and is expressed in the
base frame:

0Ii = 0Ri
iIi

0RT
i (13.546)

We may write the kinetic energy of the multibody in the more convenient form

K = 1
2 q̇T

i D q̇i (13.547)

where D is an n × n matrix called the multibody inertia matrix:

D =
n∑

i=1

(
JT

Di mi JDi + 1
2 JT

Ri
0Ii JRi

)
(13.548)

Suppose the potential energy of link (i) is due to gravity,

Vi = −mi
0g · 0ri (13.549)

and therefore, the total potential energy of the multibody is

V =
n∑

i=1

Vi = −
n∑

i=1

mi
0gT 0ri (13.550)
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where 0g is the gravitational acceleration vector expressed in the base frame. Therefore,
the Lagrangian of the multibody is

L = K − V = 1

2
q̇T

i D q̇i +
n∑

i=1

mi
0gT 0ri

= 1

2

n∑
i=1

n∑
j=1

Dij q̇i q̇j +
n∑

i=1

mi
0gT 0ri (13.551)

Employing the Lagrangian L, we can find

∂L
∂qi

= 1

2

∂

∂qi

 n∑
j=1

n∑
k=1

Djk q̇j q̇k

 +
n∑

j=1

mj
0gT ∂ 0rj

∂qi

= 1

2

n∑
j=1

n∑
k=1

∂Djk

∂qi

q̇j q̇k +
n∑

j=1

mj
0gT J(i)

Dj (13.552)

∂L
∂q̇i

=
n∑

j=1

Dij q̇j (13.553)

and

d

dt

∂L
∂q̇i

=
n∑

j=1

Dij q̈j +
n∑

j=1

dDij

dt
q̇j

=
n∑

j=1

Dij q̈j +
n∑

j=1

n∑
k=1

∂Dij

∂qk

q̇k q̇j (13.554)

The generalized forces of the Lagrange equations are

Qi = Mi + JT Fe (13.555)

where Mi is the ith actuator force at joint i and

Fe = [ −FT
en −MT

en

]T
(13.556)

is the external force system applied on the end effector.
Finally, the Lagrange equations of motion for an n-link multibody are

n∑
j=1

Dij (q) q̈j + Hikmq̇kq̇m + Gi = Qi (13.557)

where

Hijk =
n∑

j=1

n∑
k=1

(
∂Dij

∂qk

− 1

2

∂Djk

∂qi

)
(13.558)

Gi =
n∑

j=1

mj gT J(i)
Dj . (13.559)
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We can show the equations of motion for a multibody in a more concise matrix
form to simplify calculations:

D(q) q̈ + H(q, q̇) + G(q) = Q (13.560)

The term G(q) is called the gravitational force vector and the term H(q, q̇) is called
the velocity coupling vector . The velocity coupling vector may sometimes be written
in following form

H(q, q̇) = C(q, q̇)q̇ (13.561)

�

Example 807 Lagrange Equation of a One-Link Manipulator Consider the uniform
beam of Figure 13.15 with a mass m2 at the tip point. This is a good example to show
the advantage and simplicity of the Lagrange method compared to the Newton–Euler
method.

The beam is uniform with a mass center at 0r1 while the tip mass is at 0d1, both
in B0:

0r1 = 0R1
1r1 =


l

2
cos θ

l

2
sin θ

0

 (13.562)

0d1 = 0R1
1d1 =

l cos θ

l sin θ

0

 (13.563)

0R1 = RZ,θ =
cos θ − sin θ 0

sin θ cos θ 0
0 0 1

 (13.564)

The angular velocity of the beam is

0ω1 = θ̇ K̂ (13.565)

g

Y

y1

x1

θ
X

m1

Q0

B1

B0

l

m2
r1

C

d1

Figure 13.15 A uniform beam with a hanging weight m2 at the tip point.
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and therefore, we find the velocity of C and m2 as

0v1 = 0ω1 × 0r1 =


− l

2
θ̇ sin θ

l

2
θ̇ cos θ

0

 (13.566)

0ḋ1 = 0ω1 × 0d1 =

−lθ̇ sin θ

lθ̇ cos θ

0

 (13.567)

The kinetic energy of the manipulator is

K2 = 1
2m2

0ḋ1 · 0ḋ1 + 1
2m1

0v1 · 0v1 + 1
2 0ω

T
1

0I1 0ω1

= 1
8 l2θ̇2 (m1 + 4m2) + 1

2Izθ̇
2 (13.568)

The mass moment matrix of the link in the base frame is

0I1 = RZ,θ
1I1 RT

Z,θ = 0R1

Ix 0 0
0 Iy 0
0 0 Iz

 0RT
1

=

Ix cos2 θ + Iy sin2 θ
(
Ix − Iy

)
cos θ sin θ 0(

Ix − Iy

)
cos θ sin θ Iy cos2 θ + Ix sin2 θ 0
0 0 Iz

 (13.569)

The potential energy of the manipulator is

V = m1gY1 + m2gY2 = m1grY + m2gdY

= m1g
l

2
sin θ + m2gl sin θ (13.570)

and therefore, the Lagrangian of the manipulator is

L = K − V = 1
8 l2θ̇2 (m1 + 4m2) + 1

2Izθ̇
2

−m1g
l

2
sin θ − m2gl sin θ (13.571)

Applying the Lagrange equation

d

dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= Q0 (13.572)

where
∂L
∂θ̇

= 1

4
l2 (m1 + 4m2) θ̇ + Izθ̇ (13.573)

d

dt

(
∂L
∂θ̇

)
=

(
1

4
m1l

2 + m2l
2 + Iz

)
θ̈ (13.574)

∂L
∂θ

= −m1g
l

2
cos θ − m2gl cos θ (13.575)
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we determine the equation of motion

Q0 = ( 1
4m1l

2 + m2l
2 + Iz

)
θ̈ + ( 1

2m1 + m2
)
gl cos θ (13.576)

Example 808 � A Planar Polar One-Link Manipulator Figure 13.16 illustrates a
planar polar one-link manipulator with massless link and a massive point m at the tip.
The kinetic energy of the manipulator is

K = 1
2m2Ẋ

2
2 + 1

2m2Ẏ
2
2

= 1
2m

(
d

dt
(q1 cos q2)

)2

+ 1
2m

(
d

dt
(q1 sin q2)

)2

= 1
2m

(
q̇2

1 + q2
1 q̇2

2

)
(13.577)

The potential energy of the manipulator is

V = mgY2 = mgq1 sin q2 (13.578)

and the Lagrangian of the manipulator is

L = K − V = 1
2m

(
q̇2

1 + q2
1 q̇2

2

) − mgq1 sin q2 (13.579)

Applying the Lagrange equation

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi

= Qi

yields the equations of motion

mq̈1 − mq1q̇
2
2 + mg sin q2 = Q1 (13.580)

mq2
1 q̈2 + 2mq1q̇1q̇2 + mgq1 cos q2 = Q2 (13.581)

We may rearrange these equations to the matrix form of (13.536):

D(q)

[
q̈1

q̈2

]
+ C(q, q̇)

[
q̇1

q̇2

]
+ G(q) =

[
Q1

Q2

]
(13.582)

g

Y

X

q2

m
q1

G

Figure 13.16 A planar polar one-link manipulator.
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where

D(q) =
[

m 0

0 mq2
1

]
(13.583)

C(q, q̇) =
[

0 −mq1q̇2

mq1q̇2 mq1q̇1

]
(13.584)

G(q) =
[

mg sin q2

mgq1 cos q2

]
(13.585)

Example 809 General Equations of 2R Planar Manipulators Consider a general 2R

manipulator with massive arms and joints while carrying a payload m0 as shown in
Figure 13.17. The first motor drives link (1) and is on the ground. The second motor
with mass m12 drives link (2) and is mounted on link (1). Assume the mass of the first
and second links are m11 and m21, respectively.

In a general case, the global position vectors of the link’s mass center Ci and
massive joints are

0r1 = 0R1
1r1 = RZ,θ1 c1

1 ı̂1 =
c1 cos θ1

c1 sin θ1

0

 (13.586)

F0

x2
y2

y0

y1

x1

x0

m1

m2

Q0

Q1

Q0

–F1

F1

m21g

m12g
m11g

–Q1

n1
m1

n 2

m 2

B1B0

C1

C2
θ1

θ2

l1

l 2

B2

Q1

g

m0

m0g

Figure 13.17 A 2R manipulator with massive arms and a carrying payload m0.
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0r2 = 0d1 + 0R2
2r2 = 0d1 + RZ,θ1 RZ,θ2 c2

2 ı̂2

=
l1 cos θ1 + c2 cos (θ1 + θ2)

l1 sin θ1 + c2 sin (θ1 + θ2)

0

 (13.587)

0d1 = 0R1
1r1 = RZ,θ1 l1

1 ı̂1 =
l1 cos θ1

l1 sin θ1

0

 (13.588)

0d2 = 0d1 + 0R2
2d2 =

l2 cos (θ1 + θ2) + l1 cos θ1

l2 sin (θ1 + θ2) + l1 sin θ1

0

 (13.589)

where

0R1 = RZ,θ1 =
cos θ1 − sin θ1 0

sin θ1 cos θ1 0
0 0 1

 (13.590)

1R2 = RZ,θ2 =
cos θ2 − sin θ2 0

sin θ2 cos θ2 0
0 0 1

 (13.591)

0R2 = 0R1
1R2 =

cos (θ1 + θ2) − sin (θ1 + θ2) 0
sin (θ1 + θ2) cos (θ1 + θ2) 0

0 0 1

 (13.592)

The links’ angular velocities are

0ω1 = θ̇1 K̂ 0ω2 = (
θ̇1 + θ̇2

)
K̂ (13.593)

The mass moment matrices of the links in the global coordinate frame are

0I1 = RZ,θ1
1I1 RT

Z,θ1
= 0R1

Ix1 0 0
0 Iy1 0
0 0 Iz1

 0RT
1

=
Ix1c

2θ1 + Iy1s
2θ1

(
Ix1 − Iy1

)
cθ1sθ1 0(

Ix1 − Iy1

)
cθ1sθ1 Iy1c

2θ1 + Ix1s
2θ1 0

0 0 Iz1

 (13.594)

0I2 = 0R2
2I2

0RT
2 = 0R2

Ix2 0 0
0 Iy2 0
0 0 Iz2

 0RT
2

=
Ix2c

2θ12 + Iy2s
2θ12

(
Ix2 − Iy2

)
cθ12sθ12 0(

Ix2 − Iy2

)
cθ12sθ12 Iy2c

2θ12 + Ix2s
2θ12 0

0 0 Iz2

 (13.595)
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where

θ12 = θ1 + θ2 (13.596)

The velocities of Ci and the joints are

0v1 =
0d

dt
0r1 =

−c1θ̇1 sin θ1

c1θ̇1 cos θ1

0

 (13.597)

0v2 =
0d

dt
0r2

=

−l1θ̇1 sin θ1 − c2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

l1θ̇1 cos θ1 + c2
(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

0

 (13.598)

0ḋ1 =

−l1θ̇1 sin θ1

l1θ̇1 cos θ1

0

 (13.599)

0ḋ2 =

−l1θ̇1 sin θ1 − l2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

l1θ̇1 cos θ1 + l2
(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

0

 (13.600)

To calculate the Lagrangian L = K − V , we determine the energies of the manipulator.
The kinetic energy of the manipulator is

K = 1
2m12

0ḋ1 · 0ḋ1 + 1
2m11

0v1 · 0v1

+ 1
2m0

0ḋ2 · 0ḋ2 + 1
2m21

0v2 · 0v2

+ 1
2 0ω

T
1

0I1 0ω1 + 1
2 0ω

T
2

0I2 0ω2 (13.601)

which, after substituting (13.593) and (13.597)–(13.600), becomes

K = 1
2

(
m11c

2
1 + m12l

2
1 + Iz1

)
θ̇2

1

+ 1
2m21

[−l1θ̇1 sin θ1 − c2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

]2

+ 1
2m21

[
l1θ̇1 cos θ1 + c2

(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

]2

+ 1
2m0

[−l1θ̇1 sin θ1 − l2
(
θ̇1 + θ̇2

)
sin (θ1 + θ2)

]2

+ 1
2m0

[
l1θ̇1 cos θ1 + l2

(
θ̇1 + θ̇2

)
cos (θ1 + θ2)

]2

+ 1
2Iz2

(
θ̇1 + θ̇2

)2
(13.602)
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The potential energy of the manipulator is

V = m11gc1 sin θ1 + m12gl1 sin θ1

+ m21g [l1 sin θ1 + c2 sin (θ1 + θ2)]

+ m0g [l1 sin θ1 + l2 sin (θ1 + θ2)] (13.603)

Applying the Lagrange equations

d

dt

(
∂L
∂θ̇1

)
− ∂L

∂θ1
= Q0

d

dt

(
∂L
∂θ̇2

)
− ∂L

∂θ2
= Q1 (13.604)

determines the general equations of motion:

[
D11 D12

D21 D22

][
θ̈1

θ̈2

]
+

[
C11 C12

C21 C22

][
θ̇1

θ̇2

]
+

[
G1

G2

]
=

[
Qo

Q1

]
(13.605)

where

D11 = 2l1 (m21c2 + m0l2) cos θ2 + Iz1 + Iz2

+ m11c
2
1 + m12l

2
1 + m21

(
c2

2 + l2
1

) + m0
(
l2
1 + l2

2

)
(13.606)

D12 = l1 (m21c2 + m0l2) cos θ2 + Iz2 + m0l
2
2 + m21c

2
2 (13.607)

D21 = l1 (m21c2 + m0l2) cos θ2 + Iz2 + m21c
2
2 + m0l

2
2 (13.608)

D22 = Iz2 + m21c
2
2 + m0l

2
2 (13.609)

C11 = −l1 (m21c2 + m0l2) θ̇2 sin θ2 (13.610)

C12 = −l1 (m21c2 + m0l2)
(
θ̇1 + θ̇2

)
sin θ2 (13.611)

C21 = l1 (m21c2 + m0l2) θ̇1 sin θ2 (13.612)

C22 = 0 (13.613)

G1 = [(m21 + m12 + m0) l1 + m11c1] cos θ1

+ (m21c2 + m0l2) cos (θ1 + θ2) (13.614)

G2 = (m21c2 + m0l2) cos (θ1 + θ2) (13.615)
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KEY SYMBOLS

a acceleration vector, a general vector
ã skew-symmetric matrix of the vector a
A transformation matrix of rotation about a local axis
b base vector of a coordinate system
b∗ reciprocal base vector of a coordinate system
B body coordinate frame, local coordinate frame
Bi, Bij Pfaffian constraint coefficients
c cos
C integration constant
d distance between two points
D(q) inertial-type matrix of equation of motion
êϕ, êθ , êψ coordinate axes of E, local roll–pitch–yaw coordinate axes
E Eulerian local frame, mechanical energy
f function, constraint equation, final
f, f1, f2 functions, functions of x and y, constraint equations
f, g, h transformation equation from qi to x, y, z

F, F force
FC constraint force
g, g gravitational acceleration
G global coordinate frame, fixed coordinate frame
G(q) gravitational coefficient matrix of equation of motion
H Hamiltonian
H(q, q̇) velocity coupling vector of equation of motion
I, [I ] mass moment
I identity matrix

ı̂, ̂ , k̂ local coordinate axis unit vectors

Î , Ĵ , K̂ global coordinate axis unit vectors
J objective function
k radius of gyration, spring stiffness, constant coefficient
K kinetic energy
l length, number of constraints
l′ difference of n′ and n

L, L moment of momentum, angular momentum
L Lagrangian
m mass
n number of DOF, number of generalized coordinates qi

n′ number of nongeneralized coordinates si

N dimension of configuration space
O common origin of B and G, order of magnitude
Oϕθψ Euler angle frame
p generalized momentum
p momentum vector, generalized momenta
P a body point, a fixed point in B

P,Q, R coefficient functions of ds2

qi generalized coordinate
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q vector of generalized coordinate
Q transformation matrix of rotation about a global axis,

generalized coordinate system Q (qi)

Qi generalized force associated with qi

Q control input
r position vector
rij element of row i and column j of a matrix
R radius of a circle
R set of real numbers
s sin, arc length, a member of S

si nongeneralized coordinates
S set
t time
u coordinate of configuration space
u, v two-dimensional coordinate system
u general axis
û unit vector, unit base vector
û∗ reciprocal unit base vector
v velocity vector
V potential energy, variation
x, y, z local coordinates, local coordinate axes
x state vector
X,Y,Z global coordinates, global coordinate axes

Greek
α, β, γ rotation angles about global axes
� Christoffel symbol
δ virtual displacement, virtual increment
δij Kronecker’s delta
ε small parameter
λ Lagrange multiplier
ξ, η, ϕ a curvilinear coordinate system
ϕ, θ, ψ rotation angles about local axes, Euler angles
ϕ̇, θ̇ , ψ̇ Euler frequencies
ωx, ωy, ωz angular velocity components
ω,ω angular velocity vector

Symbol
[ ]−1 inverse of the matrix [ ]
[ ]T transpose of the matrix [ ]
∇ gradient
DOF degree of freedom
� difference
L Lagrangian
� orthogonal
(i) link number i

‖ parallel
⊥ perpendicular
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EXERCISES

1. Equation of Motion in Cylindrical Coordinate Consider Fr , Fθ , and Fz as the applied
forces on a particle in the radial, tangential, and z-directions:

x = r cos θ y = r sin θ z = z

Using the Lagrange method, determine the equations of motion of the particle in cylindrical
coordinates (r, θ, z).

2. Equation of Motion in Spherical Coordinate Consider Fr , Fθ , and Fϕ as the applied
forces on a particle in the r-, θ -, and ϕ-directions:

x = r cos θ y = r sin θ cos ϕ z = r sin θ sin ϕ

Using the Lagrange method, determine the equations of motion of the particle in spherical
coordinates (r, θ, ϕ).

3. Pendulum in Wind Figure 13.18 illustrates a simple and an elastic pendulum in wind.
The wind exerts a force Fw on m. Determine the equations of motion of pendulums (a)

and (b) for:

(a) α = 0, Fw = cm
(
cos α ı̂ + sin α ̂

)
, c > 0

(b) 0 < α < 90 deg, Fw = cm
(
cos α ı̂ + sin α ̂

)
, c > 0

(c) α = 90 deg, Fw = cm
(
cos α ı̂ + sin α ̂

)
, c > 0

(d) 0 ≤ α ≤ 90 deg, Fw = cmv
(
cos α ı̂ + sin α ̂

)
, c > 0

(e) 0 ≤ α ≤ 90 deg, Fw = mv
(
c1 cos α ı̂ + c2 sin α ̂

)
, c1 > 0, c2 > 0

(f) 0 ≤ α ≤ 90 deg, Fw = mv2
(
c1 cos α ı̂ + c2 sin α ̂

)
, c1 > 0, c2 > 0

x

y

m

l

α α

θ

θ

g

o

Wind

x

y

m

o
k

(a) (b)

Wind

g

Figure 13.18 Two pendulums in wind.

4. Inverted Pendulums Determine the equations of motion of the two controlled inverted
pendulums of Figures 13.19 (a) and (b).
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lY

X

m, I

Q

C

O

l

Y

X

m

Q

O

(a) (b)

Figure 13.19 Two inverted pendulums.

5. A Particle in a Viscous Media A particle of mass m moves on a smooth horizontal circle
of radius a with an initial velocity v0. It is resisted by the air with a force proportional to
the square of its velocity v:

F = −kv2

(a) Using the Lagrange method, determine the equation of motion of the particle

(b) Solve the equation of motion and show that the angular position of the particle as a
function of time is

θ = m

ka
ln

(
1 + k

m
t

)
(c) Assume that the particle is forced to move on the circle by a string connected to the

center of the circle. Modify the kinetic energy and use the Lagrange method to show
that the tension force FT in the string is

FT = maθ̇2

6. Two Pulleys and Three Hanging Masses Figure 13.20 shows a mass 4m that is attached
to a string which passes over a smooth massless stationary pulley. The other end of the
string is fastened to a smooth pulley of mass m over which passes a second string attached
to masses m and 2m. The system has two DOF. Use x and y, as are shown, and find the
acceleration of the mass 4m.

4mg

x

y

2m

m

m

Figure 13.20 Two pulleys and three hanging masses.
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7. � A Dumbbell on a Smooth Table Two equal particles, each of mass m, are connected
by a massless bar of length l to make a dumbbell. The dumbbell has a force-free motion
on a smooth table. Determine the possible motions of the dumbbell.

8. Two Connected Particles and a Table Two equal particles of mass m are connected by
a string with length l which passes through a hole in a smooth horizontal table. The first
particle is set moving on the table at right angles with the string, with a velocity v1 = √

gl.
The hanging particle is drawn a short distance downward and then released. Let us show
the distance of the second particle from its equilibrium position at a time t by x and the
angular position of the first particle by θ . Show that the kinetic energy of the system is as
given below and determine the subsequent motion of the suspended particle:

K = 1
2 m

[
ẋ2 + ẋ2 + (l − x)2 θ̇2

]
9. � A Billiard Ball The homogeneous ball shown in Figure 13.4 is rolling freely on an

imperfectly rough table. Assume that the friction coefficient is µ and the ball is supposed
to slip. Employing the coordinate frames in Example 768, Equations (13.67)–(13.71) and
(13.74)–(13.77) remain the same. Examine the possible motions of the ball.

10. � A Gyroscope Consider a rigid body with a fixed point. The point is the origin of the
local principal coordinate frame. The body has two equal principal mass moments.

(a) Obtain the kinetic energy of the body

(b) Derive the equations of motion of the body under gravity

11. A Pendulum with Moving Support Consider a pendulum in the (x, y)-plane as shown
in Figure 13.21. Assume the supporting point O is moving in the y-direction with a given
function of time:

yo = f (t)

Determine the equation of motion of m.

x

y

m

l

θ
g

o

Figure 13.21 A pendulum in the (x, y)-plane with moving support.

12. � A Particle in a Two-Dimensional Coordinate Frame Consider a particle with mass
m that is moving freely in a two-dimensional space. Using the coordinates

x = 1

2
(q1 + q2) y = tan

q1 − q2

2

determine the kinetic energy of the particle,

K = 1
2 m

(
ẋ2 + ẏ2

)
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and show that the equations of motion are

q̈1 + q̈2 + (q̈1 − q̈2) sec4 q1 − q2

2
+ (q̇1 − q̇2)

2 sec4 q1 − q2

2
tan

q1 − q2

2

= −2gsec2 q1 − q2

2

q̈1 + q̈2 + (q̈1 − q̈2) sec4 q1 − q2

2
− (q̇1 − q̇2)

2 sec4 q1 − q2

2
tan

q1 − q2

2

= 2gsec2 q1 − q2

2

13. � Geodesic on a General Surface of Revolution Consider the surface

x2 + y2 = [
g (x)

]2

which is generated by revolving the curve y = g (x), with g ≥ 0, about the x-axis. Show
that using the parametric representation of this surface given as

x = u y = g (x) cos v z = g (x) sin v

the geodesic curves on the surface can be found as

v = C1

∫ √
1 + [

g′ (u)
]2

du

g (u)

√[
g′ (u)

]2 − C2
1

14. A Turning Pendulum Figure 13.22 illustrates a mass m that is attached to a massless
rod with length l. The rod is pivoted to a rotating vertical bar that is turning with angular
speed ω:

(a) Using conservation of the moment of momentum, draw a graph to show ω versus θ if
m = 2 kg, l = 1.2 m, and ω = 10 rpm when θ = 30 deg.

(b) Assume ω is constant. Determine the equation of motion of the pendulum.

(c) Determine the equilibrium value of θ .

X

ω θ h
Y

Z

G

m

l

Figure 13.22 A mass m is attached to a massless rod which is turning with angular speed ω.
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15. � Minimum Surface of Revolution Consider two given fixed points (x1, y1) and
(x2, y2), we seek to pass through them the arc y = y (x) whose rotation about the x-axis
generates a surface of revolution whose area in x1 ≤ x ≤ x2 is a minimum. Assuming
y1 > 0, y2 > 0, and y (x) ≥ 0 in x1 ≤ x ≤ x2, the problem reduces to the functional

J = 2π

∫ x2

x1

y
√

1 + y ′2dx y ′ = dy

dx

This is the area of the surface of revolution. Show that the minimum surface of revolution
is

y = −C1 cosh
x − C2

−C1

16. � Generalized Forces in Non-Cartesian Systems

(a) Determine the generalized forces in a spherical coordinate system.

(b) Determine the generalized momentum in a cylindrical coordinate system.

17. Generalized Coordinate and Lagrangian To show that the Lagrangian function and
equation are form invariant under a generalized coordinate transformation from qi to sj ,
we must employ Equations (13.217). Show that these two equations are valid.

18. Pendulum with Flexible Support Figures 13.23(a) and (b) illustrate two pendulums
with flexible supports in directions of x and y, respectively. Determine the equations of
motion for:

(a) A pendulum with a flexible support in the x-direction of Figure 13.23(a)

(b) A pendulum with a flexible support in the y-direction of Figure 13.23(b)

x

y

m

l

g

ox

y

m
θ

θ

l

g

o
k

k

(a) (b)

Figure 13.23 Pendulums with flexible support.

19. Discrete Particles There are three particles m1 = 4 kg, m2 = 2 kg, m3 = 3 kg at

r1 =

 1

−1

1

 r2 =

−1

−3

2

 r3 =

 2

−1

−3





Exercises 1269

Their velocities are

v1 =

2

1

1

 v2 =

−1

0

2

 v3 =

 3

−2

−1


Find the position and velocity of the system at C. Calculate the system’s momentum and
moment of momentum. Calculate the system’s kinetic energy and determine the rotational
and translational parts of the kinetic energy.

20. Two Connected Pendulums Assume the free length of the spring in Figure 13.24 is a.

(a) Determine the equations of motions of the connected pendulums of Figure 13.24.

(b) Assume l1 = l2 and the angles and angular velocity of oscillation are very small.
Linearize the system of equations.

x

y

m1

l1
l2

m2

θ1

θ2
g

o

k

a

Figure 13.24 Two connected pendulums.

21. A Sliding Plank That Leans against a Wall A uniform plank with mass m and length
l is initially leaned against a smooth wall and stands on a friction floor. The plank starts
to slide. Derive the equations of motion and the reaction forces on the wall and floor by
using (a) the Newton–Euler method and (b) the Lagrange multiplier method.

22. A Pendulum with Moving Support Figure 13.25 illustrates a pendulum with a mov-
ing support. Employ the Lagrange equation and determine the equation of motion of the
pendulum:

(a) When the support is moving on a circle x = a cos ωt , y = a sin ωt with constant ω as
shown in Figure 13.25(a)

(b) � When the support is moving on an ellipse x = a cos ωt , y = b sin ωt with constant
ω as shown in Figure 13.25(b)

(c) � Simplify the equation of part (b) for b = a and recover the equation of part (a).
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x

y

m

θ θ

l

o
a

x

m

l

o

b

a

(a) (b)

Figure 13.25 Two pendulums with moving support.

23. Equation of Motion for a Given Lagrangian Consider a dynamic system given

L = K − V

K = 1
2

[
m

(
ẋ2

1 + ẋ2
2

) + I1ϕ̇
2 sin2 θ + I3

(
ϕ̇ cos θ + ψ̇

)2
]

V = −mg (x1 sin α − x3 cos α)

α = const

(a) Derive the equations of motion.

(b) Try to recover the Lagrangian from the equations of motion.

24. A Falling Particle of a Surface A particle with mass m is sliding on the surface of a
geometric shape under the gravitational attraction. Determine the constraint force and the
angle at which the particle leaves the surface:

(a) When the surface is a circle x = a cos ϕ, y = a sin ϕ as shown in Figure 13.26(a)

(b) � When the surface is an ellipse x = a cos ϕ, y = b sin ϕ as shown in Figure 13.26(b)

(c) � Simplify the equations of part (b) for b = a and recover the equations of part (a).

x

y

m

o

θ θ
a

xo

b

a

(a) (b)

m

Figure 13.26 A Sliding particle on two surfaces.

25. Application of Conservation Laws Employ the integrals of motion in Example 800 and
determine the generalized coordinates as functions of time. Discuss the possible motions
of the system.
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26. � A Variable-Mass Pendulum Let us assume that there are two identical chains with
length density of ρ lying on the x-axis as shown in Figure 13.27. A pendulum with mass
m will take one of the chains every time it passes θ = 0 and carries the part of the chain
which is limited to x > 0 or x < 0. Let us ignore the size of hooks and m and assume that
the weight of the lifted chain, ρx, is concentrated at m.
Determine the equation of motion of this variable-mass pendulum.

x

y

m

l

θ

g

o

l

Figure 13.27 A collecting-chain pendulum.

27. Simple and Compound Pendulums Use the Lagrange method and find the equation of
motion for the pendulums shown in Figures 13.28(a) and (b). The stiffness of the linear
spring is k. Assume the free length of the spring is a − l.

x

y

m

l

g

o

a

(a) (b)

x

y

m

l

g

o

a

k k

θ θ

Figure 13.28 A simple and a compound pendulum attached with a linear spring at the tip
point.

28. Lagrangian Problem Find the Lagrangian associated with the following equations of
motions:

(a) mr2θ̈ + k1l1θ + k2l2θ + mgl = 0

(b)
r̈ − r θ̇2 = 0

r2 θ̈ + 2r ṙ θ̇ = 0
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29. � Particle in Electromagnetic Field Show that equations of motion of a particle with
mass m and Lagrangian

L = 1
2mṙ2 − e� + eṙ · A

are

mq̈i = e

(
− ∂�

∂qi

− ∂Ai

∂t

)
+ e

3∑
j=1

q̇j

(
∂Aj

∂qi

− ∂Ai

∂qj

)
where

q =

q1

q2

q3

 =

x

y

z


Then convert the equations of motion to a vectorial form

mr̈ = eE (r, t) + eṙ × B (r, t)

where E and B are electric and magnetic fields:

E = −∇� − ∂A
∂t

B = ∇ × A.

30. Connected Springs

(a) Determine the equations of motion of the systems in Figures 13.29(a) and (b).

(b) Show that by a → 0 the equations of system (b) approach those of (a).

(c) Assume the variations of the coordinates are too small and linearize the equations of
motion.

x

y

m

l

g

o

k1

θ1 θ2

ϕ

(a) (b)

k2 k1

θ1 θ2

k2

x

y

m

l

g

o

a

Figure 13.29 A mass and a pendulum suspended by two springs.

31. Heavy Pendulum Figure 13.30(a) illustrates a heavy disc with mass m and radius R

suspended by a massless rod of length l. Figure 13.30(b) illustrates another heavy disc
with mass m and radius R that is attached to a massless rod of length l by a frictionless
revolute joint at its center.
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(a) Derive the equations of motion for the pendulums in (a) and (b).

(b) Linearize the equations of motion. Is it possible to compare the period of oscillations?

(c) � Assume the disc of Figure 13.30(b) has an angular velocity of ω when θ = 0.
Determine the equation of motion, linearize the equation, and determine the period of
oscillation.

l

m

R

y

l

g

x

(a) (b)

m

R

x

y

θ θ

g

Figure 13.30 Heavy pendulums with and without a revolute joint.

32. Variation and Equilibrium Position Figure 13.31 depicts two discs with masses m1

and m2 and radius R that are connected with a bar of mass m and length l. The spring
k prevents the system from falling. Assume there is no friction and the spring has a free
length of a + R − l.

(a) Determine the potential energy V of the system.

(b) Find the equilibrium value of θ by minimizing V .

(c) Derive the equation of motion of the system by the Newton method.

(d) Derive the equation of motion of the system by the Lagrange method.

(e) Derive the tension force in the rod by the Lagrange method.

y

m1

m2

l

x

k

g
m

θ

a

Figure 13.31 Two discs that are connected with a bar and supported by a spring.
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33. Strong Nonlinear Vibrating Systems Figures 13.32(a) and (b) illustrate two massive
points with a prescribed one-dimensional path of motion while they are attached to a fixed
point by a linear spring.

(a) Determine their equations of motion in terms of x.

(b) Determine their equations of motion in terms of θ .

(c) Assume x is too small and simplify the equations of part (a).

(d) Assume θ is too small and simplify the equations of part (b).

(e) Can we linearize the equations of motion for both systems? Are their equations for
very small motion equivalent? Does your answer depend on the ratio l/R ?

x

y

m

l
θ θ

g

x

k

(a) (b)

x

y

m

l
g

x

k

x2 + y2 – R2 = 0

Figure 13.32 Two massive points with prescribed path of motion that are supported by springs.

34. A Partial Circular Wire Figure 13.33 illustrates a circular arc of central angle 2α, arc
density ρ, mass m, and radius R. If the minimum distance of the mass center C from the
wire is l = (R sin α) /α, then the mass moment of the wire with respect to the center of
the circle and the mass center C are Io = 2αρR3 and IC = Io − 2αρRl2. Determine the
Lagrangian and equations of motion of the system.

y

α

x

g

m

R

C
C

θ

Figure 13.33 A partial circular wire.

35. Lagrangian as a Function of q̈. Assume a Lagrangian L that is a function of generalized
coordinates qi , velocities q̇i , and accelerations q̈i :

L = L (qi, q̇i , q̈i )

Show that the Euler–Lagrange equation of such a Lagrangian is

∂L
∂qi

− d

dt

∂L
∂q̇i

+ d2

dt2
∂L
∂q̈i

= 0
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36. Equivalent Lagrangian Assume L = L (q, q̇, t) is the Lagrangian of a one-DOF
dynamic system. Let f (q, t) be an arbitrary function and define a new Lagrangian L′ by
adding the time derivative of f to L:

L′ = L+ df

dt
= L + ∂f

∂q
q̇ + ∂f

∂t

Show that the equations of motion for L′ and L are identical.

37. A Turning Pendulum Figure 13.34 illustrates a pendulum of length l with a suspended
mass m. The pivot of the pendulum is a point turning on a circle with radius R and angular
speed ω.

(a) Determine the angular velocity and acceleration of the pendulum.

(b) Determine the Lagrangian of the pendulum.

(c) Determine the equations of motion of the pendulum.

X
h

Y

Z

G

m

R

ω

θl

Figure 13.34 A turning pendulum.

38. Kinetic Energy of a Rigid Link Consider a straight and uniform bar as a rigid link of
a manipulator. The link has a mass m. Show that the kinetic energy of the bar can be
expressed as

K = 1
6m (v1 · v1 + v1 · v2 + v2 · v2)

where v1 and v2 are the velocity vectors of the end points of the link.

39. Lagrangian and New Coordinates Consider the Lagrangian

L (x, ẋ, y, ẏ, t) = 1
2

(
ẋ2 + ẏ2

)
Determine L = L (

r, ṙ, θ, θ̇ , t
)

and the equations of motion if

x = r cos θ y = r sin θ

40. n-Pendulum Equations of Motion Figure 13.35 illustrates an n-pendulum with planar
motion in the (x, y)-plane. Determine the kinetic, potential, Lagrangian, and equations of
motion of the system.
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y

l 1

x g

θ1

θ2
θ3

θn

l2m1

m2

m3

mn–1

mnln

Figure 13.35 An n-pendulum with planar motion in the (x, y)-plane.

41. Velocity-Dependent Potential Show that if a potential function V is a function of qi and
q̇i , then in Newtonian mechanics it must be a linear function of the velocity q̇i ; otherwise
we will have a force that is a function of acceleration:

V =
n∑

i=1

ai q̇i + V0

42. The Ideal 2R Planar Manipulator Dynamics An ideal model of a 2R planar manipulator
is illustrated in Figure 13.36. It is called ideal because we assumed that the links are
massless and there is no friction. The masses m1 and m2 are respectively the mass of the
second motor to run the second link and the load at the end point. Use the absolute angle
θ1 and the relative angle θ2 as the generalized coordinates to express the configuration of
the manipulator. Derive the equations of motion.

x2
y2

Y y1

x1

X

m1

m2

Q1

Q2

θ1

θ2

l1

l 2

Figure 13.36 An ideal 2R planar manipulator.

43. Ignorable Coordinates and Generalized Momenta Assume the coordinates
q1, q2, . . . , qm, m < n, of an n-DOF dynamic system are ignorable. Therefore the first m

Lagrange equations lead to generalized momentum integrals:

pi = ∂L
∂q̇i

= const i = 1, 2, . . . , m (13.616)

Why are pi linear in terms of q̇1, q̇2, . . . , q̇m?



Exercises 1277

44. An RPR Planar Redundant Manipulator Figure 13.37 illustrates a three-DOF planar
manipulator with joint variables θ1, d2, and θ2. Determine the equations of motion of the
manipulator if the links are massless and there are two massive points m1 and m2.

B0

y3

y0

y1

x1

x0

l 3

d2

x2

y2

x3

ϕ

θ2

θ1
m1

m2

B1

B2 B3

Figure 13.37 An RPR planar redundant manipulator.

45. A Planar Multi-DOF Manipulator Figure 13.38 illustrates a three-DOF planar manip-
ulator. Determine the equations of motion of the manipulator if the links are massless and
there are two massive points m1 and m2.

y3

y0

y1

x1

x0

d2

l1

z2x3

l2

x2m1

m2

θ3
ϕ

θ1

B0
B1 B2

B3

Figure 13.38 A planar multi-DOF manipulator.

46. � Articulated Manipulator Figure 13.39 illustrates an articulated manipulator with mas-
sive links and a massive load at the tip point. Points Ci , i = 1, 2, 3, indicate the mass centers
of the links with masses mi , i = 1, 2, 3. The tip point has a mass m0. A top view of the
manipulator is shown in Figure 13.40. Derive the equations of motion of the manipulator.
Hint : Link (1) of the manipulator is an R�R(90) with an extra displacement l1 along z1.
To determine the transformation matrix 0R1, we can begin from a coincident configuration
of B1 and B0 and move B1 to its current configuration by a sequence of proper rotations
and displacements. The second and third links are respectively R‖R(0) and R�R(90).
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z2

z3x2
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y0
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B3 B4

Figure 13.39 An articulated manipulator with massive links and a massive load at the tip point.
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Figure 13.40 A top view of an articulated manipulator with massive links and a massive load
at the tip point.
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47. A Hanging and Rotating Bar Figure 13.41 illustrates a hanging uniform bar that is
pivoted to a rotating vertical axis. Determine the differential equation to determine β for a
constant ω.

xA

zA

yA

r

AG

B

β

Z

ω

X

Y

zB

xB

Figure 13.41 A hanging and rotating bar.

48. Special Cases of 2R Planar Manipulator Figure 13.17 illustrates a general 2R manip-
ulator with massive arms and joints and a carrying payload m0. The second motor has a
mass m12 and is mounted on link (1). The masses of the first and second links are m11

and m21, respectively, and their mass centers are at C1 and C2. The general equations of
motion for the 2R planar manipulator are given in Equations (13.606)–(13.615):[

D11 D12

D21 D22

] [
θ̈1

θ̈2

]
+

[
C11 C12

C21 C22

] [
θ̇1

θ̇2

]
+

[
G1

G2

]
=

[
Qo

Q1

]
(13.617)

In modeling a special 2R planar manipulator, we may use the equations for simpler models.
Simplify the equations and derive the dynamic equations of motion for (a) massless arms
and (b) massless joints.
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Plücker, J., 1866, Fundamental Views Regarding Mechanics, Philosophical Transactions , 156 ,
361–380.

Schroer, K., Albright, S. L., and Grethlein, M., 1997, Complete, Minimal and Model-Continuous
Kinematic Models for Robot Calibration, Robotics and Computer-Integrated Manufacturing ,
13 (1), 73–85.

Spong, M. W., Hutchinson, S., and Vidyasagar, M., 2006, Robot Modeling and Control , Wiley,
New York.

Suh, C. H., and Radcliff, C. W., 1978, Kinematics and Mechanisms Design , Wiley, New York.

Tsai, L. W., 1999, Robot Analysis , Wiley, New York.

Wang, K., and Lien, T., 1988, Structure, Design & Kinematics of Robot Manipulators, Robotica ,
6 , 299–306.

Wittenburg, J., and Lilov, L., 2003, Decomposition of a Finite Rotation into Three Rotations
About Given Axes, Multibody System Dynamics , 9 , 353–375.

Zhuang, H., Roth, Z. S., and Hamano, F., 1992, A Complete, Minimal and Model-Continuous
Kinematic Model for Robot Manipulators, IEEE Transactions on Robotics and Automation ,
8 (4), 451–463.

Chapter 6

Asada, H., and Slotine, J. J. E., 1986, Robot Analysis and Control , Wiley, New York.

Jazar, R. N., 2010, Theory of Applied Robotics: Kinematics, Dynamics, and Control , 2nd ed.,
Springer, New York.

Kane, T. R., and Levinson, D. A., 1980, Dynamics: Theory and Applications , McGraw-Hill,
New York.

Mason, M. T., 2001, Mechanics of Robotic Manipulation , MIT Press, Cambridge, MA.

Paul, R. P., 1981, Robot Manipulators: Mathematics, Programming, and Control , MIT Press,
Cambridge, MA.
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A

Global Frame Triple Rotation

In this appendix, the 12 combinations of triple rotation about global fixed axes are
presented:

QX,γ QY,βQZ,α =
 cαcβ −cβsα sβ

cγ sα + cαsβsγ cαcγ − sαsβsγ −cβsγ

sαsγ − cαcγ sβ cαsγ + cγ sαsβ cβcγ

 (A.1)

QY,γ QZ,βQX,α =
 cβcγ sαsγ − cαcγ sβ cαsγ + cγ sαsβ

sβ cαcβ −cβsα

−cβsγ cγ sα + cαsβsγ cαcγ − sαsβsγ

 (A.2)

QZ,γ QX,βQY,α =
cαcγ − sαsβsγ −cβsγ cγ sα + cαsβsγ

cαsγ + cγ sαsβ cβcγ sαsγ − cαcγ sβ

−cβsα sβ cαcβ

 (A.3)

QZ,γ QY,βQX,α =
cβcγ −cαsγ + cγ sαsβ sαsγ + cαcγ sβ

cβsγ cαcγ + sαsβsγ −cγ sα + cαsβsγ

−sβ cβsα cαcβ

 (A.4)

QY,γ QX,βQZ,α =
 cαcγ + sαsβsγ −cγ sα + cαsβsγ cβsγ

cβsα cαcβ −sβ

−cαsγ + cγ sαsβ sαsγ + cαcγ sβ cβcγ

 (A.5)

QX,γ QZ,βQY,α =
 cαcβ −sβ cβsα

sαsγ + cαcγ sβ cβcγ −cαsγ + cγ sαsβ

−cγ sα + cαsβsγ cβsγ cαcγ + sαsβsγ

 (A.6)

QX,γ QY,βQX,α =
 cβ sαsβ cαsβ

sβsγ cαcγ − cβsαsγ −cγ sα − cαcβsγ

−cγ sβ cαsγ + cβcγ sα −sαsγ + cαcβcγ

 (A.7)

QY,γ QZ,βQY,α =
−sαsγ + cαcβcγ −cγ sβ cαsγ + cβcγ sα

cαsβ cβ sαsβ

−cγ sα − cαcβsγ sβsγ cαcγ − cβsαsγ

 (A.8)
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QZ,γ QX,βQZ,α =
cαcγ − cβsαsγ −cγ sα − cαcβsγ sβsγ

cαsγ + cβcγ sα −sαsγ + cαcβcγ −cγ sβ

sαsβ cαsβ cβ

 (A.9)

QX,γ QZ,βQX,α =
 cβ −cαsβ sαsβ

cγ sβ −sαsγ + cαcβcγ −cαsγ − cβcγ sα

sβsγ cγ sα + cαcβsγ cαcγ − cβsαsγ

 (A.10)

QY,γ QX,βQY,α =
 cαcγ − cβsαsγ sβsγ cγ sα + cαcβsγ

sαsβ cβ −cαsβ

−cαsγ − cβcγ sα cγ sβ −sαsγ + cαcβcγ

 (A.11)

QZ,γ QY,βQZ,α =
−sαsγ + cαcβcγ −cαsγ − cβcγ sα cγ sβ

cγ sα + cαcβsγ cαcγ − cβsαsγ sβsγ

−cαsβ sαsβ cβ

 (A.12)



B

Local Frame Triple Rotation

In this appendix, the 12 combinations of triple rotation about local axes are presented:

Ax,ψAy,θAz,ϕ =
 cθcϕ cθsϕ −sθ

−cψsϕ + cϕsθsψ cϕcψ + sθsϕsψ cθsψ

sϕsψ + cϕsθcψ −cϕsψ + sθcψsϕ cθcψ

 (B.1)

Ay,ψAz,θAx,ϕ =
cθcψ sϕsψ + cϕsθcψ −cϕsψ + sθcψsϕ

−sθ cθcϕ cθsϕ

cθsψ −cψsϕ + cϕsθsψ cϕcψ + sθsϕsψ

 (B.2)

Az,ψAx,θAy,ϕ =
 cϕcψ + sθsϕsψ cθsψ −cψsϕ + cϕsθsψ

−cϕsψ + sθcψsϕ cθcψ sϕsψ + cϕsθcψ

cθsϕ −sθ cθcϕ

 (B.3)

Az,ψAy,θAx,ϕ =
 cθcψ cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ

−cθsψ cϕcψ − sθsϕsψ cψsϕ + cϕsθsψ

sθ −cθsϕ cθcϕ

 (B.4)

Ay,ψAx,θAz,ϕ =
cϕcψ − sθsϕsψ cψsϕ + cϕsθsψ −cθsψ

−cθsϕ cθcϕ sθ

cϕsψ + sθcψsϕ sϕsψ − cϕsθcψ cθcψ

 (B.5)

Ax,ψAz,θAy,ϕ =
 cθcϕ sθ −cθsϕ

sϕsψ − cϕsθcψ cθcψ cϕsψ + sθcψsϕ

cψsϕ + cϕsθsψ −cθsψ cϕcψ − sθsϕsψ

 (B.6)

Ax,ψAy,θAx,ϕ =
 cθ sθsϕ −cϕsθ

sθsψ cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ

sθcψ −cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ

 (B.7)

Ay,ψAz,θAy,ϕ =
−sϕsψ + cθcϕcψ sθcψ −cϕsψ − cθcψsϕ

−cϕsθ cθ sθsϕ

cψsϕ + cθcϕsψ sθsψ cϕcψ − cθsϕsψ

 (B.8)

Az,ψAx,θAz,ϕ =
 cϕcψ − cθsϕsψ cψsϕ + cθcϕsψ sθsψ

−cϕsψ − cθcψsϕ −sϕsψ + cθcϕcψ sθcψ

sθsϕ −cϕsθ cθ

 (B.9)
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Ax,ψAz,θAx,ϕ =
 cθ cϕsθ sθsϕ

−sθcψ −sϕsψ + cθcϕcψ cϕsψ + cθcψsϕ

sθsψ −cψsϕ − cθcϕsψ cϕcψ − cθsϕsψ

 (B.10)

Ay,ψAx,θAy,ϕ =
cϕcψ − cθsϕsψ sθsψ −cψsϕ − cθcϕsψ

sθsϕ cθ cϕsθ

cϕsψ + cθcψsϕ −sθcψ −sϕsψ + cθcϕcψ

 (B.11)

Az,ψAy,θAz,ϕ =
−sϕsψ + cθcϕcψ cϕsψ + cθcψsϕ −sθcψ

−cψsϕ − cθcϕsψ cϕcψ − cθsϕsψ sθsψ

cϕsθ sθsϕ cθ

 (B.12)



C

Principal Central Screw
Triple Combination

In this appendix, the six combinations of triple principal central screws are presented:

š(hX, γ, Î ) š(hY , β, Ĵ ) š(hZ, α, K̂)

=


cαcβ −cβsα sβ γpX + αpZsβ

cγ sα + cαsβsγ cαcγ − sαsβsγ −cβsγ βpY cγ − αpZcβsγ

sαsγ − cαcγ sβ cαsγ + cγ sαsβ cβcγ βpY sγ + αpZcβcγ

0 0 0 1

 (C.1)

š(hY , β, Ĵ ) š(hZ, α, K̂) š(hX, γ, Î )

=


cαcβ sβsγ − cβcγ sα cγ sβ + cβsαsγ αpZsβ + γpXcαcβ

sα cαcγ −cαsγ βpY + γpXsα

−cαsβ cβsγ + cγ sαsβ cβcγ − sαsβsγ αpZcβ − γpXcαsβ

0 0 0 1

 (C.2)

š(hZ, α, K̂) š(hX, γ, Î ) š(hY , β, Ĵ )

=


cαcβ − sαsβsγ −cγ sα cαsβ + cβsαsγ γpXcα − βpY cγ sα

cβsα + cαsβsγ cαcγ sαsβ − cαcβsγ γpXsα + βpY cαcγ

−cγ sβ sγ cβcγ αpZ + βpY sγ

0 0 0 1

 (C.3)

š(hZ, α, K̂) š(hY , β, Ĵ ) š(hX, γ, Î )

=


cαcβ cαsβsγ − cγ sα sαsγ + cαcγ sβ γpXcαcβ − βpY sα

cβsα cαcγ + sαsβsγ cγ sαsβ − cαsγ βpY cα + γpXcβsα

−sβ cβsγ cβcγ αpZ − γpXsβ

0 0 0 1

 (C.4)
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š(hY , β, Ĵ ) š(hX, γ, Î ) š(hZ, α, K̂)

=


cαcβ + sαsβsγ cαsβsγ − cβsα cγ sβ γpXcβ + αpZcγ sβ

cγ sα cαcγ −sγ βpY − αpZsγ

cβsαsγ − cαsβ sαsβ + cαcβsγ cβcγ αpZcβcγ − γpXsβ

0 0 0 1

 (C.5)

š(hX, γ, Î ) š(hZ, α, K̂) š(hY , β, Ĵ )

=


cαcβ −sα cαsβ γpX − βpY sα

sβsγ + cβcγ sα cαcγ cγ sαsβ − cβsγ βpY cαcγ − αpZsγ

cβsαsγ − cγ sβ cαsγ cβcγ + sαsβsγ αpZcγ + βpY cαsγ

0 0 0 1

 (C.6)



D

Industrial Link DH Matrices

Most industrial multibodies are made by connected links that use one of the follwo-
ing joint configurations with the associated Denavit–Hartenberg (DH) transformation
matrices:

1 R‖R(0) or R‖P(0)

2 R‖R(180) or R‖P(180)

3 R⊥R(90) or R⊥P(90)

4 R⊥R(−90) or R⊥P(−90)

5 R�R(90) or R�P(90)

6 R�R(−90) or R�P(−90)

7 P‖R(0) or P‖P(0)

8 P‖R(180) or P‖P(180)

9 P⊥R(90) or P⊥P(90)

10 P⊥R(−90) or P⊥P(−90)

11 P�R(90) or P�P(90)

12 P�R(−90) or P�P(−90)

1,2—LINKS WITH R‖R OR R‖P

ai = const αi = 0 or 180 deg di = 0 θi = variable

Figure D.1 illustrates a link R‖R(0), and Figure D.2 illustrates a link R‖R(180). If
the proximal joint of link (i) is revolute, the distal joint is either revolute or prismatic,
and the joint axes at two ends are parallel, then αi = 0 or αi = 180 deg, ai is the
distance between the joint axes, and θi is the only variable parameter. The joint distance
di = const is the distance between the origin of Bi and Bi−1 along zi . We usually set
(xi, yi) and (xi−1, yi−1) coplanar to get di = 0. The xi- and xi−1-axes are parallel for
a link R‖R at the rest position. Therefore, the transformation matrix i−1Ti for such a
link with αi = 0 known as R‖R(0) or R‖P(0) is

i−1Ti =


cos θi − sin θi 0 ai cos θi

sin θi cos θi 0 ai sin θi

0 0 1 di

0 0 0 1

 (D.1)
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Bi

zi−1

xi

xi−1

θi

Bi−1

zi

a i

Figure D.1 A link R‖R(0).

Bi

zi−1

xi

xi−1
a i

Bi−1

zi

θi

Figure D.2 A link R‖R(180).

while for a link with αi = 180 deg and R‖R(180) or R‖P(180) it is

i−1Ti =


cos θi sin θi 0 ai cos θi

sin θi − cos θi 0 ai sin θi

0 0 −1 di

0 0 0 1

 (D.2)

3, 4—LINKS WITH R⊥R OR R⊥P

ai = const αi = 90 deg or − 90 deg di = 0 θi = variable

Figure D.3 illustrates a link R⊥R(90) and Figure D.4 illustrates a link R⊥R(−90).
If the proximal joint of link (i) is revolute, the distal joint is either revolute or prismatic,
and the joint axes at two ends are perpendicular, then αi = 90 deg or αi = −90 deg,
ai is the distance between the joint axes on xi , and θi is the only variable parameter.
The joint distance di = const is the distance between the origin of Bi and Bi−1 along
zi . We usually set (xi, yi) and (xi−1, yi−1) coplanar to get di = 0.

The R⊥R link is made by twisting the R‖R link 90 deg about its centerline xi−1-
axis. The xi- and xi−1-axes are parallel for a link R⊥R at the rest position. Therefore,
the transformation matrix i−1Ti for such a link with αi = 90 deg known as R⊥R(90)
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Bizi−1

xi

xi−1

a i

Bi−1

zi

θi

Figure D.3 A R⊥R(90) link.

Bi

zi−1

xi

xi−1

a i

Bi−1

zi

θi

Figure D.4 A R⊥R(−90) link.

or R⊥P(90) is

i−1Ti =


cos θi 0 sin θi ai cos θi

sin θi 0 − cos θi ai sin θi

0 1 0 di

0 0 0 1

 (D.3)

while for a link with αi = −90 deg and R⊥R(−90) or R⊥P(−90) it is

i−1Ti =


cos θi 0 − sin θi ai cos θi

sin θi 0 cos θi ai sin θi

0 −1 0 di

0 0 0 1

 (D.4)

5, 6—LINKS WITH R�R OR R�P

ai = 0 αi = 90 deg or − 90 deg di = 0 θi = variable

Figure D.5 illustrates a link R�R(90) and Figure D.6 illustrates a link R�R(−90).
If the proximal joint of link (i) is revolute and the distal joint is either revolute or
prismatic and the joint axes at two ends are intersecting orthogonal, then αi = 90 deg
or αi = −90 deg, ai = 0, di = cte is the distance between the coordinate origin on zi ,
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Bixi

zi−1

xi−1

Bi−1

zi

θi

Figure D.5 An R�R(90) link.

Bi

xi

zi−1

xi−1

Bi−1

zi

θi

Figure D.6 An R�R(−90) link.

and θi is the only variable parameter. It is possible to have or assume di = 0 at the
rest position. When di = 0, the xi- and xi−1-axes of a link R�R are coincident and
when di �= 0 they are parallel. Therefore, the transformation matrix i−1Ti for such a
link with αi = 90 deg and R�R(90) or R�P(90) is

i−1Ti =


cos θi 0 sin θi 0
sin θi 0 − cos θi 0

0 1 0 di

0 0 0 1

 (D.5)

while for a link with αi = −90 deg and R�R(−90) or R�P(−90) it is

i−1Ti =


cos θi 0 − sin θi 0
sin θi 0 cos θi 0

0 −1 0 di

0 0 0 1

 (D.6)

7, 8—LINKS WITH P‖R OR P‖P

ai = const αi = 0 or 180 deg di = variable θi = 0

Figure D.7 illustrates a link P‖R(0) and Figure D.8 illustrates a link P‖R(180). If
the proximal joint of link (i) is prismatic, its distal joint is either revolute or prismatic,
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Bi

zi−1

xi

a i

Bi−1

zi

di

xi−1

Figure D.7 A P‖R(0) link.

Bi

zi−1

xi

a i

Bi−1

zi

xi−1

di

Figure D.8 A P‖R(180) link.

and the joint axes at two ends are parallel, then αi = 0 or αi = 180 deg, θi = 0, ai =
const is the distance between the joint axes on xi , and di is the only variable parameter.
It is possible to have ai = 0. The transformation matrix i−1Ti for a link with αi = 0
and P‖R(0) or P‖P(0) is

i−1Ti =


1 0 0 ai

0 1 0 0
0 0 1 di

0 0 0 1

 (D.7)

while for a link with αi = 180 deg and P‖R(180) or P‖P(180) it is

i−1Ti =


1 0 0 ai

0 −1 0 0
0 0 −1 di

0 0 0 1

 (D.8)

The origin of the Bi−1-frame can arbitrarily be chosen at any point on the zi−1-axis
or parallel to the zi−1-axis. A simple setup is to locate the origin oi of a prismatic joint
at the previous origin oi−1. This sets ai = 0 and furthermore sets the initial value of
the joint variable di = 0, where di will vary when oi slides up and down parallel to
the zi−1-axis.
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9, 10—LINKS WITH P⊥R OR P⊥P

ai = const αi = 90 or − 90 deg di = variable θi = 0

Figure D.9 illustrates a link P⊥R(90) and Figure D.10 illustrates a link P⊥R(−90).
If the proximal joint of link (i) is prismatic and its distal joint is either revolute or
prismatic with orthogonal, then αi = 90 deg or αi = −90 deg, θi = 0, ai = const is
the distance between the joint axes on xi , and di is the only variable parameter. The
transformation matrix i−1Ti for a link with αi = 90 deg and P⊥R(90) or P⊥P(90) is

i−1Ti =


1 0 0 ai

0 0 −1 0
0 1 0 di

0 0 0 1

 (D.9)

while for a link with αi = −90 deg and P⊥R(−90) or P⊥P(−90) it is

i−1Ti =


1 0 0 ai

0 0 1 0
0 −1 0 di

0 0 0 1

 (D.10)

Bi

zi−1

xi

xi−1

a i

Bi−1

zi

di

Figure D.9 A P⊥R(90) link.

Bizi−1
xi

xi−1

a i

Bi−1

zi

di

Figure D.10 A P⊥R(−90) link.
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11, 12—LINKS WITH P�R OR P�P

ai = 0 αi = 90 or − 90 deg di = variable θi = 0

Figure D.11 illustrates a link P�R(90) and Figure D.12 illustrates a link P�R(−90).
If the proximal joint of link (i) is prismatic and the distal joint is either revolute or
prismatic and the joint axes at two ends are intersecting orthogonal, then αi = 90 deg or
αi = −90 deg, θi = 0, ai = 0, and di is the only variable parameter. The xi-axis must
be perpendicular to the plane of the zi−1- and zi-axes, and it is possible to have ai �= 0.
Therefore, the transformation matrix i−1Ti for a link with αi = 90 deg and P�R(90) or
P �P(90) is

i−1Ti =


1 0 0 0
0 0 −1 0
0 1 0 di

0 0 0 1

 (D.11)

while for a link with αi = −90 deg and P�R(−90) or P�P(−90) it is

i−1Ti =


1 0 0 0
0 0 1 0
0 −1 0 di

0 0 0 1

 (D.12)

Bi

zi−1

xi

Bi−1

zi

di

xi−1

Figure D.11 A P�R(90) link.

Bi

zi−1

xi

Bi−1

zi

di

xi−1

Figure D.12 A P�R(−90) link.
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Trigonometric Formula

Definitions in terms of exponentials:

cos z = eiz + e−iz

2
(E.1)

sin z = eiz − e−iz

2i
(E.2)

tan z = eiz − e−iz

i
(
eiz + e−iz

) (E.3)

eiz = cos z + i sin z (E.4)

e−iz = cos z − i sin z (E.5)

Angle sum and difference:

sin(α ± β) = sin α cos β ± cos α sin β (E.6)

cos(α ± β) = cos α cos β ∓ sin α sin β (E.7)

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β
(E.8)

cot(α ± β) = cot α cot β ∓ 1

cot β ± cot α
(E.9)

Symmetry:

sin(−α) = − sin α (E.10)

cos(−α) = cos α (E.11)

tan(−α) = − tan α (E.12)

Multiple angle:

sin(2α) = 2 sin α cos α = 2 tan α

1 + tan2 α
(E.13)

cos(2α) = 2 cos2 α − 1 = 1 − 2 sin2 α = cos2 α − sin2 α (E.14)

tan(2α) = 2 tan α

1 − tan2 α
(E.15)

cot(2α) = cot2 α − 1

2 cot α
(E.16)
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sin(3α) = −4 sin3 α + 3 sin α (E.17)

cos(3α) = 4 cos3 α − 3 cos α (E.18)

tan(3α) = − tan3 α + 3 tan α

−3 tan2 α + 1
(E.19)

sin(4α) = −8 sin3 α cos α + 4 sin α cos α (E.20)

cos(4α) = 8 cos4 α − 8 cos2 α + 1 (E.21)

tan(4α) = −4 tan3 α + 4 tan α

tan4 α − 6 tan2 α + 1
(E.22)

sin(5α) = 16 sin5 α − 20 sin3 α + 5 sin α (E.23)

cos(5α) = 16 cos5 α − 20 cos3 α + 5 cos α (E.24)

sin(nα) = 2 sin[(n − 1)α) cos α − sin((n − 2)α] (E.25)

cos(nα) = 2 cos[(n − 1)α) cos α − cos((n − 2)α] (E.26)

tan(nα) = tan[(n − 1)α] + tan α

1 − tan((n − 1)α) tan α
(E.27)

Half angle:

cos
(α

2

)
= ±

√
1 + cos α

2
(E.28)

sin
(α

2

)
= ±

√
1 − cos α

2
(E.29)

tan
(α

2

)
= 1 − cos α

sin α
= sin α

1 + cos α
= ±

√
1 − cos α

1 + cos α
(E.30)

sin α = 2 tan(α/2)

1 + tan2(α/2)
(E.31)

cos α = 1 − tan2(α/2)

1 + tan2(α/2)
(E.32)

Powers of functions:

sin2 α = 1
2 [1 − cos(2α)] (E.33)

sin α cos α = 1
2 sin(2α) (E.34)

cos2 α = 1
2 [1 + cos(2α)] (E.35)

sin3 α = 1
4 [3 sin(α) − sin(3α)] (E.36)

sin2 α cos α = 1
4 [cos α − 3 cos(3α)] (E.37)

sin α cos2 α = 1
4 [sin α + sin(3α)] (E.38)

cos3 α = 1
4 [cos(3α) + 3 cos α)] (E.39)
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sin4 α = 1
8 [3 − 4 cos(2α) + cos(4α)] (E.40)

sin3 α cos α = 1
8 [2 sin(2α) − sin(4α)] (E.41)

sin2 α cos2 α = 1
8 [1 − cos(4α)] (E.42)

sin α cos3 α = 1
8 [2 sin(2α) + sin(4α)] (E.43)

cos4 α = 1
8 [3 + 4 cos(2α) + cos(4α)] (E.44)

sin5 α = 1
16 [10 sin α − 5 sin(3α) + sin(5α)] (E.45)

sin4 α cos α = 1
16 [2 cos α − 3 cos(3α) + cos(5α)] (E.46)

sin3 α cos2 α = 1
16 [2 sin α + sin(3α) − sin(5α)] (E.47)

sin2 α cos3 α = 1
16 [2 cos α − 3 cos(3α) − 5 cos(5α)] (E.48)

sin α cos4 α = 1
16 [2 sin α + 3 sin(3α) + sin(5α)] (E.49)

cos5 α = 1
16 [10 cos α + 5 cos(3α) + cos(5α)] (E.50)

tan2 α = 1 − cos(2α)

1 + cos(2α)
(E.51)

Products of sin and cos:

cos α cos β = 1
2 cos(α − β) + 1

2 cos(α + β) (E.52)

sin α sin β = 1
2 cos(α − β) − 1

2 cos(α + β) (E.53)

sin α cos β = 1
2 sin(α − β) + 1

2 sin(α + β) (E.54)

cos α sin β = 1
2 sin(α + β) − 1

2 sin(α − β) (E.55)

sin(α + β) sin(α − β) = cos2 β − cos2 α = sin2 α − sin2 β (E.56)

cos(α + β) cos(α − β) = cos2 β + sin2 α (E.57)

Sum of functions:

sin α ± sin β = 2 sin
α ± β

2
cos

α ± β

2
(E.58)

cos α + cos β = 2 cos
α + β

2
cos

α − β

2
(E.59)

cos α − cos β = −2 sin
α + β

2
sin

α − β

2
(E.60)

tan α ± tan β = sin(α ± β)

cos α cos β
(E.61)

cot α ± cot β = sin(β ± α)

sin α sin β
(E.62)

sin α + sin β

sin α − sin β
= tan[(α + β)/2]

tan[(α − β)/2]
(E.63)
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sin α + sin β

cos α − cos β
= cot

−α + β

2
(E.64)

sin α + sin β

cos α + cos β
= tan

α + β

2
(E.65)

sin α − sin β

cos α + cos β
= tan

α − β

2
(E.66)

Trigonometric relations:

sin2 α − sin2 β = sin(α + β) sin(α − β) (E.67)

cos2 α − cos2 β = − sin(α + β) sin(α − β) (E.68)

sin α =
√

1 − cos2 α = tan α√
1 + tan2 α

= 1

csc α
=

√
sec2 α − 1

sec α
= 1√

1 + cot2 α
(E.69)

cos α =
√

1 − sin2 α = 1√
1 + tan2 α

= 1

sec α
=

√
csc2 α − 1

csc α
= cot α√

1 + cot2 α
(E.70)

tan α = sin α√
1 − sin2 α

=
√

1 − cos2 α

cos α

= 1√
csc2 α − 1

=
√

sec2 α − 1 = 1

cot α
(E.71)
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2R planar manipulator
dynamics, 1207, 1258
equations of motion, 1209
forward acceleration, 873
general dynamics, 1258
ideal, 1207
inverse acceleration, 876
inverse kinematics, 664
inverse velocity, 778, 780
Jacobian matrix, 761, 763
kinetic energy, 1208
Lagrangian, 1208
mass moments, 1051
Newton–Euler dynamics, 1168
potential energy, 1208
recursive dynamics, 1172

4-Bar linkages
dynamics, 1163
spatial, 560, 602

A
Abel, Niels Henrik, 149
Acatastatic constraint, 966
Acceleration

angular, 789, 796, 809, 824
applied, 851
bias vector, 875
body point, 725, 824
centripetal, 726, 824, 832
Coriolis, 812, 832, 859
definition, 51
double mixed, 861
energy, 1009, 1011
forward kinematics, 872, 873
gravitational, 1254
inverse kinematics, 874
kinematics, 788
local, 832
matrix, 788, 864, 865
mixed, 816, 817

mixed Coriolis, 859
mixed double, 823, 859
multibody, 823
particle, 830
Razi, 860, 861, 886
tangential, 726, 812, 824, 832, 859
tidal, 190
transformation, 792, 818

Active transformation, 409
Actuator

force and torque, 1159, 1177
torque equation, 1169

Air resistance, 163
Angle

attitude, 829
cruise, 829
Euler, 379
heading, 829
nutation, 379
precession, 379
sideslip, 829
spin, 379
zenith, 509

Angular acceleration, 788, 789, 805, 823,
824

decomposition, 795
Euler parameters, 796, 809
matrix, 788, 808
natural frame, 809
quaternion, 809
relative, 792, 799
Rodriguez formula, 799
rotational transformation, 788, 791
vector, 788

Angular jerk, 808
Cartesian, 880
matrix, 808

Angular velocity, 385, 387, 388, 432, 695,
697, 699–702, 706, 789, 794

alternative definition, 715

1305
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Angular velocity (continued )
combination, 699
coordinate transformation, 709
decomposition, 705
elements of matrix, 714
Euler parameters, 713
instantaneous, 697, 698
instantaneous axis, 699
matrix, 695
principal matrix, 702
quaternion, 711
rotation matrix, 707

Appell function, 1012
Appell, Paul Emile, 1011
Applied force, 933
Arc length, 40
Articulated arm, 666, 671, 769
Assembling kinematics, 615
Atan2 function, 665
Atwood, George, 1001
Atwood machine, 1000
Australia, 109, 885
Automorphism, 457
Axis–angle of rotation, 422, 425, 426,

440, 442, 446, 461

B
bac –cab rule, 22, 29
Basic lemma, 1217
Bernoulli equation, 931
Bernoulli, Johann, 942
Bernoulli, Johann and Jacob, 1221
Bipolar coordinate system, 341
Bipolarcylindrical coordinate system, 341
Bispherical coordinate system, 340, 342
Bong, 53
Book-stacking problem, 193
Boom, 1126
Brachistochrone, 1220
Bragg condition, 296
Broucke, Roger, 30
Bryant angles, 390
Bushehr, 858

C
Camber theory, 658
Canada, 109, 885

Canonical equation, 1003
Cardan

angles, 390
frequencies, 390

Cardioid, 258
Cardioidal coordinate system, 342
Cardioidcylindrical coordinate system, 342
Cartesian

angular velocity, 387
coordinate system, 32, 243
end-effector position, 777
end-effector velocity, 778
orthogonality condition, 32
unit vectors, 34

Casscylindrical coordinate system, 342
Caster theory, 649
Catastatic constraint, 966
Center point, 903
Central force, 993
Central frame, 1038
Central principle, 1230, 1231, 1239
Centrifugal moment, 1033
Chasles, Michel, 121
Chasles theorem, 517, 526
Christoffel, Elwin Bruno, 328
Christoffel operator, 334
Christoffel symbol, 325, 327, 333, 334,

1203, 1211
first kind, 327
second kind, 327
third kind, 335

Circular integrals, 153
Collision, 177, 181

elastic, 177, 178
inelastic, 181, 182
oblique, 187
plastic, 182
restitution coefficient, 182

Concave surface, 79
Condition

Bragg, 296
orthogonality, 31, 32
reciprocality, 271

Configuration
coordinate, 924
degree of freedom, 923, 930
path, 47
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space, 890
trajectory, 890

Confocalellip coordinate system, 342
Confocalparab coordinate system, 343
Conical coordinate system, 343
Conservation

energy, 1241
Jacobi Integral, 1242
laws, 1240
momentum, 1243

Conservative force, 174
Constant of motion, 977, 1241
Constraint

acatastatic, 966
acceleration, 922
catastatic, 966
constraint-free space, 929
force, 932, 933, 937, 943
frozen, 915
generalized, 975
holonomic, 913
inequality, 962
jerk, 923
just-, 928, 929
least, 999
limit, 962
motion, 999
multiple, 919
nonholonomic, 952
nonintegrable, 952
over-, 928, 929
Pfaffian forms, 966, 967, 1238
plane, 916
rheonomic, 913
rolling, 956–958
scleronomic, 913
slip, 962
total, 952
under-, 928, 929
unicycle, 955

Contravariant
metric, 279
vector components, 278

Control
bang-bang, 1225
directional control system, 594
minimum time, 1225

Convex surface, 79
Coordinate

cyclic, 1243
cylindrical, 506
ignorable, 1243
non-Cartesian, 1201
nonorthogonal, 32
parabolic, 1201
spherical, 744

Coordinate frame, 3, 5
Cartesian, 282
curvilinear, 300, 309

reciprocal base vector, 302
reciprocal unit vector, 302
space scale factor, 302

natural, 54, 55
neshin, 616
nonorthogonal, 24, 274, 282, 284, 285,

300
vector product, 285, 289, 291

oblique, 294, 298, 300
acceleration, 299
velocity, 299

origin, 5
orthogonal, 5, 31
orthogonality condition, 31
principal, 284, 1058

transformation, 284
reciprocal, 278, 284

transformation, 284
rim, 586
takht, 616
tire, 608
vehicle, 608
wheel, 608
wheel–body, 608

Coordinate system, 4, 243
bipolar, 341
bipolarcylindrical, 341
bispherical, 340, 342
cardioidal, 342
cardioidcylindrical, 342
Cartesian, 243
casscylindrical, 342
confocalellip, 342
confocalparab, 343
conical, 343
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Coordinate system (continued )
cylindrical, 250, 253, 257, 258

gradient, 257
orthogonality, 253

ellcylindrical, 343
ellipsoidal, 343
elliptic-hyperbolic cylindrical, 267
hypercylindrical, 343
invcasscylindrical, 344
invellcylindrical, 344
invoblspheroidal, 344
logcoshcylindrical, 344
logcylindrical, 344
maxwellcylindrical, 344
natural, 334
nonorthogonal, 269
oblatespheroidal, 345
oblique, 277
orthogonal, 243, 341
parabolic cylindrical, 261
paraboloidal1, 345
paraboloidal2, 345
paracylindrical, 345
principal, 278
rosecylindrical, 345
sixsphere, 345
spherical, 263, 265, 266, 339

orthogonality, 265
tangentcylindrical, 345
tangentsphere, 345
toroidal, 346

Coriolis
acceleration, 802, 832, 833
force, 833, 836

Coriolis, Gaspard Gustave de, 835
Costate variable, 1225
Coulomb, Charles Augustin de, 938
Covariant

metric, 279
vector components, 278

Crackle, 53
Curl, 93

potential force, 173
Curvature, 70

center, 77
plane curve, 61
principal, 84

radius, 65
surface, 84
vector, 63, 64
vectorial expression, 62

Curvilinear
acceleration, 331
base vector, 301
coordinate frame, 309
coordinate system, 293, 295, 300–302,

309, 320, 1245
reason, 334
vector product, 319
work, 331

differential, 339
geometry, 320
kinematics, 325, 335
natural coordinate, 330, 331
parallelepiped, 323, 326, 329
velocity, 331

Cyclic coordinate, 1243
Cycloid, 247, 586, 1220

curtate, 247, 586
ordinary, 247
prolate, 247, 586

D
D’Alembert, Jean Le Rond, 942
D’Alembert principle, 943

Lagrange’s form, 942
Da Vinci, Leonardo, 938
Darboux, Jean Gaston, 70
Darboux vector, 70
Degree of freedom, 923

configuration, 891, 919, 923, 928, 952,
963

event, 896
generalized, 1250
joint, 555
rigid body, 1034
state, 901, 923, 980
state–time, 909

Del, 86
Denavit–Hartenberg

method, 563, 571
notation, 563
parameters, 563, 750, 754
rule, 563
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transformation, 566–568, 574, 575,
643, 1293–1296, 1298, 1299

Derivative
mixed double, 822, 858–860
mixed second, 819
transformation

mixed, 724, 725
simple, 724

transformation formula, 724, 819
Deviation moment, 1033
Dido problem, 1221
Differential

manifold, 408
Differential geometry, 37

immersed surface, 80
parametric line, 41
quadratic surface, 45
space curve, 38, 40, 41
surface and plane, 43, 44
surface expression, 81
tangent line, 41

Differentiating, 718
B-derivative, 718, 722, 814
G-derivative, 718, 725
second, 726
second derivative, 810
transformation formula, 724

Directional
angle, 572
control system, 594, 595, 629
cosine, 6–8, 18, 38, 55, 57, 58, 81, 92,

398–400, 422, 457, 460, 482, 581
curvature, 85
derivative, 89, 91, 92, 257
line, 5, 120, 126

Displacement
actual, 916, 935, 936
impossible, 916, 935, 936
possible, 916, 935, 936
virtual, 935–937

Distance
topocentric, 508

Divergence, 93
Double factorial, 153
Double pendulum, 232, 926, 1016, 1018
Dubai, 109
Duffing equation, 1136, 1137

Dynamic
coupling, 1211
decoupling, 1211

Dynamics, 114, 1157
2R planar manipulator, 1168, 1172
4 bar linkage, 1163
actuator’s force and torque, 1177
application, 188
backward Newton–Euler, 1170
definition, 130
forward Newton–Euler, 1172
fundamentals, 114
global Newton–Euler, 1157
isolated system, 116
modeling, 189
multibody, 1251
Newton–Euler, 1157
Newtonian, 118
one-link manipulator, 1159
recursive Newton–Euler, 1157, 1170
special solutions, 131

E
Earth

free fall, 840, 846, 848, 849
kinetic energy, 1200
moving vehicle, 801
revolution energy, 1200
rotation effect, 802
rotation energy, 1200
shrinking, 185
spherical, 185

Eddington, Arthur Stanley, 115
e-delta identity, 26, 29
Eigenvalue, 433
Eigenvector, 433
Einstein summation convention, 28,

301
Ellcylindrical coordinate system, 343
Ellipsoid

energy, 1092
momentum, 1092

Ellipsoidal coordinate system, 343
Elliptic function, 148, 149, 1129, 1130,

1132
limiting, 153
period, 153
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Elliptic integral, 148, 1132
arc length, 155
complete first kind, 148
complete second kind, 149
complete third kind, 149
first kind, 148
second kind, 148
third kind, 149

End-effector
acceleration, 872
angular velocity, 776
configuration vector, 872
configuration velocity, 872
force, 1172
link, 563
orientation, 777
position kinematics, 584
position vector, 771
SCARA position, 505
space station manipulator, 580
time-optimal control, 1225
velocity, 757, 766, 778
velocity vector, 757

Energy
classical form equation, 950
Earth kinetic, 1200
first-form equation, 950
kinetic, 165
kinetic rigid body, 1036, 1037, 1077
kinetic rotational, 1073
mechanical, 166, 1200
multibody, 1252
potential, 166, 1203
primitive-form equation, 950
second-form equation, 950

Envelope, 136
Epitrochoid, 247
Equation

Bernoulli, 931
inhomogeneous, 931
linear ODE, 931, 962

Equation of motion, 119, 197
integral form, 119

Equivalent Lagrangian, 1213
Euclidean space, 887, 888
Euler

angles, 379, 382, 384, 462

integrability, 388
body frame equation, 1076, 1095
equation, 126
coordinate frame, 388
equation, 1076, 1093, 1095, 1159,

1171
equation of motion, 1072
frequencies, 385, 387, 706, 805
general equation, 1098
global rotation matrix, 403
inverse matrix, 403
–Lexell-Rodriguez formula, 424
local rotation matrix, 403
parameters, 439, 442, 443, 448, 449,

451, 463, 711, 713
rotation matrix, 382, 403
theorem, 378, 437–439

Euler-Chasles theorem, 438
Eulerian viewpoint, 737
Euler-Lagrange

equation of motion, 1215, 1217
Euler, Leonhard, 126, 463
Event space, 896
Event trajectory, 896

F
Fargo, ND, 885
Ferris wheel, 249
Field, 77

curl, 93
cylindrical, 258
derivative, 89, 94, 95, 98
directional derivative, 91
divergence, 93
gradient, 88
index notation, 99
isosurface, 86, 92
isovalue, 86
Laplacian, 94
scalar, 77, 85, 99
second derivative, 97
spherical, 267
stationary, 77
tensor, 99
timeinvariant, 77
total derivative, 89
vector, 77, 88, 92, 97–99
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Final rotation formula, 435, 436
First integral, 977
First variation, 1216, 1224
Fixed frame, 4
Flash space, 910
Flash–time space, 910
Flicker space, 911
Flicker–time space, 911
Focus point, 903
Forbidden umbrella, 136, 137
Force

action, 1158
actuator, 1177
body, 120
central, 993
conservative, 166, 1203
constraint, 932, 937, 943
contact, 120
Coriolis, 833, 836
derivative, 131
driven, 1158
driving, 1158
effective, 839
external, 120
friction, 937
function, 117
general, 941
generalized, 1192, 1254
gravitational, 994
gravitational vector, 1255
internal, 120
Magnus, 1110
potential, 166, 1203
potential field, 1200
reaction, 1158
resultant, 120
system, 120
total, 120

Formula
axis–angle, 520
derivative transformation, 724, 725,

819, 820, 822, 859, 864
derivative transport, 797
final rotation, 435, 436
Frenet–Serret, 64, 65
geometric transformation, 693
Gibbs, 447

Grübler, 559, 560
inversion, 530
Kutzbach, 560
parallel axes, 1047
relative acceleration, 792, 795, 799
relative angular velocity, 700, 705
Rodriguez, 447, 456, 463, 466,

475, 477, 520, 699, 754,
785, 799

trigonometric, 1300
Forward kinematics, 584
Foucault pendulum, 853, 855
Frame

central, 1102
principal, 1073

Free-body diagram, 156
Freezing process, 915
Frenet

frame, 58
trihedron, 58

Frenet, Jean Frédéric, 65
Frenet–Serret formula, 64
Friction

force, 938
law, 938

Fundamental equation, 941, 942, 950,
996, 997, 1014, 1233, 1240, 1242

first form, 942, 1014
second form, 950
third form, 950

G
Galilean transformation, 890
Galilei, Galileo, 1221
Gauss

equation, 999
function, 999

Gauss dynamics, 999
Gauss, Johann Carl Friedrich, 464, 999
Generalized

applied force, 1013–1015
constraint, 973, 975
coordinate, 923, 926–929, 975, 1189,

1192, 1194, 1205
force, 986, 1002, 1191, 1192, 1194,

1202, 1203, 1206, 1209, 1246,
1252
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Generalized (continued)
inertia force, 1013–1015
kinetic energy, 971
mechanics, 970
momenta, 1248
momentum, 986, 1002, 1004, 1192,

1248, 1268
potential force, 972
space, 928, 929, 974
velocity, 1249
work, 1247

Geodesics problem, 1218
Gibbs

matrix, 447
vector, 447

Gibbs–Appell
dynamics, 1009
equation, 1009, 1011, 1012
function, 1009, 1011

Gibbs, Josiah Willard, 1011
Gorz, 131
Grad, 86
Gradient, 84, 86

definition, 89
operator, 86

Gram determinant, 295
Grassmanian, 537
Gravitation

Newton law, 121
universal constant, 121

Gravity center, 123
Group properties, 408
Grübler formula, 560
Guldin, Paul, 226, 227
Guldin theorem, 226, 227

H
Hamilton

dynamics, 1002
equation, 1002, 1003
function, 1002

Hamiltonian, 1225
dynamics, 1002
equation, 1002
function, 1002
method, 1002
system, 1006

Hamilton principle, 1228, 1230
general form, 1228

Hamilton, William, 464
Harmonic oscillator, 142
Helix, 51, 517
Hertz, Heinrich Rudolf, 954
Hodograph, 47, 49
Homogeneity, 887, 888

position, 889
time, 888

Homogeneous
compound transformation, 500
coordinate, 482, 489
direction, 489
general transformation, 490, 498
inverse transformation, 494, 496, 498,

501
position vector, 483
scale factor, 482
transformation, 482, 487–489, 494, 497

Huygens–Steiner theorem, 1047
Hyperbolic integrals, 153
Hypercylindrical coordinate system, 343
Hypergeometric function, 152, 153
Hypertrochoid, 247
Hypotrochoid, 247

I
Ignorable coordinate, 1243
Impenetrability, 889
Impossible displacement, 936
Impulse, 119, 176, 177
Impulsive point, 893
Ince, Edward Lindsay, 970
Index notation, 26
India, 858
Inequality constraint, 962
Inertial frame, 889
Inhomogeneous equation, 931
Integrability, 388
Integral of motion, 976, 977, 1241
Integrating factor, 960
Interpolant, 14
Interpolation, 14

linear, 14
problem, 14
vector, 14
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Invariant vector, 244
Invcasscylindrical coordinate system, 344
Invellcylindrical coordinate system, 344
Inverse kinematics

Pieper technique, 676
transformation technique, 675

Inverse Lagrangian, 1214
Invoblspheroidal coordinate system, 344
Iran, 109, 858, 885
Isotropy, 887, 888

position, 889
time, 888

J
Jacobi, Carl Gustav Jacob, 149
Jacobi function, 148, 149
Jacobian, 315

analytical, 778
displacement matrix, 757
elements, 776
generating vector, 765, 767
geometrical, 778
link, 1252
matrix, 757, 758, 763, 767, 769, 773,

774, 778, 781, 872, 873, 877
polar manipulator, 764, 874
rotational matrix, 757

Jeeq, 53
Jerk, 53, 807, 808

angular, 808
body point, 808
definition, 51
global, 807
matrix, 865
rotational transformation, 807
transformation, 866, 867

Jerkmeter, 53
Joint, 555

acceleration vector, 872
active, 555
angle, 565
distance, 565
equivalent spherical, 562
inactive, 555
multiple, 561
parameters, 565
passive, 555

prismatic, 555
revolute, 555
rotary, 555
translatory, 555
universal, 560
variable vector, 757
velocity vector, 757, 767

Jolt, 53
Jounce, 53
Just constraint, 928, 929
Just rigid, 1033

K
Kane

dynamics, 1013
equation, 1013, 1014

Kane equation, 1016
Kennedy theorem, 734
Kinematic

length, 565
space, 910

Kinematics
acceleration, 789
assembling, 615
foot–leg, 513
forward, 584
forward acceleration, 872
forward velocity, 757
inverse, 675
inverse acceleration, 874
inverse velocity, 778
velocity, 754

Kinetic energy, 165
Earth, 1200
parabolic coordinate, 1202
rigid body, 1036, 1037, 1077
rotational body, 1073

Kinetic potential, 984
Kronecker delta, 26, 681, 1042

L
Lagrange

dynamics, 996, 1251
equation, 1217
equation of motion, 1189, 1203, 1215,

1234, 1238, 1239
explicit equation, 1202, 1210
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Lagrange (continued)
mechanics, 1203
multiplier, 933, 1221

Lagrange, Joseph-Louis, 213
Lagrangian, 984, 1203, 1241

dynamics, 1189
equivalent, 1213
form invariant, 1214
fundamental theorem, 1234
generality, 1238
inverse, 1214
viewpoint, 737

Laplacian, 94, 98
Larz, 53
Law

conservation, 176, 1240
cosine, 105
force, 114
gravitational, 121, 122
inertia, 890
inverse square, 994
Kepler’s second, 994
Kepler’s third, 419
motion, 114, 126
motion second, 1101
Newton’s first, 114
Newton’s second, 114
Newton’s third, 114
rotational motion, 1077
sine, 508

Laws of motion, 114
Least constraint, 999
Legendre, Adrien-Marie, 150
Levi-Civita symbol, 26, 27, 448
Levi-Civita, Tullio, 900
Libration, 142
Lie group, 408
Limit constraint, 962
Linear space, 15
Link

angular velocity, 756
class 1 and 2, 1293
class 3 and 4, 1294
class 5 and 6, 1295
class 7 and 8, 1296
class 9 and 10, 1298
class 11 and 12, 1299

classification, 573
compound, 561
end effector, 563
Euler equation, 1171
kinetic energy, 1252
length, 565
Newton–Euler dynamics, 1157
offset, 565
parameters, 565
recursive dynamics, 1170
translational velocity, 756
twist, 565
velocity, 754

Lissajous curves, 144
Lituus, 260
Load, 120
Lobachevsky space, 207
Location vector, 519, 521, 650
Logcoshcylindrical coordinate

system, 344
Logcylindrical coordinate system, 344

M
Manipulator

2R planar, 1207
one-link dynamics, 1159
planar polar, 1257
SCARA, 505

Mass, 115
Mass center, 122, 126, 1039, 1040, 1102
Mass moment, 1033

about a line, 1042
about a plane, 1042
about a point, 1042
characteristic equation, 1062
diagonal elements, 1041
matrix, 1035
parallel-axes theorem, 1044
polar, 1035
principal, 1058
principal directions, 1059
principal frame, 1058
principal invariants, 1062
principal planes, 1065
product, 1035
pseudomatrix, 1037
rigid body, 1072
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rotated-axes theorem, 1044
transformation, 1044

Matrix
orthogonality condition, 399
skew symmetric, 423, 425, 439

Maxwellcylindrical coordinate system, 344
Measure number, 5
Mechanical energy, 166
Mechanics

Lagrangian, 1189
Newtonian, 118

Mechanism
3D slider–crank, 598
4-bar, 560, 1163
inverted slider–crank, 731
slider–crank, 597

Melbourne, 109, 885
Methods of dynamics, 996

Gauss method, 999
Gibbs–Appell method, 1009
Hamilton method, 1002
Kane method, 1013
Lagrange method, 996, 998
Mangerone–Deleanu method, 1018
Nielsen method, 1017, 1018, 1020
Tzénoff method, 1020, 1021

Methods of solution, 200
perturbation methods, 200
series methods, 200

Metric tensor, 279
Moment

action, 1158
applied, 126
driven, 1158
driving, 1158
of a force, 120
reaction, 1158
resultant, 120
total, 120

Moment of inertia, 1033
about a line, 1042
about a plane, 1042
about a point, 1042
characteristic equation, 1062
diagonal elements, 1041
Huygens–Steiner theorem, 1047
parallel-axes theorem, 1044

polar, 1035
principal, 1058
principal axes, 1073
principal invariants, 1062
product, 1035
pseudomatrix, 1037
rigid body, 1072
rotated-axes theorem, 1044

Moment of momentum, 126
Momentum, 125, 176, 177

angular, 126
definition, 115
ellipsoid, 1092
linear, 125
translational, 125

Motion
central force, 993
impossible, 913
possible, 913
spiral, 245

Moving frame, 4, 58
Multibody

2R manipulator, 676, 1168, 1169, 1172
3D slider–crank mechanism, 598
articulated manipulator, 640, 666, 671
assembling, 615, 616, 621
best spherical wrist, 623
closed-loop mechanism, 597
connection, 555
Denavit–Hartenberg rule, 563
directional control system, 594
direct kinematics, 584
dynamics, 1157, 1251, 1254
forward kinematics, 584, 643
four-bar linkage, 1163
gravitational vector, 1255
industrial links, 573
inertia matrix, 1253
inverse kinematics, 662
inverse transformation, 674
kinematics, 555
kinetic energy, 1252, 1253
Lagrange dynamics, 1251
Lagrange equation, 1254
Lagrangian, 1254
order-free rotation, 628
order-free transformation, 635
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Multibody (continued)
potential energy, 1253
recursive dynamics, 1170–1172
rest position, 565
shuttle manipulator, 577, 588
spherical arm, 619
spherical robot, 576, 677
spherical wrist, 616
takht and neshin, 616
tire–wheel–vehicle, 606, 611–614
trebuchet, 581
universal joint, 602
velocity coupling vector, 1255

N
Nabla, 86, 100

identities, 100
Natural coordinate frame, 54, 66, 71

binormal, 57
bivector, 56
curvature, 57
orthogonality, 62
principal normal line, 56

n-body problem, 194, 992
Neshin, 616
Neutron star, 1127
New Delhi, 858
Newton equation, 126

body frame, 1102
definition, 822
global frame, 1101
Lagrange form, 1191
rotating frame, 839

Newton–Euler
backward equations, 1170
equation of motion, 1171
equations of motion, 1157
forward equations, 1171, 1172
global equations, 1157
recursive equations, 1170

Newtonian
dynamics, 922

Newton, Isaac, 126, 992
New York, 885
Nielsen

dynamics, 1017
equation, 1017, 1020

Node point, 903
Nonholonomic Constraint, 952
Nonpotential force, 170

O
Oblatespheroidal coordinate system, 345
Oklahoma City, 109
Optimal control, 1225

Hamiltonian, 1225
Lagrange equation, 1215
linear system, 1225
objective function, 1225
switching point, 1226

Orientable surface, 79
Orlando, 858
Orthogonality condition, 31, 399
Orthogonal mesh, 79
Osculating

plane, 54, 56, 78, 86
sphere, 66

Overconstraint, 928, 929
Overrigid, 1034

P
Paraboloidal1 coordinate system, 345
Paraboloidal2 coordinate system, 345
Paracylindrical coordinate system, 345
Pars, Leopold Alexander, 942
Partial

angular velocity, 1015
derivative, 78, 79, 86, 1245
velocity, 1013, 1014, 1016, 1017

Particle, 889
definition, 115
impenetrability, 115

Passive transformation, 409
Path

admissible, 1215
configuration, 47
cycloid, 247
frame, 58
kinematics, 46
minimizing, 1215, 1216
motion, 98
optimal, 1217, 1224
projectile, 135, 144, 221
shortest, 1218
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spiral, 260
variable, 1215

Pendulum, 145, 149, 921
acceleration, 800
compound, 1271
connected, 1269
constraint, 981
double, 1016, 1018
elastic, 1005, 1012, 1206
first integral, 981
flexible support, 1268
Foucault, 853, 855
heavy, 1272
integral of motion, 988
inverted, 1264
in wind, 1264
moving support, 921, 925, 1266, 1269
oscillating support, 1193
planar, 925, 1156
simple, 145, 152, 800, 1192
sliding, 1193
spherical, 229, 803, 804, 933, 988, 1204
turning, 1181, 1267, 1275
variable mass, 1271
velocity, 800

Permutation symbol, 26, 27, 448
Perpendicular plane, 54
Persia, 584, 860
Persian, 616
Persian Gulf, 109, 858, 885
Pfaffian forms, 966, 967, 1238
Pfaff, Johann Friedrich, 969
Pfaff problem, 970
Phase

plane, 901, 902, 906, 1006, 1227
Hamilton, 1006, 1007
modified, 1006, 1007

portrait, 901, 903, 905, 1121
velocity

modified, 1007
Physical

force, 933
quantity

scalaric, 12
vectorial, 10

Pieper technique, 676
Planar curve, 65

Plücker
angle, 541
classification coordinate, 538
distance, 541
line coordinate, 534–537, 541,

544–546, 648
moment, 540
ray coordinate, 535, 537
reciprocal product, 541
screw, 545
virtual product, 541

Poinsot, Louis, 121
Point

at infinity, 489, 490
singular, 902

Point mass, 889
Pole, 493
Pop, 53
Position vector, 5
Potential

energy, 166
force, 166, 1203

Principal
angular acceleration, 794, 795
angular velocity, 702, 794
axes, 461, 486, 1065, 1073, 1133, 1138
base vector, 327
base vectors, 301, 1245
body frame, 990
central screw, 526, 532, 533
components, 283
coordinate frame, 278, 1060, 1073
coordinates, 310, 311
curvature, 84
derivative, 327, 334
differential rotation, 752
direction, 85
frame, 278, 279, 287, 304, 309
invariants, 1062
mass moment, 1058–1060, 1062, 1063,

1065, 1139
metric, 326
nonorthogonal frame, 284
normal line, 56
plane, 243
planes, 1065
radius of gyration, 1044
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Principal (continued)
rotation matrix, 423, 455, 707, 1061
unit vectors, 243, 271, 278, 282, 298,

299, 301, 304, 1245
Principle

angular impulse, 177
angular impulse and moment of

momentum, 177
central, 1230, 1231, 1239
conservation of energy, 165, 166, 985,

1242
conservation of moment of momentum,

177
conservation of momentum, 176
D’Alembert, 942, 943, 1014
decoupling, 663
determinacy, 130
Galileo relativity, 889
Gauss, 197
Hamilton, 1228, 1229, 1231, 1232
impulse and momentum, 176, 183
least constraint, 999
minimum constraint, 197
Newton–Laplace, 130
Pontryagin, 1225
projection, 289
relative velocity, 742
superposition, 118
variational, 1228, 1230
virtual work, 937, 942, 945
work and energy, 165

Problem
antiprojectile, 220
book-stacking, 193
brachistochrone, 1220
bug, 51
central force, 993
central-force motion, 1250
collision, 898
composition, 465
decomposition, 465
Dido, 1221
dynamic, 116
foot–leg kinematic, 513
forward acceleration, 872
forward kinematics, 584
forward velocity, 758

free fall, 847
geodesic, 1218
interpolation, 14
inverse acceleration, 875
inverse kinematics, 662
inverse Lagrangian, 1214
inverse velocity, 778
minimization, 1217
minimum time, 1225
n-body, 30, 194, 992
open, 367, 379
Pfaff, 970
projectile, 134
regularization, 898
resolved rates, 778
rigid body, 1112
rotation, 460
shortest path, 1218
three-body, 29, 213–216, 219
time-optimal, 1225
two-body, 194, 210
vector interpolation, 14
walking, 513

Projectile, 134–141, 156
antiprojectile gun, 220
height, 157
height time, 157
in air, 156, 160
limit velocity, 159
path, 158
range, 157
range time, 157
umberella, 137
variable gravitational acceleration, 198

Q
Quaternions, 449, 463

addition, 450
composition rotation, 454
flag form, 450
inverse rotation, 453
multiplication, 450
rotation, 451

R
Radius of gyration, 1043

principal, 1044
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Razi acceleration, 860
Razi, Zakariya, 860
Reciprocal

base vectors, 272, 273, 275, 283, 301,
340

components, 281, 283
coordinate frame, 278, 282
coordinates, 310, 311
derivative, 334
frame, 284
geometric interpretation, 277
metric, 335
principal vector, 276
reciprocality condition, 271
unit vectors, 269, 298, 299, 301
vectors, 269, 271, 272

scalar triple product, 271, 276
Rectifying plane, 54, 57, 75
Rectilinear motion, 906

escape, 908
libration, 907
limitation, 907
lost, 908
rest, 906

Reference frame, 4
Rest

point, 893
position, 902

Right-handed convention, 3
Right-hand Rule, 4
Rigid body

acceleration, 823
angular momentum, 1074, 1078
angular velocity, 432
asymmetric, 1112, 1128
axially symmetric, 1116
axisymmetric, 1112, 1116
body frame, 1033
centrosymmetric, 1115
classical problems, 1112
definition, 1033, 1034
Duffing equation, 1136
equimomental, 1112
Euler equation, 1076, 1093
general motion, 1141
just-rigid, 1033
kinematics, 477

kinetic energy, 1036, 1037, 1077
mass moment, 1072
moment of inertia, 1072
motion, 477
motion classification, 527
motion composition, 481
motion condition, 430
motion theorem, 1035
overrigid, 1034
Poinsot interpretation, 1135
principal rotation matrix, 1061
rolling disc, 1143
rotational kinetics, 1072
rotation condition, 430
rotation theorem, 433
spherical, 1039, 1112, 1115
stability, 1138–1141
steady rotation, 1083
torque-free, 1112
translational dynamics, 1101
translational kinetics, 1101
velocity, 727, 730

Robot
articulated, 666, 769, 774
recursive dynamics, 1170
rest position, 572
SCARA, 505
spherical, 677, 767

Rocket motion, 183
final velocity, 184
multistage, 185

Rodriguez
rotation formula, 424, 427, 441,

445–447, 456, 461, 467, 477, 520,
532, 699, 754

vector, 446, 447, 466
Rodriguez, Benjamin, 463
Roll angle, 1107
Roller coaster, 42, 72, 77
Rolling constraint, 956–958
Roll–pitch–yaw

frequency, 394
global angles, 455
global rotation matrix, 455

Rosecylindrical coordinate
system, 345
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Rotation, 425
acceleration transformation, 788, 791
axis–angle, 422, 425, 426, 440, 442,

446, 461
composition, 465
decomposition, 465
eigenvalue, 433
eigenvector, 433
exponential form, 445
general, 397
global axes, 357
infinitesimal, 444
kinematics, 357
local axes, 373, 376, 378
local versus global, 395
matrix, 460
order free, 628
pole, 734
quaternion, 451
reverse, 425
Stanley method, 449
successive global axes, 360,

363–365
successive local axes, 376, 377
X -matrix, 358
x -matrix, 360
Y -matrix, 358
y-matrix, 373
Z -matrix, 357
z -matrix, 373

Rotational jerk, 807
Rotator, 425, 457
Routhian, 1008
Rule

bac –cab, 22, 29
chain, 746
Denavit–Hartenberg, 563, 566–568
homogeneous transformation, 610,

741
Napier, 369
parallel-axes, 1044
relative angular acceleration, 792
relative angular velocity, 792, 860
right-hand, 4, 565
rotated-axes, 1044

Rush space, 910
Rush–time space, 910

S
Saddle point, 903
Scalar, 12

equal, 12
equivalent, 12
triple product, 23, 33

Scale, 5
SCARA robot, 505
Screw, 51, 121, 517, 522, 527

axis, 517
central, 518, 519, 521, 523, 533, 546,

566, 643, 648
combination, 531, 532
coordinate, 517
decomposition, 533
exponential, 532
forward kinematics, 643
instantaneous, 546
intersection, 648
inverse, 529, 530, 532
left-handed, 517
location vector, 519
motion, 565, 738
parameters, 518, 525
pitch, 517
Plücker coordinate, 545
principal, 526, 532, 533
reverse central, 519
right-handed, 3, 517
special case, 525
transformation, 520, 523
twist, 517

Second derivative, 726
Second variation, 1216, 1224
Series solution, 29, 210, 213
Serret, Joseph Alfred, 65
Shake, 131
Sharang, 131
Shiraz, 885
Sina, Abu Ali, 584
Sixsphere coordinate system, 345
Slip constraint, 962
Snap, 53
Snatch, 131
Sooz, 53
Space

configuration, 890
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constraint-free, 929
curve, 38, 40, 41, 48
describing, 890
Euclidean, 888
event, 896
flash, 910
flash–time, 910
flicker, 911
flicker–time, 911
kinematic, 910
Lobachevsky, 207
rush, 910
rush–time, 910
spark, 911
sparkle, 911
sparkle–time, 911
spark–time, 911
state, 900
state–time, 908

Sparkle space, 911
Sparkle–time space, 911
Spark space, 911
Spark–time space, 911
Spatial integral, 165
Special solutions, 131

force of position, 141
force of time, 132
Force of velocity, 156

Spherical
arm, 619
coordinate system, 263
Earth, 185
field, 267
kinematics, 265
pendulum, 803, 804
rigid body, 1039
wrist, 616

Spinor, 425, 457
Spiral

Archimedes, 260
Fermat, 260
hyperbolic, 260
logarithmic, 260
motion, 245, 260

Stable
focus point, 903
node point, 904

Stanley method, 449
Stark effect, 1201
State

space, 900
trajectory, 900

State–time
space, 908
trajectory, 908, 909

Steering axis
caster angle, 650
caster plane, 650
forward location, 651
lateral location, 651
lean angle, 650
lean plane, 650

Sundman, Karl Frithiof, 900
Suspension

caster angle, 650
caster plane, 650
forward location, 651
lateral location, 651
lean angle, 650
lean plane, 650
location vector, 651
steering axis, 650

Symbols, xv
System of particles

angular momentum, 128
kinetic energy, 174
motion equation, 127
rotational motion, 129
work, 175

Szebehely, Victor, 419, 900

T
Takht, 616
Tangentcylindrical coordinate system, 345
Tangent plane, 78, 79, 86
Tangentsphere coordinate system, 345
Tavaan, 131
Tehran, 109
Temporal integral, 165, 176
Tetrad, 4
Theorem

Chasles, 121, 517, 526
Euler, 378, 435, 437, 438, 461, 1142
Euler–Chasles, 438
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Theorem (continued)
fundamental Lagrangian, 1234
Guldin, 226, 227
Huygens–Steiner, 1047
Kennedy, 734
order-free rotations, 628
order-free transformations, 635
parallel-axes, 1044, 1047
Poinsot, 121
rigid-body motion, 1035
rigid-body rotation, 433
rotated-axes, 1044

Three-body problem, 29, 213
series solution, 29–31

Tides, 189
neap, 193
ocean, 189
spring, 193

Time derivative, 718
Time history, 896
Tire

coordinate frame, 608, 609
Tireprint, 607
Top, 384, 990, 1151

dynamics, 1150
Topocentric distance, 508
Toroidal coordinate system, 346
Toronto, 109, 885
Torque, 120
Torsion, 65, 70
Trajectory

actual, 916
configuration, 890
event, 896
possible, 916
state, 900
state–time, 908

Transformation
active and passive, 409
general, 397
homogeneous, 482
order free, 635
tire to vehicle frame, 613
tire to wheel–body frame, 611, 612
tire to wheel frame, 610, 611
wheel to tire frame, 609, 611
wheel to wheel–body frame, 612

wheel–body to vehicle frame, 614
Transformation matrix

derivative, 749
differential, 752, 753
elements, 400
velocity, 739

Trebuchet, 581
Triad, 3

coordinate frame, 3
natural, 55
negative, 3
nonorthogonal, 269, 270
opposite, 3
orthogonal, 3
positive, 3
right-handed, 3
standard, 3

Trigonometric equation, 668
Trochoid, 247, 586
Tug, 131
Two-body problem, 210
Tzénoff

dynamics, 1021
equation, 1020, 1021

U
Underconstraint, 928, 929
Unicycle constraint, 955
Unit system, xv
Unit vector, 5, 34–36

Cartesian frames, 34
definition, 36
spherical frames, 34

Universal joint, 560, 602, 604, 605
history, 604
speed ratio, 605

Unstable
focus point, 903
node point, 904

USA, 109

V
Variable

scalar, 46
Variation, 940
Vecface, 10
Vecfree, 10
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Veclane, 10
Vecline, 10
Vecpoface, 10
Vecpoint, 10
Vecpolane, 10
Vecpoline, 10
Vecporee, 11
Vector

absolute value, 5
addition, 12, 15
algebra, 12
angular acceleration, 788
anticommutative property, 17
associative property, 12, 15
axis, 10
bounded, 10
Cartesian, 245
characteristics, 10
commutative property, 12, 15, 17
components, 5
contravariant components, 278
covariant components, 278
decomposed expression, 6, 9
decomposition, 6, 9
definition, 10
derivative, 46, 48
direction, 10
end point, 10
equation, 20
free, 10
function, 46, 51
Gibbs, 447
gravitational force, 1255
inner product, 17, 285, 289, 291
interpolation, 14
invariant, 244
inverse-element property, 16
length, 5, 10
length-invariant property, 402
line, 10
line of action, 10
modulus, 5
multiplication, 17
natural expression, 6, 9
normal, 79
normal base, 312
null-element property, 16

outer product, 17, 285, 289, 291
plane, 10
point, 10
point-free, 11
point-line, 10
point-plane, 10
position, 5
principal base, 301
principal unit, 278, 301
quaternion product, 17
reciprocal, 269–271, 273, 275–277
reciprocal base, 278
reciprocality condition, 271
requirements, 10
reverse, 271
Rodriguez, 447
rotation, 432
scalar triple product, 23, 294
sliding, 10
space, 24
start point, 10
surface, 10
tangent base, 312
triple product, 24
types, 10
unit, 34
variable, 8
variable direction, 8
variable length, 8
vecface, 10
vecfree, 10
vecline, 10
vecpoface, 10
vecpoint, 10
vecpolane, 10
vecpoline, 10
vecporee, 11
velocity coupling, 1255

Vehicle dynamics
Lagrange method, 1091
Newton–Euler equations, 1109
pitch angle, 1107
pitch rate, 1107
roll angle, 1107
roll dynamics, 1107
roll equation, 1109
roll rate, 1107
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Vehicle dynamics (continued)
yaw angle, 1107
yaw rate, 1107

Velocity
coefficient matrix, 751
definition, 51
end effector, 757
hodograph, 49
inverse transformation, 739
limit, 159
matrix, 865
operator matrix, 749
prismatic transformation matrix,

751
revolute transformation matrix,

751
transformation matrix, 739, 743,

749
Virtual

displacement, 936, 937
product, 541
velocity, 938
work, 935, 937, 941

W
Wheel

camber angle, 608
coordinate frame, 608, 609
degrees of freedom, 608
spin, 608

Wheel–body
coordinate frame, 608, 609
kinematics, 606

Work, 165
actual, 935
virtual, 935, 1192

Wrench, 121
Wrist

spherical, 576, 773
transformation matrix, 618

Y
Yank, 131

Z
Zero-velocity point, 733
Zoor, 131
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