Statistics
for
Data Science and Data Analysis

As it tells the health of Data.



Why Statistics is Important?

Statistics enables us to make informed decisions and intelligent

judgments despite the presence of uncertainty and variation.

The discipline offers powerful methods for gaining insights across a
wide range of fields, such as business, medicine, agriculture, socia

sciences, and engineering.

Various aspects to study it in context of DATA are:

»Data Interpretation:

v’ Statistics helps analysts make sense of complex data by providing
methods to summarize, analyze, and visualize patterns.

v Without statistical methods, raw data would be difficult to interpre
meaningfully.



Decision-Making:

Businesses rely on data-driven decisions to optimize processes, r
risks, and improve outcomes.

Statistical techniques like hypothesis testing, confidence interval
regression analysis enable decision-makers to make informed, evi
based decisions rather than relying on intuition.

Predictive Analytics:

Statistical models, such as linear regression, time series analysis, an
machine learning algorithms, are essential for predicting future tren
and behaviors.

These forecasts are critical for planning and resource allocation.

Data Quality and Reliability:

Statistics provides tools to assess the quality of data, identify outliers,
and ensure the reliability of findings.

It helps in determining whether the results are statistically signi
just due to random chance.



» Optimization and Performance Improvement:

v'Statistical techniques like A/B testing, experimental design, an
optimization models help businesses find the best strategies,
products, or marketing tactics.

v'This leads to improved performance, cost reductions, and better
customer satisfaction.

» Risk Management:

v'Statistical tools are used to measure and quantify risks in various
business scenarios, enabling businesses to plan for uncertainties and
mitigate potential losses.

» Sampling and Inference:

v'In situations where it is impractical to collect data from the entire
population, statistics provides techniques like sampling and
estimation to make accurate inferences from smaller datasets,
helping businesses draw conclusions about larger populations.



» Continuous Improvement:

v' Statistics is integral in tracking business performance over time.

v" It allows businesses to monitor key performance indicators (KPIs)
identify trends, and implement continuous improvements based o
data-driven insights.
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Difference between Statistician an
Data Analytics

Stats: Draft the model for the problem and ask for data.
DA: Start with data and find the solution.
Key Points:

Statistician approach: Formulate a problem and then gather data.

vV V Vv VY V¥V

DA approach: Analyze existing data to uncover insights.

» The importance of asking the right questions in DA vs. collecting

the right data in statistics.
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Al : Where Al is system or machine that
THINK as well as ACT like human and
rationally.
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~ML is field of computer science/Al that uses statistics

techniques to give computer/machine/system the ability to
“learn” with data without being explicitly programmed.
Arthur Samuel, 1959.

» A computer program is said to learn from experience E
with respect to some task T and some performance
measure P, if its performance on T, as measured by P,

improves with experience E. (Tom Mitchell, 1997).

~Where experience is same as Training of model.



Roles and Responsibilities

» Data Analysts focus on historical data analysis, reporting,
and providing insights to improve decision-making.

» Business Analysts focus on identifying business needs,
streamlining processes, and aligning business and
technical teams.

> Data Scientists apply advanced algorithms and machine
learning techniques to predict future trends and uncover

hidden patterns in data.



Data Analyst

» Key Focus: Data Analysts work on understanding patterns &
trends from data to help organizations make informed decisions

> Responsibilities:

» Collect, clean, and organize data for analysis.

» Use statistical tools (like Excel, SQL, Python, or R) to analyze
datasets.

~ Generate reports and dashboards to provide insights into data tre
(using tools like Tableau, Power BI).

» Provide actionable insights based on historical data.

» Collaborate with other teams to understand their data needs ar
provide necessary insights.



Business Analyst

» Key Focus: Business Analysts focus on understanding business problems a
identifying solutions by analyzing business processes, requirements, and data.

> Responsibilities:

» Gather business requirements by working closely with stakeholders (management,
clients, etc.).

» Analyze business processes to identify areas of improvement.

» Conduct cost-benefit analysis and recommend solutions.

~ Liaise between IT, business teams, and management to align project objectives.
» Translate business needs into technical requirements for developers.

Prepare reports and presentations to communicate findings to stakeholders.



Data Scientist

> Key Focus: Data Scientists use advanced algorithms, machine learning mo

statistical methods to make predictions and uncover patterns in large, complex d
» Responsibilities:
» Perform exploratory data analysis (EDA) to understand complex datasets.
~ Develop predictive models using machine learning techniques.
» Build algorithms for pattern detection, classification, and prediction.
»  Work with unstructured data (text, images, video, etc.).
» Communicate insights and predictions to business leaders for strategic decision-makin
Deploy models into production environments and monitor performance.

Collaborate with data engineers and software developers to implement and sc



Scenario: Decline in Sales in the Last Quart ‘

» Data Analyst Reaction:

>

» Qutcome:

>

Focus: Exploring historical sales data for patterns and insights.
Steps:

Collect Data: The Data Analyst gathers data on sales from the last few quarters, looking
total sales, product categories, and regions.

Clean and Analyze Data: They clean the dataset (removing duplicates, handling missing
values), then perform a trend analysis to see when the drop started and in which regions o
products.

Generate Reports: They generate visual reports (e.g., in Excel or Power Bl) showing sales
performance over time, broken down by product category, region, and customer segments.

The Data Analyst presents a report showing that sales have declined mostly
in the East region for Product A and gives possible reasons like seasonal
variations or customer churn.



Business Analyst Reaction:

» Focus: Understanding the business impact and identifying root causes
the decline.

~ Steps:

~Talk to Stakeholders: The Business Analyst communicates with the sales and
marketing teams to understand any potential non-data-related reasons for the decline (e.g
new competitors, change in product pricing, ineffective promotions).

~Review Business Processes: They analyze business processes such as sales
strategy, pricing models, or marketing campaigns to see if any changes could have
contributed to the drop.

~Conduct a Gap Analysis: They perform a gap analysis to understand the difference
between expected and actual sales, identifying weaknesses in business strategies.

» Outcome:

» The Business Analyst identifies that a recent price increase for Product A might
have reduced demand in the East region, and suggests revising the pricing
strategy or offering promotional discounts.



Data Scientist Reaction:

» Focus: Predicting future sales trends and uncovering complex patter

>

>

Steps:

Data Gathering: The Data Scientist pulls in not only sales data but also externa
such as customer reviews, competitor data, and economic indicators (e.g., inflation,
unemployment).

Exploratory Data Analysis (EDA): They run complex analyses, such as custom
segmentation, and create models to identify which customers are most likely to stop
purchasing (churn analysis).

Develop Predictive Models: The Data Scientist builds a machine learning model
that predicts future sales based on different factors, such as customer sentiment, product
pricing, and market trends.

Outcome:

The Data Scientist identifies that the decline in sales is likely to continue for
Product A unless changes are made. Their model shows that competitor di
and customer dissatisfaction (via review sentiment analysis) are key re
the drop.



Let us start with some elementary
information:

1. Population

2. Sample

3. Variable and its type
4. Frequency distribution

5. Relative Frequency



Population vs. Sample

» Population: Complete set of individuals, objects, or
observations of interest.

» Sample: Subset of the population used to make inferences
about the population.

Population



Random Variable:

> In statistics, random variables are fundamental components that
represent the characteristics or properties of the data being
studied.

> By definition for a random variable characteristics or quantity

changes with time and space and are not predictable. Eg: Blood

Random
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Numerical Variables: Quantitative

» Continuous Variables:

~ They can take any numeric value within a range.
~ Examples:
~ Weight of products (e.g., 1.5 kg, 2.34 kg),

» temperature readings.

» Discrete Variables : Countable values, often integers.

» Example:

» Number of employees in a company,

» Number of products sold.




Categorical Variables: Qualitative

»Data is divided into categories or groups.

~ For example, gender can be categorized as Male or Female, and
favorite colors are chosen from Red, Blue, Green, etc.

> Nominal: These are categories without a natural order. Eg:

» Types of Color: There's no ranking between colors (Red,
Blue, Green),

»Type of Gender: There's no ranking between Male or
Female.

» Ordinal: These categories have an order. Eg:

» Education Level: (High School < Bachelor < Master)

» Customer Feedback (Poor < Average < Good < Excellent)



Example:

Ftie

| Age

Salary

Height

Product Sold
Number of Books
Gender

Blood Type
Education Level
Satisfaction Score

Car Color

‘ Type

Numerical
Numerical
Numerical
Numerical
Numerical
Categorical
Categorical
Categorical
Categorical

Categorical

‘_ Subtype ‘ Description

Continuous
Continuous
Continuous
Discrete
Discrete
Nominal
Nominal
Ordinal
Ordinal

Nominal

Measured values (e.g., years).

Measured values (e.g., dollars).

Measured values (e.g., centimeters).
Countable values (e.g., number of products).
Countable values (e.g., number of books).
No inherent order (e.g., male, female).

No inherent order (e.g.,, A, B, AB, O).

Ordered categories (e.g., high school, college, graduate).
Ordered categories (e.g.,, 1 to 5 ratings).

No inherent order (e.g., red, blue, green).



Frequency Distribution

»>When the data set is categorical, a common way to present t

data is in the form of a table, called a frequency distribution.

»A frequency distribution for categorical data is a table that
displays the possible categories along with the associated

frequencies and/or relative frequencies.

»The frequency for a particular category is the number of times

the category appears in the data set.

The relative frequency for a particular category is the fraction

or proportion of the observations resulting in the category.

frequency
number of observations in the data set

relative frequency =



" Helmet Use Category Frequency Calculation for Relative Frequency Relative Frequency

Frequency

Frequency Distribution of Helmet u

No helmet 731 T = 0.430 043
Noncompliant helmet 153 117,?5030 = 0.090 0.09
Compliant helmet 816 %‘D = (.480 0.48
Total | 1700 1.00
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No helmet
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Let us begin with Descriptive
Statistics....




Descriptive Statistics

» Descriptive statistics is a branch of statistics
that deals with summarizing and describing the

features of a dataset.

» Its primary purpose is to provide a concise and
meaningful summary of the main characteristics

of the data.



> In the context of descriptive statistics, the terms univariate,
bivariate, and multivariate refer to the number of variables
being analyzed and the complexity of the relationships being
examined within a dataset.

» Understanding these concepts is fundamental for effectively

summarizing and interpreting data.

Practical Applications

* Univariate: Useful in initial data exploration to get a sense of each variable’'s behavior before

delving into more complex analyses.

* Bivariate: Essential for hypothesis testing where the relationship between two variables is of

interest, such as determining if there's a correlation between smoking and lung capacity.

e Multivariate: Critical in fields like machine learning, finance, and social sciences where multiple

factors simultaneously affect outcomes, enabling more accurate predictions and deeper insights.



1. Univariate Analysis

Definition:
Univariate analysis involves the examination and summary of a single variable. Its primary focus is on
understanding the distribution, central tendency, dispersion, and shape of the data for that one

variable.

Key Characteristics:

» Simplicity: Focuses solely on one variable without considering relationships with other variables.

» Descriptive Measures: Includes mean, median, mode, variance, standard deviation, range,

skewness, kurtosis, etc.

» Visualization Tools: Histograms, bar charts, box plots, and pie charts.

Examples:
e C(Calculating the average age of a group of people.
e Determining the distribution of test scores in a class.

» Assessing the frequency of different categories in a survey response.

Purpose:
e To summarize and describe the main features of the data.

¢ To identify patterns, anomalies, or outliers within a single variable.



2. Bivariate Analysis

Definition:
Bivariate analysis examines the relationship between two variables. It explores whether and how

one variable is associated with another, determining the type and strength of any association.

Key Characteristics:

Examples:

Purpose:

Relationship Focus: Investigates correlations, dependencies, or associations between two

variables.

Descriptive Measures: Correlation coefficients (e.g., Pearson, Spearman), cross-tabulations,

contingency tables.

Visualization Tools: Scatter plots, line graphs, side-by-side box plots, and bar charts for two

variables.

Analyzing the relationship between hours studied and exam scores.
Examining the association between income level and expenditure.

Investigating the correlation between height and weight.

To identify and quantify relationships between two variables.

To understand how one variable may influence or predict another.



3. Multivariate Analysis

Definition:
Multivariate analysis involves the examination of three or more variables simultaneously. It explores
complex relationships and interactions among multiple variables, providing a more comprehensive

understanding of the data.
Key Characteristics:

» Complex Relationships: Investigates how multiple variables interact and influence each other.

e Descriptive Measures: Multiple correlation coefficients, multiple regression, factor analysis,

principal component analysis (PCA), cluster analysis.

» Visualization Tools: Pair plots, heatmaps, 3D scatter plots, parallel coordinate plots.

Examples:
e Studying the impact of education, experience, and age on salary.
e Analyzing how various demographic factors influence consumer behavior.

e Investigating the relationships among multiple health indicators (e.g., blood pressure,

cholesterol, BMI).
Purpose:

* To understand the interplay between multiple variables.
* To identify patterns, trends, and underlying structures in complex datasets.

¢ To build predictive models considering several predictors.



»>In Descriptive statistics, we will use following
approach.

»For Univariate analysis:

> We will talk about that number which represe
the entire data set or we called it as Measures o
Central Tendency this includes:
»Mean,

»Median,

»Mode



»0nce we get central value now we will try to

understand the spread of data:
»Different aspects of Spread are:
»Range

»Quartiles

»Standard deviation

»Later we will talk about nature of distribution, using

concept of skewness and kurtosis.
»For Bivariate analysis we will talk about

covariance and coefficient of Correlation.



Measures of Central Tendency

> Definition: Indicates the central value in a dataset.

» They help to summarize the distribution of data and prov
insights into the central or average value around which th

data points tend to cluster.




Mean:

The mean is the average value of a dataset.

It is calculated by summing all values in the dataset and the

dividing by the number of values.
Average age of a man in a group
Age of average person in a group
Formula:

Mean = Sum of all values/Number of values

Zn sumof all values
L Number of values

The mean is sensitive to extreme values or outliers in the datas



Code in R

# sample data
data <- data.frame(Age = c(23, 25, 25, 30, 23, 22, 25, 30))

# Mean
mean_value <- mean(data%Age)
cat("Mean:", mean_value, "\n")

» cat(): This function is used to concatenate and print objects.

» It is a simple way to display output on the console without including the

quotes and with more control over formatting.

» \n: This is the newline character, which tells R to move the cursor to the next
line.
It is commonly used within cat() to separate different outputs or to create
cleaner formatting in the printed text.



Median:

> The median is the middle value Mediancdd

of a dataset when it s

arranged in ascending or

descending order.

> It divides the dataset into two

equal halves.

> If the dataset has an odd

number of values, the median

is the middle value.

Mathematically, if n is odd, the median M is given by:

M = value at position




o value at 5 position + value at (E + 1) position
Median: »=-—= e
» If the dataset has an even P ——

number of values, the median is

the average of the two middle

values.

» The median is less affected by

outliers compared to the

mean and is a robust measure

of central tendency.

ge of average person in a group




Code in R

# sample data
data <- data.frame(lge = (23, 25, 25, 30, 23, 22, 25, 300))

# Median
median_value <- median(datafAge)
cat("Median:", median_value, "\n")



Practical Examples

1. Sales Revenue Analysis

* Mean: Suppose a company tracks its monthly sales revenue over the past year. The mean sales

revenue will give an idea of the average sales each month.

» Example: Monthly sales for a year: 100k, 120k, 130k, 200k, 150k, 100k, 110k, 250k, 300k, 90k,
80k, 70k.

* Mean = Sum of all monthly sales / 12 = 150k.

* Median: The median is the middle value when sales are arranged in order, which can give a

better sense of typical sales when there are outliers (e.q., very high or very low sales months).

» Sorted sales data: 70k, 80k, 90k, 100k, 100k, 110k, 120k, 130k, 150k, 200k, 250k, 300k.

* Median = (110k + 120k) / 2 = 115k.



2. Employee Salary Distribution

* Mean: You can analyze the salary distribution across employees in a company. The mean will

provide the average salary.
e Example: Salaries: $30k, $35k, $40k, $45k, $100k.
e Mean = (30 + 35+ 40 + 45 + 100) / 5 = $50k.

¢ Median: The median salary would provide a better central value if there are highly paid

executives that skew the mean.

e Sorted salaries:; $30k, $35k, $40k, $45k, $100k.

e Median = $40k (the middle value).

3. Customer Purchase Frequency

» Mean: A retail store tracks the number of purchases per customer in a month. The mean will

show the average number of purchases.
» Example: 1,2, 3, 4, 20 (with one outlier).
e Mean=(1+2+3+4+20)/5 =6 purchases.

* Median: The median, which is 3, might be a more representative figure for most customers,

since the outlier (20 purchases) skews the mean.



Mode:

>

The mode is the value(s) that appear most

frequently in a dataset.

For Unimodal Data (Single Mode): If there is
only one value that appears more frequently
than others, that value is the mode.

For Multimodal Data (Multiple Modes): If
two or more values appear with the same
highest frequency, each of these values is

considered a mode.

For No Mode: If all values appear with the
same frequency (usually 1 for each), the

dataset has no mode.

The mode is useful for categorical or
discrete data but can also be calculated for

continuous data.

Mode

= NINW A|D




Code in R

# Install and load the modeest package (if not already installed)
install.packages ("modeest")
Tibrary(modeest)

# sample data
data «- data.frame{age = c(23; 23; 25; 30, 23, 22, 25; 30))

# Mode using mfv()
mode_value <- mfv(datafAge)
cat("Mode:", mode_value, "\n")

* mfv() : Stands for "most frequent value" and is a part of the modeest package, which provides

functions to estimate the mode.



Practical Examples

1. Product Sales in a Retail Store

* Mode: In retail, mode is useful for understanding which product is sold most frequently. If
you're analyzing sales data for a particular product, the mode identifies the product quantity

that occurs most often.

» Example: Daily sales of a specific product in units: 10, 12, 15, 15, 18, 15, 20.
* Mode = 15 (since 15 units were sold more often than any other amount).

» Business Insight: Knowing the mode helps the store stock up on the most commonly sold

quantity, ensuring availability for typical customer demand.

2. Popular Product Sizes

* Mode: A clothing store wants to know the most commonly purchased size of a particular item

to manage inventory better.
e Example: Sizes purchased: M, M, L, S, M, L, L, M, XL.
* Mode = M (Medium size is the most frequently purchased).

* Business Insight: The mode helps the store focus on stocking the most popular size,

reducing out-of-stock issues for frequently purchased items.



3. Customer Payment Methods

» Mode: A business tracks the payment methods used by customers (cash, card, online payments).

The mode will help the company understand the most preferred payment method.

* Example: Payment methods over a week: Cash, Card, Card, Online, Cash, Card, Card, Cash,

Online.
* Mode = Card (as it appears most frequently).

* Business Insight: Knowing the mode allows the business to optimize processes around the
most common payment method and perhaps offer incentives for less-used methods to

balance preferences.

4. Survey on Customer Satisfaction

* Mode: In a survey rating customer satistaction on a scale from 1 to 5 (1 = very dissatisfied, 5 =

very satisfied), the mode represents the most frequent rating.
» Example: Ratings: 4, 5,4, 3,4,5,5,4, 5, 3.
* Mode = 4 (most customers rated their satisfaction as 4).

* Business Insight: Knowing the mode in customer satisfaction helps businesses focus on
maintaining the most frequent level of customer experience and improving the lower

ratings.



Measures of Spread

» Measures of spread (or dispersion) in descriptive statistics

describe how data values are distributed and how they vary

from the central tendency (mean or median).

Measure /—.
of Spread




Range:

> Definition: The difference between the maximum and
minimum values in a dataset.

» Formula: Range=Maximum-Minimum

» Use: Provides a simple measure of total spread.

» However, it is sensitive to outliers.

Example Scenario:

> In a company, if the salaries of employees are $40,000, $45,000, $50,000,
$55,000, and $60,000,

> The range is $60,000 - $40,000 = $20,000.

» This tells you the spread between the lowest and highest salaries.



Variance :

»Definition: Measures the average squared deviation of each d

point from the mean.

>t quantifies the spread of data points around the mean and hoy
much they differ from the average value.

»Variance is influenced by outliers because it squares the

deviations from the mean.

~ It is less popular due its nature as it is less interpretable.



 Formula (Population): 02 = % Zil{:ﬂi — p)?

* Formula (Sample): g% = = Zt 1(:1:t — IE

¢« g’= Population variance

¢ 5% =Sample variance

e N = Number of data points in the population
71 = Number of data points in the sample

e [t = Population mean

e I = Sample mean

e Use: Indicates how data points spread out from the mean.

Variance is useful for statistical calculations but can be less

intuitive because it is in squared units.



Mean to Standard Deviation?

» To understand this let us move step by step.

» After getting the data : first we find the one number which repress
the entire family: “mean”.

» But due variability in data now we are interested in knowing this
variability that move wrt mean.

» S0 we calculate the deviation of each variable wrt mean: (xi- x™ )

» But this may have problem as positive and negative values wrt mean
neutralize each other.

» So we go for squaring of these deviations and named variance. (xi-Xx

» Further to standardize this value with entire data set we are dividing
this, from degree of freedom of my dataset which depends upon numb
of observation (n).

This results in the equation as shown below:

(Population): 0 = + Zi1($t — p)?

(Sample): s° = ﬁ Yo (zi — )°



> So here n or n-1 is different from n used in calculating mean,
from definition point of view.
> Here it refers to degree of freedom and as we are interested in
variability we must take into account this.

1. Adjustment for Sample Estimation:

* When you calculate the variance or standard deviation from a sample,

you are using the sample to estimate the population parameter.

* Since the sample mean is an estimate of the true population mean, it's
not as reliable as the population mean itself. As a result, the sample’s
variability (how spread out the data points are) tends to underestimate

the population’s true variability.

e Dividing by n — 1 (instead of n) corrects for this underestimation. It
ensures that the sample variance is an unbiased estimate of the

population variance.



2. Degrees of Freedom:

® Degrees of freedom represent the number of independent values that
can vary in a dataset. In a sample of size n, the last data point is
determined once the sample mean is calculated, which leaves n — 1

values free to vary.

* Dividing by n — 1 rather than n ensures that you're accounting for the

loss of one degree of freedom used in calculating the mean.

Here's how degrees of freedom are relevant to variability:

* Degrees of Freedom (DOF): When you estimate a population parameter (such
as variance or standard deviation) from a sample, you lose one degree of
freedom because the sample mean (which you calculated) is used in the
formula for variance. The constraint is that the deviations from the mean must

sum to zero, leaving n — 1 values free to vary.



Degrees of Freedom and Sample
Mean

When calculating the sample mean, you are using all the data points to get an
estimate of the central tendency of the data. Once the mean is calculated, the data

points’ deviations from the mean (the differences between each data point and

the mean) must sum to zero, which introduces a constraint on how many data

points are truly "free" to vary.

Example to Understand the Concept:

Let's assume you have a sample of 3 numbers: 1, 2, 3, and you are calculating

their mean.

Step 1: Calculate the Sample Mean

The formula for the sample mean () is:

T, + 9 + x3
3

T T—




Step 2: Degrees of Freedom After the Mean is Fixed

Once the mean is calculated, any deviations from the mean must sum to zero. The
degrees of freedom represent how many data points can vary freely before the

sum constraint forces the last data point into a specific value.
1. You are free to assign any value to z;.
2. You are also free to assign any value to xs.

3. However, once x; and x> are fixed, the value of z3 is no longer free to vary
independently. It must be a specific value so that the sum of the deviations

from the mean equals zero.

Why the sum is zero: The mean is calculated in such a way that it splits the data evenly,

balancing the total positive and negative deviations. This balance ensures that:

Z(:r?; —Z)=0

This happens because if the sum of the deviations were not zero, it would imply that the mean is
either too high or too low, which contradicts the definition of the mean as the central point of

the data.



> S0, You can consider it a fundamental property of the mean
that the sum of the deviations of the data points from the
mean is always zero.

> This property reflects the fact that the mean is the central
balancing point of the data. It ensures that the total amount
of "positive” deviation (from points above the mean) is
exactly balanced by the total "negative” deviation (from
points below the mean).

For example:

Let'ssay 1 — B and x2 = 7.

If the mean is fixed at 6, then &3 must be exactly 6 to ensure the sum of the

deviations from the mean is zero, because:
(5 —8) & (7 —6) & (xx —86) =0
Simplifying:
— A4 1A 4 (s —6) =0

So xzg — 6 = 0O, meaning 3 — 6.



Thus, once you know the first two data points and the mean, the third data point is
completely determined by the other two and is no longer “free” to vary

independently.

Why This Leads to n — 1 Degrees of Freedom:

* |n asample of size n, the last data point is constrained by the sample mean

calculation. That's why only n — 1 data points are free to vary.

* The one degree of freedom is “used up" in calculating the mean, leaving only

n — 1 independent data points for further analysis.



General Rule:

When calculating a statistic like the sample mean, you lose 1 degree of freedom
because the calculation imposes a constraint on the data. This is why, in formulas
like the sample variance or sample standard deviation, we divide by n — 1 instead

of n.

Why Does It Matter?

* |f we divided by n, we would underestimate the population variability

because we are not accounting for the constraint the sample mean imposes.

* Using n — 1 (also called Bessel's correction) adjusts for this by increasing the
variability slightly, giving a more accurate estimate of the population standard

deviation from the sample.



Why not using (n-1) with population?

In the case of a sample, we use . — 1 degrees of freedom because we're estimating the population
mean using the sample mean. This is known as Bessel's correction. When you calculate the standard
deviation for a sample, you're using the sample mean, which introduces some bias. To correct for this
bias and make the sample variance an unbiased estimator of the population variance, we subtract 1

from the sample size (n).

In the case of a population, you're working with the entire dataset, so there is no need to estimate
the mean—you already know the true population mean. Since there's no estimation involved, all
data points are free to vary, and hence, there is no loss of a degree of freedom. Therefore, the

degrees of freedom remain n for the population.

To summarize:

» Sample: Degrees of freedom are n — 1 because we're estimating the population mean from the

sample, which introduces bias.

* Population: Degrees of freedom are n because no estimation is required, and all values are

known.



Standard Deviation:

» Now there another issue as my data points are linear but varian
is squared to over come this problem we are taking square root o
variance called standard deviation and is expressed in the same

units as the original data.

» It measures the average distance of data points from the mean and
provides a more interpretable measure of spread compared to

variance.

Formula for population standard deviation (o):

o = ' o2

Formula for sample standard deviation (s):

8 — W/ g2



» Example Scenario: If the standard deviation of the employee sal
is $7,500, this indicates that on average, individual salaries devia

$7,500 from the mean salary.

» This is more interpretable than variance because it is in the same

as the data.



Ques: Calculate the mean and standard deviation for the
sets of numbers: 123456 7.

Summary of the Process:
1
2

3:

Calculate the mean as the reference point.
Find the deviations (differences from the mean) for each data point.
Square the deviations to handle both positive and negative differences.

Divide by degrees of freedom (n — 1) to get an unbiased estimate of the

variance.

Take the square root to find the standard deviation.



Step 1: Calculate the Mean

The formula for the mean is:

Mean =

di

Where:
. Z X is the sum of all the numbers

e N is the total number of values

For the numbers 1,2, 3,4,5,6, 7:
) X =1+2+3+4+5+6+7=28

=7

28
Mean = — =4
ean = —



Step 2: Calculate the Standard Deviation

The formula for the standard deviation is:

J:\/Z(X—#)E

Where:
» X is each value in the dataset
s [t is the mean (which we calculated as 4)

e 71 is the total number of values (7)

Now, calculate the squared differences from the mean:

(X —p)P=(1-42+2-4°+3-4) +(1-4>+(5-47+(6-4)°+(T-4)°
= (=3)" + (=2)* + (=1)* + (0)* + (1)° + (2)* + (3)

=9+4+1+0+1+4+9=28



Now, plug this into the formula:

B fi

Final Results:
¢ Mean: 4

¢ Standard Deviation: 2




Ques: The mean for two player is 10. Your job is to play like yo

coach, and work out the standard deviation for each player.
Which player is the most reliable one for your team?
(a). Score 791011 13, Frequency 12421,

(b). Score 78910111213 Frequency 11222 11.

To determine the reliability of each player, we need to calculate th

standard deviation of their scores.

The player with the lower standard deviation is considered more

reliable.



Data:

Player 1:
- Scores: S, 9, 10, 11, 13

- Freguencies: 1, 2. 4, 2, 1

Plawyer 2:
- Scores: 7.8, 9, 10, 11, 12, 13

- Freguencies: 1, 1, 2, 2, 2, 1, 1

Step 1: Calculate the Mean (Given: Mean for both players = 10)

Since the mean is already provided as 10 for both players, we can skip this step and directly calculate

the standard deviation.

Step 2: Calculate Standard Deviation

The formula for standard deviation is:

J:\/Ef-(X—ﬁ)g

Where:
o X =scores
* J = mean (given as 10)
o [ = frequency of each score

s 1 = total number of observations (sum of all frequencies)



Player 1:

Scores: 7,9, 10, 11, 13
Frequencies: 1, 2, 4, 2, 1

Mean (u) = 10

Score (X) Frequency (f) (X —p) (X — p)?
7 1 -3 9

9 2 | K

10 I 0 0

11 2 E K

13 E 3 9

Total 10 | |

e Total frequency n — 10
« DX -pf=22

Mow, calculate the standard deviation:

gy = 41.|' % =l B des 148




Player 2:

Scores: 7, 8,9, 10,11, 12, 13
Frequencies: 1, 1,2, 2,2, 1, 1

Mean () = 10

 Score (X) !Hmmmﬂﬁ !{X—p] !{X—#F !f%X—#F
7 1 -3 5 9
g | 1 | 2 4 | 4
9 | 2 | -1 1 | 2

| 10 | 2 | 0 | o | 0

| 11 | 2 | 1 1 2

| 12 | 1 | 2 | = 4

| 13 | 1 | 3 | 9 9

| Total | 10 | | 30

e Total frequency n — 10
¢ Tf(X-pu)?=30

Mow, calculate the standard deviation:

[ 30
Ty = ﬁ:\/g"ﬂ"il.?g




Step 3: Determine the Most Reliable Player
¢ Player 1's Standard Deviation: 1.48

e Player 2's Standard Deviation: 1.73

Conclusion:

Since Player 1 has a lower standard deviation (1.48) compared to Player 2 (1.73), Player 1 is more

reliable for the team. This means Player 1's scores are more consistent and closer to the mean.



Data points arranged in increasing / ascending order

10 11 12 25 25 27 31 33 34 34 35 36 43 50 59

X | (x-p) | (x-p)r2
10
First step: Find mean (u) 11
12
Second step: find deviation of each point x from mean (x - ) 25
25
Third step: square each deviation (x-p)42 27
31

Fourth step: Add all squared deviations J(x- u)*2

Fifth step: divide it by n

SRR |E

Sixth step: Find square root of it 36
43

59

Slx-wnz=
Variance Sx-wh2 / n =

Standard deviation sqrt(3(x- u)*2 /n) =



HR Analytics Example: Employee
Salaries

» In HR analytics, you might analyze the salary distribution of
employees in a company.

> Scenario:

» You’re working for a company that wants to understand the salary
dispersion in different departments to ensure fair compensation
practices. You collect salary data for employees in the marketing

department and calculate the mean salary.



Standard Deviation and Variance in
Action

Mean salary: Let's say the average salary in the marketing
department is $60,000.

Variance: The variance shows how much the salaries deviate from
the average salary. If the variance is large, it indicates that some
employees are paid significantly more or less than the mean,
suggesting inequities in pay.

Standard deviation: If the standard deviation is $5,000, it tells
you that, on average, employees' salaries deviate from the mean
by $5,000.

A low standard deviation means salaries are fairly uniform, while a
high standard deviation could indicate discrepancies that need
further investigation, such as pay gaps between senior and junior

employees, gender, or different job roles.



Interpretation:

» If the standard deviation is low (say $2,000), this would indicate
that most employees have salaries close to the mean of $60,000,

implying pay equality.

» On the other hand, if the standard deviation is high (say
$10,000), this indicates a wide salary range, which may require
further analysis of compensation practices to identify potential

inequalities.



Business Analytics Example: Sales
Revenue

» In business analytics, you might analyze the monthly sales reve
across different stores.

> Scenario:

» You are analyzing the monthly sales revenue of 10 stores in a reta
chain over the past year to understand the consistency of performa

> Standard Deviation and Variance in Action:

» Mean monthly sales: Suppose the average monthly sales across store
$100,000.

» Variance: If the variance in monthly sales is high, it shows that some
stores are performing much better or worse than others, indicating
inconsistent store performance.

» Standard deviation: If the standard deviation is $20,000, it means that
on average, the monthly sales of a store deviate from the mean by
$20,000.



Interpretation:

> If the standard deviation is low (e.g., $5,000), it means that m
stores are generating sales close to the average of $100,000,
implying stable and consistent performance.

> However, if the standard deviation is high (e.g., $30,000), it
suggests significant variation in sales between stores.

» This might lead you to investigate the causes—such as differences i
marketing strategies, location advantages, or store management

practices—and take corrective actions to improve consistency.



Importance of High Variance:

1. More Information in High Variance:

2. Differentiation and Predictive Power:

High variance indicates that the values of the variable are spread out across a wider range.
This suggests that the variable can help differentiate between data points more effectively,

which can lead to better insights.

In HR analytics, for instance, a variable like "years of experience” might have high variance
because different employees will have vastly different levels of experience. This information
can be crucial for making decisions related to promotions, salary increments, or job

assignments.

A variable with high variance can often explain differences in the target variable (such as

employee performance, customer behavior, etc.) more effectively.

For example, in business analytics, a variable like "monthly sales revenue” might have high
variance, which can help distinguish between high-performing and low-performing stores.

This variable would be considered important for making strategic decisions.



3. Capturing Trends and Patterns:

4. Low Variance is Less Informative:

High variance helps capture important patterns or trends in the data. In HR, variables like
"employee engagement score” might show high variance if there are distinct differences
between departments or job roles. This variance would provide valuable insights for

employee retention strategies.

On the flip side, a variable with low variance (where values don't change much) is less
informative. It doesn't help differentiate between observations, making it less useful for

predictive models or decision-making.

For example, if "employee department” has low variance because most employees work in
the same department, this variable may not add much value in predicting employee

satisfaction or performance.



Example:

* In an HR analytics scenario, if you're analyzing factors affecting employee turnover, variables
like "salary” or "workload" might have high variance across employees, indicating their
importance in the analysis. However, a variable like "office location" might have low variance if

most employees work in the same office, making it less significant in predicting turnover.

In summary, high variance suggests that the variable captures a wide range of behaviors or
characteristics, which usually correlates with greater predictive power and insightful information for

decision-making.



Outliers: Understanding Their Impa
Data

» An outlier is an observation that lies at an abnormal distance fro
other values in a dataset.

» It can be significantly higher or lower than the majority of data poin
» Whether the presence of outliers is good or harmful depends on th

context and the type of analysis being conducted.

®




Types of Outliers

Univariate outliers: These are outliers in a single variable.
For example, an extremely high salary in a dataset of employee
salaries.

Multivariate outliers: These occur when the combination of two o
more variables creates an unusual pattern.

For instance, a person having a very high salary but working very

few hours could be considered a multivariate outlier.



Causes of Outliers

Measurement errors: Errors during data entry or recording, like t
mistakes or faulty sensors.

Sampling errors: When the data doesn’t properly represent the
population, some unusual values may arise.

Genuine outliers: Sometimes, outliers represent real, rare phenom
the dataset.

For example, a company’s top-performing employee with significantly

higher sales.



Is the Presence of Outliers Good or
Harmful?

» Harmful Impacts of Outliers

» Distortion of statistical measures: Outliers can significantly dist
summary statistics like the mean and standard deviation. This ca

mislead conclusions.

» Example: Suppose a dataset of salaries has most values between
$50,000 and $80,000, but one employee earns $500,000. The mean
salary would increase dramatically, giving a false impression of the

average pay.

» In this case, the outlier may need to be removed to provide a better,

understanding of the central tendency.



» Misleading visualizations: Outliers can affect the scale of chart
(like histograms, box plots) and make it difficult to visualize the
distribution of data.

» Example: In a bar chart of store revenues, one store earning 10
times more than others will stretch the graph, making differences
between the other stores appear insignificant.

> Decreased model performance: Many machine learning algorithms
(like linear regression) are sensitive to outliers. Outliers can skew the
model’s predictions and reduce accuracy.

» Example: In a house price prediction model, one very expensive
house could distort the model’s understanding of the relationship
between house features and price, leading to poor predictions for

other houses.



When Outliers Can Be Beneficial

> ldentification of valuable insights: Outliers may represent significa
unusual phenomena that deserve attention, such as fraud detection,
innovation, or exceptional performance.

» Example: In fraud detection, a very high transaction amount compa
to usual transactions can indicate suspicious activity that needs to be
investigated.

» Highlighting variability: In some cases, outliers reveal genuine variability
in the data, especially in industries where extreme performance is possible.

» Example: In sports analytics, an athlete’s exceptional performance
(e.g., breaking a world record) is an outlier, but it's an important one

that reflects the athlete’s capabilities.



» Discovering new trends: Outliers may indicate emerging trends o
shifts in data patterns that require attention.

» Example: A sudden spike in a company’s online sales data coul

be an outlier, but it may also indicate the beginning of a new tren

or market demand that needs further exploration.



How to Handle Outliers?

> Investigate the Cause

> First, determine if the outlier is due to a data entry error,
measurement error, or if it’s a genuine observation.
» If it’s a mistake, correct or remove it.
> If it’s genuine, decide whether to retain it or remove it base

the impact on your analysis.

> Use Robust Statistical Measures
> Instead of relying on sensitive measures like the mean, use robus
statistics such as the median or interquartile range (IQR),which

are less affected by outliers.
» Example: If a salary dataset has extreme outliers, the medi
salary gives a better representation of central tendency

the mean.



» Transform or Cap Outliers

> You can apply transformations (e.g., log transformations) to
reduce the influence of outliers.

> Alternatively, capping or trimming outliers can limit their impa
on your analysis.

> Example: If a small percentage of house prices are extreme
high, you might cap them at a reasonable threshold to

prevent them from skewing the analysis.



Data Visualization Basics

> What is data Visualization?

» Data visualization is the representation of data or

information in a graph, chart, or other visual format.
» It communicates relationships of the data with images.

» This is important because it allows trends and patterns

to be more easily seen.



What is its importance?

“One Picture speaks better than one thousand words”
» As in this example:

Year Sales Year Sales
1990 109 2006
1991 105 2007
1992 110 2008
1993 115 2009
1994 102 2010
1995 118 2011
1996 116 2012
1997 125 2013
1998 140 2014
1999 160 2015
2000 152 2016
2001 156 2017
2002 158 2018
2003 159 2019
2004 159 2020
2005 162







Different Types of Visual Form

» Bar Chart: Categorical data distribution.

» Histogram: Distribution of a continuous variable.

» Pie Chart: Proportion of categories.

» Box Plot: Summarizes the distribution of a continuous variable,
highlighting outliers.

» Scatter Plot: Relationship between two variables.

» Line Chart: Trends over time.

» Density Plot: Estimated distribution of a continuous variable.

» Correlation Matrix Plot: Shows correlations between multiple



Bar Plot using R

# Sample Data
CEI.tEQDI’"iES {_ C{IIA", "B"' HCTI, “D”)
values <- c(20, 30, 15, 35)

# Bar Plot

barplot(values, names.arg=categories, col="[{38",
main="Bar Chart",
xlab="Category", Bar Chart
ylab="values")

Values
20 25 30 35
I I

15

10

Category

In R, the symbol <- is the assignment operator.
It is used to assign values to variables.

It works similarly to the equals sign = in many other programmin
languages, but is preferred in R for assignment in most cases.



Histogram using R

# Sample Data
data <- rnorm(100, mean=50, sd=10)

# Histogram
hist(data, col="[jJfil", main="Histogram of Data",
xlab="value", Histogram of Data
breaks=10)

15 20
J

Frequency
10

[ I I I I
30 40 50 60 70 80

Value

In R, the function rnorm() is used to generate random numbers from a n
distribution (also known as the Gaussian distribution).
The "r" in rnorm() stands for "random," and "norm" refers to the nor
distribution.
Breaks tells the bin size.



Pie Chart using R

# Sample Data
C.El_tEgDr"iE,E {_ E(IIA", IIEIIII IIC'I"F, T'IDII)
values <- c(20, 30, 15, 35)

# Pie Chart
pie(values, labels=categories, col=rainbow(length(categories)),
main="Pie Chart")



distribution of numerical data, showing the distribution of

values across intervals (bins).

data, showing the frequency of each category.

Shows comparison of 2+ categories

Histograms: A graphical representation of the frequency

Bar Charts: Similar to histograms but used for categorical

Bar Chart

Equal spaced
gaps between bars

|
1

- B

X-axis: categories
Y-axis: numerical values

Histogram

Shows frequency distribution of data

20 —] No gaps between
bars

l

15—

o 5 10 15 20

X-axis: intervals of continuous NnuMber
Y-axis: numerical values



Histograms vs Bar Charts:
Key Differences

»Histograms are used for numerical data, while bar charts ar

for categorical data.

»Histograms show the distribution of values across intervals, wh

bar charts show the frequency of categories.

»Histograms bars typically touch each other to represent a
continuous range of values, while bar chart bars are separated t

show distinct categories.



Box Plot

# Sample Data
data <- rnorm(100, mean=50, sd=10)

# Box Plot
boxplot(data, col="fyeTTow', main="Box Plot of Data", ylab="value")

Box Plot of Data

70
l

Value

40
[

ooy




Scatter Plot

# Sample Data
X <- rnorm(100)
y <— 2*X + rnorm(100)

# Scatter Plot
plot(x, y, main="Scatter Plot", xlab="X values",
ylab="Y values",

col="R", pch=19)

Scatter Plot
& [ X ]
= :.' -
L L™
L L ] -
o — . ...~.‘.". L™
o e :}"o.

= oo 0l o0
@ . ‘.... oy
3 oo L
S 4 e
> *e .

S - .

e ®

o _| el i .

' .

C? sl

L ]
| | | | | | |
-4 3 2 A 0 1 2

X Values



In the context of scatter plots, particularly in R, peh stands for "plotting character”. It specifies the

symbol or shape used to represent the points in the plot. The peh parameter can take various values

to indicate different symbols, such as:

* pch = @ forasquare,

* pch = 1 foracircle,

* pch = 2 foratriangle,

* and soon.

There are 25 predefined symbols in R, and custom symbols can also be used. @

pch
pch

pch

19 : Solid circle (filled)
16 : Solid circle (similar to 19 but slightly smaller)

1 : Empty circle (hollow)

Common pch Values:

pch
pch
pch
pch
pch
pch
pch

pch

1 : Empty circle (default)

2 : Triangle

3 : Plus sign (+)
4 : Cross (x)

5 : Diamond

6 : Inverted triangle

16 : Solid circle

17 : Filled triangle




Line Chart

# Sample Data
time <- seq(l, 10)
values <- c(3, 7, 9, 14, 20, 25, 30, 33, 40, 50)

# Line Plot

plot(time, values, type="o0", col="[EINERa8 . xlab="Time",
ylab="value",
main="Line Chart")

Line Chart

50
|

Value

10

Time




Density Plot

# Sample Data
data <- rnorm(100)

# Density Plot
plot(density(data), main="Density Plot", xlab="value", col="TNgAR", 1wd=2)

Density Plot

0.3 0.4

Density
0.2

0.1

0.0




Correlation Matrix Plot

# Install and load the necessary package
install.packages ("corrplot")
Tibrary(corrplot)

# Sample Data
data <- mtcars

# Correlation Matrix
cor_matrix <- cor(data)

# Correlation Plot
corrplot(cor_matrix, method="number",
main="Correlation Matrix")

mpg

cyl
disp
hp

drat

qsec
Vs
am
gear

carb

COIICIAdLIVI yidU A e

g 3 2 2 B 8 o 58 &

1.00 -0.85|-0.85/-0.78| 0.68 -0.87| 0.42| 0.66| 0.60| 0.48-0.55
-0.85/ 1.00 0.90| 0.83 -0.70 0.78|-0.59 -0.81/-0.52 -0.49 0.53
-0.85/ 0.90(1.00| 0.79/-0.71| 0.89 -0.43|-0.71/-0.59|-0.56| 0.29
-0.78 .0.33. 0.79 1.00. -0.45| 0.66 .-0.71. -0.72 | | .0.75
0.68-0.70(-0.71 -0.45| 1.00/-0.71 0.44| 0.71| 0.70
-0.87 0.78| 0.89 0.66 -0.71| 1.00 -0.55/-0.69/-0.58| 0.43
0.42|-0.59(-0.43(-0.71 1.00 0.74 -0.66
0.66 -0.81|-0.71/-0.72| 0.44|-0.55/ 0.74| 1.00 -0.57
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Use Outlier Detection Techniq

» Techniques like Z-score or IQR method, can help identify outlie
systematically.

» Z-score: Measures how far a data point is from the mean in terms
standard deviations. A Z-score greater than 3 or less than -3 is ofte
considered an outlier.

> IQR method: Values that lie beyond 1.5 times the IQR above the th

quartile or below the first quartile are flagged as outliers.

A DATA VALUE IS CONSIDERED TO BE AN OUTLIER IF..

DATA VALUE @ Q1 - 1.5(IQR)

OR

DATA VALUE @ Q3 + 1.5(IQR)



Example:

> HR Analytics Example: Employee Performance
> Imagine you're analyzing the performance scores of employee
which range from 1 to 100.

> Most employees have scores between 40 and 70, but one employ
has a score of 95.

» You may initially consider this a positive outlier—an exceptional
performer.

» Scenario 1: If you’re running a training program and want to find
struggling employees, the outlier may not be useful, and you coul
consider excluding this value from certain analyses.

> Scenario 2: However, if you’re analyzing potential future leaders
or high performers, the outlier might represent someone who

deserves special attention for promotion or leadership trai



> Business Analytics Example: Sales Revenue

> You are analyzing monthly store sales. Nine out of ten stores ha
sales between $10,000 and $15,000, but one store reports $100,

» This is an outlier, and it can affect your conclusions about overall
performance.

» Scenario 1: If your goal is to understand typical store
performance, this outlier might skew your analysis, and you mig
consider removing it for better insights.

» Scenario 2: If your goal is to investigate best practices, this
outlier could indicate a high-performing store whose strategies
should be replicated across other stores.

> Typical performance refers to the average or most common

range of performance within a dataset.



FIVE POINT SUMMARY

» While discussing Box plot we come across the term FIVE point summ
That includes:

This divides data in to 4 parts.

1. Minimum

2. 25% = Q1 = 25% of data

3. 50% = Q2 = Median = 50% of data
4. 75% = Q3 =75% of data

5. Maximum

v V Vv VY Y V¥V

FIVE NUMBER SUMMARY

MiNIMUM 15T QUARTILE MEDILAN SR QUARTILE MAXIMIUM

25

12 [2s5] =2s

Outliers <= Q1 — 1.5 (IQR)
> Q3 + 1.5 (IQR)



Interquartile Range (IQR):

» Definition: The range within which the central 507
data values lie, between the 1st quartile (Q1) and
3rd quartile (Q3).

> Steps to find IQR

» Order the data from least to greatest
» Find the median

» The left side of median is lower half and right side of the data set is
upper half.

» Calculate the median of both the lower and upper half of the data
named as Q1 andQ3.



»The IQR is the difference between the upper and lower half.
Formula:

IQR=Q3 - Q1

»Use: Measures the spread of the middle 50% of data, reducing
the influence of outliers and giving a more robust measure of

spread.



» Generally a box plot, also known as a box and whis
plot, is a graphical representation of the five-numbe
summary of a dataset including Q1,Q2,Q3,Max,Min.

»This helps to visualize the central tendency, spread, an
skewness of the data.

| IQR 1
] |
Q1 Q3
Q1 -15xIQR Q3 + 1.5 x IQR
| {
AAediam
—4g —3g e . Oc 1o 20




lower T upper
quartile Q1 quartile Q3

min max

I whisker whisker I

4

interquartile range (IQR)

> Example Scenario: For a dataset of employee salaries, if
$45,000 and Q3 is $55,000,

> the IQR is $55,000 - $45,000 = $10,000.

> This shows that the central 50% of salaries fall within a $10,0

range.



» Ques. Can you identify the outliers from the below dataset, using
method?

» DATA : 26.0°C, 15.0°C, 20.5°C, 31°C, -350.0°C, 31.0°C, 30.5
> n=7



Dataset:

26.0°C, 150°¢, 20.57€C, 31.0°€, =35010°C; 31.0°C, 30.5°C

Step-by-Step Process for IQR Method:

1. Order the data (sort it in ascending order):

—3560.0°C,15.0°C, 20.5°C, 26.0°C, 30.5°C, 31.0°C, 31.0°C
2. Find the Quartiles:
e The first quartile (Q1) is the median of the first half of the data:
G l.= 15.0°C
* The third quartile (Q3) is the median of the second half of the data:
(3 = 3100

® The median (which is the second quartile, Q2) is the middle value of the ordered dataset:

Q2 = 26.0°C



3. Calculate the Interquartile Range (IQR):

TOR =3 —01=231.0°C—-15.0°C =16.0°C
4. Determine the Outlier Boundaries:

e Lower Bound: Q1 — 1.5 x IQR

= 15.0°C — 1.5 x 16.0°C = 15.0°C — 24.0°C = —-9.0°C
o UpperBound: 3 + 1.5 x IQR

=:31.0°C + 1.5 X 16.0°C = 31.0°C 4 24.0°C = 55.0°C



5. ldentify Outliers:

* Any values below -9.0°C or above 55.0°C are considered outliers.

QOutliers in the Dataset:
e -350.0°C is below the lower bound of -9.0°C, so it's an outlier.

e The other values fall within the range -9.0°C to 55.0°C, so they are not outliers.

Conclusion:

The outlier in this dataset is -350.0°C.



» Ques : For these number find q1,q2, q3, igr, max,
mini, and draw box plot.

Data =101112 252527 31 33 34 34 35 36 43 50 59
> n=15




Step 1: Sort the data (already sorted in this case):
10,11, 12, 25, 25,27, 31, 33, 34, 34, 35, 36, 43, 50, 59

Step 2: Find Q1, Q2 (Median), Q3:

1. Q2 (Median): Since there are 15 data points (odd number of points), the median (Q2) is the 8th

value.

Q2 =33

2. Q1 (First Quartile): The first quartile is the median of the first half of the data (excluding the

median if there is an odd number of data points). For this data:
Q1 = Median of (10, 11, 12, 25, 25, 27, 31)
The median is the 4th value:

Q1=125



3. Q3 (Third Quartile): The third quartile is the median of the second half of the data (excluding
the median). For this data:

(23 = Median of (34, 34, 35, 36,43, 50, 59)
The median is the 4th value:

Q3 =36

Step 3: Calculate IQR (Interquartile Range):
IQR=Q3-Q1=36—25=11



Step 4: Find Minimum and Maximum values:
* Minimum value in the data: 10

¢ Maximum value in the data: b9

Summary:
*» Q1=25
* Q2 (Median) = 33
*» Q3=36
e QR =11 Box Plot
e Minimum =10

¢ Maximum = 59

10 20 30 40
Values




# IQR AND BOX PLOT
# Given data
data <- (10, 11. 12. 25, 25, 27, 31, 33, 34. 34, 35, 36, 43. 50. 59)

# Quartile calculations

01 <- quantile(data, 0.25)
02 <- median(data)

Q3 <- quantile(data, 0.75)
IQR_value <- IQR(data)

# Min and Max
min_val <- min(data)
max_val <- max(data)

# Display results

caE(Mol:" 01, ")

cat("Q2 (Median):", 02, "\n")
eak(MQ3:" . 03, "\n")

cat ("IQR:", IQR_value, "\n")
cat("Min:", min_val, "\n")
cat ("Max:", max_val, "\n")

# Box plot
boxplot(data, horizontal = TRUE, col = '{lig
main = "Box Plot", xlab = "values")




» Ques: Given is the ages of people registered for a webinar,
calculate the five point summary of the ages of the

participants?

»  Data: 19,26,25,37,32,28,22,23,29,34,39, 31

Five-Point Summary:
» Minimum: 19

* Qi (First Quartile): 24
» Median (Q2): 28.5
Q3 (Third Quartile): 33

» Maximum: 39



To calculate the five-point summary of the ages of participants, we need to determine the following:
1. Minimum
2. Q1 (First Quartile)
3. Median (Q2)
4. Q3 (Third Quartile)

5. Maximum
The data given is: 19, 26, 25, 37, 32, 28, 22, 23, 29, 34, 39, 31

Step 1: Sort the Data
First, arrange the data in ascending order: 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 37, 39



Step 2: Calculate the Five-Point Summary
1. Minimum: The smallest value in the data set:
Minimum = 19
2. Maximum: The largest value in the data set:
Maximum = 39

3. Median (Q2): The middle value of the dataset. Since there are 12 data points (even number), the

median is the average of the 6th and 7th values.

28 129
Q2=—
4. First Quartile (Q1): The median of the first half of the data. The first half is:
19, 22, 23, 25, 26, 28 Since there are 6 values, the median of this subset is the average of the
3rd and 4th values:

= 28.5

Q1:23—;—25:

5. Third Quartile (Q3): The median of the second half of the data. The second half is:

29, 31, 32, 34, 37, 39 The median of this subset is the average of the 3rd and 4th values:

32434
-2

24

Q3 33




Z-score to find outliers

> The Z-score is a statistical measure that tells you how many stan
deviations a data point is from the mean of a dataset.
> It's often used to identify outliers because a Z-score that is very hi
very low indicates that the data point is far from the mean, potenti

classifying it as an outlier.

Formula for Z-score:

(X —p)

Where:
» / =7-score
o X = the value of the data point
* [t = the mean of the dataset

¢ o = the standard deviation of the dataset



Steps to Find Outliers Using Z-scor

. Calculate the mean (u1) of the dataset.
. Calculate the standard deviation (o) of the dataset.
. Compute the Z-score for each data point using the formula above.

. Define a threshold: Typically, data points with Z-scores less than -3 or greater than +3 are

considered outliers (but you can adjust this threshold based on the context of your analysis).

. ldentify outliers: Any data point whose Z-score is beyond the chosen threshold is considered an

outlier.



Example:

Let's say you have the following data points representing store sales (in $1,000s):
10,12,11,13,12,14,110
Step 1: Calculate the Mean

10+12+11+13+12+14 4110 182
p= =
7 7

Step 2: Calculate the Standard Deviation

~ 26

First, find the variance (average of the squared differences from the mean):

(10 = 26)* + (12 = 26)* + (11 — 26)* + (13 — 26)* + (12 — 26)* + (14 — 26)* + (110 — 26)*
7

256+ 196 + 225 + 169 + 196 + 144 + 7056 8242

a 7 T

Variance =

&~ 1177.43

Standard deviation:

o =v1177.43 =~ 34.32



Step 3: Compute Z-scores for each data point

Now, calculate the Z-score for each data point:

o For10:Z = 18=28 o (0.47

34.32
£ Fofl2d = 1:3;%'3 ~ —0.41
e For1l: 4 = 131;3225 ~ —0.44
e Fori13d: Z = 1;;32; ~ —(0.38
e Fori12: 2 = 1324__3?:?[1 ~ —0.41
e Forl14: Z = ﬁ ~ —0.35

L 110-26
. FDT11ﬂZ— 2139 ~2.45




Step 4: Define a Threshold

Typically, a Z-score beyond =3 is considered an outlier. In this example, none of the Z-scores are
beyond 3, so according to this rule, the point 110 would not be classified as an outlier. However, if

you lower the threshold to Z > 2, the value 110 could be considered an outlier since its Z-score is

2.45.

Conclusion:

By using the Z-score, you can identify values that deviate significantly from the mean. The farther a
Z-score is from 0 (whether positive or negative), the more unusual the data point is. In this example,
you would likely investigate the data point of 110 because its Z-score is relatively high and indicates

that it is far from the mean compared to the other data points.



Coefficient of Variation (CV)

» Purpose: Like variance, standard deviation, it also measures the r
variability in a data set with respect to mean.

» The coefficient of variation (CV) quantifies the variation of a dataset
relative to the mean and expresses this variation as a percentage.

» Formula: CV = (o/u)x100 as %

» Use Case: The CV is often used in fields like finance to assess the risk
(volatility) of investments relative to their expected return.
Example: If a stock's return has a CV of 10%, it means the standard

deviation is 10% of the mean return.



Example:

Suppose you are analyzing two datasets of employee salaries at two different companies:

e Company A:
» Mean salary = $60,000
e Standard deviation = $5,000
« V=220 %100 = 8.33%
* Company B:
» Mean salary = $70,000
» Standard deviation = $10,000

CV = =002 x 100 = 14.29%

In this case:

*» Company A has a lower CV (8.33%), meaning that employee salaries are more consistent and

tightly clustered around the mean.

*» Company B has a higher CV (14.29%), meaning that employee salaries are more spread out

relative to the mean.



Applications:

1.Comparing datasets with different units or scales:

» Since the CV normalizes the standard deviation in terms of the
it allows you to compare the relative variability of two datasets, e
if they have different units or means.

2. Assessing risk: In finance, for example, the CV is used to compare 't

risk of different investments relative to their expected return.

Key Point:
*CV expresses the relative variability of the data as a percentage of th
mean, making it easier to interpret how dispersed the data is around th

mean, regardless of the absolute scale or units of the data.



» After understanding the spread and center of the data, the ne

» Symmetry means the mean = median, and there’s no skew.

Concept of Symmetry:

step is to understand the shape of the distribution, which leads

skewness.

Remember how outliers can stretch or skew our data? When we
a few extreme values pulling the data in one direction, the shape

the distribution becomes skewed.

A long tail on one side
Shifted mean

Symmetric Asymmetiric/Skewed




Skewness

> Definition: “Skewness measures whether data points are
symmetrically distributed around the mean, or if they’re p

one direction more than the other.”

Types of Skewness

y

b 4 A 4
Symmetrical Asymmetrical
Positive Negative

Skewness Skewness



Types of Skewness:

Asymmetrical

Positive Negative
Skewness Skewness

» Right-Skewed (Positive Skew): Most data points are concentrated
on the left, but there are outliers on the right. Here, the mean is

greater than the median.

» Left-Skewed (Negative Skew): Most data points are concentrated
on the right, but outliers drag the data to the left. Here, th

mean is less than the median.



> Right-Skewed Distribution (Positive Skewness):

> In a right-skewed distribution, most of the data points are
concentrated on the left side, with a tail extending to the right.

» These distributions are common when a limit prevents lower valu
but allows for extreme high values.

» Positive skewness (> 0) means the distribution is skewed to the righ

with a longer tail on the right side.

SKEWED TO THE RIGHT

THE MEAN IS GREATER
THAN THE MEDIAN



Y VY

Right Skewed:
Example 1: Income Distribution

In most countries, the income distribution is right-skewed. A ma
of people earn below or around the average income, but a
percentage of the population (wealthy individuals) earn extremely
incomes, creating a long tail on the right.

Inevitability: Wealth inequality tends to persist in societies, with
small fraction of people earning significantly more than the majorit
leading to a naturally skewed income distribution.

Example 2: Housing Prices

Real estate prices are often right-skewed. Most homes in an area may
be priced within a certain range, but there are luxury homes that sell
for much higher prices, creating a long right tail.

Inevitability: Differences in neighborhood, home features, and deman
drive extreme prices for high-end homes, making the skewness in
housing prices inevitable.




» Example 3: Waiting Times

» Customer service waiting times often exhibit right-skewed
Many people may be served quickly, but a small portion exper

much longer waiting times due to delays or inefficiencies.

» Inevitability: Operational inefficiencies, peak demand times, o
unforeseen issues result in longer wait times for some customer

making the right tail inevitable.



> Left-Skewed Distribution (Negative Skewness):

> In a left-skewed distribution, most of the data points are
concentrated on the right side, with a tail extending to the left.

» This often occurs when a natural limit prevents high values but
allows for extremely low values.

> Negative skewness (< 0) means the distribution is skewed to the

left, with a longer tail on the left side.

SKEWED TO THE LEFT

THE MEAN IS LESS THAN
THE MEDIAN

MEAN MEDIAN



Left Skewed:

Example 1: Age at Retirement
Retirement ages are often left-skewed. Most people retire aroun
certain age (e.g., 60-65), but a few people retire much earlier,
creating a left tail.

Inevitability: The nature of work, policies, and personal preferenc
ensure that most retirements occur within a narrow window, but ea
retirement due to financial independence or health issues creates a

skewed distribution.



» Example 2: Time to Complete a Task in a Test

» Completion times for tasks or exams are often left-skewed. Mo
participants complete the task within the allowed time, but a sm
number of fast individuals finish much earlier.

> Inevitability: While most individuals work at a similar pace,
variations in skill level or focus result in some participants finishing

exceptionally quickly.



> Example 3: Loan Repayment Times
» The repayment period of loans can be left-skewed. Many borroy
will repay the loan close to the scheduled time, but a few may
much earlier.
> Inevitability: Financial situations differ, and some borrowers ma
able to repay large amounts quickly, leading to early repayments a

skewness.



> In Business Analytics: Show how sales data might be skewed i
few products generate significantly higher sales compared to the
maijority.

> In HR Analytics: Discuss employee tenure or salary distributions.
a company has a few long-tenured employees or very high-salary

individuals, the data will likely be skewed.

> In HR, the median salary might be more useful than the mean salary in
understanding typical pay, especially if a few employees earn

exceptionally high salaries.



- (b) MNormal distribution
(a) MNMNegatively Skewed No Sk N

(c) Positively Skewed

»A symmetrical distribution has a skewness of 0, indicatin
that the data is evenly distributed around the mean.

» If the skewness is between -0.5 and 0.5, the data are fairly
symmetrical.

> If the skewness is between -1 and - 0.5 or between 0.5 an
1, the data are moderately skewed.

» If the skewness is less than -1 or greater than 1, the data
highly skewed.



Left-Skewed Symmetric Right-Skewed

A AN D

Q, Q; Q, Q, Q; Q, Q, Q Q,

RSl Q2-Ql=Q3-Q2 Q2 -Q1<Q3- Q2




>

>

>

>

Ques 1: 4,5,6,6,6,7,7,7,7,7,7,7,8,8,8,9,10.

Ques 2: 4,5,6,6,6,7,7,7,7,8.

Ques 3: 6,7,7,7,7,8,8,8,9,10

Find: Mean, median, mode, RS/LS/ZS.




To find the skewness for each of the provided datasets, we can follow these steps:
il
2

Calculate the Mean (average): Sum all the values and divide by the number of values.

Calculate the Median: Find the middle value when the data is ordered. If there's an even

number of values, the median is the average of the two middle values.

Skewness Formula: Skewness gives us an idea of the asymmetry of the distribution. It can be

calculated using this formula:

Skewness = - 1)n(n_ 2) D (migi):;

Where:
* 7 is the number of data points,
® T, is each data point,
® T isthe mean,

* 5 isthe standard deviation.



Ques1:4,5,6,6,6,7,7,7,1,1.7,7:.8,8,8,9,10
e Mean: /.0
* Median: 7.0
* Mode: 7

e Skewness: 0.0 (no skewness, perfectly symmetrical)

Ques 2:4,5,6,6,6,7,7,7,7,8
* Mean: 6.3
*» Median: 6.5
* Mode: 7

» Skewness: -0.613 (left-skewed)

Ques 3:6,7,7,7,7,8,8,89.10
e Mean: 7.7

e Median: 7.5

* Mode: 7

» Skewness: 0.613 (right-skewed) [-)




# Install the "moments’® package
install.packages(“moments™)

library(moments)

#t Provided datasets
datal <- c(4, 5,
data2? <- c(4, 5, 6, 6,

data3 <- c{6, 7, 7; 7, 7;

# Calculating skewness for each data

skew datal <- skewness(datal)

skew data2 <- skewness(data2)

skew data3 <- skewness(data3)

# Print the skewnes:
skew datal
skew data2

skew data3



1 # Load necessary libraries
install. packages ("el0Q71") # For skewness
install. packages ("modeest™) # For mfv (mode)

Tibrary(el071)

Tibrary(modeest)

# Define the datasets

data 1 «—el4, 5, b, 8, 8, 7, 7, F, 7, (. Fa 7, B, B, &, 9, 10)
datd-2 2= 00 5. By B B T s Ty T 8)

data_ 3 <-¢e(6, 7, 7, 7, 7, 8, 8, 8, 9, 10)

# Function to calculate mean, median, mode, and skewness
calculate_stats <- function(data) 1
mean_val <- mean(data)
median_val <- median(data)
mode_val <- mfv(data) # Most frequent value (mode)
skewness_val <- skewness(data)

Tistimean = mean_val, median = median_val, mode = mode_val, skewness = skewness_val)

¥

# Calculate for each dataset

stats_1 <- calculate_stats(data_1)
stats_2? «<- calculate_stats(data_2)
stats_3 <- calculate_stats(data_3)

# Print results
stats_1
stats_2
stats_3




Kurtosis

» Definition: Kurtosis measures whether the data has heavy tails

tails compared to a normal distribution.
» It shows whether extreme values (outliers) occur more or less frequ
» Example: "Kurtosis answers the question: Is the data mostly

concentrated in the middle, or are there extreme values in the tails?"

» Mesokurtic: Kurtosis = 3 (Normal distribution)
> Leptokurtic: Kurtosis > 3 (Heavy tails)
» Platykurtic: Kurtosis < 3 (Light tails)



» Mesokurtic (Normal Distribution): This is the reference point:
a distribution with normal kurtosis (kurtosis = 3).

> Real-world example: Height distribution among a large
population is often close to mesokurtic, where most

people’s heights are near the average.

Mesokurtic
Kurtosis: 0.07

100 4

80

60 -

20 4




> Leptokurtic (Heavy Tails):Leptokurtic distributions have shar
and fat tails, meaning there are more outliers. The kurtosis val
greater than 3.
> Real-world example: Income data may show a leptokurtic
distribution, where most people have an average income, but

are a few extremely high earners (outliers).

Normal vs Leptokurtic Distribution

N Normal Distribution (Kurtosis = 3)
f N == Leptokurtic Distribution (Kurtosis > 3)

0.5

Probability Density
o o o
[N w B

o
=

0.0

_I4 : : _Il
X-axis (Observations)



> Platykurtic (Light Tails):Platykurtic distributions have flatter p
and thin tails, meaning there are fewer outliers. The kurtosis val
less than 3.

> Real-world example: Test scores where most students perform
similarly, without much deviation from the average, would likely ha

platykurtic distribution.

Platykurtic
Kurtosis: -1.22

20 -

10

=100 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100



Understanding Kurtosis Beyond th
Formula

» While kurtosis is mathematically defined using the fourth moment
its practical interpretation revolves around the propensity of the
distribution to produce outliers:

> High Kurtosis (Leptokurtic): More data in the tails and a sharper
peak. This implies a higher likelihood of extreme values (outliers).

> Low Kurtosis (Platykurtic): Less data in the tails and a flatter peak.

This suggests fewer extreme values.



> Let’s look at some examples to illustrate how kurtosis relates to data o
» Normal Distribution (Kurtosis = 3)
> Tail Behavior: Approximately 0.3% of data lies beyond +3 standard d
from the mean.
> Interpretation: Baseline for tail comparisons.
> Leptokurtic Distribution (Kurtosis > 3)
> Example: Kurtosis =5
> Tail Behavior: More than 0.3% of data lies beyond +3 standard deviations.
> Interpretation: Higher chance of extreme values (outliers). For instance,
instead of 0.3%, you might observe 0.5% or more in the tails.
> Platykurtic Distribution (Kurtosis < 3)
> Example: Kurtosis = 2
> Tail Behavior: Less than 0.3% of data lies beyond +3 standard deviations.
> Interpretation: Fewer extreme values. Data points are more uniformly spre

around the mean.



Example Scenario

Scenario: You have 1,000 observations of daily returns for a stock.
Calculated Kurtosis: 4.5 (Excess Kurtosis = 1.5)

Interpretation:

YV V V V

Leptokurtic: Higher probability of extreme returns (both positive and

negative) compared to a normal distribution.

A\

Practical Implications:

Y

Risk Assessment: The stock may experience more significant gains or
losses than expected under normal assumptions.
> Action: Use risk management strategies that account for higher volatili

and potential extreme movements.



Which Kurtosis Should You Focu

Example:

The kurtosis type that matters most depends on whether you want to focus on extreme values

(outliers) or more consistent, predictable behaviors.

On?

If outliers and extreme values matter to your analysis (e.g., finance, risk analysis, identifying

exceptional performers in HR analytics), then leptokurtic distributions are of more interest.

If you're analyzing typical performance (e.g., a stable business process with little fluctuation),

the mesokurtic (normal) distribution is often sufficient.

If you're focused on consistency and minimizing extremes (e.g., in quality control or

performance stability), you would pay attention to platykurtic distributions.

In HR analytics, you might care about a leptokurtic distribution if you want to identify and

study outliers, such as star performers or underperformers.

In business analytics, if you're measuring customer satisfaction, you might prefer a platykurtic
distribution because you want consistent satisfaction levels without too many extreme highs or

lows.



Codein R

# install.packages("el071")

# Load the el1l071 package
Tibrary(el071)

# Example data
data <- c(2, 4, 6, 8, 10, 12; 14, 16, 18; 20)

# calculate kurtosis
kurt_value <- kurtosis(data)

# Print the result

print(paste("Kurtosis:
|

, kurt_value))

"Kurtosis: -1.56163636363636"




Review of Key Journey till now

> So till now we talked about :

» Mean: The average of a dataset.

» Variance: Measures the spread of the data around the mean.
» Skewness: Indicates the asymmetry of the data distribution.
» Kurtosis: Reflects the "tailedness" of the distribution.

» Outliers: Data points that are significantly different from others.



Introducing the Normal Distribu

Definition:

The normal distribution is a continuous probability distrib
characterized by its bell-shaped curve, which is symmetric &
the mean.

Key Properties:

Symmetry: The left and right sides of the distribution are mi
images.

Mean, Median, Mode: All three are equal and located at the
center of the distribution.

Defined by Mean (4) and Variance (62): These parameters
determine the center and spread of the distribution.

1 ey

S (x) = —




» In analytics it is assumed that data is normally distrib

analysis due its occurrence in nature and real world phenome

»  Because it is assumed that for normal distribution, 99.79
all the values will fall with in 3* S.D. of the mean on either sic
curve.

> It is also known as Gaussian Distribution or Bell curve.

» It talks about symmetric around its mean and has a single pez
at the centre of the distribution.
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Introducing the Standard Normal
Distribution

» The standard normal distribution is a special case of
normal distribution.

» It has the following characteristics:
> Mean (M): O

» Standard Deviation (o): 1

- 99.74 -

95.44

+

Y

- B68.26 —»




Importance:

» Simplification: Allows for easier calculations and the use of standarc
tables (Z-tables).
» Z-Scores: Any normal distribution can be converted to the standard n
distribution using Z-scores.

> Itis also called Z distribution.

> Z-score formula:

N
|

(x-p)/o



~ The SND is also a probability distribution, so the area under the ct
between two points tells the probability of variables taking on a ran¢

values.
~ The total area under the curve is 1 or 100%.

» This process, called standardization or normalization, converts any
from a normal distribution to the standard normal distribution by

subtracting the mean and dividing by the standard deviation.

»The standardization allows for meaningful comparisons across

different datasets with different scales and units.



» The Z-score is primarily a tool used in inferential statisti

also has applications in descriptive statistics.
» In Descriptive Statistics:

» Z-score is used to describe the position of a single data p

relative to the mean of a dataset.

»>In Inferential Statistics:
»Z-score is crucial for hypothesis testing and confidence
interval estimation.

>t tells us how far the mean of sample from population mean.



» Interpretation: A Z score tells you how far a particular valué

the mean of the distribution in terms of standard deviations.

>

>

A Z score of 0 indicates that the value is at the mean.

A 7 score of 1 indicates that the value is one standard de

above the mean.

A Z score of -1 indicates that the value is one standard deviatic

below the mean.

Typically, values with z-scores beyond a certain threshold (e.g

Z-score > 3 or z-score < -3) are considered outliers.

L scores tell you how many standard deviations from the meag

each value lies.



Connecting the Dots: From Descri
Statistics to Distribution

> Descriptive Statistics (Mean, Variance, Skewness, Kurtosis):
» These measures describe the key features of any dataset, incl
its central tendency, spread, asymmetry, and tail behavior.
» Normal Distribution:
» A specific type of distribution where skewness is 0 and kurtosis is
» Defined completely by its mean and variance.
» Serves as a foundational model in statistics due to the Central Lim
Theorem.
» Standard Normal Distribution:
» A normalized form of the normal distribution.
» Facilitates the calculation of probabilities and the comparison of
different datasets.
» Outliers:
» In the context of a normal distribution, outliers are rare (extremely
high or low values).
» Understanding the normal distribution helps in identifying and
interpreting outliers.



Practical Applications and Examp

Example 1: Checking Normality of Data
Using Shapiro-Wilk Test in R:
# Shapiro-Wilk test for normality

shapiro_test <- shapiro.test(data)

vV V Vv VY VY

print(shapiro_test)

Interpretation: If p-value > 0.05, data is likely normally distributed.

* [nterpretation:

* p-value > 0.05: Fail to reject the null hypothesis; data may be normally distributed.

* p-value < 0.05: Reject the null hypothesis; data likely not normally distributed.



Example 2: Visualizing Normal vs. Skewe
Distribution

Normal Distribution
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# Generate skewed data
skewed_data <- rTnorm(1000, meanlog = 0, sdlog = 1)

# Plot histograms
par(mfrow = c¢(2,1)) # Two plots, one above the other

hist(data, main = "Normal Distribution", xlab = "value", col = "[lighthTue
hist(skewed_data, main = "Skewed Distribution”, xlab = "value", col = "[Tightg




Explanation:
* rlnorm(n, meanlog, sdlog) :

* This function generates random numbers from a log-normal distribution.

* Log-Normal Distribution: A distribution of a random variable whose logarithm is normally

distributed. It's inherently skewed, meaning it has a longer tail on one side.

¢ Parameters:

* n = 1000 : Generates 1,000 random observations.
* meanlog = @: The mean of the logarithm of the distribution.
* sdlog = 1: The standard deviation of the logarithm of the distribution.
*  skewed data:
* The generated data is stored in the variable skewed_data .

* Since the log-normal distribution is skewed to the right (positively skewed), this dataset will
have a concentration of values on the lower end with a long tail extending to the higher

values.

Visual Insight:

e A log-normal distribution is useful for modeling data that cannot take negative values and tend

to have a few large values (e.g., income, stock prices).



Explanation:

e par() Function:

* Purpose: Sets or queries graphical parameters in R.
* mfrow = c(2,1):
* mfrow stands for "multi-figure row-wise".

* ¢(2,1) : Specifies a layout with 2 rows and 1 column.

» Effect: The plotting area is divided into two sections stacked vertically. The first plot will

appear in the top section, and the second plot will appear below it.

Visual Insight:

* This setup allows you to compare two histograms directly, making it easier to observe

differences in their shapes and distributions.



Explanation:

¢ hist() Function:

* Purpose: Creates a histogram, which is a graphical representation of the distribution of

numerical data.

e Parameters:

data : Assumed to be a dataset that follows a normal distribution (e.g., generated using

rnorm() ).
* main = "Normal Distribution" : Sets the title of the histogram.
* xlab = "Value" : Labels the x-axis as "Value".
* col = "lightblue" : Fills the bars of the histogram with a light blue color.

* border = "black" : Sets the border color of the bars to black for better visibility.



Standard Normal Probabilities

Probability of B
7 =1.35is = =t

9115 or 91.15%

.09

.5359
.5753
.6141
.6517
.6879

7549
.8133
.8621

.9015
9177




Suppose you have a dataset of ages with a mean of 30 years and a standard
deviation of 5 years. If you want to find the Z score for a person aged 40 years:

Steps to Use the Z-Table

1. Calculate the Z-Score:

— X—qp
Z ="
For a person aged 40 years:

7 40-30 _ 10

5 - 5
2. Interpret the Z-Score:

® The Z-score of 2 means that 40 years is 2 standard deviations above the mean of 30 years.



3. Use the Z-Table:

® The Z-table shows the cumulative probability up to a given Z-score.

® Find the Z-score of 2.00 in the Z-table.

Reading the Z-Table

Here's a fragment of what a typical Z-table might look like for positive Z-scores:

| Z 0.00 0.01 0.02 0.03
19 | 05744 | 09749 | 69753 | oo7sa
2.0 09772 09778 09783 0.9788
2.1 09821 ' 0.0826 09830 09834

For Z = 2.00, the cumulative probability (area under the curve to the left of the Z-score) is
approximately 0.9772.

[5]: from scipy.stats import norm
# for z = 2
prob = norm.cdf(2)

5]: print(prob)

©.9772498688518288



Interpretation of the Z-Table Value

* Cumulative Probability: The Z-table value for Z = 2.00 is 0.9772. This means there is a 97.72%
probability that a randomly selected value from this standard normal distribution is less than or

equal to 2.00 standard deviations above the mean.

* Probability Calculation: If you are looking for the probability that a value is greater than 2.00
standard deviations above the mean:
P(Z >2.00) = 1 - P(Z < 2.00) = 1 — 0.9772 = 0.0228
This means there is a 2.28% probability that a value is more than 2 standard deviations above

the mean.



Example: The test scores of students in a class test has a m
70 and with a standard deviation of 12. What is the probable

percentage of students scored more than 85?
Solution: The z score for the given data is,
L = (85-70)/12=1.25

From the z score table, the fraction of the data within this sco
is 0.8944.

» This means 89.44 % of the students are within the test scores
of 85 and hence the percentage of students who are above
the test scores of 85 = (100-89.44)% = 10.56 %.



Covariance

» Definition:

»Covariance measures the degree to which two variables c

together or we can say it talks about direction.

» If both variables tend to increase together, the covariance is positiv

» if one increases while the other decreases, the covariance is negativ

Formula:

Cov(X,¥) = —2- 3 (% - X)(¥; — F)

it =L &

where X and Y are the two variables, X and Y are their means, and 1 is the number of

observations.



Positive covariance Negative covariance Weak covanance

'-l
L= i
-

=
.|

ot
# O

e For positive covariance, the y values increase as x increases, with some added noise.
e For negative covariance, y values decrease as x increases, again with noise.

e For zero covariance, y values are randomly generated, showing no clear trend.

» Covariance can take any value between -« and +«.

> It’s not standardized, so its magnitude is difficult to interpret.



Practical Example: Calculating
Covariance with a Simple Dataset

Let's use a simple dataset consisting of individuals' heights (in cm) and weights (in kg). We will

calculate the covariance between height and weight, and then relate it to Body Mass Index (BMI).

Example Dataset

\ Person Height (cm) Weight (kg)
1 160 55

| 2 | 165 | 65

3 170 70
s 75 80

3 180 85



Step 1: Calculate the Covariance

Formula for Covariance

Cov(X,Y) =

n—1
Where:

o X is the height,

e Y isthe weight,

e XandY arethemeansof X and Y,

e 71 is the number of observations.

Calculation Steps
1. Calculate the means of height and weight.
2. Compute the deviations from the mean for each observation.
3. Multiply the deviations and sum them.

4. Divide by n — 1.




Calculate the Means

1. Mean Height {X}:

7 _ 16[1+165+1;D+175+180:?:170

2. Mean Weight {]7):

17,:55-f—fi5-I-'?5ﬂ'-I—80+85:$:71




Calculate Deviations from the Mean

* Deviations for Height: e Deviations for Weight:
e 160—170 = -10 e 50— 71 =-16
e 165170 = -5 e o—7l=-6
e 170 -170=0 e M0—-71=-1
e 175-170=5 ¥ 8—7l=9

180 — 170 = 10 e 80 -T71=14




Calculate Covariance

Cov(X,¥) = = Y (X: - X)(¥i - T)

Cov(X,Y) = i[(—lﬂ)(—lﬁ) +(=5)(=6) + (0)(~1) + (5)(9) + (10)(14)]

\

[1j "CDﬁﬁrianée between Height and Wquht: 93.?3"
> print(data)

1 375
= (160 + 30 + 0+ 45 4 140] = =~ = 93.75

Height wWeight Height_dev Weight_dev BMI
1 160 55 -10 -16 21.48437
2 165 65 -5 -6 23.87511
3 170 70 0 -1 24.22145
4 175 80 5 9 26.12245
5 180 85 10 14 26.23457



# Create the dataset
height <- c(160, 165, 170, 175, 180)
weight <- c(55, 65, 70, 80, 85)

# Create a data frame
data <- data.frame(Height = height, weight = weight)

# Calculate the means
mean_height <- mean(datafHeight)
mean_weight <- mean(datafweight)

# Calculate deviations from the mean
dataf$Height_dev <- data$Height - mean_height
datatweight_dev <- dataS$weight - mean_weight

# Calculate covariance
covariance <- sum(datat$Height_dev * data$weight_dev) / (nrow(data) - 1)

# Calculate BMI
data$BMI <- data$weight / (data$Height / 100)A2

# Print results
print(paste(”"Covariance between Height and Weight:
print(data)

, covariance))



Step 3: Interpret the Covariance

Once you run the code, you will find that the covariance between height and weight is positive,
indicating that as height increases, weight tends to increase as well. This is expected because

generally, taller individuals may weigh more.

Relating to Body Mass Index (BMI)

BMI Calculation

Body Mass Index (BMI) is a measure of body fat based on height and weight, calculated as:

Weight (kg)

BMI = . 2
(Height (m))
| -Persan Height (cm) ‘ Weight (kg) BMI
| 1 160 55 2148
2 | 165 | 65 | 23.88
3 | 170 | 70 | 24.22
4 | 175 | 80 | 26.12

5 180 85 26.23




Converting height from cm to m:

e Person1:1.60m, BMI = I%F ~ 21.48

e Person2:1.65m, BMI = (1_6655)2 ~ 23.88

Person 3: 1.70m, BM I = (1;%}2 = 24.22

Person 4: 1.75m, BMT = (Iiﬂﬁ}g ~ 26.12

Person 5: 1.80m, BM T = = 26.23

85
(1.80)?




Correlation

What is the Correlation Coefficient?

The correlation coefficient is a statistical measure that describes the strength and direction of a
linear relationship between two variables. The most commonly used correlation coefficient is

Pearson's correlation coefficient, denoted as 7.

e Values of r:

e 1 = 1: Perfect positive correlation

e 71 = —1: Perfect negative correlation
* 1 = 0: No correlation

e (0 < r < 1: Positive correlation

e —1 < 7 < 0: Negative correlation



Types of Correlation




Pearson’'s Correlation Coefficient:

~ Cov(X,Y)

ogxoy

r

where oy and oy are the standard deviations of X and Y.

Interpretation: Discuss the interpretation of the correlation coefficient:

» Positive Correlation: 0 < r < 1 (e.g., as one variable increases, the other also increases)
* Negative Correlation: —1 < r < 0 (e.g,, as one variable increases, the other decreases)

* No Correlation: = 0 (no linear relationship)

= ). (2i-3)(yi-7)

/T (2T g



Dataset:

2 2
3 3
- 4
5 5
6 6
7 7
8 8
9 9
10 10

Step-by-Step Calculation

Step 1: Calculate the Means

1+2+3+4+5+6+7+8+9+10 55
10 - 10
1+2+34+4+5+64+7+8+9+10 55
10 - 10

= 3.9

=1
Il

= 9.9

e
|




Step 2: Calculate Deviations from the Mean

o Yy T~ y—1
1 1 45 4.5
2 | 2 | =35 | -3.5
2 | 3 | -2.5 | =55
4 | 4 -1.5 | 15
5 | 5 | 5 | -0.5
6 6 0.5 0.5
7 { 1.5 1.5
8 | 8 | 25 | 2.5
9 9 35 35
10 10 | 45 45

Step 3: Calculate the Covariance

CD?(X,Y) _ Z(mi 5 :E)(yt - g)

n—1




Calculating the product of deviations:

Y (2 — 2)(3 — 7) = (—4.5)(—4.5) + (—3.5)(—3.5) + (—2.5)(—2.5) + (—1.5)(—1.5)
\

+ (—0.5)(—0.5) + (0.5)(0.5) + (1.5)(1.5) + (2.5)(2.5) + (3.5)(3.5) + (4.5)(4.5)

=25 +12254+625+225+0254+0.254+2254+6.25+12.25+ 2025 =925

92.5 925
10-1 9

Cov(X,Y) = ~ 10.28



Step 4: Calculate the Standard Deviations

U_\/Zmﬁ—m
* n—1
i >y —9)*
v n—1

B \/ 20.25 + 12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 + 12.25 + 20.25
B 9

\/ 20.25 + 12.25 + 6.25 + 2.25 + 0.25 + 0.25 + 2.25 + 6.25 4 12.25 + 20.25
: _

92.5
— = 3.22
9

92.5
— = 3.22
9 3



Step 5: Calculate the Correlation Coefficient

_Cov(X,Y) 1028 _ 1028 .

" T T o0, | 322x322 1038




Question: The local ice cream shop keeps track of how much ice cream they sell versus the temperature on
that day, here are their figures for the last 12 days. Can you tell if Ice cream sales are correlated to that of

temperature? Find out the nature and strength of correlation.

16.4°
11.9°
152"
185"
J24°
19.4°
251"
23.4°
S
22.6°
172"

$325
$185
$332
$406
$522
$412
$614
$544
$421
$445
$408




Step-by-step Process:
1. Mean of Temperature (X) and Sales (Y):

Mean(X) = > h
Mean(Y) = %

2. Covariance: Covariance is calculated as:

2_(Xi — Mean(X))(Y; — Mean(Y))

cov(X,Y) =

3. Standard Deviation: The standard deviation is the square root of the variance, calculated as:

2_(Xi — Mean(X))?
/

Fyr =

Ty =

\/E(Yi — Mean(Y))?

4. Correlation: Finally, the correlation is calculated using the formula:

cov(X,Y)
{ i —

Ox Oy



. Covariance (cov(X, Y)):

cov{X.Y)—443.75

. Standard deviation of temperature (7 y):

oy — 3.84
. Standard deviation of sales (o} ):
oy = 120.68
s ’ ; _oov(X,Y) .
. Correlation coefficient (r) using the formula r = e
443.75

= (.96

"= 384 % 120.68




ATEACHER WANTS TO DETERMINE THE CORRELATION BETWEEN
THE NUMBER OF HOURS SPENT STUDYING AND TEST SCORES.

STUDENT NAME

JOHN

ALLIE

MARK
SAMANTHA

JESSICA
JOSEPH







Spearman Rank Correlation:

> It is a non-parametric measure of correlation that
assesses how well the relationship between two
variables can be described using a monotonic
function.

» Unlike Pearson’s correlation, which measures linear
relationships, Spearman’s correlation evaluates the
strength and direction of the association between
two ranked variables.

> It is especially useful when the data do not meet the
assumptions required for Pearson’s correlation, such

as normality.




Formula for Spearman Rank Correlation

The Spearman correlation coefficient (p or ;) is calculated using the formula:

6> d;

= T
s n(n? — 1)

Where:
e d; is the difference between the ranks of each pair of values.

e 71 is the number of observations.

Key Features of Spearman Rank Correlation

* Monotonic Relationships: Spearman'’s correlation can capture monotonic relationships (i.e., as
one variable increases, the other variable tends to increase or decrease, but not necessarily at a

constant rate).

¢ Rank-Based: It ranks the values of each variable and then calculates the correlation based on

these ranks.

* Non-Parametric: It does not assume a specific distribution for the data, making it suitable for

ordinal or non-normally distributed data.



Step-by-Step Calculation of Spearman Rank Correlation

Example Dataset

Let’s consider the following paired dataset:

X Y
| 1 3
2 1
5 2
4 4
5 5
\
Step 1: Rank the Values
[ x Y  Rankof X Rank of Y’ 4 &
| 1 | 3 | 1 | 3 | £ | 4
2 | 1 2 | 1 | 1 | 1
3 | 2 3 | 2 | 1 | 1
4 | 4 | 4 | 4 | 0 | 0




Step 2: Calculate d; and d?

e Differences: Calculate d; (difference between ranks).

e Squared Differences: Calculate d?.
> d?=441+1+0+0=6

Step 3: Calculate n

The number of observations n = 5.

Step 4: Plug Values into the Formula
6 d;

~ n(n? —1)

Substituting the values:

6-6 36 36




Interpretation

* The Spearman rank correlation coefficient (p = 0.7) indicates a strong positive monotonic

relationship between the two variables X and Y.

# Create a dataset
data <- data.frame(
X = efd, 2, 3, 4, 5},
Y3, %, 2.4, 5)

)

# Calculate Spearman rank correlation
spearman_correlation <- cor(data$xX, data$y, method = "spearman')
print(paste("Spearman Rank Correlation: ", spearman_correlation))

[lj "Spéﬁrmanqkahk Correlation: 0.7"



Question:

The scores for 10 students in English and Maths are as follows. Compute Spearman’s Coefficient.

56 75 45 m 62 64 58 80 76 61
66 70 40 60 65 56 59 n 67 63

% 0 3 2 1 1 6rd’
s 0 1 0 0 0 e n(n?-1)
n 0 4 7 3 g 6% 54
62 5 6 5 1 | P=1'Iﬁﬁ§fﬁ
B4 86 5 | 4 16
1 324

58 89 8 8 0 =j]=-—

' P=2"390
80 1 1 i} 0
% - g : ; p=1-033
6

63 7 6 1 1 p =067



Here Descriptive part of Stats
done........




