Powders

• Powder = dry substance of finely divided particles ranging roughly $1.25 \mu m - 1.7 mm$.

• Medicated powder uses

- Internal (oral)
- External (topical)

Main dosage-form categories

granules

- Granule = aggregated powder particles about 2 4 mm in diameter
- **Granulation** = the process of binding fine powders together to create these larger, free-flowing particles.

How we measure particle size

• Sieving: mechanical shaking through progressively finer metal sieves; records the fraction retained or passed on each mesh (practical range $\approx 40 \ \mu m - 9.5 \ mm$).

Why we granulate

- 1. Prevent segregation of mixed ingredients.
- 2. Improve flow—fine powders stick and bridge; granules flow freely.
- 3. Enhance compressibility for any later tableting.
- 4. **Reduce caking** in slightly hygroscopic materials (granules absorb a little moisture yet stay free-flowing).
- 5. Save space—granules are denser, so the same weight occupies less volume for storage/shipping.

Granulation methods

Method	Key points
Dry	No liquid; powders are compacted under high pressure and then milled to size.
granulation	
Wet	Powder wetted with a volatile, non-toxic solvent (water, ethanol, isopropanol). Wet mass
granulation	is sieved \rightarrow dried. • Water is safe but can cause hydrolysis & needs longer drying. •
	Organics are used for water-sensitive drugs or faster drying.

Dosage-form variants of medicated granules

Form	Defining feature	Example/Note
Bulk granules	Large single container; suitable for high doses (e.g., methyl-cellulose laxative 1–4 g).	Patient measures dose.
Divided granules	One-dose sachets or wraps.	Same handling rules as divided powders.
Effervescent granules	Contain drug + NaHCO ₃ + citric & tartaric acids; fizz on water contact.	Formulated exactly like effervescent powders.

Advantages of powders & granules (vs. liquids/tablets)

- 1. **Greater chemical stability** in dry state (e.g., antibiotic "dry syrups" last 2–3 yrs dry but 1–2 weeks after reconstitution).
- 2. Convenient for large doses—easier to swallow a dispersed powder than many big tablets (e.g., 1–5 g Mg trisilicate).
- 3. Faster dissolution than tablets/capsules because no disintegration step.
- 4. faster drug absorption orally for the same reason.

Disadvantages

- 1. Bulky to carry compared with a small bottle of tablets or capsules (though unit-dose sachets help).
- 2. Taste masking is harder; effervescence can help, but solid-dosage coating is often better.
- 3. Unsuitable for low-dose drugs—tablets/capsules are more accurate below a few milligrams.
- 4. Not appropriate for acid-labile drugs—need enteric-coated tablets instead.

Capsules

- A **capsule** is a solid dosage form in which drug and/or inert ingredients are enclosed in a gelatin shell.
- Two shell types are used: hard (two-piece) and soft (one-piece, elastic).

	Hard gelatin capsules (HGCs)
Key point	Details from your text
Structure	Two parts: <i>body</i> (longer) + <i>cap</i> (shorter) that locks over the body.
Advantages	 Mask unpleasant taste
	- Deliver powders without compression \rightarrow faster dissolution/absorption
	- Sometimes easier to swallow than tablets
Limitations	- Sensitive to humidity & microbial growth
	- Hard for some patients to swallow
	- more expensive
Raw materials	Gelatin solution (demineralized water \pm glycerol) + colorants, preservatives, process
	aids.
Gelatin facts	 Non-toxic, soluble at body T°, film-forming.
	- Obtained by collagen hydrolysis: <i>Type A</i> (acid) from skins, <i>Type B</i> (alkaline) from
	bones.
	- Critical specs: bloom strength (rigidity) & viscosity . High-bloom grades used for
	HGCs.
Plasticizer	Hard shells are essentially non-plasticised (rigid).
Colorants	Soluble dyes or pigments (TiO ₂ for white opacity; iron oxides for black/red/yellow).
	Recent trend toward pigments.
Preservatives	Added mainly during processing; final moisture is too low to support growth.
Sizes	Eight standard sizes 000 (largest) \rightarrow 5 (smallest); sizes 0-4 most common. Self-locking
	designs prevent separation.
Fill-weight	<i>Fill weight</i> = (tapped bulk density) \times (capsule volume). Choose size so calculated
rule	volume \approx published capsule volume; add diluent if needed.
Filling	Powders, granules, pellets, tablets, or thermo-softening semisolids that do not react with
materials	or soften gelatin.

C - C		1		(f	->
S0I	gelatin	capsul	les (songel	S)

Key noint	Details from your text
Description	One-piece, hermetically sealed shell formed, filled, and sealed in a single step;
	surrounds liquid/semi-solid fill.
Advantages	- Portable liquid dosage
	- Lower gastric irritation vs. some tablets
	- Excellent dose uniformity (volumetric fill)
	- Protect oxidation/hydrolysis-sensitive drugs (low water, low O2 diffusion)
	- Often superior bioavailability (drug already dissolved/dispersed).
Shell	Gelatin + plasticizer (usually glycerol 0.3–1 part per part gelatin) + water (0.7–1.3
formulation	parts) \pm preservatives, dyes, opacifier (TiO ₂), flavor, drugs. Plasticizer level controls
	flexibility (higher for water-miscible fills & chewables).
Fill possibilities	Non-aqueous liquids, suspensions, pastes, self-emulsifying oils; insoluble drugs
	dispersed with suspending agents/surfactants.
Fill limitations	Avoid: high-water excipients, true emulsions, high surfactant content, extreme pH (<
	2.5 or > 7.5), aldehydes.
Liquid vehicles	• Water-immiscible: volatile/non-volatile oils, hydrocarbons, ethers, esters.
	• <i>Water-miscible</i> : low-MW PEG 400–600, isopropyl alcohol, propylene glycol,
	glycerol (≤ 10 %).
Suspensions	Use beeswax/paraffin + oil for oily bases or PEG 4000/6000 for non-oily; Tween 80
	as wetting agent.
Optional shell	Enteric protection by external coating (e.g., 4 % cellulose acetate phthalate).
treatments	
• Shell rigidit	ty: Hard = rigid, Soft = elastic (high plasticizer).

- **Primary fills**: Hard = dry solids (powders/granules) Soft = liquids, pastes, suspensions. •

TABLETS

Why tablets matter

- Represent ≈ 70 % of modern pharmaceutical dosage forms.
- Permit precise dosing, high stability, low production cost, uniform weight/appearance, and easy transport.

Core advantages of compressed tablets

- 1. Accurate, simple dosing.
- 2. Portable for patient and in bulk.
- 3. Product uniformity.
- 4. Typically more chemically stable than liquids; drug-release rate can be engineered.
- 5. Mass-production is fast and inexpensive.

Main oral tablet categories (all from the text)

Category	Key features & typical uses
Sugar-coated	Masks unpleasant taste; swallowed whole (e.g., metronidazole).
Film-coated	Thin polymer film for protection/taste-masking.
Enteric-coated	Withstands stomach acid; releases drug in intestine.
Effervescent	Contain carbonate + acid; release CO ₂ in water for rapid dissolution & palatability.
Sublingual / Buccal	Small, soft, no disintegrant; rapid systemic absorption via oral mucosa (e.g., glyceryl trinitrate).
Lozenges	Large tablets dissolved slowly in mouth; local antiseptic or systemic vitamin delivery.
Chewable	Mannitol base; no disintegrant; ideal for children or quick antacid action.
Multilayer	Separate incompatible drugs in stacked layers.
Controlled-release (SR / MR)	Designed for slow, prolonged drug release.
Implant tablets	2–3 mm sterile pellets of pure drug inserted surgically for months-long release.

Sustained-release tablets (SRT)

Advantages

- Improved compliance (once-daily dosing).
- Night-time coverage without waking.
- ☞ Useful for forgetful or psychiatric patients; saves nursing time.
- Can lower side-effect incidence (e.g., less gastric bleeding with SR aspirin).
- Produces steadier plasma drug levels.

Disadvantages

- Higher unit cost.
- The free for drugs absorbed only in specific GI regions.
- *•* Overdose management is difficult; slower body clearance.
- Possible local ulceration (e.g., KCl), variable absorption, or dose "dumping" from poor design.

Tablet formulation

Property needed	How it is achieved
Powder fluidity	Vibrators, glidants (e.g., fumed silica < 0.01 %), spheronisation, granulation.
Compressibility	Choice of excipients or granulation; poorly compressible drugs (e.g., paracetamol)
	often require granulating.

Ideal granules for compression: withstand high pressure, contain uniform drug distribution, have narrow size range, near-spherical shape, minimal dust.

Tableting methods

- 1. Dry techniques
 - **Direct compression** (mix drug with a *direct-compression vehicle*).
 - Slugging or roller compaction.
- 2. Wet granulation (powder \rightarrow wet mass \rightarrow granulate \rightarrow dry \rightarrow compress).

Direct-compression vehicles (three groups):

- 1. Disintegrating but poor-flow (e.g., microcrystalline cellulose, MCC).
- 2. Free-flow, non-disintegrating (dibasic calcium phosphate).
- 3. Free-flow, dissolve to disintegrate (anhydrous lactose, sucrose, dextrose, mannitol).

MCC is widely used, chemically inert, yet hygroscopic; can sometimes stabilize moisture-sensitive drugs.

Tablets Excipients

Diluents (bulking agents)

- **Purpose** : Raise tablet weight to a practical \geq 50 mg when drug dose is tiny.
- Characters: Chemically inert, inexpensive, non-hygroscopic, neutral, hydrophilic, good taste & flow/compression properties.
- Examples:
 - Lactose (most used, compressible)
 - Dicalcium phosphate (insoluble, for hygroscopic drugs)
 - Starches (also binders)
 - Microcrystalline cellulose (flows, disintegrates)
 - Dextrose (soft, moisture-absorbing)
 - Sucrose (sweet, very hygroscopic)
 - Mannitol (rapidly soluble, cooling taste for chewables)

Binders / Adhesives

- *Purpose* : Glue powder particles together during wet granulation to give strong granules/tablets.
- *Characters*: More effective in solution than dry form; choice depends on process.
- Examples:
 - Traditional: starch paste, gelatin, sugars (glucose, lactose), natural gums (acacia, alginate), cellulose gums (methyl- & carboxymethylcellulose).
 - Modern: polyvinyl-pyrrolidone (PVP), hydroxypropyl-methylcellulose (HPMC), dry binders like MCC, cross-linked PVP.

Glidants

- **Purpose** : Improve powder/granule flow by reducing inter-particle friction.
- *Characters*: Added in very small amounts (< 0.1 %).
- Transformed (colloidal) silica (most effective), starch (also disintegrant).

Lubricants & Antiadherents

- *Purpose* : Prevent sticking to punches/dies and ensure smooth ejection.
- *Characters*: Must be present when tooling carries logos/markings.
- **Examples:**
 - Magnesium stearate, calcium stearate, stearic acid (hydrophobic, may slow disintegration).
 - Talc (also glidant, not hydrophobic).
 - Polyethylene glycol (water-soluble).
 - Liquid paraffin (dispersion issues).
 - Sodium lauryl sulphate (adds wetting).

Disintegrants

- **Purpose** : Promote tablet breakup when exposed to aqueous fluids to enable drug release.
- *Characters*: Always included; choice influences disintegration speed.

