
Preliminary Draft

Economic Incentives in Software Design

by

Hal R. Varian

University of Michigan

March 1990
Current version: June 15, 1993

Abstract. I examine the incentives for software providers to design appropriate user interfaces.
There are two sorts of costs involved when one uses software: the fixed cost of learning to use a
piece of software and the variable cost of operating the software. I show that a monopoly provider
of software generally invests the right amount of resources in making the software easy to learn,
but too little in making it easy to operate. In some extreme cases a monopolist may even make the
software too easy to learn.

Keywords. software, industrial organization, monopoly, quality, copying

Address. Hal R. Varian, Department of Economics, University of Michigan, Ann Arbor, MI
48109

Economic Incentives in Software Design

Hal R. Varian

The market for computer software is large and rapidly growing. Despite this, there has been little

theoretical investigation of the unique economic features of the software market. In this paper

I investigate an important aspect of software economics: the extent to which the providers of

software have the right incentives to design an appropriate interface for their software.

1. User costs

An important feature of software is that there are large costs to the consumer of using it. First, one

must learn how to use a particular software package. Even if one only wants to use the package

occasionally, one has to read the documentation, practice a bit, and invest time and energy in

learning the basics of how to use the package. This cost of learning the software is a fixed cost to

the user: it is more-or-less independent of the amount of use that the software gets.

This should be contrasted with the variable cost of operating a software package. These are

costs that are incurred every time one uses the software. The most obvious of these costs are time

costs, such as a delay in loading or saving a file. If it takes 10 seconds to start the package every

time you use it, this is 10 seconds of lost time each time the package is used. If one has to wade

through an elaborate menu structure to perform a simple task, then this is a cost that must be born

every time the task is undertaken.

People who use a particular software package every day incur a large amount of these variable

costs, while people who use this software rarely incur little variable costs. However, everyone

incurs roughly the same fixed cost of learning the program.

Reviews of software often talk about ‘‘ease of use.’’ The above distinction suggests that

there are two dimensions to ease of use: ease of learning and ease of operation. Software that is

easy to learn has a lot of menus and elaborate help screens. It provides user prompts and error

This work was supported by the National Science Foundation. I also wish to thank the Dipartimento d’economia
politica at the Universita di Siena for their hospitality during the period of this research. I would like to thank Jim Adams,
Paul Courant and Judy Olson for their comments on an earlier draft of this paper.

1

messages. The documentation is easy to read. Software that is easy to operate generally has fewer

menus, replacing them with command key combinations. This means that a given command can

be executed quite quickly---once the user has made the investment in learning the appropriate

keystrokes. In this sense, the command driven interface is easy to operate, although the menu

interface is easy to learn.1

Another aspect of ease-of-operation is performance: how quickly and how well the software

does the job it is supposed to do. When we turn to modeling consumer choice of software we will

be interested in the net performance of the software: the difference between the benefits from the

task the software does and the costs of making the software perform that task.

These two aspects of ease-of-use---being easy-to-operate versus being easy-to-learn---are not

mutually exclusive. A well-designed software package can satisfy both goals. However the

software designer still has to decide how much effort to put into improving each aspect of the

user interface. If the software is supposed to be delivered in one week, is that week better

spent improving the speed of some calculation or fine-tuning the menu structure? The answer

presumably depends on how improvements in these two dimensions affect profits : : :which is

where the economic analysis comes in.

In terms of our previous discussion, the cost of learning a piece of software is a fixed cost,

while the cost of using a piece of software is a variable cost. The software provider would like to

minimize both sorts of user costs, in order to make the software more attractive to consumers, but

it is costly to do so. The question of interest to an economist is whether the market provides the

right incentives to the software provider. Will the provider of software invest the socially correct

amount of resources in minimizing each type of user cost?

Although we have discussed user costs in terms of software design, it is clear that it also applies

to other types of goods. Consider for example, sporting equipment. Equipment designed for casual

users may be very different from equipment designed for intensive users. An easy-to-learn tennis

racket may be loosely strung, while an easy-to-use racket may be tightly strung. Or consider other

sorts of hobbyist equipment such as cameras. Again, a camera for a casual user has a very different

design than a camera for a professional user.

1 I first heard of this distinction in a discussion with Paul Scott. For some background concerning design of user-friendly
software, see Nakamura (1990). See Mantei & Teorey (1988) for a discussion of benefit-cost analysis of software design
from the viewpoint of software purchases by large corporations.

2

2. Market structure

However, there is an important distinction between the market for sporting equipment and the

market for software. The market for tennis rackets and cameras seem to be reasonably competitive.

There are a number of different types of products provided, and a given consumer can choose the

type of product that is best for him. A casual user wants a product that is easy to learn; an intensive

user wants one that is easy to operate, and the market provides both types of products.

The market for software is a bit different. It appears that for some products at least, the market

is very highly concentrated. For example, in the database market, Ashton-Tate has over 50 percent

of the market. In the wordprocessor market, WordPerfect appears to have over 60 percent of the

market, and Microsoft controls another 25 percent. Until recently Lotus had a 75 percent share of

the spreadsheet market.2

At a more aggregated level the market for personal computer software seems to be becoming

more concentrated. According to the 1990 SoftLetter 100 list, Microsoft had 25% of industry

revenue and the next 3 companies (Lotus, Novel, and WordPerfect) had another 25%. The top 12

companies had 77% of industry revenue, as compared to 66% in 1985.3 This concentration has not

gone unnoticed in Washington; the FTC is currently examining Microsoft looking for evidence of

unfair trade practices.

In addition, there are compelling theoretical reasons to believe that the software market is

unlikely to be a perfectly competitive market, due to the presence of increasing returns to scale. In

the production of software, nearly all of the costs are fixed costs---the costs involved in designing,

writing, debugging, documenting and marketing the software. Furthermore, most of these fixed

costs are sunk costs---they are not recoverable if the firm exits the industry. The variable costs---the

costs of duplicating, packaging, and distributing the software---are very small by comparison. The

fact that total costs are much larger than variable costs indicates that the likely equilibrium market

structure will involve producers of mass-market software having a considerable amount of market

power.

2 Data is for the MS-DOS market only. Database figures come from Computer Reseller News, July 15, 1991.
Wordprocessing figures come from Standard & Poor’s Industry Surveys,, April 1991. Spreadsheet figures come from
Datamation,, December 15, 1990.

3 Data from Bulkeley (1991); see also Fisher (1992).

3

Another factor that suggests markets for software will be highly concentrated is the presence

of network externalities among users. It is advantageous to me to have the same software as my

colleagues since it makes it easier to share files, expertise, etc., and this tends to give the largest

firm in the industry an advantage in selling more software.

Here we examine the admittedly extreme case of a monopolist. The case of monopolistic

competition is certainly highly relevant, and I hope to examine it in future work, but it is beyond the

scope of this paper. In any event, the phenomenon we examine here will apply in monopolistically

competitive markets as well. Indeed, it will arise in any market where the producer has some

degree of market power. The essential phenomenon we will discuss arises in any market where the

producer faces a downward sloping demand curve for its product.

However, it is important for the following results that the manufacturer does not engage in

product differentiation. That is, our model assumes that the producer sells only a single version

of its product. This appears to be plausible in the case of software provision. There are some

exceptions to this rule, such as WordPerfect and LetterPerfect, but these are rare. Generally, there

is a single version of the product which is sold to a whole spectrum of users. This is quite different

from the behavior of a typical manufacturer of tennis rackets, skis, or cameras.

3. The basic idea

The basic idea that I want to capture can be stated quite simply. We may think of ease-of-learning

and ease-of-operation as two different dimensions of software ‘‘quality.’’ It is well-known from

the work of Spence (1975) that a monopolist does not in general have the right incentives to provide

the appropriate amount of quality. Roughly speaking, the monopolist is interested in how a change

in quality affects the willingness-to-pay of the marginal consumer, while the willingness-to-pay of

the average consumer is the appropriate concern for social welfare.

Consider a monopolist contemplating investing an additional dollar in software design. Should

the dollar go to making the software easier to operate or easier to learn? If the monopolist makes

the software easier to learn then he will acquire additional customers---those consumers who

previously weren’t willing to invest in learning how to use the product, but now find the investment

worthwhile. If the monopolist makes the software easier to operate, he will also acquire some

new customers : : : but most of the benefits of the improvements in ease of operation accrue to the

4

people who would have bought the software anyway. Since the monopolist cannot capture the full

marginal benefits from making the product easier to operate, it will, in general, underinvest in this

aspect of software design. However, since the monopolist can expand its market by making the

software easy to learn, it will have the correct social incentives in this dimension.

4. Design of a word processor

Take, for example, the design of a word processor. Some users may have need for a word processor

only once a week. Whether or not they buy a word processor depends on how difficult they think

that it will be to learn to use it effectively. How quickly it reformats paragraphs or spell-checks

is not of great significance to them. However, these features could be very important to a person

who uses the word processor everyday. For an intensive user, the learning costs are small relative

to the costs of operation; for a casual user, the learning costs are the dominant consideration.

Ideally, there would be ‘‘friendly’’ wordprocessors for casual users and ‘‘powerful’’ wordpro-

cessors for intensive users. But if there is only one wordprocessor for both casual and intensive

users there is an inevitable tradeoff in the design of such software. Should there be a special

command to transpose two words? This could be useful to an intensive user, but probably not very

useful to an occasional user. Providing and documenting such a command is costly to the software

developer. In at least the first release of the software, the developer would probably concentrate

more on the quality of the documentation and user interface rather than investing much time in

adding rarely-used features. Similarly, the casual user would probably not be too concerned with

how rapidly the document could be reformatted, or how quickly the spell-checker worked. But

these factors could be very important to an intensive user.

People who use software on an occasional basis don’t want a lot of choices---the are willing to

give up some features in order to make the software easy to learn. People who use the software

intensively are willing to invest in learning a variety of features since they will probably find

occasion to use them.

Another important example of this distinction is in user support. ‘‘Handholding’’ support is

critical to casual users, but not nearly so important to intensive users. In fact, intensive users would

probably prefer to see a company devote more of its resources to improving software performance

rather than providing increased handholding for new users. But it’s the new users who bring in

5

the new dollars---and that’s why software companies invest in activities that can reduce the costs

facing new users.

When we look at the evolution of personal computer software, we see improvements in both

the ease-of-learning and the ease-of-use of software. The current behavior of software providers

seems to be much more focussed on the ease-of-learning aspect of software design. In order to sell

software to consumers who don’t have it already, they have to make the software easier to learn.

The attraction of user-friendly shells, such as MS-Windows, to software developers lies in the fact

that once users have mastered the shell environment, the fixed costs of learning a new piece of

software are much smaller for them. Hence one can expect that the demand for software products

will increase.

Contrast the reaction of software vendors to MS-Windows with the reaction, say, to an increase

in CPU speed. This might make getting things done a lot easier for intensive users of some

software packages, but it probably wouldn’t sell much new software. Of course, developers might

redesign their software to add help features that were not feasible before---but that simply shows

what is important to the software producers.

5. Monopoly provision of quality

The producer of a product chooses both the price and the characteristics of the product he produces.

Most work in economics is concerned with the pricing decision. However, considerations of

product design are also of great importance. Spence (1975) and Sheshinski (1976) consider the

incentives facing a monopolist in choosing the ‘‘quality’’ of its product. Here quality should be

thought of as a variable that shifts the demand curve for the product; in our application, ‘‘quality’’

is the ease-of-learning and the ease-of-operation described above.4

Spence (1975) computes the derivative of consumers’ surplus minus costs evaluated at the

monopoly position and derives two conditions sufficient to sign this derivative. The first involves

comparing the impact of a quality change on the marginal versus the average consumer: if

the average consumer values the change in quality more than the marginal consumer then the

monopolist underprovides quality. The second involves examining the sign of @2p(x; q)=@x@q.

4 The most common example of quality in the literature is ‘‘durability.’’ See the seminal work of Swan (1970) and the
survey by Schmalensee (1979). See also the textbook treatment by Tirole (1988).

6

These conditions provide an answer to the question, but it is hard to interpret precisely what they

mean. As Schmalensee (1979) puts it: ‘‘It is very hard to form any general intuition about the sign

(let alone the magnitude) of the crucial cross-derivative PQX .’’

In order to determine the sign it is helpful to develop a microeconomic model of consumer

choice, a task I pursue below. However, before doing that it may be useful to derive the

Spence-Sheshinski result. The derivation below is different from the method used by Spence and

Sheshinski and has the advantage that it focuses attention on the crucial aspect of the problem

relevant to the case at hand.

Let x denote the quantity and q the quality of some product. Let u(x; q) be the utility of the

product and c(x; q) be the cost of providing it. Let p(x; q) = @u(x; q)=@x be the inverse demand

curve for the product. The social objective function is defined to be

W (x; q) = u(x; q)� c(x; q)

which is simply benefits minus costs. The monopolist’s objective function is given by profit:

P (x; q) = p(x; q)x� c(x; q):

Let (xm; qm) denote the monopolist’s profit-maximizing choice of output and quality. We are

interested in the derivative of welfare evaluated at the monopolist’s choice.

Write the welfare function as

W (x; q) = [u(x; q)� p(x; q)x] + [p(x; q)x� c(x; q)] = CS + PS:

This is simply the sum of consumer surplus plus producer surplus. If we differentiate with respect

to q and evaluate the derivative at the monopolist’s optimum, we see that the derivative of producer

surplus must be zero---since the monopolist is already maximizing profits. Hence the derivative

of welfare with respect to quality is simply the derivative of consumers’ surplus with respect to

quality. This is a significant simplification since it means that we don’t have to model the cost side

of things at all.5

5 This observation also has global implications. Start at the profit-maximizing position and consider a ‘‘large’’ change
in quality. Profits go down since we’ve moved away from the profit-maximizing choice; if consumers’ surplus also goes
down, welfare unambiguously decreases.

7

How does consumer surplus change as quality changes? This derivative is given by

@W (xm; qm)
@q

=
@u(xm; qm)

@q
�
@p(xm; qm)

@q
xm:

We can write this expression as

@W (xm; qm)
@q

= xm
@

@q

�
u(xm; qm)

xm
� p(xm; qm)

�
:

Hence the sign of the derivative of the welfare change is just the sign of the term in brackets. The

first term in the brackets is the total willingness-to-pay divided by the number of consumers who

purchase the good; this is the average willingness-to-pay. The second term in the expression is the

price---the marginal willingness-to-pay. The welfare effect of the quality change depends on how

a quality change affects the difference between these two terms. This proves the first of Spence’s

observations.

Note that no calculations are necessary; all that is required is the observation that the derivative

of profit is zero at the monopoly solution and the observation that consumers’ surplus is proportional

to the difference between an average and a marginal quantity. We now go on to ask what it is about

demand that determines the sign of this quantity. In other words, how does consumers’ surplus

change as the demand curve moves? As shown in Figure 1, we can decompose a movement of the

demand curve into a parallel ‘‘shift’’ and a ‘‘tilt.’’ The shift doesn’t change consumers’ surplus at

all; only the tilt matters. It is easy to see that if the demand curve gets flatter consumers’ surplus

decreases and if it gets steeper, consumers’ surplus increases.6

Thus what matters is how a change in quality affects the slope of the demand curve; this is

given by
@

@q

@p

@x
=
@2p(x; q)
@q@x

This is, of course, simply the Spence-Sheshinki condition. However, the interpretation in terms of

shifts and tilts turns out to be quite useful below.

We can also relate this back to the earlier discussion of marginal versus average valuations.

Changes in quality that shift the demand curve have no effect on welfare since they don’t affect

6 The ‘‘tilt’’ terminology is slightly misleading since the normal usage of tilt implies a constant change in slope. Of
course this is not necessary for the result; all that is required is that the change in q either increases or decreases the slope
of the demand curve at every point---not that it changes the slope of the demand curve by the same amount at every point.

8

Price

Quantity

shift

tilt

x m

final consumers’ surplus

original
consumers’
surplus

Figure 1. Decomposing the change in demand into a shift and a tilt.

the difference between the average and marginal valuation. To affect the average and marginal

consumer differently, the change in quality must affect the slope of the demand curve.

It follows that to answer the question of how a change in quality affects welfare, we need to

construct a micro-model of consumer behavior and see how the quality variable enters the demand

curve. Quality variables that shift the demand curve have no effect on welfare; variables that tilt the

demand curve increase or decrease welfare depending on which way they tilt the demand curve.

6. The model

I now present a formal model of ease of learning versus ease of operation. I model the user costs

in the following way. I suppose that there are a number of different users, each of whom uses the

software more or less intensively. Let n be the number of times that a consumer uses a piece of

software in some given time period, and let g(n) be the number of consumers who use the software

this often. For simplicity we take the frequency-of-use of the software to be independent of the

ease-of-operation, although this can be relaxed.

Each time the software is run, the user bears a cost v. This is a variable cost of operation: it

could refer to the time it takes to run the program, the complexity of the keystrokes necessary to

run it, etc. High-intensity users---those who use the software a lot---pay a high variable cost.

Let F be the fixed cost of running the program. This is the cost that the user must pay regardless

of his intensity of use. If she runs the program once or a hundred times, she must pay the same

9

cost F . This should be thought of as the cost of learning to use the program. A program that is

easy to learn has a low value of F ; a program that is easy to operate has a low value of v.

Let c(x; v; F) be the cost to the manufacturer of selling x copies of a program that has user

costs of (v; F). For simplicity, we will suppose that the cost function has the separable form

c(x; v; F) = cx(x) + cv(v) + cF (F). The term cx(x) measures the cost of producing x units of the

software. The term cv(v) is the cost of designing software with variable costs v. The term cF (F)

is the cost of designing software with fixed user costs F . This separable structure is not necessary

for most of the results, but it makes the analysis simpler.

For simplicity we assume that the marginal costs of production are constant, and set cx(x) =

cxx + K . Here cx is the marginal cost of producing an extra copy of the software, once it has

been created, and K is the fixed cost of producing the software. We should think of the fixed

costs as being large relative to the variable costs of production. Note that the cost functions cv and

cF should be decreasing functions of their argument since it should cost more to make a package

with smaller user costs. It is natural to assume that both of these functions are convex, since the

marginal cost of improving a package should increase the better the package is to start with.

Let b be the gross benefit to the user each time he or she uses the program. If a user runs the

software n times, the net benefit accruing to the user is then (b� v)n�F . This is the gross benefit

per use minus the user costs. If the package sells for a price of p, then a person who uses the

software n times has a consumer surplus of (b� v)n� F � p.

The benefit, b, measures the performance of the software. In our formulation, all that matters

to the consumer is the difference between the performance, b, and the ease-of-operation, v. We

might think of this as the net performance of the software: the net benefit of the software per use.

In general b is a choice variable---the producer can invest more or less effort in order to increase b.

But since all that matters to the consumer is b � v, an increase b is equivalent to a decrease in v.

Hence there is no need to carry out a separate analysis of the choice of b.

We suppose that a person who has positive consumer surplus will purchase the product, and a

person who has negative consumer surplus will not. The marginal user will be the person who has

a net surplus of zero. If n� is the intensity of use by this consumer, then it must satisfy the equation

(b� v)n� � F � p = 0;

10

which implies

n� =
F + p
b � v

: (1)

This gives us a relationship between the characteristics of the software, (v; F; p), and the number

of uses. We want to convert this into a relationship between the price and the number of users in

order to determine how many consumers will buy the product.

Let G(n) be defined by

G(n) =
Z

1

n

g(t) dt:

This measures the number of people who use the software at least n times per period. If the number

of uses by the marginal user is n�, as defined in equation (1), and there are x users in total, x must

satisfy the equation

G(n�) = x: (2)

Let H(x) be the inverse function of G(n). The function H(x) measures the number of uses by the

marginal person if x units are sold. Applying H to both sides of (2) and using (1), we can write

n� = H(x) =
F + p
b� v

:

Solving for p as a function of x we have the inverse demand function

p(x) = (b� v)H(x)� F:

Since G(n) is a monotonic decreasing function, so is its inverse, H(x). Hence the inverse

demand function is a decreasing function of price. Note that the variable cost affects the slope of

the demand curve, while the fixed user cost merely shifts the demand curve.

This is quite reasonable. If the a software package becomes easier to operate, then all users are

willing to pay more for it. But the high intensity users’ willingness-to-pay goes up by more than

the other users, since they use it more often. On the other hand, if the software becomes easier to

learn, then everyone will be willing to pay more for it, regardless of their intensity of use.

We are now in a position to apply the preceding analysis concerning the welfare effect of

changing v and F . However, it is useful to spell out the welfare analysis in slightly more detail.

11

In order to do this we first derive an expression for consumers’ surplus. If x users buy the

software the gross surplus (the area under the demand curve) is:

u(x) =
Z x

0

p(t) dt =
Z x

0

[(b� v)H(t)� F] dt:

If each package is sold at a price of p(x), the net consumers’ surplus is

u(x)� p(x)x =
Z x

0

[(b� v)H(t)� F] dt� [(b� v)H(x)� F]x

= (b� v)

�Z x

0

H(t) dt�H(x)

�
:

(3)

Note that F drops out of this expression; it follows immediately that the derivative of consumers’

surplus with respect to F is zero. Furthermore, since H(x) is a decreasing function, it is easy to

see that the expression in brackets is positive. A reduction in v helps the average consumer more

than the marginal consumer since the average consumer uses the software more intensively than

the marginal consumer.

The monopolist has the correct incentives with respect to ease-of-learning, but the wrong

incentives with respect to ease-of-operation. Why? Essentially, the reason is the standard

monopoly distortion pointed out by Spence (1975): the monopolist cares about the marginal

consumer, not the average consumer. In our framework, the marginal consumer values ease-of-

learning in exactly the same way as the average consumer; hence, there is no distortion in this

aspect of the product design. But the marginal consumer in our model uses the product less

intensively than the average consumer; hence the monopolist has too little incentive to invest in

reducing this sort of user costs. From the monopolist’s point of view, the high-intensity user will

buy the product anyway, and the monopolist has no incentive to make the product easier to operate

for them. But the monopolist has just the right incentive to make the product easy to learn, since

this increases the size of its market, and makes all users willing to pay more for the product.

The problem discussed above arises due to the fact that in our model the monopolist doesn’t

have a way to extract any payment from the inframarginal users, even though they would be

willing to pay for improvements in ease-of-operation. In real life, the monopolist does have such

an option: it can offer software upgrades. Intensive users will be willing to pay for those upgrades

if they offer improved capabilities.7

7 For some background on upgrades, see Bulkeley (1990).

12

However, typically a new release of the software is sold to both new and existing customers.

When trading off investment in ease-of-use and ease-of-learning the software producer will still

face the incentives described above: it will be willing to invest less in features valued by consumers

who are sure to buy the product anyway. In any event, the fact that software can be upgraded is

unique among products and is worth examining in its own right.8

The distortion in this model depends on the fact that the consumer cares about the number of

uses while the monopolist cares about the number of users. If the monopolist could charge a price

per use, there would be no distortion. To see this, imagine that the software is run on a mainframe

computer so that the software provider can monitor the number of uses. The monopolist sets a

schedule �(n) that indicates the charge per use. The price schedule is given by

�(n) =

(
1 if n � F=(b� v)

(b� v)n + F if n > F=(b� v).

It is easy to check that this price schedule extracts all the consumers’ surplus from the users of the

software. Hence the monopolist will choose the socially optimal levels of F and v.

7. Software that is too easy to learn

In the above analysis we’ve seen an example where the product of the monopolist has too little

quality (too hard to operate) and just the right amount of quality (appropriate ease of learning). It

would be nice to complement this with an example where a monopolist provides too much quality.

In order to do this, let us change the model slightly. Suppose now that there is no difference

in intensity of use among consumers. For simplicity suppose that all consumers use the program

only once, and each gets the same net benefit b� v.9 However, users differ in how difficult it is to

learn to use a new program. To be specific, the net surplus from use of the computer program is

b� v � F � p:

8 I intend to investigate software upgrades in future work.

9 An example that fits this model might be tax preparation software. You use this software only once a year, so that
there is little difference in intensity of use across the population. Whether or not you choose to use the software depends
primarily on how easy it is to learn.

13

Here F is a measure of the how easy the software is to learn---the fixed costs---and measures

the capability of a given individual to learn the software. People with high values of find it more

costly to learn a new piece of software than individuals with low values of . We suppose that is

distributed in the population according to some cumulative distribution function J () =
R
0
j(t) dt:

The marginal purchaser of the program satisfies the condition that benefits are just equal to the

price of the software,

b � v � F � p = 0;

so

� =
b� v � p

F
:

Everyone with a smaller buys the software, so the total sales are

x = J () = J ((b� v � p)=F):

Letting K be the inverse of J , we have

K(x) =
b� v � p

F
;

which implies that the inverse demand function is

p = b� v � FK(x):

Note that K 0(x) > 0 since it is the inverse of a cumulative distribution function.

For this form of demand, changes in v shift the demand function and changes in F tilt

the demand function. According to our previous analysis, the monopolist produces the right

ease-of-operation, but the wrong ease-of-learning. In fact @2p=@x@F < 0. From our previous

analysis, this implies that welfare increases if F increases---that is, welfare goes up if the software

is made harder to learn! In this model the monopolist overinvests in making the software easy to

learn.

Why is this? In this model the marginal consumer is one who finds the software harder to

learn than the average consumer. Hence making the software a little easier to learn benefits the

marginal consumer more than the average consumer. Hence the monopolist tends to invest too

many resources in attracting marginal consumers rather than, say, improving the functioning of

the program for the inframarginal consumers.

14

8. Policy implications

What are the implications of the easy-of-operation/ease-of-learning distortion from a policy

perspective? Obviously it is premature to draw definitive conclusions from such a simple model,

but it is worthwhile raising the question to see where a more in-depth analysis may lead.

Since we are examining a monopolist, it is always in the social interest to increase output.

One possibility would be to pursue antitrust actions to eliminate the monopoly power. However,

it is far from clear that this would be appropriate since it would affect incentives to innovate and

perhaps lead to excessive product differentiation.

Accordingly, we adopt the viewpoint that the monopoly output distortion should be tolerated.

However, the above arguments suggest that even if the monopoly output remains constant there

still will be social benefits to encouraging changes in the monopolist’s provision of ‘‘quality.’’

In different models of quality, different tools may be appropriate. For example, in some models,

setting minimal (or maximal!) quality standards may be appropriate. However, this instrument

seems implausible in our model of software.

One interesting policy choice is to subsidize the provision of software ‘‘quality.’’ In practice

this would be done by publicly sponsored research grants. We suppose that social policies such as

this will reduce the cost of providing software that is easy-to-learn and software that is easy-to-use.

What will be the impact of such subsidies on social welfare?

We first examine the original model where consumers differ in the intensity of use. Suppose

that we subsidize the cost of developing easy-to-learn and easy-to-operate software at rates sv and

sF respectively. Welfare can be written as

W (x; v; F) = [u(x; v; F)� p(x; v; F)x] + [p(x; v; F)x� (1� sv)cv(v)� (1� sF)cF (F)]

� [svcv(v) + sF cF (F)]:

The three bracketed terms in this expression are consumer surplus, producer surplus, and

government expenditure respectively. Differentiating this expression with respect to sv and sF

and evaluating the derivative at the monopoly equilibrium with sv = sF = 0 we have

dW

dsv
= �

@p

@x

@x

@sv
+

�
@u

@v
�
@p

@v
x

�
@v

@sv
+

�
@u

@F
�

@p

@F
x

�
@F

@sv

dW

dsF
= �

@p

@x

@x

@sF
+

�
@u

@F
�

@p

@F
x

�
@F

@sF
+

�
@u

@v
�
@p

@v
x

�
@v

@sF
:

15

In calculating these derivatives several terms drop out due to utility maximization and profit

maximization. The remaining terms are composed of two effects: the direct effect on consumers’

surplus of changing v and F and the indirect effect of the induced output change and the cross

effect of the subsidy.

We have already calculated the direct effect; it is zero for changes in F and positive for

reductions in v. I show in the appendix that both the output effect and the cross effect have a

positive effect on utility. Hence there is a case to be made for imposing (small) subsidies on both

cost functions. However, in terms of the impact on output, a reduction in F is exactly equivalent to

imposing an output subsidy on the monopolist. Hence the social benefits of making the software

easier to learn are just the same as the benefits from an output subsidy. This is to be compared to

the effects of subsidizing v. In this case the subsidy benefits consumers both through the increase

in output and through the improvement in ‘‘quality.’’

Another way to observe this is to consider the case where F = 0. In this case the profit-

maximization problem for the monopolist becomes

(b� v)H(x)� (1� sv)cv(v):

The first-order condition for output is

(b� v)H 0(x) = 0;

which is independent of sv . Hence output doesn’t change when ease-of-operation is subsidized.

Nevertheless, welfare increases due to the impact of the quality change on the inframarginal

consumers.

We turn now to the second model, where consumers differ in the cost of learning. We show in

the appendix that dx=dsF > 0 in this case as well. Hence the impact on social welfare is composed

of two effects: the benefit from having more output and the cost from the monopolist investing

‘‘too much’’ in making the software easy-to-learn. The combination is ambiguous, but at least it

forces attention on the proper tradeoff: one would have to expect a big output effect from a subsidy

in order for it to be worthwhile from a social point of view.

I interpret this as saying that it is reasonable to use public funds to subsidize research on how

to make software easy to operate. However, there is no particular argument, in the context of this

16

model at least, to subsidize research on how to make software easier to learn---the market gives

the monopolist the right incentives with respect to this choice already, at least conditional on the

output chosen by the monopolist. Of course, there may be other reasons to subsidize research

on this aspect of software design. For example, there may be economies of scale in research, or

there may be problems with appropriability of intellectual property that could cause problems for

developing easy-to-operate software in the private sector. Or it may be that there are lower costs

to developing easy-to-learn software in an educational environment. It would clearly be premature

to make policy pronouncements without careful consideration of these possibilities.

References

Bulkeley, W. (1990). Software users are beginning to rebel against the steady stream of upgrades.

Wall Street Journal, x, B4.

Bulkeley, W. (1991). Software industry loses start-up zest as big firms increase their domination.

Wall Street Journal, August 27, B1.

Fisher, L. (1992). Business turns tough in software. New York Times, December 14.

Mantei, M. & Teorey, T. (1988). Cost/benefit analysis for incorporating human factors in the

software lifecycle. Communications of the ACM, 4, 428--439.

Nakamura, R. (1990). The x factor. Infoworld, November 19, 51--55.

Schmalensee, R. (1979). Market structure, durability, and quality: a selective survey. Economic

Inquiry, 42, 177--196.

Sheshinski, E. (1976). Price, quality and quantity regulation in monopoly situations. Economica,

43, 127--137.

Spence, M. (1975). Monopoly, quality and regulation. Bell Journal of Economics, 6(2), 417--429.

Swan, P. (1970). Durability of consumer goods. American Economic Review, 60, 884--894.

Tirole, J. (1988). The Theory of Industrial Organization. Cambridge, MA: MIT Press.

17

Appendix. Comparative statics of the profit maximization problem

Here we study the impact of subsidizing research on ease-of-learning and ease-of-operation.

We assume that this research lowers the cost of providing easier-to-operate and easier-to-learn

software. We model this cost reduction as being equivalent to subsidies of sv and sF on the cost

functions. Letting R(x) = H(x)x, we can write the monopolist’s profit maximization problem as

max
x;v;F

(b� v)R(x)� Fx� (1� sv)cv(v)� (1� sF)cF (F):

Note that we have set the cost of production equal to zero. Alternatively we could incorporate a

constant marginal cost of production into F .

The first-order conditions for this problem are

(b� v)R0(x)� F = 0

�R(x)� (1� sv)c0v(v) = 0

�x � (1� sF)c0F (F) = 0:

Totally differentiating this system and evaluating the derivatives at sv = sF = 0 we have0
B@

(b� v)R00 �R0 �1

�R0 �c00v 0

�1 0 �c00F

1
CA
0
B@

dx

dv

dF

1
CA =

0
B@

0

�c0vdsv

�c0FdsF

1
CA :

In the case of a regular maximum the second-order conditions imply that the determinant of the

Hessian matrix on the left-hand side of this expression will be negative and all principal minors of

order 2 will be positive. This latter condition implies

(b� v)R00(x)c00v(v) + R0(x)2 <0

(b� v)R00(x)c00F (F) + 1 <0
(4)

These conditions are useful in signing the comparative statics effects.

Let H < 0 denote the value of the determinant of the Hessian and solve for the various

differentials.

dF =
�dsvR

0(x)c0v(v) + dsF c0F (F)
�
(b� v)R00(x)c00v(v) + R0(x)2

�
H

dv =
�dsFR

0(x)c0F (F) + dsvc0v(v)
�
(b� v)R00(x)c00F (F) + 1)

�
H

dx =
dsvR

0(x)c0v(v)c00F (F) + dsF c0F (F)c00v (v)
H

18

It is straightforward to verify

� dv=dsv and dF=dsF are negative. Hence subsidizing either ease-of-learning and ease-of-

operation will tend to lead to improvements in those variables.

� dx=dsv and dx=dsF are positive. Hence the subsidies tend to increase output.

� dv=dsF and dF=dsv are negative. Hence subsidizing ease-of-learning will lead to an

improvement in ease-of-operation and vice versa.

The other model discussed in the text was based on differences among the consumers in ease

of learning. The profit maximization problem in that case is:

max
x;F

(b� v)x� FK(x)x� (1� sF)cF (F):

The first-order conditions are

(b� v)� FR0(x) = 0

�R(x)� (1� sF)c0F (F) = 0;

where R(x) = K(x)x. Totally differentiating this system and evaluating the result at sF = 0 we

have �
�FR00 �R0

�R0 �c00F

��
dx

dF

�
=

� 0

�c0FdsF

�
:

From this we find

dx

dsF
=

���� 0 �R0

�c0F �c00F

���������FR
00 �R0

�R0 �c00F

����
> 0:

19

