
Python revision
##Arithmetic Expressions: Precedence

• In Python, multiplication *, division /, floor division //, and modulus % all have the
same precedence level.

• When multiple operators of the same precedence appear in an expression, Python
evaluates them from left to right (this is called left-to-right associativity).

• There are two exceptions to this rule, the ** and = operator, both of which are
evaluated from right to left.

 print(3 - 2 + 1)
 print(8 % 4 % 2)
 print(2 ** 3 ** 0)

2
0
2

##Type of Expressions

1. Arithmetic
2. Binary

print(type(1 + 2))

<class 'int'>

##Integral Number to binary(i.e, 13)

• Number ko 2 se divide karo

• Har baar remainder likho (0 ya 1)

• Jab tak quotient 0 na ho jaaye

• Remainders ko ul e order mein likho (bottom to top)ṭ

##Floating number to binary(i.e, 0.625)

###13.625 ka binary representation hai: 1101.101

Binary to Number

Numbering starts from Right to left
• Binary of Fractional part (+ve numbering): Numbering starts from 1
• Binary of Decimal part (-ve numbering): Numbering starts from 0

• Most of the number in binary can not be written exactly,
• For example, since computer store every thing in binary. Computer can not store exact

value of 0.1 because 0.1(meaning 1/10) is a infinite representations in binary
(0.00011001100110011001100110011... yeh pattern repeat hota rahega).

• like we can not write exact value of 1/3 in decimal form, we`ve to approx it as
0.33333...upto whatever decimal place.

• Trick: Agar decimal number 1 / (2^n) jaisa hai (jaise 0.5 = 1/2, 0.25 = 1/4), to wo binary
mein exact likha ja sakta hai.

hidden bit is applied only when the number is a normalized number.

• A normalized number is one where the binary representation is written in the form
1.xxxxxxxxx * 2^n

• here, 1 - hidden bit(1 bit), xxxxxxxx - mantissa(52 bits), 2^n - Exponent(11 bit).

hidden bit is not used for the mumbers which can not be normalised (zero, subnormals) .

So coming back to the point, Beware of float!

• machine round off or cut off all the binary number more than 53 bits of space &
when this rounded off/new binary is converted back to the number it is slightly
greater than the actual floating number.

• Example, 0.1 in binary ≈ 0.00011001100110011001100110011001100110011...
(repeat ho raha hai)

• 0.1 ≈ 0.0001100110011001100110011001100110011001100110011001101
(only 53 bits) ------->>>>
0.1000000000000000055511151231257827021181583404541015625 (slightly
greater than 0.1)

print(0.1 * 3) # It gave 0.30000000000000004 instead of 0.3
(slightly greater than 0.3)c

0.30000000000000004

Python, and programming languages in general, do not support arbitrary precision for
representing real numbers. When the number cannot be represented exactly, an approximate
value is returned. As a result of this behaviour, we should be careful when using float values in
expressions that involve comparisons.

print(10.00000000000000000000001 > 10)

False

The following expression presents a typical case of approximation when dealing with float. The
number 0.1 ** 1000 is extremely small. So, the interpreter is going to represent that as 0

print(0.1 ** 100 == 0.0)
print(0.1 ** 1000 == 0.0)
print(0.1 * 3 == 0.3)

False
True
False

from decimal import Decimal
print(Decimal('0.1') * 3 == 0.3)
print(Decimal('0.1') + Decimal('0.2')) # Output: 0.3

False
0.3

###What's happening?

• Decimal('0.1') * 3 results in a precise decimal value: Decimal('0.3')

• 0.3 on the right-hand side of the comparison is a floating-point number, not a
Decimal.

print(not True and False) # (not True) and False ---> False

False

##Short Circuit Evaluation

The expression is evaluated from left to right. The operator is or. Since the operand on the left is
True, the whole expression will evaluate to True irrespective of the operand on the right. So, the
interpreter skips evaluating the operand on the right. This behaviour is called short circuit
evaluation.

True or (1 / 0) #but 1/0 should give error ZeroDivisionError:
division by zero

True

(not((3 > 2) or (5 / 0))) and (10 / 0)

False

##Errors

• Syntax Errors : error occured due to wrong syntex
• Exceptions : runtime errors — they happen after the code is syntactically correct, but

something goes wrong while the program is running.

##Strings

• singe(' ') & double(" ") quote : Single line

• Triple quote (''' ''') : Multiple line

• Replication : print("amiT" * 5) ------> amiTamiTamiTamiTamiT

• Length of a string using the len function

• Concatenation of two strings using the + operator

• Indexing : from start (+ve indexing, starts from 0) & from end (-ve indexing, starts
from -1)

• Slicing : substring = string[start : end : step], Note: step will include start
indexed chr.

• Immutability :

• We say that something is "mutable" if it can be changed, modified. Therefore, an
object is immutable if it cannot be changed or modified. Strings are immutable. One
or more characters in the string literal present in word cannot be modified in-place.

• word = 'some string'

• word[0] = 'S' ---------> Error: TypeError : 'str' object does not support item
assignment

• Comparison : It uses alphabetical ordering (like our english dictonary) to compare
two strings (lexicographic ordering).

• Python compares characters based on Unicode code points.

• Decimal and hexadecimal are just different ways of viewing those code points

• Unicode formate : U+XXXX, here XXXX is the hexadecimal representation.

• Decimal value: It's the base-10 (decimal) number representing the character in
Unicode or ASCII. i.e, 65 = U+0041, since 0041 is in hexadecimal, converting
hexadecimal to decimal (base 10), we multiply each digit of the hex number by
powers of 16. So, 65 = U+0041 = 0×163+0×162+4×161+1×160=64+1=65 the
hexadecimal number 1123 is equal to 4387 in decimal: example, 0041 of U+0041 is
same as 0x41 in hexadecimal* $ 1123_{16} = (1 \times 16^3) + (1 \times 16^2) + (2
\times 16^1) + (3 \times 16^0) = 4387$

• Hexadecimal (base-16 (hex) and, Prefix 0x is used to indicate that the number is in
hexadecimal): example, 0041 of U+0041 = 0x41 = 4×16+1=65

• The backslash \ is called the escape character in python.

• \nfor newline

• \t for tab

• A string is a substring of another string if the first string is contained in the second :
Example, good is a substring of verry good string.

Methods
• It is a function defined in a class. The capitalize()method in Python is associated

with the str class (i.e., string objects).*
• Called on an object using dot notation. example, text.upper()

###Deleting Variables

• Variables can be deleted by using del keyword.

x = 15
y = 16
print(x, y)
del x
#print(x, y) #Try running this code, You`ll get NameError

15 16

###Input & conversion

x = input() # it takes str datatype by default
print(type(x))

x
<class 'str'>

y = int(input()) # we can convert the datatype from one to another
using keyword line int(), str(), dict(), bool(), tuple(), set() etc.
print(type(y))

1
<class 'int'>

###Built-in Functions

• These are functions that have already been defined & can be called directly using name.
• Example, print(), type(), len(), sorted() etc.

pow(2,3,2) # pow(x, y, z) returns the value of x^y mod z. i.e, (x**y)
%z , % - gives remender wheres // gives quotient.

0

###Conditional Statements

• All independet if blocks will be checked & run accordingly.

• only one block will be run in case of if-elif-else chain. any of the condition
which is true will execute & skip rest every block of this chain.

• elif is used when we want to check another condition only if the previous if
condition was false.

• If we use multiple if statements instead of elif, Python would check all conditions,
even when one is already true.

This would print multiple grades, which you don't want — it's incorrect logic for mutually
exclusive conditions.

marks = int(input())

if marks >= 90:
 print("Grade: A")
if marks >= 80:
 print("Grade: B")
if marks >= 70:
 print("Grade: C")

100
Grade: A
Grade: B
Grade: C

🔍 What’s going on?
• Python checks conditions top to bottom.

• Once it finds a condition that’s True, it executes that block and skips the rest.

• So even if multiple conditions are true, only the first matching one will run.

marks = int(input("Enter your marks: "))

if marks >= 90:
 print("Grade: A")
elif marks >= 80:
 print("Grade: B")
elif marks >= 70:
 print("Grade: C")
elif marks >= 60:
 print("Grade: D")
else:
 print("Grade: F")

Enter your marks: 100
Grade: A

x = 25

if x < 10:
 print("Less than 10")
elif x < 20:
 print("Between 10 and 19")
elif x < 30:
 print("Between 20 and 29")
else:
 print("30 or more")

Between 20 and 29

Library
• calendar

import calendar
#print(calendar.prmonth(30000, 8)) #try running this it`ll give none
additionally because calendar.prmonth(year, month) prints the calander
but not returns anything that is why.
calendar.prmonth(1998, 12)

 December 1998
Mo Tu We Th Fr Sa Su
 1 2 3 4 5 6
 7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31

import calendar
calendar.weekday(1998, 12, 7) # output: 0 meaning: Monday

0

import this #These are some nuggets of wisdom from Tim
Peters, a "major contributor to the Python programming language"

import time
print(time.ctime()) #It prints the current time.

Mon Apr 21 09:26:37 2025

Loops
• while

• for

while
It will take 58 days to write 1_000_000 numbers manualy.

num = 1_000_000 # _ in a number is used when we have large
numbers; improves readability
avg_time = 5 # if it takes 5 second to print a number, example
: print(5)
seconds = num * avg_time
minutes = seconds / 60
hours = minutes / 60
days = hours / 24
print('Approximate number of days =', round(days))

Approximate number of days = 58

total = 0
x = int(input())
while x > 0:
 total += x
 x = int(input())
print(total)

-1
0

For
• In each iteration of the loop, an element in the sequence is picked up and is printed to the

console.
• Assuming that the sequence is ordered from left to right, the leftmost element is the first

to be picked up.

• The sequence is processed from left to right.
• Once the rightmost element has been printed to the console, control returns to line-1 for

one last time. Since there are no more elements to be read in the sequence, the control
exits the loop and moves to line-3.

print(range(5)) # range is an object that represents a sequence of
numbers starts from 0.
print(range(10,25, 3)) # range(start, end, step) Note: end not
included.
type(range(5))

range(0, 5)
range(10, 25, 3)

range

range(5)

range(0, 5)

for & in are the keywords in python.
for num in range(5): # range(+ve integer sequence)
 print(num)

0
1
2
3
4

for num in range(1,10): # range(start, end)
 print(num)

1
2
3
4
5
6
7
8
9

for num in range(1, 10, 2): #range(start, end, step)
 print(num)

1
3
5
7
9

Loop in string
• Since a string is a sequence of characters, we can use the for/while loop to iterate

through strings.

word = "Beautiful"
print(f'Length of word is {len(word)}')

index = 0
for chr in word:
 print(f'{chr} is indexed at {index} in the word {word}.')
 index += 1

Length of word is 9
B is indexed at 0 in the word Beautiful.
e is indexed at 1 in the word Beautiful.
a is indexed at 2 in the word Beautiful.
u is indexed at 3 in the word Beautiful.
t is indexed at 4 in the word Beautiful.
i is indexed at 5 in the word Beautiful.
f is indexed at 6 in the word Beautiful.
u is indexed at 7 in the word Beautiful.
l is indexed at 8 in the word Beautiful.

word = "Beautiful"
print(f'Length of word is {len(word)}')

index = 0
while index < len(word):
 print('{} is indexed at {} in the word
{}.'.format(word[index],index,word))
 index +=1

num = 2.345678896
print(f'num upto two decimal place is {num: .2f}')

Length of word is 9
B is indexed at 0 in the word Beautiful.
e is indexed at 1 in the word Beautiful.
a is indexed at 2 in the word Beautiful.
u is indexed at 3 in the word Beautiful.
t is indexed at 4 in the word Beautiful.
i is indexed at 5 in the word Beautiful.
f is indexed at 6 in the word Beautiful.
u is indexed at 7 in the word Beautiful.
l is indexed at 8 in the word Beautiful.
num upto two decimal place is 2.35

Break Continue
Write the least +ve number divisible by 2, 3 & 4.

num=1
while num:
 if (num%2 == 0) and (num%3 == 0) and (num%4 == 0):
 print(num)
 break
 num += 1

12

Print all the number divisible by 3 which are less than 50.

num = 1
while num < 50:
 num += 1
 if num % 3 == 0:
 print(num)
 continue

3
6
9
12
15
18
21
24
27
30
33
36
39
42
45
48

Nested loops
#Find the number of ordered pairs of positive integers whose product
is 100. Note that order matters: (2, 50) and (50, 2) are two different
pairs.

count = 0
for x in range(1,101):
 for y in range(1,101):
 if x*y == 100:
 count +=1
print(count)

9

import math
print(math.ceil(134.75))

135

import math
print(math.floor(134.75))

134

int(134.23)

134

If x is not a prime, it means it has at least one factor other than 1 and itself.

Let’s say x = a × b.

If both a and b were greater than √x, then: a × b > √x × √x = x

But that's a contradiction! So, at least one of the two numbers a or b must be ≤ √x.

so we have to check atleast one number less than the square root of the given number. If any is
multiple of the given number tha it is not a prime number.

#Find the number of prime numbers less than n, where n is some
positive integer.

import math

num = int(input())

count = 0
for x in range(2, num):
 flag = True
 for y in range(2, int(math.sqrt(num)) + 1): # we could have used
just int(num * 0.5)
 if num %y == 0:
 flag = False
 break
 if flag:
 count += 1
print(count)

10
0

print: end, sep
• end

 Whenever we use the print function, it prints the expression
passed to it and immediately follows it up by printing a newline.
This is the default behaviour of print. It can be altered by
using a special argument called end. The default value of end is
set to the newline character. So, whenever the end argument is
not explicitly specified in the print function, a newline is
appended to the input expression by default. In the code given
above, by setting end to be a comma, we are forcing the print
function to insert a comma instead of a newline at the end of the
expression passed to it. It is called end because it is added at
the end.

• sep

 If multiple expressions are passed to the print function, it
prints all of them in the same line, by adding a space between
adjacent expressions. we can use "sep" to use some other
separator.

#Accept a positive integer n as input and print all the numbers from 1
to n in a single line separated by commas.

#Wrong way
num = int(input())
for x in range(1, num+1):
 print(x, end=',')

23
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

Right way
num = int(input())
for x in range(1, num):
 print(x, end=',')
print(num)

21
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21

print('amit', 'kumar', 'pandey')
print('amit', 'kumar', 'pandey', sep = ' | ')

amit kumar pandey
amit | kumar | pandey

#Accept a positive integer n, which is also a multiple of 3, as input
and print the following pattern:
|1,2,3|4,5,6|7,8,9|...|n - 2,n - 1,n|

n = int(input())

print('|', end = '')
for i in range(1,n, 3):
 print(i, i+1, i+2, sep=',', end='|')

24
|1,2,3|4,5,6|7,8,9|10,11,12|13,14,15|16,17,18|19,20,21|22,23,24|

10.2f
• . represents decimal

• 2 represents round off upto two decimal place.

• f represents it is a floating point number.

• 10 represents the column space, atlease 10 chracter of space.

roll_1, marks_1 = 'BSC1001', 90.5
roll_2, marks_2 = 'BSC1002', 100
roll_3, marks_3 = 'BSC1003', 90.15
print(f'{roll_1}: {marks_1:10.2f}')
print(f'{roll_2}: {marks_2:10.2f}')
print(f'{roll_3}: {marks_3:10.2f}')

BSC1001: 90.50
BSC1002: 100.00
BSC1003: 90.15

roll_1, marks_1 = 'BSC1001', 90.5
roll_2, marks_2 = 'BSC1002', 100
roll_3, marks_3 = 'BSC1003', 90.15
print(f'{roll_1}: {marks_1:5.2f}')
print(f'{roll_2}: {marks_2:5.2f}')
print(f'{roll_3}: {marks_3:5.2f}')

BSC1001: 90.50
BSC1002: 100.00
BSC1003: 90.15

Goal : when iteration ---> n, value ---> limiting value
• meaning, find the limit.

example of limit : In 20 itrations it is close to 2, check where it
is approaching with 100 or more itrations.
import math
x = 0
for n in range(1, 20):
 x = math.sqrt(2 + x)
print(x)

1.9999999999910236

Above, We do not knew how much iteration will we need to reach at some value.(we used hit &
trial method to decide when to terminate).

• we can do it in better way, if the difference between the previous value and the current
value in the sequence is less than some predefined value (tolerance), then we terminate
the iteration. because after that we would not get much difference (in the approached
values) & we`ll losse our time instead.

import math
x_prev, x_curr = 0, math.sqrt(2)
tol, count = 0.00001, 0
while abs(x_curr - x_prev) >= tol:
 x_prev = x_curr
 x_curr = math.sqrt(2 + x_prev)
 count += 1
print(f'Value of x at {tol} tolerance is {x_curr}')
print(f'It took {count} iterations')

Value of x at 1e-05 tolerance is 1.9999976469034038
It took 9 iterations

Some Libraries
• Random

• random.randit(1,n) this will give any random number b/w 1 & n.

• random.choice('AmitisAgOODbOy') this will give any random character of the
word AmitisAgOODbOy. It basically takes any sequence & give any random item of
the sequence as output.

Functions
• Functions have to be defined before they can be called. The function call cannot come

before the definition.
• Function calls could be used in expressions: if square(x) + square(y) ==

square(z):
• Function calls cannot be assigned values: square(x) = 5
• Functions can be called from within other functions.
• Functions can be defined inside other functions.

Functions could have multiple return statements, but the moment the first return is executed,
control exits from the function:

def foo():
 return 1
 return 2

print(foo())

1

An example of a function having multiple returns that are not redundant:

def evenOrOdd():
 n = int(input())
 if n % 2 == 0:
 return 'even'
 else:
 return 'odd'

print(evenOrOdd())

21
odd

Docstrings
• A docstring is a string literal that occurs as the first statement in a module, function,

class, or method definition. Such a docstring becomes the __doc__special attribute of
that object.

def square(x):
 """Return the square of x."""
 return x ** 2

print(square.__doc__)

Return the square of x.

Arguments
• Positional arguments

• Arguments are passed to the parameters of the function based on the position they
occupy in the function call.

• Positional arguments are also called required arguments. meaning, there should be
exactly as many arguments in the function call as there are parameters in the
function definition.

• Keyword arguments

• the names of the parameters are explicitly specified and the arguments are assigned
to it using the = operator.

• Default arguments

#Function defination

def isRight(x, y, z):
 if x ** 2 + y ** 2 == z ** 2:
 return True
 return False

#Function call as positional arguments.
isRight(1,2,3) # 1,2,3 corresponding to x,y,z respectively according
to the position of the parameters of the function(same order).

#Function call as keyword arguments.
isRight(x = 3, y = 4, z = 5)

#Keyword arguments and positional arguments can be combined in a
single call.
isRight(3, y = 4, z = 5) #right way

#Whenever both positional and keyword arguments are present in a
function call, the keyword arguments must always come at the end.
#isRight(x = 3, 4, 5) #wrong way : Intreprator will throw
error.

#this will thro error as isRight() got multiple values for argument x.
#isRight(3, x = 3, y = 4, z = 5)

 File "<ipython-input-299-826cfb3470f4>", line 18
 isRight(x = 3, 4, 5) #wrong way : Intreprator will throw
error.
 ^
SyntaxError: positional argument follows keyword argument

Default argument
• Parameters that are assigned a value in the function definition are called default

parameters.
• Default parameters always come at the end of the parameter list in a function definition.
• The argument corresponding to a default parameter is optional in a function call.
• An argument corresponding to a default parameter can be passed as a positional

argument or as a keyword argument.

#The parameter metric has 'manhattan' as the default value

##def distance(metric = 'manhattan', x, y): It is a wrong way to
define the parameters, This code throws a SyntaxError with the
following message: non-default argument follows default argument.
In the function definition, the default parameter must always come
at the end of the list of parameters.
def distance(x, y, metric = 'manhattan'):
 if metric == 'manhattan':
 return abs(x) + abs(y)
 elif metric == 'euclidean':
 return pow(x ** 2 + y ** 2, 0.5)

all three are equivalent function call according to the above
function.
distance(3, 4)
distance(3, 4, 'manhattan')
distance(3, 4, metric = 'manhattan')

#the two are equivalent.
distance(3, 4, metric = 'euclidean')
distance(3, 4,'euclidean')

5.0

Call by value
• This kind of a function call where the value in a variable is passed as argument to

the function is called call by value.

• The value of num (5) is passed as an argument to the function.

• Inside the function, x is created as a local variable and initialized with the value 5.

• Then, x = x * 2 → x becomes 10.

• 10 is returned.

def double(x):
 x = x * 2
 return x

a = 5
print(f'before function call, a = {a}')
double(a)
print(f'after function call, a = {a}')

before function call, a = 5
after function call, a = 5

Scope : The region in the code where a name can be referenced is
called its scope.

• Local vs Global

• Local: Whenever a variable is assigned a value anywhere within a function, its scope
becomes local to that function. In other words, whenever a variable appears on the
left side of an assignment statement anywhere within a function, it becomes a local
variable.

• Global: If a variable is only referenced inside a function and is never assigned a
value inside it, it is implicitly treated as a global variable.

Namespaces:
• It is about simply the names assigned to any class, function or variable etc and were

the interpreter is storing them.

• globals() : Global names (names assigned in Global)

• locals() : Local names (names assigned in local)

Built-ins
• keywords like dict, int, str etc.

Whenever the interpreter comes across a name in a function it sticks
to the following protocol:

• First peep into the local namespace created for that function call to see if the name is
present in it. If it is present, then go ahead and use the value that this variable points to in
the local namespace.

• If it is not present, then look at the global namespace. If it is present in the global
namespace, then use the value corresponding to this name.

• If it is not present in the global namespace, then look into the built-in namespace. We
will come back to the built-in namespace right at the end.

• If it is not present in any of these namespaces, then raise a NameError.

x becomes local since it is in left side & not assigned any value
before in the local.

def foo():
 print(x)
 #x = x + 1 # UnboundLocalError: cannot access local variable 'x'
where it is not associated with a value

x = 10
foo()

10

To make it correct we have to say to the interpreter that we are
using global variable here in the left side.
def foo():
 global x
 print(x)
 x = x + 1

x = 10
foo()

10

List
• A list in Python is a data structure that is used to store a sequence of objects(of different

type also).
• we can slice & indexed, find length using len same as string. Also, make any sequence

using list() keyword. example, list(range(10)) resulting
[0,1,2,3,4,5,6,7,8,9] .

• List is itrable.
• we can use list concatenation using + operator & list.append(item_to_be

added) keyword to grow it.

numbers = [1, 2, 3]
print(type(numbers))
print(isinstance(numbers, list))

<class 'list'>
True

list1 = [] # [1]
list2 = list() # [2]

list1 = list1 + [1]
print(list1)
list2.append(2)
print(list2)

list3 = list1 + list2
list4 = list2 + list1
print(list3) #[1,2]
print(list4) #[2,1]

print(list2 == list3) # compares the list in Lexicographic
ordering.
print(list2 > list3)

print(max(list3))
print(sum(list3))

print(sorted([1,4,7,2,3]))

list6 = [3,9,1,6,8]
print(list6.sort()) #.sort do not return anything it just sort the
list permanently.
list6.sort()
print(list6)

[1]
[2]
[1, 2]

[2, 1]
False
True
2
3
[1, 2, 3, 4, 7]
None
[1, 3, 6, 8, 9]

list5 = list()
list5 = list5.append(3) # he .append() method modifies the list in
place and returns None. so list5 = None
list5.append(3) # this will give error because of None.apend(3)
instead of list5.append(3).
print(list5)

[3]

Some properties of list.
• lists are mutable. Meaning, we can change the element of the list.

• list[3] = 5 : Change the 4th(3rd indexed) elememnt of
the list to 5.

• Every object in Python has a unique identity: if x is an object, then id(x) returns this
object's identity.

• In line no. 2, we are not creating a new object. We are merely creating another name,
also called an alias, for the same object.

list1 = [1, 2, 3]
list2 = list1
list2[0] = 100
print(list1)
print(list2)

print(list1 is list2) # It means list1 & list2 has the same
identity, meaning he`s a single person but he have two names as list1
& list.

[100, 2, 3]
[100, 2, 3]
True

What happens here ?
• list1 and list2 point to two different objects and consequently have different identities.

But, they store the same sequence of items and are hence equal.

list1 = [1, 2, 3]
list2 = [1, 2, 3]
print(list1 == list2)
print(list1 is list2)

True
False

We can create different object of an object, so that change in one will not affact the other.

list1 = [1, 2, 3]
list2 = list(list1)
list3 = list1[:]
list4 = list1.copy()

list2[0] = 100
list3[0] = 200
list4[0] = 300

print(list1, list2, list3, list4)
print(list1 is not list2, list1 is not list3, list1 is not list4)

[1, 2, 3] [100, 2, 3] [200, 2, 3] [300, 2, 3]
True True True

Call by reference

Snippet-2
def foo(L_foo):
 L_foo.append(1)
 print(L is L_foo) # True because L & L_foo is pointing to the
same object despite of being one local & other global variable.

L = [0]
print(f'L before: {L}')
foo(L)
print(f'L after: {L}')

L before: [0]
True
L after: [0, 1]

def foo(L_foo):
 L_foo.append(1)
 print(L is L_foo)

L = [0]

print(f'L before: {L}')
foo(list(L))
print(f'L after: {L}')

L before: [0]
False
L after: [0]

Here, L is a global variable residing in global namespace but L_foo in 2nd snippet is a logal
variable reciding in local namespace but pointing to the same object L in global namespace till
the time L is not reassigned.

when L is reassigned (let, [9, 9, 9]), but since now L is reassigned to some other list, L will point
to that list. and L_foo will point to the same list that L was pointing before the reassigment (let
[0]).

list(L) list of list nahi banata, balki ek naya list banata hai jo wahi elements copy karta hai jo L
ke andar hain.

🔍 To kab [[0]] banta hai?

list([[0]]) ya L = [[0]]

L = [0]
L_foo = L
L = [9, 9, 9] # ab L naye list ko point kar raha hai

print(L_foo) # still [0]
print(L)

[0]
[9, 9, 9]

choices is a function in the random library. It uniformly samples from the seven numbers (0 to
6) given in the input list with replacement.

import random
runs = random.choices([0, 1, 2, 3, 4, 5, 6], k = 120) # choosing
any random number from range(0,7) with replacement & storing it in a
list named runs for 120 times.
print(type(runs))
print(len(runs))

<class 'list'>
120

for run in [0, 1, 2, 3, 4, 5, 6]:
 print('{} appears {} times'.format(run, runs.count(run)))

0 appears 13 times
1 appears 14 times
2 appears 15 times
3 appears 17 times
4 appears 19 times
5 appears 23 times
6 appears 19 times

The counts are quite close. But this is not very practical:

• 5 runs are seldom observed in cricket matches.
• 0, 1 and 2 are much more common than 3, 4 and 6.

We can give our preferences using a weights keyword-argument:

weights => "relative probability" : This outcome is twice as likely
as that
one. we are not giving absolute probabilities, just comparing
likelihoods
relative to each other. %%

import random
choices is distributed over multiple lines
this is done to improve readability

#weights => "relative probability" : This outcome is twice as likely
as that one. we are not giving absolute probabilities, just comparing
likelihoods relative to each other.

runs = random.choices([0, 1, 2, 3, 4, 5, 6],
 weights = [30, 30, 20, 4.8, 10, 0.2, 5],
 k = 120)
for run in [0, 1, 2, 3, 4, 5, 6]:
 print('{} appears {} times'.format(run, runs.count(run)))
print(f'Total number of runs scored = {sum(runs)}')

print(runs)

0 appears 30 times
1 appears 38 times
2 appears 31 times
3 appears 5 times
4 appears 9 times
5 appears 0 times
6 appears 7 times
Total number of runs scored = 193
[0, 2, 1, 1, 2, 0, 0, 3, 2, 3, 1, 0, 3, 1, 4, 1, 0, 0, 2, 2, 1, 0, 0,
2, 0, 1, 2, 0, 1, 1, 2, 1, 3, 1, 0, 1, 3, 6, 1, 2, 2, 0, 0, 2, 1, 6,
2, 0, 1, 1, 1, 6, 1, 2, 2, 0, 4, 1, 6, 6, 1, 0, 0, 2, 1, 2, 4, 2, 0,
4, 2, 2, 1, 0, 2, 4, 0, 1, 1, 1, 2, 2, 4, 1, 0, 0, 1, 1, 2, 2, 0, 1,
0, 1, 2, 1, 1, 1, 0, 4, 1, 1, 4, 0, 1, 0, 2, 2, 2, 1, 4, 2, 0, 2, 6,
1, 0, 6, 2, 0]

index is a method that accepts an element as input and returns the first occurrence of this
element in the list.

first_six_ball = runs.index(6) + 1 # .index starts counting from 0
(index of elements of list) that is why adding here 1 to get the exact
position.
print(first_six_ball)

38

5 never occurs in the list. so It`ll throw an ValueError. (try using
try & except here to handle excepions)

#first_five_ball = runs.index(5) #uncomment this line & run
#print(first_five_ball)

enumerate : enumerate(iterable, start) output: index & element of any
itrable`s element..

• default : start = 0

List 🔍

Tuple 🔍

String 🔍

Set 🔍 (order unpredictable hota hai)

Dictionary 🔍 (lekin sirf keys ya items ko loop karte waqt)

Generators / Iterators 🔍

#list
for idx, val in enumerate(['a', 'b', 'c']):
 print(idx, val)

0 a
1 b
2 c

#string
for idx, char in enumerate("hello"):
 print(idx, char)

0 h
1 e
2 l
3 l
4 o

#tuple
for idx, item in enumerate((10, 20, 30)):
 print(idx, item)

0 10
1 20
2 30

#Dictionary(keys)
d = {'a': 1, 'b': 2}
for idx, key in enumerate(d):
 print(idx, key)

0 a
1 b

.items() is a property of a dictionary which gives both pair (key, value)of each element.

🔍 Ek iterable object hai, jisme tuples hote hain.

(Technically: dict_items type ka object hota hai jo iterable hai.)

for i in d.items():
 print(i, type(i))

('a', 1) <class 'tuple'>
('b', 2) <class 'tuple'>

#Dictionary(items)
for idx, (key, value) in enumerate(d.items()):
 print(idx, key, value)
print(d.items())

0 a 1
1 b 2
dict_items([('a', 1), ('b', 2)])

#Generator
gen = (x*x for x in range(3, 6))
for idx, val in enumerate(gen):
 print(idx, val)

0 9
1 16
2 25

for ball, run in enumerate(runs):
 if run == 6:
 print(f'The first six was hit at ball number {ball + 1}')
 break

The first six was hit at ball number 38

find the number of balls it took to score the last 50 runs in the
innings?

ball = 0
last_run = 0

for run in reversed(runs): #The reversed object helps us
iterate through the list in the reversed order.
 last_run += run
 ball += 1

 if last_run >= 50:
 print(f'we scored {last_run} runs in {ball} balls!')
 break

we scored 50 runs in 31 balls!

List Methods

• insert : .insert(index, value)

• value with index out of range will insert in the end of the list.

• pop : .pop(index) , default: index = 0

• reverse : .reverse()

• this method replaces the new reversed list with the previous original list & not
return anything.

• sort : .sort() and .sort(reverse = True)

• reverse = True will reverse the list, and not return anything.

• remove : .remove(value)

• It`ll remove the first value it finds in the list (itrating from the left to right)

🔍 Stack (Last In First Out - LIFO)

• A stack is a linear data structure that follows the LIFO (Last In, First Out) principle.

🔍 Queue (First In First Out - FIFO)

• A queue is a linear data structure that follows the FIFO (First In, First Out) principle.

Strings and Lists

• split : string.split(separator, limit)

• split is a string method that splits a string along a delimiter.

• join : string.join(iterable)

• join the itrable with the provided string.

insert

L = [10, 20, 30]
L.insert(0, 5) # L becomes [5, 10, 20, 30]
L.insert(2, 15) # L becomes [5, 10, 15, 20, 30]
L.insert(4, 25) # L becomes [5, 10, 15, 20, 25, 30]
L.insert(len(L), 35) # L becomes [5, 10, 15, 20, 25, 30, 35]
L.insert(20, 40) # L becomes [5, 10, 15, 20, 25, 30, 35, 40]

#pop

L = ['a', 'b', 'c', 'd', 'e', 'f']
index = 1
x = L.pop(index)
print(f'The element {x} at index {index} was removed from the list.')
print(f'The current list is {L}')

The element b at index 1 was removed from the list.
The current list is ['a', 'c', 'd', 'e', 'f']

reverse

L = [1, 2, 3, 4, 5]
print('Before:', L, id(L))

L.reverse()
print('After:', L, id(L))

Before: [1, 2, 3, 4, 5] 136787245619840
After: [5, 4, 3, 2, 1] 136787245619840

L = [1, 2, 3, 4, 5]
L = L.reverse() # here, it replaces the new reversed list(5, 4, 3,
2, 1]) with the previous original list(1, 2, 3, 4, 5]) & not return
anything.
print(L)

None

stack LIFO

stack_list = []

stack_list.append('Harry Potter and the Chamber of Secrets')
stack_list.append('chapter 2')

print(stack_list)

stack_list.pop()

print(stack_list)

['Harry Potter and the Chamber of Secrets', 'chapter 2']
['Harry Potter and the Chamber of Secrets']

queue FIFO

queue_list = []

queue_list.insert(0, 'Harry Potter and the Chamber of Secrets')
queue_list.insert(0, 'chapter 2')

print(queue_list)

queue_list.pop()

print(queue_list)

['chapter 2', 'Harry Potter and the Chamber of Secrets']
['chapter 2']

words = ['this', 'sentence', 'is', 'false']
sentence = words[0]

print(type(sentence))

<class 'str'>

assert
• assert condition

• If the conditional expression following the assert keyword is True, then control
transfers to the next line. If it is False, the interpreter raises an AssertionError.

import random

runs = random.choices([0,1,2,3,4,5,6], weights = [15, 25, 25, 10, 15,
0.4, 9.6], k = 120)

assert len(runs) == 120

overs = []
new_over = []

for ball, run in enumerate(runs):
 new_over.append(run)

 if (ball + 1) % 6 == 0:
 overs.append(new_over)
 new_over = []

assert len(overs) == 20
for ball in overs:
 assert len(ball) == 6

Matrices
• 2D matrix

• Shallow and Deep Copy

2D matrices

import random

mat = []
for i in range(3):
 row = []
 for j in range(3):
 row.append(random.randint(1, 100))
 mat.append(row)

print(mat)

[[13, 70, 99], [2, 20, 60], [48, 87, 61]]

Here, change in one matrix is changing others too :
#Lists are mutable. mat2 is just an alias for mat1 and both point to
the same object. Modifying any one of them will modify both.

mat1 = [[46, 12, 30], [25, 84, 54], [78, 88, 97]]
mat2 = mat1
mat1[0][0] = 100

print(mat1)
print(mat2)

mat2 = mat1.copy() creates a shallow copy.
• We have a mutable object inside another mutable object. In such a case copy just does a

shallow copy; only a new outer-list object is produced. This means that the inner lists in
mat1 and mat2 are still the same objects:

mat1 = [[46, 12, 30], [25, 84, 54], [78, 88, 97]]
mat2 = mat1.copy()

mat2[0][0] = 100

print(mat1)
print(mat2)

[[100, 12, 30], [25, 84, 54], [78, 88, 97]]
[[100, 12, 30], [25, 84, 54], [78, 88, 97]]

to solve this problem, we should use deepcopy

from copy import deepcopy
mat1 = [[1, 2], [3, 4]]
mat2 = deepcopy(mat1)
print(mat1 is not mat2)
print(mat1[0] is not mat2[0])
print(mat1[1] is not mat2[1])

True
True
True

Tuples
• Introduction

• It is a immutable sequence of values. but, the element inside it can be mutable. for
example, ([1,2], "amit", [3,6,7]) this tuple is immutable but inside it the
lists are mutable.

• They can be indexed and sliced just like lists.

• We can iterate through a tuple.

• count and index are the only two methods which are defined for tuple.

• More on Tuples

• A list can be converted into a tuple and vice versa.

• a_tuple = (1, 'cool', True) : It can hold a non-homogeneous sequence of
items

• tuple of tuples & tuple of list is possible.

• Lists and Tuples

• visit the following image to find difference between the two.

• Packing and Unpacking

Introduction
numbers = (1, 2, 3, 1, 1)
print(numbers.count(1))
print(numbers.index(2))

3
1

#singleton tuple
i_am_single = (1,)
print(len(i_am_single))
print(isinstance(i_am_single, tuple))

i_am_not_a_tuple = (1)
print(isinstance(i_am_not_a_tuple, int))

1
True
True

a tuple is immutable, the element inside it is mutable

a_tuple = ([0, 1, 2], 3, 4, "amit")
a_tuple[0][0] = 100

a_tuple

([100, 1, 2], 3, 4, 'amit')

a_tuple = ([0, 1, 2], [4, 5, 6])
print(id(a_tuple[0]))
a_tuple[0][0] = 100
print(id(a_tuple[0]))

a_tuple[0] = 'Amit'
a_tuple[0] = [1,2,3]

136787245295040
136787245295040

populated_list = []

for i in range(1,101):
 for j in range(1,101):
 if i*j == 100:
 populated_list.append((i,j))
print(populated_list)

[(1, 100), (2, 50), (4, 25), (5, 20), (10, 10), (20, 5), (25, 4), (50,
2), (100, 1)]

Tuple packing. only for tuple

T = 1, 2, 3 #assigning in this way makes the variable to point
towerds a tuple.
print(T)
print(isinstance(T, tuple))

(1, 2, 3)
True

def max_min(a, b):
 if a > b:
 return a, b
 return b, a

x = max_min(1, 2)
print(x)
print(isinstance(x, tuple))

(2, 1)
True

The reverse operation is called sequence unpacking:

x, y, z = T
print(x, y, z)

1 2 3

It works for every data stracture in python. Unpacking only

l1, l2, l3, l4 = 'good' # string
num1, num2, num3 = [1, 2, 3] # list
b1, b2 = (True, False) # tuple
x, y, z = range(3) # range

hashing
• An object is hashable if it has a fixed hash value that does not change during its

lifetime and it can be compared to other objects using ==.

• ✅ In Python terms, for an object to be a key of a dictionary:

• The object must have a hash() method.

– Ye method object ko ek unique number (hash value) de deta hai, jo use dictionary
ke bucket me rakhne ke liye use hota hai.

• It must be immutable, or at least act like it’s immutable.

– Object ka data badla nahi ja sakta after creation.
• It must also have a working eq() method.

– Ye method check karta hai ki do objects barabar hain ya nahi (equal hain ya nahi).
– Hash collision ho sakta hai (do keys ka hash same ho jaye). Us case me Python

check karta hai: "Kya yeh dono keys sach me same hain?" → using eq().

Dictionaries
• Introduction

• A dictionary is a collection of key-value pairs.

• To add new pair or update into : dict[key] = value

• To delete a pair: dict[key].pop()

• we can use keys as any data stucture which are immutable, hashable & comparable.

• example, a tuple of lists is immutable but is not hashable(because list is not
hashable) so can not be used as a key.

• view object of dictionary : live chnage, means chnaging in dictionary will chnage the
values of these object.

• keys = dict.keys()

• values = dict.values()

• items = dict.items()

Note : immutable means we can not change the element of the object. (but can be itrable)

dict1 & dict2 are different because dict_1 does not contain any
mutable object.
dict_1 = {'one': 1, 'two': 2, 'three': 3}
dict_2 = dict_1.copy() # dict(dict_1) also works
dict_2['four'] = 4
print(dict_1, dict_2)
print(dict_1 is not dict_2)

{'one': 1, 'two': 2, 'three': 3} {'one': 1, 'two': 2, 'three': 3,
'four': 4}
True

#here, we need to use deepcopy because dict1(mutable object:
dictionary) contains another mutable object.
from copy import deepcopy
dict_1 = {'one': [1], 'two': [1, 1], 'three': [1, 1, 1]}
dict_2 = deepcopy(dict_1)
dict_2['one'].append(100)
print(dict_1, dict_2)
print(dict_1 is not dict_2)
print(dict_1['one'] is not dict_2['one'])

{'one': [1], 'two': [1, 1], 'three': [1, 1, 1]} {'one': [1, 100],
'two': [1, 1], 'three': [1, 1, 1]}
True
True

Some data analysis using dictionary
text = "In reality, programming languages are how programmers express
and communicate ideas — and the audience for those ideas is other
programmers, not computers. The reason: the computer can take care of
itself, but programmers are always working with other programmers, and
poorly communicated ideas can cause expensive flops. In fact, ideas
expressed in a programming language also often reach the end users of
the program — people who will never read or even know about the
program, but who nevertheless are affected by it."

sentences = text.split('.')
sentences.remove('')
assert len(sentences) == 3

filtered_words = []
for sent in sentences:
 unfiltered_word = sent.split(' ')
 for words in unfiltered_word:
 words = words.lower()
 if not(words == '' or words == '—'):
 if not words.isalnum():
 words = words[:-1]
 filtered_words.append(words)
 else:
 filtered_words.append(words)

len(filtered_words)

82

uniq_words = dict()
for word in filtered_words:
 if word not in uniq_words:
 uniq_words[word] = 0
 uniq_words[word] += 1
print(f'There are {len(uniq_words)} unique words in this text')
print(uniq_words)

There are 58 unique words in this text
{'in': 3, 'reality': 1, 'programming': 2, 'languages': 1, 'are': 3,
'how': 1, 'programmers': 4, 'express': 1, 'and': 3, 'communicate': 1,
'ideas': 4, 'the': 6, 'audience': 1, 'for': 1, 'those': 1, 'is': 1,
'other': 2, 'not': 1, 'computers': 1, 'reason': 1, 'computer': 1,
'can': 2, 'take': 1, 'care': 1, 'of': 2, 'itself': 1, 'but': 2,
'always': 1, 'working': 1, 'with': 1, 'poorly': 1, 'communicated': 1,
'cause': 1, 'expensive': 1, 'flops': 1, 'fact': 1, 'expressed': 1,
'a': 1, 'language': 1, 'also': 1, 'often': 1, 'reach': 1, 'end': 1,
'users': 1, 'program': 2, 'people': 1, 'who': 2, 'will': 1, 'never':
1, 'read': 1, 'or': 1, 'even': 1, 'know': 1, 'about': 1,
'nevertheless': 1, 'affected': 1, 'by': 1, 'it': 1}

print(uniq_words['programmers'])

4

for words in filtered_words:
 if "programmer" in words:
 print(words)

programmers
programmers

programmers
programmers

word1 = word2 = word3 = ''
val1 = val2 = val3 = 0

data = {}
for word,freq in uniq_words.items():
 if freq > val1 :
 val1,val2,val3 = freq, val1, val2
 word1, word2, word3 = word, word1, word2
 elif freq > val2 and freq < val1 :
 val2, val3 = freq, val2
 word2, word3 = word, word2
 elif freq > val3 and freq < val2:
 val3 = freq
 word3 = word

data[word1] = val1
data[word2] = val2
data[word3] = val3

print(data)

{'the': 6, 'programmers': 4, 'in': 3}

pangram = 'the quick brown fox jumps over the lazy dog'

words = pangram.split(' ')
splitted_letters = ''.join(words)
alphabets = sorted(splitted_letters)

mapping, count = dict(), 0

for count, letter in enumerate(alphabets):
 if letter not in mapping :
 mapping[letter] = count +1

print(mapping)

{'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 8, 'g': 9, 'h': 10, 'i':
12, 'j': 13, 'k': 14, 'l': 15, 'm': 16, 'n': 17, 'o': 18, 'p': 22,
'q': 23, 'r': 24, 's': 26, 't': 27, 'u': 29, 'v': 31, 'w': 32, 'x':
33, 'y': 34, 'z': 35}

view object
keys = mapping.keys()
values = mapping.values()
items = mapping.items()

print(keys)
print(values)
print(items)

print('a' in mapping.keys())
print(1 in mapping.values())
print(('a', 1) in mapping.items())

mapping['ab'] = 3 # some noise added to mapping
value = mapping.pop('ab')
print(value)
print('ab' not in mapping)

dict_keys(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'])
dict_values([1, 2, 3, 4, 5, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 22,
23, 24, 26, 27, 29, 31, 32, 33, 34, 35])
dict_items([('a', 1), ('b', 2), ('c', 3), ('d', 4), ('e', 5), ('f',
8), ('g', 9), ('h', 10), ('i', 12), ('j', 13), ('k', 14), ('l', 15),
('m', 16), ('n', 17), ('o', 18), ('p', 22), ('q', 23), ('r', 24),
('s', 26), ('t', 27), ('u', 29), ('v', 31), ('w', 32), ('x', 33),
('y', 34), ('z', 35)])
True
True
True
3
True

key_list = list(mapping.keys())
print(keys)
print(key_list)

dict_keys(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l',
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'])
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']

Sets : unordered collection of unique, immutable elements.
• Used to : membership testing, eliminating duplicate entries, and performing

mathematical set operations like union, intersection, and difference.

• Any hashable object can be added to sets.

• set.add(element_to_be_added) , set method used to add any element is .add .

• set.remove('element_to_be_removed') , we can use set method .remove to
remove any element from the set.

• list is mutable means not hashable, hence can not added to a set.

• tuple of list is not hashable, hence can not added to a set.

• set is itrable.

• 🔑 Key Characteristics of Sets:

• Unordered: The elements in a set do not maintain any specific order.

• Unique Elements: A set automatically removes duplicate values; each element is
unique.

• Mutable: While the elements themselves must be immutable (e.g., numbers, strings,
tuples), the set as a whole is mutable, allowing you to add or remove elements after
its creation.

• Unindexed: Sets do not support indexing, slicing, or other sequence-like behavior.

• Both dictionary and set use {} as symbols, but:

– If you write {} without anything, it creates an empty dictionary, not a set.

– To create an empty set, use set().

set automatically removes the duplicates.
nums_1 = {2, 4, 6, 8, 10}
nums_2 = {2, 2, 4, 4, 6, 6, 8, 8, 10, 10}
print(nums_1, nums_2)
print(nums_1 == nums_2)
print(nums_1 is not nums_2)

{2, 4, 6, 8, 10} {2, 4, 6, 8, 10}
True
True

num = 1
digits = set()
for i in range(100):
 num *= 7
 last = num % 10
 digits.add(last)
print(digits)

{9, 3, 1, 7}

Consider the first 100 powers of 7:
Note down the last digit of each of these powers. How many of them
are unique? What are these numbers?

num = 1
digits = set()
for i in range(100):
 num *= 7
 last = num % 10
 digits.add(last)
print(digits)

{9, 3, 1, 7}

Set operations
• Subset ()⊆ : Set A is a subset of set B if every element of A is also in B. ::::::::: A <=

B or A.issubset(B)

• Proper Subset ()⊂ : Set A is a proper subset of B if A B and A ≠ B. :::::::::: ⊆ A < B

• Superset ()⊇ : Set A is a superset of B if every element of B is in A. ::::::::::::
A.issuperset(B) or B >= A

• Proper Superset ()⊃ : Set A is a proper superset of B if A B and A ≠ B. ::::::::::: ⊇ A >
B

• Union ()∪ : The union of sets A and B is the set of elements that are in A, in B, or in
both. ::::::::::: A.union(B) or A | B

• Itersection (∩): The intersection of sets A and B is the set of elements common to
both A and B. ::::::::::: A.intersection(B) or A & B

• Difference (−): The difference of sets A and B is the set of elements in A that are not
in B. ::::::::::: A.difference(B) or A - B

• Symmetric Difference (∆): The symmetric difference of sets A and B is the set of
elements in either A or B but not in both. ::::::::: A.union(B) -
A.intresection(B)

#subset
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(A.issubset(B)) # method-1
print(A <= B) # method-2

True
True

#Propersubset
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(A < B)

True

#Superset
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(B.issuperset(A))
print(B >=A)

True
True

#propersuperset
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(B > A)

True

#Union
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(A.union(B))
print(A | B)

{1, 2, 3, 4, 5}
{1, 2, 3, 4, 5}

#Intersection
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(A.intersection(B))
print(A & B)

{1, 3, 5}
{1, 3, 5}

#Difference
A = {1, 3, 5}
B = {1, 2, 3, 4, 5}
print(B.difference(A))
print(B - A)
print(A -B)

{2, 4}
{2, 4}
set()

A = {'this', 'is', 'a', 'set'}
print('Before', A)
A.remove('this')
print('After', A)

Before {'set', 'a', 'is', 'this'}
After {'set', 'a', 'is'}

we know set is mutable but not access by indexing instead we can add
& remove element but not replace directly.

A = {1, 2, 3}
B = A
B.add(4)
print(A, B)
print(A is B)

{1, 2, 3, 4} {1, 2, 3, 4}
True

set is a unorderd & mutable object.
A = {1, 2, 3}
B1 = A.copy()
B2 = set(A)
B1.add(4)
B2.add(0)
print(A, B1, B2)
print(A is not B1)
print(A is not B2)

{1, 2, 3} {1, 2, 3, 4} {0, 1, 2, 3}
True
True

Sets of Immutable Containers with Mutable Contents:

If your set contains immutable containers (like tuples) that reference mutable objects (like lists),
then a shallow copy won't suffice. Changes to the mutable objects will reflect in both the
original and the copied set.

import copy

mutable_list = [1, 2]
original_set = {(1, tuple(mutable_list))}
deep_copied_set = copy.deepcopy(original_set)

deep_copied_set.add("Amit")
print(original_set)
print(deep_copied_set)

{(1, (1, 2))}
{(1, (1, 2)), 'Amit'}

File handling
• open : open function returns a file object(itrable line wise line).

f = open('text.txt', 'w')
f.write('Amit\nKumar\nPandey')
f.close()

Understanding the Code:

• for line in f: This reads line-by-line from the file.

• After this loop finishes, the file pointer is at the end of the file.

• print(f.read())

• This tries to read what remains in the file.

But since the file pointer is already at the end, it reads nothing, so it prints a blank line.

#read : # read is a method which returns a string contaning whole
content of the file with a newline carecter(\n) at the end of each
line excluding last line.

f = open('text.txt', 'r')
l = []
for i in f.read(): #f.read() is a string of whole content.
 l.append(i)
print(l)
f.close()

f = open('text.txt', 'r')
for line in f : # f is a file object here.

first line: "Amit\n", 2nd line: "Kumar\n" & the 3rd line : "Pandey\
n",
#Note: print function print the argument passed to it & move to the
next line.
so here, for "Amit\n" Amit is printed & move to the new line & then
nature of print moves the cursor to the new line.
same heppends for other lines too, that is why we can see empty
lines in between the lines.
try print(line.strip()) : you won`t get any empty lines
#because there is no new line character with the lines now(.strip()
removes leading and trailing whitespace characters from a string),
#so print function is printing each line & move to the next line.

 print(line)
print(f.read())
f.close()

['A', 'm', 'i', 't', '\n', 'K', 'u', 'm', 'a', 'r', '\n', 'P', 'a',
'n', 'd', 'e', 'y']
Amit

Kumar

Pandey

f = open('text.txt', 'r')

print(f.read()) # Reads the ENTIRE file and moves the pointer to the
end

for line in f: # At this point, nothing is left to read
 print(line.strip())

f.close()

Amit
Kumar
Pandey

#readlines : reads one line at a time.
f = open('text.txt', 'r')
line = f.readline() #reads the entire line including any whitspaces
also if any(except the last line).
while line :
 print(line)
 line = f.readline()
f.close()

Amit

Kumar

Pandey

#readlines : reads one line at a time.
f = open('text.txt', 'r')
print(f.readlines()) #reads as a list of all lines(string) of
entire content.
f.close()

['Amit\n', 'Kumar\n', 'Pandey']

f = open('writelines.txt', 'w')

f.writelines(["writelines\n", "writes\n", "a\n", 'list\n', 'of\n',
'string\n'])

f.close()

f = open('text.txt', 'r')
for line in f :
 print(line)

f.seek(0)
print(f.tell())

print(f.read())
print(f.tell())

f.close()

Amit

Kumar

Pandey
0
Amit
Kumar

Pandey
17

level2 = open('level2.txt', 'r')
print(level2.read())
level2.close()

Name,Physics,Mathematics,Chemistry
Newton,100,98,90
Einstein,100,85,88
Ramanujan,70,100,70
Gauss,100,100,70

#Print the chemistry marks scored by the students, one in each line.

level2 = open('level2.txt', 'r')
header = level2.readline()

row = level2.readline()
while row :
 fields = row.strip().split(',')
 print(int(fields[-1]))
 row = level2.readline()
level2.close()

90
88
70
70

We could have done this using .readlines() also, but this will make a list of all lines which is
not good habit for a large files. because list takes too much space. so, its better to read line wise
line.

OOPs
• A class name always starts with a capital letter by convention.

• The init method is a special method known as a constructor because it is called
automatically when an object is created and is used to initialize its attributes.

• The self keyword refers to the current object, and it is used to assign values to the
object’s attributes.

• Attributes defined inside the init method are called object attributes — they are
unique to each object.

• Attributes defined outside all methods but inside the class are called class attributes
— they are shared by all instances of the class.

• We can dynamically add attributes to a class or an object even after they are created.

• A dynamically created object attribute is specific to that object and cannot be
accessed by other objects.

• If both an object and its class have an attribute with the same name, Python will
prioritize the object attribut

class Student:
 counter = 0 # Class attribute

 def __init__(self, name, marks):
 self.name = name # Object attribute
 self.marks = marks # Object attribute
 Student.counter += 1 # Updating the class attribute

 def update_marks(self, marks):
 self.marks = marks

 def print_details(self):
 print(f'{self.name}: {self.marks}')

Creating objects
madhavan = Student('Madhavan', 90)
print('Number of students in the program =', Student.counter)

andrew = Student('Andrew', 85)
print('Number of students in the program =', Student.counter)

usha = Student('Usha', 95)
print('Number of students in the program =', Student.counter)

Creating attributes dynamically
madhavan.counter = -1 # Object attribute (only for 'madhavan')
Student.count = 2 # New class attribute

Accessing attributes
print(Student.counter) # Output: 3 (class attribute)
print(madhavan.counter) # Output: -1 (object attribute overrides
class attribute)
print(andrew.counter) # Output: 3 (falls back to class
attribute)
print(Student.count) # Output: 2 (class attribute dynamically
added)

Number of students in the program = 1
Number of students in the program = 2
Number of students in the program = 3
3
-1

3
2

Inheritance

We would have worked on plenty of assignments across multiple courses. Each assignment is a
collection of questions. Questions come in different types, some are NAT, some MCQ. So, a NAT
question is not of the same type as a MCQ question. Yet, both are questions. So, we see that
there is a hierarchy of relationships here:

class Question:
 def __init__(self, statement, marks):
 self.statement = statement
 self.marks = marks

 def print_question(self):
 print(self.statement)

 def update_marks(self, marks):
 self.marks = marks

Note that we have only retained those elements as attributes that are common to all questions,
irrespective of the type:

• statement of the question
• marks for the question

The next step is to define two new classes for the children of Question, one for MCQ and the
other for NAT. It is here that we make use of the relationship that we just diagrammed:

class NAT(Question):
 def __init__(self, statement, marks, answer):
 super().__init__(statement, marks)
 self.answer = answer

 def update_answer(self, answer):
 self.answer = answer

NAT is also a Question, but a specialized question. Specifically, it has an additional feature,
answer, and a new method, update_answer. But all the other attributes and methods of
Question are inherited by it, since NAT is just another Question.

We say that NAT is derived from Question. Question becomes the parent-class or base-class ,
and NAT is a child-class or derived-class.

#Syntex

class Derived(Base):
 def __init__(self, ...):
 pass

OR
class Child(Parent):
 def __init__(self, ...):
 ...

#Parent-child relationship
class NAT(Question):
 def __init__(self, statement, marks, answer):
 super().__init__(statement, marks)
 self.answer = answer

 def update_answer(self, answer):
 self.answer = answer

q_nat = NAT('What is 1 + 1?', 1, 2)
q_nat.update_marks(4)
print(q_nat.marks)

4

Method Overriding
class Question:
 def __init__(self, statement, marks):
 self.statement = statement
 self.marks = marks

 def print_question(self):
 print(self.statement)

 def update_marks(self, marks):
 self.marks = marks

Sometimes we may want to modify the behaviour of existing methods in the parent class. For
example, take the case of a MCQ question. For questions of this type, the statement of a
problem is incomplete without the options. The print_question method in the parent class just
prints the statement, but it makes more sense to print the options as well for a MCQ question.
So, we want the print_question to behave differently. Though we have inherited this method
from the parent class, we can override the behaviour of the method in the following way:

class MCQ(Question):
 def __init__(self, statement, marks, ops, c_ops):
 super().__init__(statement, marks)
 self.ops = ops # list of all options
 self.c_ops = c_ops # list of correct options

 def print_question(self):
 super().print_question()
 # Assume there are only four options
 op_index = ['(a)', '(b)', '(c)', '(d)']
 for i in range(4):
 print(op_index[i], self.ops[i])

q_mcq = MCQ('What is the capital of India?',
 2,
 ['Chennai', 'Mumbai', 'Kolkota', 'New Delhi'],
 ['New Delhi'])
q_mcq.print_question()

What is the capital of India?
(a) Chennai
(b) Mumbai
(c) Kolkota
(d) New Delhi

	Python revision
	Binary to Number
	Numbering starts from Right to left
	Methods
	🔍 What’s going on?
	Library
	Loops

	for
	while
	For
	Loop in string
	Break Continue
	Nested loops
	print: end, sep

	10.2f
	Goal : when iteration ---> n, value ---> limiting value

	Some Libraries
	Functions
	Docstrings
	Arguments
	Default argument
	Call by value
	Scope : The region in the code where a name can be referenced is called its scope.
	Namespaces:
	Built-ins
	Whenever the interpreter comes across a name in a function it sticks to the following protocol:
	List
	Some properties of list.
	list[3] = 5 : Change the 4th(3rd indexed) elememnt of the list to 5.
	What happens here ?
	Call by reference
	enumerate : enumerate(iterable, start) output: index & element of any itrable`s element..
	assert
	Matrices
	mat2 = mat1.copy() creates a shallow copy.
	Tuples
	hashing
	Dictionaries

	Some data analysis using dictionary
	view object
	Sets : unordered collection of unique, immutable elements.
	Set operations
	Sets of Immutable Containers with Mutable Contents:
	File handling

	OOPs
	Inheritance
	Method Overriding

