
Linux Fest

2025

Mohammad Fatemi - Saman Hosseini

Docker & Kubernetes

Fundamentals

Agenda

2

Docker
Basics

Kubernetes
Fundamentals

1

Container
Fundamentals

Docker Advanced
Topics

k8s Configuration
& Networking

k8s Advanced
Concepts

3 5

4 6

Container
Fundamentals

4

What Container?

redhat.com

docker.com

A container is a standard unit of
software that packages up code and
all its dependencies so the application
runs quickly and reliably from one
computing environment to another.

A Linux® container is a set of 1 or more
processes that are isolated from the rest of
the system. All the files necessary to run them
are provided from a distinct image, meaning
Linux containers are portable and consistent
as they move from development, to testing,
and finally to production.

cloud.google.com

Containers are lightweight packages of your
application code together with dependencies
such as specific versions of programming
language runtimes and libraries required to run
your software services.

5

Why Container?

● Consistency:
○ Same environment from development to production
○ Consistent deployment patterns

● Portability:
○ Run anywhere - laptop, cloud, on-premises
○ Focus on code, not environment setup

● Isolation:
○ Applications run independently without conflicts
○ Enable independent service deployment

● Resource Efficiency:
○ Lower overhead than VMs

● Speed: Start in seconds vs minutes for VMs
● Scalability:

○ Easy to scale horizontally
○ Better resource utilization

● Versioning:
○ Container images are immutable and versioned
○ Easier rollbacks and recovery

When Container?
● 1979: Unix V7 introduces chroot, the first isolation

mechanism
● 2000: FreeBSD Jails extends isolation for file system,

users, and networking
● 2001: Linux VServer project begins, providing resource

isolation

● 2006: Process Containers introduced (later renamed
cgroups)

● 2008: LXC (Linux Containers) combines cgroups and
namespaces

● 2011: Warden container system developed by
CloudFoundry

● March 2013: Docker released as open-source project
● 2014: Google open-sources Kubernetes, based on

internal "Borg" system
● 2015: Open Container Initiative (OCI) established to

standardize containers

● 2016: Docker implements OCI standards
● 2017: Kubernetes becomes mainstream with cloud

provider support
● 2018: Docker donates containerd to CNCF
● 2019: Kubernetes graduates from CNCF
● 2022+: Standardization around OCI and CRI (Container

Runtime Interface)

7

Container vs VM

Source: https://www.docker.com/resources/what-container/

The hypervisor creates an
abstraction layer allowing the
VM to access CPU, memory,
and storage.

Each VM includes a full copy
of an operating system, the
application, necessary binaries
and libraries – taking up tens of
GBs. VMs can also be slow to
boot.

Container vs VM contd.

Feature Container Virtual machine

Operating system Shares the host operating system's kernel Has its own kernel

Portability More portable Less portable

Speed Faster to start up and shut down Slower to start up and shut
down

Resource usage Uses fewer resources Uses more resources

Use cases Good for portable and scalable
applications

Good for isolated applications

How Container?
It s̓ all about isolation

https://www.reddit.com/r/explainlikeimfive/comments/spmpzh/eli5_what_are_containers_and_how_do_they_work/

● Namespaces: Isolation of system resources
○ MNT: Filesystem mounts

■ Isolated view of the namespace
○ PID: Process isolation

■ Isolated view of running processes
○ NET: Network interfaces

■ Provide isolated network environment
○ UTS: set namespace Hostname
○ IPC: Inter-process communication
○ USER: User and group IDs

■ Allows root permission in container but not
host

○ Time: Custom time setting
■ Fairly new and not widely supported

○ Control Groups (cgroups): Resource limits
■ CPU, memory, I/O constraints
■ Prevents container from overwhelming

host

What is Docker?

https://docs.docker.com/get-started/docker-overview/#docker-architecture

Docker Image
A read-only template with instructions for creating a Docker container

● You can create your own images with help of a Dockerfile
● Consists of layers and is immutable

○ You can add layers on top of existing layers
○ Each layer is a change to the container filesystem

● Are stored in registries (i.e. Dockerhub)
● Layers adhere to Dockerfile syntax

Take Postgres image as an example.

https://docs.docker.com/reference/dockerfile/
https://hub.docker.com/layers/library/postgres/latest/images/sha256-feedab244d0d4cd740debc3a533cd641b2fb7d99c3f056de61972093970da724

Docker Registry
Storage and distribution solution for Docker images

We have private and public registries
● Public like Dockerhub or GCR
● Private self-hosted registries
● For sensitive and proprietary applications

we should use private registries
● For access control use private registries

Registry Mirrors
● Caching proxy for registries

○ Faster image pulls
○ Reduced dependency on upstream registries
○ Bypass network/political restrictions :D

Docker Daemon
Is the core background service of Docker

● Core background service (daemon) of Docker platform
● Manages all container-related operations and resources

○ Images, Containers, Networks, Volumes
○ Manages container runtime operations (containerd)

● Listens for Docker API requests
● Handles container lifecycle management
● Runs as dockerd process on the host system

Docker Daemon cont.

1. docker run busybox (client)
2. dockerd

a. Parse and validate
b. Pull Image if not present

locally
3. containerd creates container from

image
a. Setup env and namespaces

and isolations
4. Delegate running container to runc
5. Monitor and control container in

containerd

Docker Client
The `docker` cli used to interact with docker components

1. Installed with docker engine
a. Autocomplete install guide
b. On macos orbstack is better :D

2. Get started by running `docker --help`
3. Read the cheatsheets:

a. https://dockerlabs.collabnix.com/docker/cheatsheet/
b. https://docs.docker.com/get-started/docker_cheatsheet.pdf

https://docs.docker.com/engine/cli/completion/
https://orbstack.dev/
https://dockerlabs.collabnix.com/docker/cheatsheet/
https://docs.docker.com/get-started/docker_cheatsheet.pdf

Windows

Install using package managers
(requires proxy for package
manager). Link

Install binaries using instructions

Recommended:

`brew install orbstack`

Install docker-desktop

Installing Docker

Linux Macos

https://www.docker.com/products/docker-desktop/

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/binaries/#install-daemon-and-client-binaries-on-linux
https://www.docker.com/products/docker-desktop/

Questions?

Exercise
Install docker and run hello-word image

https://hub.docker.com/_/hello-world

Docker Basics

20

Docker Images
● Image naming

○ [REGISTRY_HOSTNAME/][USERNAME/]IMAGE_NAME[:TAG]

○ Common tags: latest, version numbers

● Download image

○ docker pull <image>

● List, view images

○ docker images

○ docker inspect <image>

● Cleanup images

○ docker image prune

○ docker system prune

21

Running Containers from Images
● Run a Container

○ docker run <image>

● Running and Executing commands
○ docker run -it <image> sh

● Auto remove after exit
○ --rm flag
○ One-off commands: docker run --rm <image> command

● Commit & Save container

● Detached vs Interactive

22

Dockerfiles

23

Writing Effective Dockerfiles
● Base Image

○ Alpine

○ Debian

○ Distroless

● Commands

○ RUN

○ COPY

○ ADD

○ WORKDIR

○ CMD & ENTRYPOINT

● Context and .dockerignore

○ Build context: All files in the current directory are sent to the Docker daemon

○ Context management: Avoid sending unnecessary files

○ .dockerignore

24

Image Layers

Do we need all the compile time dependencies
(source codes, documentations, helper tools,
etc.) to run the application?

Efficient Dockerfiles (Multi-Stage Builds)

How large is a compiled hello world Go application?
● What about the container image for this application?
● Can we reduce the image size?

Separating Runtime base image and Compile/Build base image will help a lot.

To do so, copy final artifacts from build stage to runtime stage.

Efficient Dockerfiles cont. (Caching)

Image Layers
● Each instruction results in a new layer
● The checksum of the final state of the

container is used for caching
○ What if a layer changes?

So? The order of instructions matter!

Best practices
● Use .dockerignore when possible (why?)
● Group related commands in single `RUN

instruction`
● Place frequently changing instructions last
● Separate dependency download and

compile commands
● Consider multi-stage builds for compiled

applications

Problem/Challenge

29

Docker Networking Basics
● Network Drivers

○ bridge (default network driver)

○ host (remove network isolation between the container and the Docker host)

○ overlay

○ macvlan

○ ipvlan

● Creating Networks
○ docker network create

● Internal DNS & Container Name Resolution

● Port Mapping

Volume Management & Persistent Storage

● stored in a part of the host filesystem
● managed by Docker (/var/lib/docker/volumes/ on Linux)
● the best way to persist data in Docker

volume

Volume Management & Persistent Storage (Cont.)

● limited functionality compared to volumes
● a file or directory on the host machine is mounted into a container
● Non-Docker processes on the Docker host can modify them at any time

bind mount

Volume Management & Persistent Storage

● stored in the host system s̓ memory only
● files written there wonʼt be persisted
● useful to temporarily store sensitive files that you donʼt want to persist

tmpfs mount

 Exercise
Create a Dockerfile for one of your
applications in any compiled language.

Make use of the best practices for caching
and multi-stage builds.

You can use 1995parham/Zang as the project to
write Dockerfile for.

https://github.com/1995parham-learning/Zang

Advanced Containers

Docker Compose
What to do when we need multiple containers?

Imagine we have a web service consisting:
1. HTTP server on port 8080
2. PostgreSQL server on port 5432
3. Redis Server on port 6379

What s̓ the best way to start such application?

Docker Compose cont.
Docker Compose file

Define each container as a `service` in a file named
docker-compose.yaml

For each service, define:
● image
● ports
● volumes
● networks
● command
● etc.

You can visit the specification here. Also, consult this cheatshet for working with `docker
compose` CLI.

https://github.com/compose-spec/compose-spec/blob/main/spec.md#compose-file
https://devhints.io/docker-compose

 Exercise
Do you have a multi dependency
application? Try to write a docker compose
file for it.

If you donʼt you can use this repo (donʼt
just use the existing docker compose file
:D)

https://github.com/dockersamples/example-voting-app

Container Orchestration
What to do when we have multiple containers?

“Container orchestration automatically provisions, deploys, scales, and
manages containerized applications without worrying about the underlying
infrastructure.”

https://cloud.google.com/discover/what-is-container-orchestration

● How do we control number of containers?
● How do we handle failure recovery (restart)?
● What about networking between multiple containers?
● How do we manage deployment of individual containers?
● And so on?

Container Orchestration cont.
What does a container provisioning platform provide?

● Provisioning and deployment
● Scaling containers up or down

○ Provide some levels of fault tolerance
● Allocating resources between containers

○ CPU
○ Memory
○ Storage

● Performance and health monitoring of the application
● Networking

○ Service Discovery
○ Manage inter and intra cluster communications
○ Load balancing

Container Orchestration cont.
History of container orchestration tools

Early days (2000s) 2014-2015 2015 - present

Container orchestration cont.
Docker compose vs Container orchestration tools

Docker Compose Container Orchestration Tools (e.g., Kubernetes)

Purpose Simplifies running multi-container apps on a single host Manages containers at scale across multiple hosts.

Use Case Local development and small-scale setups. Production environments with high availability.

Scaling No built-in scaling. Automated scaling based on demand.

Self-Healing Not supported. Automatically restarts failed containers.

Networking Basic networking between containers. Advanced networking and service discovery.

Storage Limited persistent storage options. Supports persistent storage across clusters.

Complexity Simple and easy to use. Higher learning curve and setup complexity.

Best For Local setups and testing. Large-scale, distributed, and production systems.

Container Security
Security best practices

● Use official and trusted docker images (why?)
○ Donʼt forget that trusted images with known vulnerability is as bad as

shady images.
● Avoid unnecessary tools (even shell) when possible (why?)
● Manage container privileges

○ Limit security capabilities
○ Use non-root user in Dockerfile
○ Mount read-only files as read-only :D

● SELinux and AppArmor

Container Inspection

Container Inspection

Command Purpose Detail Level Performance Impact

docker inspect Comprehensive container details High Low

docker ps Container list Medium Very Low

docker logs Container logs Medium Low

docker top Running processes Low Low

docker stats Resource usage Real-time Medium

 Exercise
Can you find a file called “secret.txt” within

“smf8/pingpong-server:latest” docker
image?

P.S. Is it safe to run it locally without any
considerations in your system?

Kubernetes
Fundamentals

Why k8s?

🚢 Container Orchestration and Lifecycle Management

⚖ Automated Scaling

🔁 Rolling Updates and Rollbacks

🧠 Service Discovery and Load Balancing

📡 Declarative Configuration and Desired State Management

Why k8s?

🔄 Automated Rollout of Configurations and Secrets

🔒 Improved Security and Isolation

📦 Persistent Storage Management

📊 Observability (Monitoring, Logging, Tracing)

💥 Fault Tolerance and High Availability

🏗 Extensibility and Ecosystem

pod

● A Pod is the basic execution unit in Kubernetes
● It represents one or more tightly coupled containers that:

○ Share the same network namespace
○ Share volumes (storage)
○ Run on the same node

● Pods are ephemeral — they are designed to be created, destroyed,
and recreated

Pod(s)

Kubernetes Control Plane (API Server)

kube-apiserver

● Frontend of the Kubernetes control plane (RESTful API)
● Accepts and validates requests (kubectl, clients, other components)
● Authenticates, authorizes, and processes API calls
● Stores all cluster state in etcd
● Communicates with all other control plane and node components

Kubernetes Control Plane (etcd)

etcd

● Distributed, consistent key-value store
● Holds the entire cluster state (config, secrets, node info, etc.)
● Highly available and fault-tolerant
● Requires regular backup for disaster recovery

Kubernetes Control Plane (Scheduler)

kube-scheduler

● Assigns newly created pods to suitable nodes
● Scheduling decisions are based on:

○ Resource availability (CPU, memory)
○ Taints/tolerations, affinities/anti-affinities
○ Node selectors or labels
○ Pod priority, topology, etc.

Kubernetes Control Plane (Controller Manager)

kube-controller-manager

● Node Controller – Monitors node health (e.g., heartbeat)
● Replication Controller – Ensures desired number of pod replicas
● Endpoint Controller – Manages Endpoints for Services
● Namespace Controller – Handles lifecycle of namespaces
● Service Account & Token Controller – Creates default accounts and

credentials

Kubernetes Worker Node (Kubelet)

kubelet

● Agent that runs on each worker node
● Registers the node with the cluster
● Monitors and manages the pod lifecycle
● Ensures containers are running in desired state
● Talks to the container runtime (e.g., containerd, CRI-O)

Kubernetes Worker Node (Kube Proxy)

kube-proxy

● Handles network routing for Services
● Implements NAT and forwarding rules (iptables, IPVS)
● Ensures communication between pods across nodes
● Load balances traffic to service endpoints

Kubernetes Worker Node (Container Runtime)

container runtime

● Responsible for running containers
● Complies with Kubernetes CRI (Container Runtime Interface)
● Pulls container images, starts/stops containers, manages logs

Kubernetes Flow

pod

● A Pod is the basic execution unit in Kubernetes
● It represents one or more tightly coupled containers that:

○ Share the same network namespace
○ Share volumes (storage)
○ Run on the same node

● Pods are ephemeral — they are designed to be created, destroyed,
and recreated

ReplicaSet

● Ensures a specified number of pod replicas are running at all times

● Automatically replaces failed pods to maintain the desired count

● Used indirectly through Deployments (rarely managed directly)

● Selector-based – matches pods with specific labels to manage them

Deployment

● Manages ReplicaSets and provides declarative updates to Pods and

ReplicaSets

● Supports rolling updates, rollbacks, and version history

● Ideal for stateless applications

● Automatically replaces failed pods and scales up/down as needed

Namespace

● Virtual clusters within a Kubernetes cluster

● Useful for isolating environments (dev, staging, prod) or teams

● Resources are scoped within a namespace unless explicitly stated as

cluster-wide

ConfigMap

● Provides configuration data as key-value pairs

● Used to configure application settings without

rebuilding images

● Can be mounted as files or injected as

environment variables

Secret

● Stores sensitive data like passwords, tokens,

and keys

● Base64-encoded and can be encrypted at rest

● Used the same way as ConfigMaps (env vars

or mounted as files)

Letʼs get hands-on

create

get

run

describe

exec

delete

apply logs
attach

Kubernetes Networking

Service
An abstract way to expose an application running on a set of Pods as a

network service:

● Pods are non-permanent resources

● Each Pod gets its own IP address

● Single DNS name for a set of Pods

● load-balance across them

ClusterIP (default)
● Purpose: Exposes the service on an

internal IP in the cluster

● Accessibility: Only accessible from
within the cluster

● Use Case: Ideal for internal services
like backend APIs or databases

● Default Behavior: If no type is
specified, ClusterIP is used

NodePort
● Purpose: Exposes the service on a

static port (30000–32767) on each
node s̓ IP

● Accessibility: Accessible externally
via <NodeIP>:<NodePort>

● Use Case: Quick and simple way to
expose a service externally without a
load balancer

● Routing: Traffic is forwarded to the
ClusterIP service

LoadBalancer
● Purpose: Provisions an external load

balancer (from cloud provider) to
expose the service

● Accessibility: Externally accessible
via the load balancer s̓ IP

● Use Case: Production-grade access
to services in cloud environments

● Requires: Cloud provider integration
(e.g., MetalLB, LoxiLB)

ExternalName
● Purpose: Maps the service to a DNS

name (external to the cluster)

● Functionality: Returns a CNAME
record redirecting to an external
service

● Use Case: Accessing external
databases or services via a
Kubernetes service name

● No selector or endpoints: Doesnʼt
route to a pod

Headless
● Set via: clusterIP: None

● Purpose: Does not assign a cluster
IP; DNS resolves to pod IPs directly

● Use Case: Stateful applications (e.g.,
databases) that need direct
pod-to-pod communication

● Functionality: Works well with
StatefulSets and DNS-based service
discovery

Ingress
● Manages HTTP(S) access to services from outside the Kubernetes cluster

● Acts like a Layer 7 (HTTP) load balancer

● Host-based routing: Route foo.example.com to one service,
bar.example.com to another

● Path-based routing: Route /api to one service, /web to another

● TLS termination: Handle HTTPS using TLS certificates (often from Let s̓
Encrypt)

● Rewrite/redirect rules (controller specific)

NetworkPolicy

● Purpose: Controls network traffic (ingress and egress) to/from pods

● Default Behavior: Pods accept all traffic unless restricted by a
NetworkPolicy

● Scope: Applies at the pod level, based on labels

● Enforcement: Requires a CNI (like Calico, Cilium, etc.) that supports
NetworkPolicies

Advanced Kubernetes

StatefulSets

Which is a stateful application?
● aut.ac.ir front end app?
● MySQL?
● Websocket calculator?

What are stateful applications?
● Stable, unique network identifiers.
● Stable, persistent storage.
● Ordered, graceful deployment and scaling.
● Ordered, automated rolling updates.

StatefulSets cont.

● Stateful set in kubernetes provide non-interchangeable identities to pods.
○ <sts-name>-<pod-index>

● Persistent pod identities
○ Permits per pod volume attachment (v1 always attaches to p1)
○ Allows pod discovery with help of headless services

■ <sts-name>-<pod-index>.<headless-service>.<namespace>.svc.cluster.l
ocal

● Special graceful scaling operations (order of operations within is always the same)
○ Shutdown
○ Rolling update

 Exercise
https://labs.iximiuz.com/challenges/start-p
od-with-limited-resources

https://labs.iximiuz.com/challenges/start-pod-with-limited-resources
https://labs.iximiuz.com/challenges/start-pod-with-limited-resources

Other workload types

DaemonSets: A DaemonSet ensures that all (or some) Nodes run a copy of a Pod.
As nodes are added to the cluster, Pods are added to them.

Example: DNS server, Log collection, etc

Jobs: obs represent one-off tasks that run to completion and then stop.

Example: Performing a custom backup job.

CronJobs: A CronJob starts one-time Jobs on a repeating schedule.

Example: Analytical reports, Periodic backups, etc.

Scheduling Node Selection

We can:

● Restrict pods to certain nodes → .spec.nodeName, .spec.nodeSelector
● Prefer pods on certain nodes. -> Node Affinity Rules

Node/Pod affinity/anti affinity rules are more expressive -> Cover more scheduling
rules
based on node labels and pods running on a node.

There are two types:
● requiredDuringSchedulingIgnoredDuringExecution → Restrict
● preferredDuringSchedulingIgnoredDuringExecution → Prefer

○ Can use weighting to specify importance of each condition

Scheduling Node Selection cont.

Some Examples:

● https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
● https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

Resource Management

There are two resource types: CPU and Memory

Resources management is done by setting Limit and Request constraints.

Request: Considered during scheduling by kube-scheduler

● kubelet reserves at least this amount on node.

Limit: Enforced by kubelet on containers.

● Memory enforced by OOM kill signal
● CPU enforced by throttling
● Possible sum(limits.[cpu/memory]) > host CPU/Memory

Resource Management cont.

CPU Memory

● Measured in quantities of 1 physical or logical core
○ 1 -> 1 core, 0.05 -> 50 mili cores
○ 0.1 equals to same amount regardless of

host CPU cores
● Container runtime configures cgroups

○ During each (cpu) scheduling interval,
kernel checks if container has reached its
limit.

○ In contention, container with higher
request is allocated CPU time.

● Measured in bytes
○ Power of 2 -> Ki, Mi, Gi
○ Power of 10 -> K, M, G

● Container runtime configures cgroup
○ If a process reaches the cgroup limit, the

kernel will handle the termination.
○ Memory backed emptyDir volume

contributes to memory usage
○ If container reaches it s̓ memory request

and the host is out of memory → pod will
be evicted

 Exercise ?
https://kubernetes.io/docs/tutorials/stateful
-application/basic-stateful-set/

https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/
https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/

Resource Sharing

When several users or teams share a cluster with a fixed number of nodes, there is a concern that one team
could use more than its fair share of resources. The solution for these scenarios is ResourceQuota

We can constraint resources per namespace with ResourceQuota.

We can set default values and limitation on resource values using LimitRanges

Resource Sharing cont.

Resource Monitoring

Autoscaling
With autoscaling, you can automatically update your workloads in one way or another. This allows
your cluster to react to changes in resource demand more elastically and efficiently.

Autoscaling is either Horizontal or Vertical

Vertical scaling: Resizing CPU and memory resources assigned to containers

Horizontal scaling: Running multiple instances of your app

Autoscaling

 Demo
https://kubernetes.io/docs/tasks/run-applic
ation/horizontal-pod-autoscale-walkthroug
h/

https://github.com/collabnix/kubelabs/blob
/master/Autoscaler101/autoscaler-lab.md

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale-walkthrough/
https://github.com/collabnix/kubelabs/blob/master/Autoscaler101/autoscaler-lab.md
https://github.com/collabnix/kubelabs/blob/master/Autoscaler101/autoscaler-lab.md

