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Synaptic and neural behaviours in a standard 
silicon transistor

Sebastian Pazos1, Kaichen Zhu1, Marco A. Villena1, Osamah Alharbi1, Wenwen Zheng1, 
Yaqing Shen1, Yue Yuan1, Yue Ping1 & Mario Lanza2,3,4 ✉

Hardware implementations of artificial neural networks (ANNs)—the most advanced  
of which are made of millions of electronic neurons interconnected by hundreds of 
millions of electronic synapses—have achieved higher energy efficiency than classical 
computers in some small-scale data-intensive computing tasks1. State-of-the-art 
neuromorphic computers, such as Intel’s Loihi2 or IBM’s NorthPole3, implement ANNs 
using bio-inspired neuron- and synapse-mimicking circuits made of complementary 
metal–oxide–semiconductor (CMOS) transistors, at least 18 per neuron and six per 
synapse. Simplifying the structure and size of these two building blocks would enable 
the construction of more sophisticated, larger and more energy-efficient ANNs.  
Here we show that a single CMOS transistor can exhibit neural and synaptic behaviours 
if biased in a specific (unconventional) manner. By connecting one additional CMOS 
transistor in series, we build a versatile 2-transistor-cell that exhibits adjustable  
neuro-synaptic response (which we named neuro-synaptic random access memory 
cell, or NS-RAM cell). This electronic performance comes with a yield of 100% and  
an ultra-low device-to-device variability, owing to the maturity of the silicon CMOS 
platform used—no materials or devices alien to the CMOS process are required.  
These results represent a short-term solution for the implementation of efficient 
ANNs and an opportunity in terms of CMOS circuit design and optimization for 
artificial intelligence applications.

Hardware-based ANNs are expected to outperform traditional com-
puters in terms of energy efficiency because they can compute and 
store the data at the same location, which avoids energy consumption 
and delays related to data transfer. To do so, ANNs require (Fig. 1a):  
(1) electronic neurons capable of generating output signals that resem-
ble a highly nonlinear hysteretic or thresholding mathematical opera-
tion when receiving several voltage or current excitatory inputs4,5 and 
(2) electronic synapses capable of changing their electrical resistance 
to favour (facilitate) or limit (depress) the connections between specific 
neurons, a process that characterizes the learning of a feature. The 
persistence of these changes through time (plasticity) depends on the 
role of the synapse within the ANN and can be long or short term (see 
definitions in Supplementary Note 1 and Supplementary Fig. 1)6. In sev-
eral types of ANNs, neural and synaptic behaviours take place dynami-
cally (when applying electrical pulses rather than a continuous bias 
over time), which is highly desired for reducing energy consumption 
and providing synchronization with other parts of complex systems.

However, a single complementary metal–oxide–semiconductor 
(CMOS) transistor—as traditionally operated—cannot implement 
all these electrical behaviours, which has sparked a race to find the 
ideal hardware for implementing ANNs7. One solution is to implement 
electronic neurons and synapses using several interconnected CMOS 
transistors (Fig. 1b), but this approach implies large cost overheads that 

arise from silicon area demands8,9. An alternative is to employ emerging 
device technologies, such as memristors (Fig. 1c)10,11, but these solutions 
also face some implementation bottlenecks (peripherals and neural 
interfaces require dense CMOS circuits)12,13, and they are still signifi-
cantly smaller (with fewer neurons and synapses), less reliable and less 
widespread than purely CMOS implementations. Other innovative 
material platforms, such as ferroelectric, organic and two-dimensional 
materials14–17, show promise but their integration challenges are far 
from being addressed.

In this scenario, it is logical to seek alternatives within existent tech-
nology platforms (Supplementary Table 1 and Supplementary Note 2). 
Two studies have proposed the implementation of electronic neurons 
and synapses based on home-made floating-gate silicon transistors18,19, 
but the performance demonstrated was limited (especially for the 
synapse). More importantly, fabricating these devices is more complex 
and expensive than it is for CMOS transistors, and their integration 
density is lower because of the architecture and the nitridation thermal 
budgets20. One study implemented electronic neurons using partially 
depleted silicon-on-insulator tunnelling21 field-effect transistors (FETs), 
but tunnelling FETs require specific doping profiles and gate alignment 
approaches. So far, the most technology-ready alternative for building 
electronic neurons is standard, partially depleted, silicon-on-insulator 
transistors operating in a band-to-band tunnelling regime22–25 (used as 
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an integrator element in a leaky-integrate-and-fire neuron). However, 
to realize the thresholding operation, this approach still requires the 
interconnection of six devices. More importantly, demonstrations with 
partially depleted silicon-on-insulator transistors (both tunnelling and 
standard) only mimicked (limited) neuron functions, not synapses.

In this work, we experimentally demonstrate that excellent bio- 
inspired electronic neural and synaptic behaviours (Fig. 1a) can be 
mimicked in a single standard bulk-silicon metal–oxide–semiconductor 
field-effect transistor (MOSFET), if it is biased in a specific (unconven-
tional) manner. More specifically, we operated the device on the verge 
of punch-through conditions while adjusting the resistance of the bulk 
connection to ground (RB). When RB was implemented with another 
MOSFET, the resulting two-transistor cell could be continuously tuned 
between regimes to provide grand circuit-level versatility. In neuron 
mode, the two-transistor cell emulated leaky-integrate-and-fire neural 
behaviour and adaptive frequency bursting, with a high switching slope 
(below 10 mV dec−1), large dynamic range (over 103), high endurance 
(over 10 million cycles) and competitive energy efficiency (firing energy 
down to 415 pJ μm−1). When operated as a synapse, a single transistor 
in the floating-bulk configuration could be programmed at different 
(at least six) synaptic weights that were stable over time (long-term 
potentiation and depression) with high endurance (over 105 cycles). 
It was also capable of short-term pulsed facilitation, depression and 
synaptic plasticity with low variability and high robustness (up to 14 dis-
tinct levels for more than 700,000 potentiation and depression cycles).

Punch-through impact ionization in MOSFETs
We evaluated the intrinsic hysteretic behaviour of an n-type MOSFET 
(channel length, LCH = 180 nm) operated in punch-through regime to 

mimic neuron functionality. An equivalent circuit schematic includ-
ing the parasitic devices for such a structure is displayed in Fig. 2a. 
When the bulk terminal was grounded, the typical output characteristic 
(drain current ID versus drain voltage VD) of the MOSFET was detected, 
as expected (Fig. 2b (red lines) and Fig. 2c). However, when the bulk 
terminal was not directly grounded, the spreading resistance of the 
semiconductor substrate was large (RB in Fig. 2a), and drain-to-source 
voltage (VDS) values in the range 2.5 to 3.5 V generated another ID compo-
nent that resulted in abrupt current increases between 0.1 and 100 µA 
(Fig. 2b (blue lines) and Fig. 2d).

This phenomenon, which is highly dependent on the gate volt-
age VG (Supplementary Figs. 2 and 3), is related to the generation, 
through impact ionization, of excess electron–hole pairs in the vicin-
ity of the drain and the deepening of the depletion region from the 
drain (xpD) extending across the channel region (often referred to as 
punch-through; Fig. 2d). This regime was observed as early as 198726 
and is characterized as the ‘kink’ effect in floating-body devices27 
(Methods). The physics of this phenomenon is succinctly reviewed 
in Supplementary Note 2. Driven by bulk currents (Methods and Sup-
plementary Fig. 4), the process is largely dependent on the substrate 
spreading resistance and the effective resistance of the bulk connec-
tion. This resistance is different for each transistor in different chips 
and produces a very high variability in ID from one device to another 
(Supplementary Fig. 5). To solve this issue, we build a 2-transistor cell 
by including a bulk bias control MOSFET device (Fig. 2d) to tune the 
effective RB (between 10 kΩ and 1 MΩ; Fig. 2e) through the voltage 
applied to its gate, named VG2, thus achieving total replicability of the 
process over 30 chips (Methods and Supplementary Figs. 6 and 7). 
This connection provides a collection path for excess carriers in the 
substrate and can be exploited to generate an abrupt thresholding 
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Fig. 1 | Transistors and their use in neuro-synaptic-mimicking devices.  
a, General structure of an ANN comprising neurons and synapses (left). Some 
of the typical I–V or resistance behaviours of these devices are schematically 
represented: thresholding behaviour of neurons, update of the synaptic 
strength (weight) of synapses between neurons, and short-term plasticity 
displayed by synapses in spiking neural networks. b, Examples of electronic 
devices capable of mimicking some neuro-synaptic behaviours. Left, a single 
neuron core can comprise more than 20 CMOS transistors. Middle, the most 
basic digital cell used as a binary synapse is a six-transistor static random 
access memory cell. Right, an alternative implementation of a multilevel 

synapse using a floating-gate device. c, Representative examples of emerging 
memory devices, such as memristors based on phase-change materials  
or metals on oxides, which are being explored for their use as neurons and 
synapses in neuromorphic circuits. sn, synaptic update input event (typically  
a voltage or current pulse); Vsyn, post-synaptic signal as input to the neuron 
block; Ibias, neuron circuit reference bias current; Vth, threshold voltage setting; 
Vadap, input voltage for adaptive thresholding control; Ifb, feedback current;  
Vrf, output refractory period setting voltage; Vspike, spiking neuron output 
voltage; DEP, depression; POT, potentiation; VB, bias voltage (read/update 
control); SRAM, static random access memory.
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response, which is ideal for implementing integrate-and-fire neurons, 
or long-term conductance changes, adequate for implementing syn-
apses (Fig. 2f). This extra transistor could be eliminated by engineering 
the bulk contact resistance for maximum integration density, although 
keeping it provides a circuit-level degree of freedom when tailoring the 
avalanche response to the application requirements or even dynami-
cally within a single circuit.

We addressed the time-domain component of the firing and relaxa-
tion process that mimics a neuron by applying constant sweep rate VD 
ramps to the floating-bulk transistors and monitoring the value of ID 
(Methods). The results clearly show differences in the dependence 
of the firing and relaxing voltages on the sweep rate (Supplementary 
Figs. 8 and 9), which becomes shallower at higher VG2. This is ascribed 
to a lower bulk resistance, which enables the collection of excess car-
riers in the bulk of the transistor and a quick drop of the electrostatic 
potential in the floating-bulk semiconductor at lower RB. The phys-
ics behind these dynamics were carefully verified using technology 
computer-assisted design (TCAD) simulations replicating the experi-
mental conditions (Methods) and showing excellent agreement with 
measurement results (see the detailed discussion on the simulation 
results in Supplementary Note 3).

2-transistor neuro-synaptic cell
We first investigated the potential of an n-type MOSFET operated in 
the punch-through impact-ionization regime for use as an electronic 
neuron in an ANN. For the application as a neuron, we needed the device 
to show, at first order, a thresholding (abrupt on/off behaviour) and 
hysteretic characteristic in the I–V curves, so we set the external bulk 
bias control voltage VG2 in the 2-transistor cell to between 1.3 and 1.8 V to 

a transistor with LCH = 180 nm (Fig. 2e). We observed that this hysteretic 
characteristic was extremely stable and repeatable through several 
iterations. We used high-speed ramps with peak value 4.2 V and with 
rates 80,000 V s−1 and extracted the change in resistance across every 
cycle for 12 different CMOS transistors (LCH = 180 nm) for millions of 
cycles (Fig. 2g and Supplementary Fig. 15), which showed the robustness 
of the phenomenon. Similar behaviour was observed in CMOS transis-
tors with LCH = 500 nm for more than 70,000 cycles (Supplementary 
Fig. 16). Under a pulsed firing regime (10-μs pulses and 60-μs relaxation 
transients), we also observed consistent behaviour over millions of 
cycles for LCH = 180 nm devices (Supplementary Fig. 17).

We next addressed the energy consumption of the device and 
obtained the firing time at constant applied drain voltage (Supplemen-
tary Fig. 18), depicted as Vspike in reference to the spikes that a biological 
neuron integrates at its inputs (Methods). We measured firing times 
(Supplementary Figs. 19 and 20) from 10 μs to 2 ms for Vspike between 
3.5 and 4.5 V (Fig. 3a, left axis). The energy consumption of a single 
neuron was as low as 415 pJ μm−1 (measured in devices with a channel 
width of 1 μm) at a firing time of 12.6 μs (Fig. 3a, right axis). These val-
ues are very competitive with other neuron-mimicking devices based 
on full-CMOS circuits28 and CMOS integrated volatile memristors29,30 
(Supplementary Table 1). Our devices have the advantage of ease of 
integration and high tunability at little area overhead.

Similarly, we addressed the natural relaxation transients of the neural 
behaviour after firing a single pulse (which is known as the leaky charac-
teristic of neurons; Supplementary Note 1). We performed time-resolved 
measurements at different VG2 (0 to 1.8 V; Methods) and observed that 
the fired condition could be sustained over long periods of time exceed-
ing several tens of milliseconds (Supplementary Fig. 21), resembling 
what is commonly known as synaptic plasticity31. We extracted the 
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characteristic relaxation time (τr) and the synaptic update ratio (Meth-
ods) after a 30-ms window. Our results clearly indicate progressive tun-
ing between purely neural behaviour (VG2 > 1.3 V) and neuro-synaptic 
behaviour (VG2 < 1.3 V), with characteristic times insensitive to VG (Fig. 3b, 
left axis). On the other hand, VG did affect the overall synaptic update 
ratio (Fig. 3b, right axis) and allowed or inhibited the firing for a fixed 
spike amplitude and duration. The operational flexibility that character-
izes this 2-transistor cell makes it a convenient building block which we 
call neuro-synaptic random access memory cell, or NS-RAM.

Tuning the dynamics of excess carrier generation (through VG) and 
the return to equilibrium after firing (through VG2) allowed us to control 
the firing rate of the neuron under different excitatory voltage pulse 
amplitudes and frequencies (Methods). We measured the elapsed 
time until the neuron fired for each input (Supplementary Fig. 22). 
We observed a clear dependence of the firing time on the input spiking 
frequency and voltage, which could be inhibited at low frequencies 
by tuning VG2 (Fig. 3c). We mapped these characteristics onto a Vspike 
versus frequency space for spike durations tspike between 1 and 10 µs 
(Fig. 3d). We can clearly observe that the response could be tailored 
according to the system needs and to the process being mimicked. This 
behaviour is fundamental for replicating biological neural processes at 
different scales, for example the tonotopic mapping of audio signals 
performed by cells in the human cochlea29 (Methods), and could be 
further tailored through external capacitances that impact the relaxa-
tion dynamics of the bulk semiconductor after firing (see discussion 
in Supplementary Note 3).

Short-term plasticity in a single transistor
We next tackled the potential of the floating-bulk n-type MOSFET to 
operate as a synapse. To mimic this behaviour, we operated individual 

transistors (LCH = 500 nm) with a bipolar voltage scheme in the fully 
floating-bulk condition (the bulk bias control transistor was not con-
nected, and the bulk terminal was left unbiased). We investigated the 
pulse modulation of the synaptic weight at the microsecond timescale 
and exploited the excess carrier dynamics in the floating-bulk device to 
mimic short-term synaptic dynamics. We used positive voltage spikes 
at the drain for potentiation (synaptic weight increase and reduction in 
resistance) and negative voltage spikes for depression (synaptic weight 
decrease and increase in resistance). We applied trains of potentiation 
and depression pulses. We read the resistance after each pulse (Meth-
ods) and observed the typical potentiation and depression behaviour of 
the synaptic weight (Fig. 4a) with excellent repeatability over 200,000 
cycles (approximately 7 million pulses; Supplementary Fig. 23). We 
tuned the voltages and timing (Fig. 4b) and achieved low cycle-to-cycle 
variability (effective number of levels Neff = 14; for detailed statistics, 
see Supplementary Fig. 23) and excellent linearity with a tuning range 
of approximately ×4 (nonlinearity exponential factors were 0.06 for 
potentiation and 0.21 for depression, where values below 1 typically 
represent good linearity32).

The synaptic weight range could be tuned by modifying the gate 
voltage applied to the device over two orders of magnitude (between 
200 kΩ and 20 MΩ; Fig. 4c), which allowed us to customize the conveni-
ent operating range of the device within a specific circuit implementa-
tion. The potentiation process could be rapidly reset by a single, larger 
depression pulse that brought the synapse back to its quiescent state 
(Supplementary Fig. 24), with a synaptic update range reaching approx-
imately ×10 and excellent repeatability over 760,000 full cycles (Fig. 4d)  
(Methods). Finally, we analysed the short-term synaptic plasticity6,31 
(Supplementary Note 1). We applied a potentiation sequence (learning) 
and addressed the synaptic decay through time (forgetting) under a 
constant read voltage. We observed characteristic exponential decay 
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times of the order of 1–100 ms (Fig. 4e), well in agreement with the 
observed dynamics of firing a single pulse (discussed in Fig. 3d) and 
within the range of synaptic plasticity displayed by biological systems31 
and other emerging devices being explored today6. This regime relies 
on characteristic carrier lifetimes and device capacitances that translate 
to a precise control of the conductance state and operating range, and 
it could have an immediate impact on neuromorphic computation 
strategies, such as recurrent neural networks33 or reservoir comput-
ing34, where emerging devices (such as memristors) struggle because 
of their inherent variability.

Long-term plasticity in a single transistor
Next, we extended our analysis of the floating-bulk transistor when 
mimicking long-term synaptic plasticity. This feature is used in 
the widely adopted compute-in-memory accelerators based on 
hardware-implemented ANNs10,35,36. First, we applied ID–VD sweeps 
between 0 and 5 V at constant VG (Fig. 5a). We observed clear hysteresis 
with different widths at different VG = 0.7, 0.8 or 1 V (Fig. 5a, inset) with 
a resistance ratio as large as ×12. This ratio is comparable to that of the 
state-of-the-art metal–oxide and phase-change memristors used for 
neuromorphic computing11,37. Sweeping the voltage to negative values 
between 0 and −3 V brought the device back to its original state. We ana-
lysed the impact of the depression sweep voltage (Vdep) on the resistance 
state tuning (Fig. 5b). We observed an approximately ×35 resistance ratio 
between the high-resistance state (RHRS) and the low-resistance state 
(RLRS) (from 15 MΩ down to 400 kΩ, read voltage of 0.5 V; inset of Fig. 5b).

We also assessed the retention at constant read voltage of at least six 
resistance states after different reset voltages (Methods), achieving 
long-term synaptic stability over 104 s (approximately 2.8 h; Fig. 5c) 
without any kind of refresh. This behaviour still occurred when the 
read-out consisted of 100-ms-long pulses spaced over 900 ms (Meth-
ods and Supplementary Fig. 25a,b)—discarding the possibility of the 
state being maintained artificially by a constant read voltage—and even 
when tested at high temperatures (85 °C; Supplementary Fig. 25c,d). 
Also note that we drove this process with pulses, initially in the range 
10–100 ms (Supplementary Fig. 26). Therefore, to address the repeat-
ability of this process under a pulse regime that better suits real applica-
tion conditions, we evaluated the switching performance using 500-μs 
pulses of +5 V voltages for potentiation, −3 V for depression and 0.35 V 
for reading the acquired state after each pulse (Fig. 5d). We observed 
that the devices consistently switched between two distinctive resist-
ance states (ratio more than ×10) for more than 105 cycles (Fig. 5e,f).

This bipolar drain bias regime cannot be employed in grounded-bulk 
devices, which would have high drain–bulk forward bias currents during 
the depression sweeps (VD < 0) and no impact-ionization firing during 
potentiation (VD > 0). In this regime, carrier lifetimes and internal device 
capacitances cannot account for the observed results. Therefore, to 
explain the long-term retention, we considered a contribution from 
carrier injection into the gate dielectric driven by impact ionization 
in the floating-bulk device. These charge-trapping processes were not 
a reliability concern for these devices: (1) They were operated within 
nominal voltages in all conditions (all voltages within 5.5 V). (2) The 
amount of charge trapped and de-trapped in every cycle did not trigger 
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95th percentiles. Data points per box, 83,734. c, Dependence of the synaptic 
potentiation range under different VG, showing tunability of up to ×20 
(Vpot = 5 V, Vread = 0.5 V, tpot = 10 μs and tread = 50 μs). d, Potentiation statistics for a 
succession of spikes (facilitation or learning process) for over 15 million pulses 
(Vpot = 2.8 V and Vread = 0.75 V). In each cycle, after the 21st facilitation spike,  
a negative spike (Vreset = −0.7 V) reset the synapse to its initial state (tpot = 5 μs, 
tread = 10 μs and treset = 1 μs; Supplementary Fig. 24). Boxes are placed on the 
median value and represent the 25th and 75th percentiles. Whiskers indicate 
the 10th and 90th percentiles. Data points per box, 771,000. e, Detailed view of 
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device failure, even after 100,000 cycles (Fig. 5e,f). This endurance is 
higher than that of some transistor-based commercial memory tech-
nologies, such as charge-trapping transistors (1,000 cycles)38, and 
on par with embedded Flash (10,000–100,000 cycles)39 and some 
commercial memristor technologies (100,000 cycles)40. The results 
obtained (Fig. 5e,f) for the floating-bulk device agree well with this 
requirement. We performed TCAD simulations of the floating-bulk 
MOSFET (LCH = 500 nm) and observed that the conditions were suit-
able for hot-electron injection during depression and hot-hole injec-
tion during potentiation, mechanisms that are used to write and erase 
commercial floating-gate memory41 (Methods, Supplementary Note 4 
and Supplementary Fig. 27). We validated this experimentally with 
grounded-bulk measurements of retention and post-retention IDversus 
VG curves (Methods), where we observed sustained retention and a clear 
subthreshold characteristic shift for each condition (Supplementary 
Fig. 28).

Discussion
Standard n-type MOSFETs operating under a floating-bulk condition 
can mimic several neuro-synaptic behaviours with high performance, 
good energy efficiency and low variability with high tunability and 
low area overhead. As all the processes driving these behaviours are 
controlled by the charge distribution in the semiconductor (with 
or without charge-trapping), a device operates with outstanding 
robustness in all regimes. It could be argued that the operating volt-
ages (between 3.6 and 4.5 V in the microsecond-pulsed regime) are a 
downside compared to standard-operated CMOS transistors, although 
they are very competitive compared to memristors and other emerg-
ing devices (Supplementary Table 1). However, the punch-through 

avalanche is a parasitic effect under nominal operating conditions. It 
can be minimized with specific device engineering (for example, halo 
or punch-through stop implants42,43 or layers44). Therefore, several 
device-level parameters can be engineered to enhance specific perfor-
mance metrics (including operating voltages). As evidence for this, note 
that all the neuro-synaptic behaviours demonstrated in MOSFETs with 
LCH = 180 nm have been reproduced in MOSFETs with LCH = 500 nm while 
applying voltages within their nominal (5.5 V), meaning that they are 
driven by the same fundamental phenomenon. Therefore, this operat-
ing regime should not be a risk to reliability (for a detailed discussion, 
see Supplementary Note 5).

An attractive characteristic highlighted in our results is the potential 
for a very simple and compact NS-RAM cell to mimic several neuro- 
synaptic behaviours. From the neural perspective8,28, in addition to the 
threshold voltage modulation, controlling the bulk biasing network 
can be used for refractory period modulation, for sensitivity tuning 
of the excitatory or inhibitory signal and for adapting the spike fre-
quency. The same building block can operate in current or voltage mode 
(Supplementary Figs. 29–32), provide fast leaky-integrate-and-fire or 
spike frequency adaptation over a wide range of bursting frequencies 
and input stimuli (Supplementary Note 6), accommodate external 
reset signals (through bulk bias control pulsing) or operate as a two-, 
three- or four-terminal neuron in different neural network architec-
tures45 (Supplementary Note 6 and Supplementary Fig. 33). From the 
synaptic perspective, a single device could, in principle, replace static 
random access memory (a volatile memory cell comprising at least six 
transistors; Fig. 1b) in binarized weight neural networks, or embedded 
Flash in multilevel synaptic arrays, with the immediate advantage of 
a significant area and cost reduction per bit. Moreover, the synaptic 
behaviours presented here could potentially be enhanced in MOSFETs 
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Fig. 5 | Long-term synaptic behaviour of 500-nm floating-bulk MOSFETs.  
a, Quasi-stationary ID–VD of a transistor in the fully floating-bulk condition 
displaying bipolar synaptic update. The potentiation sweeps (curves 1 and 2) 
show different conductance changes at different VG. The depression sweeps 
towards negative voltages (curves 3 and 4) resets the initial conductance state. 
b, Synaptic update after a potentiation sweep followed by successive depression 
sweeps stopped at different negative VD voltages. The conductance state was 
read after each depression sweep through an ID–VD curve up to 0.5 V. Inset, read 
resistance extracted at VD = 0.5 V for different depression sweep voltages Vdep. 

c, Retention of the synaptic update after different Vdep sweeps. Each retention 
measurement was preceded by a potentiation sweep and a depression sweep 
like those in a and b. d, Current and voltage waveforms showing the synaptic 
behaviour in the pulsed regime. All pulses were 500 μs wide and Vpot = 5 V, 
Vdep = −2.5 V and Vread = 0.5 V. e, Example of the repeatable synaptic behaviour 
for more than 100,000 cycles in one device under the pulsed regime depicted 
in d. f, Repeated experiment of panel e on a separate device, displaying 
reproducible endurance characteristics.
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using metal–oxide high-k dielectrics (HfOX), as these materials allow 
charge-trapping and charge-de-trapping to a much higher degree than 
SiO2 (as used in this study)46. Additionally, the long state retention that 
we observed in floating-bulk transistors could be sufficient for imple-
menting compute-in-memory approaches with a weight refresh, such 
as approaches using dynamic random access memory47,48, but with the 
advantage of clear long-term synaptic retention through read pro-
cesses (Fig. 5c), thus providing a substantial improvement in latency. In 
dynamic random access memory, the term latency is related to the time 
from when access is requested to when the access becomes possible.

Another important advantage (compared to emerging devices) is 
that, through well-known device modelling techniques (either physi-
cal or compact models), our MOSFET-based neurons and synapses can 
be immediately introduced into standard CMOS design processes. In 
contrast to the vastly explored design and implementation methods for 
ANNs with long-term synaptic devices10,11,37, the system design process 
for neural networks based on short-term neuro-synaptic characteristics 
still lacks mature, well-correlated computation models and network 
algorithms6. In this direction, we have been able to perfectly model the 
control of the avalanche regime using an open-source SPICE simulator 
and basic MOSFET and bipolar transistor models. Our results show 
excellent agreement with the experimental static and dynamic char-
acteristics (Supplementary Fig. 34). This approach may rapidly enable 
complex system designs and simulations.

In the history of microelectronics, neural and synaptic behaviours 
based on different physical phenomena have been observed in different 
types of devices and circuits (Supplementary Note 7 and Supplemen-
tary Table 2). In all cases, the time between the first demonstration of a 
neuron or synapse and the first ANN demonstration (hardware imple-
mentation, not simulation) was at least 7 years. For some device tech-
nologies (such as ferroelectric FETs), this has still not been achieved. 
The reason is that moving from a single device to an ANN still requires 
immense engineering work, including the development of a very 
large amount of custom-designed peripheral circuits and interfaces 
with external circuitry for testing and several iterations of circuit-, 
block- and system-level design, fabrication and test before a functional 
prototype can be achieved, in addition to the technology integration 
challenges that different devices may present. However, the adoption 
of unconventionally biased MOSFETs for mimicking neuro-synaptic 
responses could be a fundamental breakthrough towards accelerat-
ing the next generation of neuromorphic computers without incur-
ring major technological changes. MOSFETs keep surprising us and 
now—after this study—they seem to be the perfect building block for 
implementing ANNs.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-08742-4.

1.	 Mehonic, A. & Kenyon, A. J. Brain-inspired computing needs a master plan. Nature 604, 
255–260 (2022).

2.	 Orchard, G. et al. Efficient neuromorphic signal processing with Loihi 2. In Proc. 2021  
IEEE Workshop on Signal Processing Systems (SiPS) (eds Sousa, L. & Sheikh, F.) 254–259 
(IEEE, 2021).

3.	 Cassidy, A. S. et al. 11.4 IBM NorthPole: an architecture for neural network inference with a 
12 nm chip. In Proc. 2024 IEEE International Solid-State Circuits Conference (ISSCC) Vol. 67 
(ed. O’Mahony, F.) 214–215 (IEEE, 2024).

4.	 Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher- 
complexity neuromorphic computing. Nat. Rev. Mater. 7, 575–591 (2022).

5.	 Koch, C. Computation and the single neuron. Nature 385, 207–210 (1997).
6.	 Li, C. et al. Short-term synaptic plasticity in emerging devices for neuromorphic computing. 

iScience 26, 106315 (2023).
7.	 Editorial. Does AI have a hardware problem? Nat. Electron. 1, 205 (2018).
8.	 Indiveri, G. et al. Neuromorphic silicon neuron circuits. Front. Neurosci. 5, 73 (2011).

9.	 Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing with nanoscale 
floating-gate memory cell arrays. IEEE Trans. Neural Netw. Learn. Syst. 29, 4782–4790 
(2018).

10.	 Song, W. et al. Programming memristor arrays with arbitrarily high precision for analog 
computing. Science 383, 903–910 (2024).

11.	 Le Gallo, M. et al. A 64-core mixed-signal in-memory compute chip based on phase-change 
memory for deep neural network inference. Nat. Electron. 6, 680–693 (2023).

12.	 Amirsoleimani, A. et al. In-memory vector-matrix multiplication in monolithic 
complementary metal–oxide–semiconductor-memristor integrated circuits: design 
choices, challenges, and perspectives. Adv. Intell. Syst. 2, 2000115 (2020).

13.	 Islam, R. et al. Device and materials requirements for neuromorphic computing. J. Phys. D 
Appl. Phys. 52, 113001 (2019).

14.	 Pazos, S. et al. Solution-processed memristors: performance and reliability. Nat. Rev. Mater. 
9, 358–373 (2024).

15.	 Zhu, K. et al. Hybrid 2D–CMOS microchips for memristive applications. Nature 618, 57–62 
(2023).

16.	 Migliato Marega, G. et al. A large-scale integrated vector–matrix multiplication processor 
based on monolayer molybdenum disulfide memories. Nat. Electron. 6, 991–998 (2023).

17.	 Sharma, D. et al. Linear symmetric self-selecting 14-bit kinetic molecular memristors. 
Nature 633, 560–566 (2024).

18.	 Han, J.-K. et al. Cointegration of single-transistor neurons and synapses by nanoscale 
CMOS fabrication for highly scalable neuromorphic hardware. Sci. Adv. 7, eabg8836 
(2021).

19.	 Woo, S. Y. et al. Low-power and high-density neuron device for simultaneous processing 
of excitatory and inhibitory signals in neuromorphic systems. IEEE Access 8,  
202639–202647 (2020).

20.	 Carrere, J.-P. et al. Embedded Flash memory thermal budget impact on core CMOS  
90 nm devices. In Proc. ESSDERC 2007 – 37th European Solid State Device Research 
Conference (eds Schmitt-Landsiedel, D. & Thewes, R.) 263–266 (IEEE, 2007).

21.	 Chen, Y., Xiao, K., Qin, Y., Liu, F. & Wan, J. A compact artificial spiking neuron using  
a sharp-switching FET with ultra-low energy consumption down to 0.45 fJ/spike.  
IEEE Electron Device Lett. 44, 160–163 (2023).

22.	 Dutta, S., Kumar, V., Shukla, A., Mohapatra, N. R. & Ganguly, U. Leaky integrate and  
fire neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7, 8257 
(2017).

23.	 Chavan, T., Dutta, S., Mohapatra, N. R. & Ganguly, U. Band-to-band tunneling based 
ultra-energy-efficient silicon neuron. IEEE Trans. Electron Devices 67, 2614–2620 
(2020).

24.	 Singh, A. K., Saraswat, V., Baghini, M. S. & Ganguly, U. Quantum tunneling based ultra- 
compact and energy efficient spiking neuron enables hardware SNN. IEEE Trans. Circuits 
Syst. I Regul. Pap. 69, 3212–3224 (2022).

25.	 Kadam, A. A., Singh, A. K., Somappa, L., Baghini, M. S. & Ganguly, U. A compact low power 
multi-mode spiking neuron using band to band tunneling. In Proc. 2024 IEEE International 
Symposium on Circuits and Systems (ISCAS) (eds Nishio, Y. et al.) 1–5 (IEEE, 2024).

26.	 Boudou, A. & Doyle, B. S. Hysteresis I–V effects in short-channel silicon MOSFET’s. IEEE 
Electron Device Lett. 8, 300–302 (1987).

27.	 Park, H. J., Bawedin, M., Choi, H. G. & Cristoloveanu, S. Kink effect in ultrathin FDSOI 
MOSFETs. Solid State Electron. 143, 33–40 (2018).

28.	 Liang, F.-X., Wang, I.-T. & Hou, T.-H. Progress and benchmark of spiking neuron devices 
and circuits. Adv. Intell. Syst. 3, 2100007 (2021).

29.	 Milozzi, A., Ricci, S. & Ielmini, D. Memristive tonotopic mapping with volatile resistive 
switching memory devices. Nat. Commun. 15, 2812 (2024).

30.	 Ye, F., Kiani, F., Huang, Y. & Xia, Q. Diffusive memristors with uniform and tunable relaxation 
time for spike generation in event-based pattern recognition. Adv. Mater. 35, 2204778 
(2023).

31.	 Zucker, R. S. & Regehr, W. G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 
(2002).

32.	 Chen, P.-Y., Peng, X. & Yu, S. NeuroSim+ : An integrated device-to-algorithm framework 
for benchmarking synaptic devices and array architectures. In Proc. 2017 IEEE 
International Electron Devices Meeting (IEDM) (eds Rim, K. & Takayanagi, M.) 6.1.1–6.1.4 
(IEEE, 2017).

33.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 
(1997).

34.	 Moon, J. et al. Temporal data classification and forecasting using a memristor-based 
reservoir computing system. Nat. Electron. 2, 480–487 (2019).

35.	 Fujiwara, H. et al. 34.4 A 3nm, 32.5TOPS/W, 55.0TOPS/mm2 and 3.78Mb/mm2 fully-digital 
compute-in-memory macro supporting INT12 × INT12 with a parallel-MAC architecture and 
foundry 6T-SRAM bit cell. In Proc. 2024 IEEE International Solid-State Circuits Conference 
(ISSCC), Vol. 67 (ed. O’Mahony, F.) 572–574 (IEEE, 2024).

36.	 M1076 Analog Matrix Processor (Mythic, 2025); https://mythic.ai/products/m1076-analog- 
matrix-processor/.

37.	 Wen, T.-H. et al. Fusion of memristor and digital compute-in-memory processing for 
energy-efficient edge computing. Science 384, 325–332 (2024).

38.	 Khan, F., Cartier, E., Woo, J. C. S. & Iyer, S. S. Charge trap transistor (CTT): an embedded 
fully logic-compatible multiple-time programmable non-volatile memory element for 
high-k-metal-gate CMOS technologies. IEEE Electron Device Lett. 38, 44–47 (2017).

39.	 Embedded Flash IP Solutions (Infineon Technologies); www.infineon.com/cms/en/product/ 
memories/embedded-flash-ip-solutions.

40.	 Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and 
radio-frequency communication. Science 376, eabj9979 (2022).

41.	 Cypress eCTTM Flash (Cypress Semiconductor Corporation, 2017); www.infineon.com/
dgdl/Infineon-eCT_Flash-ProductBrief-v01_00-EN.pdf?fileId=8ac78c8c7d710014017d715
3137b2071.

42.	 Li, Y., Lee, J.-W. & Sze, S.-M. Optimization of the anti-punch-through implant for electrostatic 
discharge protection circuit design. Jpn. J. Appl. Phys. 42, 2152 (2003).

43.	 Guegan, G. et al. A 0.10 μm buried p-channel MOSFET with through the gate boron 
implantation and arsenic tilted pocket. Solid State Electron. 46, 343–348 (2002).

https://doi.org/10.1038/s41586-025-08742-4
https://mythic.ai/products/m1076-analog-matrix-processor/
https://mythic.ai/products/m1076-analog-matrix-processor/
http://www.infineon.com/cms/en/product/memories/embedded-flash-ip-solutions
http://www.infineon.com/cms/en/product/memories/embedded-flash-ip-solutions
http://www.infineon.com/dgdl/Infineon-eCT_Flash-ProductBrief-v01_00-EN.pdf?fileId=8ac78c8c7d710014017d7153137b2071
http://www.infineon.com/dgdl/Infineon-eCT_Flash-ProductBrief-v01_00-EN.pdf?fileId=8ac78c8c7d710014017d7153137b2071
http://www.infineon.com/dgdl/Infineon-eCT_Flash-ProductBrief-v01_00-EN.pdf?fileId=8ac78c8c7d710014017d7153137b2071


76  |  Nature  |  Vol 640  |  3 April 2025

Article
44.	 Takeuchi, H. et al. Punch-through stop doping profile control via interstitial trapping by 

oxygen-insertion silicon channel. IEEE J. Electron Devices Soc. 6, 481–486 (2018).
45.	 Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. 

Nat. Commun. 15, 1974 (2024).
46.	 Qiao, S., Moran, S., Srinivas, D., Pamarti, S. & Iyer, S. S. Demonstration of analog compute- 

in-memory using the charge-trap transistor in 22 FDX technology. In Proc. 2022 
International Electron Devices Meeting (IEDM) (eds Triyoso, D. & Moselund, K.) 2.5.1–2.5.4 
(IEEE, 2022).

47.	 Xie, S. et al. 16.2 eDRAM-CIM: compute-in-memory design with reconfigurable embedded- 
dynamic-memory array realizing adaptive data converters and charge-domain computing. 
In Proc. 2021 IEEE International Solid-State Circuits Conference (ISSCC) Vol. 64 (ed. Ikeda, M.) 
248–250 (IEEE, 2021).

48.	 Kim, S. et al. Neuro-CIM: a 310.4 TOPS/W neuromorphic computing-in-memory processor 
with low WL/BL activity and digital-analog mixed-mode neuron firing. In Proc. 2022 IEEE 
Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) (ed. Wong, P.) 
38–39 (IEEE, 2022).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

http://creativecommons.org/licenses/by/4.0/


Methods

Devices under test
The devices were standard polysilicon/SiON gate-stack bulk-silicon 
MOSFETs with an n-channel length of 180 nm (thin oxide, approximately 
3.5 nm) or 500 nm (thick oxide, approximately 10 nm) from a standard, 
commercial CMOS technology. All devices had an n–p junction con-
nected to the gate to avoid damage due to the antenna effect during 
device fabrication, a typical design requirement when large probing 
pads are directly connected to a thin oxide.

Basic device characterization
For the current versus voltage (I–V) curves, we characterized the current 
flowing through the drain and the source terminals (ID) when the voltage 
between them (VD) was ramped and the gate electrode was subjected 
to a constant voltage (VG) while keeping the bulk terminal grounded 
(as in most applications) or floating. The electrical characterization 
was performed with a probe station (EPS150, FormFactor) connected 
to a semiconductor parameter analyser (Keysight B1500A). All the 
I–V curves under d.c. voltages (Fig. 2 and Supplementary Figs. 2–7) 
were collected using ramped voltage sweeps at limited auto ranging. 
For constant sweep rate measurements at rates below 100 V s−1 (Sup-
plementary Figs. 8, 19 and 14), limited auto ranging was configured 
starting at a range of 100 nA to ensure a constant delay time between 
measurements (verified by storing timestamps for every measure-
ment), and the step size was increased (for high sweep rates) or the delay 
time was extended (for very low sweep rates) to increase the sweep rate 
parametrically. In all cases, three source measurement units (SMUs) 
were used for the drain, source and gate of the floating-bulk device and 
another SMU was used to bias the gate of the substrate current control 
transistor (VG2). The source for this transistor was grounded through 
the ground unit of the semiconductor parameter analyser. The drain 
was connected to the bulk tap connection of the floating-bulk device. 
Retention and pulsed-read retention measurements (Supplementary 
Figs. 25, 26 and 28) were carried out in Keysight’s EasyEXPERT environ-
ment using a custom arrangement of I–V, I–V pulse and I–V list sweeps. 
In the floating-bulk and non-floating-bulk retention tests (Supplemen-
tary Fig. 26), which addressed the permanent nature of the device state, 
the substrate tap contact was opened using the built-in SMU switch for 
the floating-bulk writing procedures and then grounded through the 
SMU during the retention period.

Physical simulations
Physical simulations of the floating-bulk transistors were carried out 
with commercial TCAD software (Sentaurus TCAD, Synopsys). The 
two-dimensional device structure was built using a structure descrip-
tive approach and based on commonly known parameters of the tech-
nology node at which the devices under test were fabricated. Next, the 
device structure was optimized by simulating the nominal (grounded 
bulk) quasi-stationary ID–VG characteristics and calibrated against 
experimental data. Once good agreement was reached, transient ID–VG 
simulations including impact-ionization physics were run to calibrate 
the impact-ionization model parameters to the nominal substrate 
currents in the device. With this calibration fixed, we ran transient 
simulations of ID–VD at different VD sweep rates within a mixed-mode 
environment that connected the bulk biasing network to the substrate 
contact of the two-dimensional device structure. The bulk biasing net-
work had a constant value resistance (Rsub) or an n-channel transistor 
modelled in SPICE BSIM and biased by an independent gate voltage 
source. In all cases, a bulk connected capacitance (Cbulk) was included 
to account for experimental and device connection parasitics. The 
complete Sentaurus Workbench project, including the command and 
parameter files, is available through a public repository at https://doi.
org/10.5281/zenodo.13843362 (ref. 49). For more details of the models 
used and the project structure, see Supplementary Note 8.

Punch-through impact ionization
In the devices under test (Fig. 2), when VG > 0.5 V, avalanching was 
observed as a slight current increase, like that observed in partially 
depleted silicon-on-insulator MOSFETs50. This effect is often referred 
to as the kink effect27. By contrast, when VG was between 0.3 and 0.5 V, 
this phenomenon was manifest as a gate-voltage-dependent hyster-
esis51 as wide as 0.5 V, which could be precisely controlled through VG 
(Supplementary Fig. 2). Measurements of the grounded-bulk terminal 
current show that the impact-ionization hole currents were as large as 
about 10 μA under nominal voltages for 180- and 500-nm devices (Sup-
plementary Figs. 4 and 10, respectively). In the floating-bulk configura-
tion, although electrons were collected by the drain, the excess holes 
tended to forward bias the source junction (Supplementary Note 3) 
and introduce a positive feedback during the impact-ionization pro-
cess, driving the device into an avalanche regime in which the current 
(ID > 1 μA) was limited only by the spreading resistance of the bulk, 
with a slight dependence on VG (through modulation of the depletion 
region). This universal phenomenon is ascribed to the structure of the 
MOSFET device, as the same behaviour was observed in floating-bulk 
thick-oxide MOSFETs (500 nm channel length and approximately 10 nm 
oxide thickness). In these devices, the hysteresis reached widths of 
0.8 V at VG = 0 V and was highly reproducible over several devices with 
a very low variability (Supplementary Fig. 3) and a wide dynamic range 
of over 4 orders of magnitude in current, comparable to other threshold 
devices proposed in the literature as neurons29,52,53. Like the results in 
Fig. 2g for 180-nm devices, this was also a highly repeatable regime for 
500-nm transistors, as shown for the more than 70,000 cycles under 
fast ramped tests at rates of 5,500 V s−1, which measured the device 
current with high temporal resolution (1 µs) at a peak VD = 4.25 V. The 
result shows a resistance window over ×10 (limited only by the dynamic 
range of the measurement unit at a fixed amplifier gain) with very low 
cycle-to-cycle variability (Supplementary Fig. 8).

Bulk bias control transistor (two-transistor cell)
The effective resistance of a bulk connection to any CMOS device is 
always determined by device design and processing (such as doping 
profiles, die size, back-wafer contact surface and top-wafer bulk contact 
design). Therefore, die-to-die variations can occur during characteri-
zation after dicing. Identical 180-nm transistors from different dice 
can show different hysteretic characteristics depending on variations 
of the effective resistance of the back-wafer connection. For 30 dice 
extracted from a multi-project wafer, this was found to depend on 
wafer position (Supplementary Fig. 5). A bulk control transistor can 
effectively mask these variations and fix the operating conditions of the 
floating-bulk device (see detailed characterization of the effective RB 
resistance as a function of VG2 in Supplementary Fig. 6). This ensures the 
desired neural behaviour, despite die-to-die (or even wafer-to-wafer) 
variability, as can be seen from the ID–VD curves carried out on the same 
30 dice but with the control device biased at VG2 = 1.3 V in all cases (Sup-
plementary Fig. 7).

Time-domain measurements
All the time-resolved I–V curves under pulse or fast ramp modes (sweep 
rates over 10 V s−1) were collected using a two-channel waveform genera-
tor and fast measurement unit (Keysight B1530 WGFMU) connected to 
the drain and source. Two SMUs established a constant bias gate volt-
age to the device under test (VG) and to the substrate current control-
ling device (VG2) throughout the whole process. These measurements 
(Figs. 3, 4 and 5d and Supplementary Figs. 15–24) were carried out in 
a custom environment programmed in MATLAB and C++ running on 
a personal computer with a GPIB/USB connection to the B1500 main-
frame. The environment allowed to rapidly optimize the pulse and ramp 
parameters (amplitude and timing). We could perform several itera-
tions of long acquisitions, which maximized the use of the instrument 
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memory, for endurance and cycling tests lasting several hours without 
user interaction.

Neuro-synaptic tuning experiments
To extract the firing time and energy, we applied VG2 = 1.6 V and, by 
controlling the transistor gate voltage (VG) between 0.35 and 0.45 V 
(Supplementary Fig. 19a–c), we tuned the neuron firing times between 
10 µs and 2 ms for Vspike between 3.5 V and 4.5 V (Fig. 3c, left axis). Chang-
ing the bulk biasing conditions through VG2 had a trivial effect on the 
firing time within this regime, as shown by the negligible difference 
between measurements performed at VG2 = 1 or 1.6 V (Supplementary 
Fig. 19d). This behaviour was also controlled using oxide transistors 
that were 500 nm in length and thickness (Supplementary Fig. 20), for 
which equivalent dynamics was observed but at lower currents (down 
to 10 nA) and slightly higher voltages (up to 5 V). This is of interest for 
the device-level optimization of the neural behaviour through design 
variables, such as transistor size, oxide or threshold voltage, which is 
typically offered in standard CMOS processes.

To characterize the leaky feature (Fig. 3b and Supplementary Fig. 21), 
we applied a single voltage pulse of 4.5 V for 1 ms to fire the neuron. The 
relaxation transient was extracted at a constant read voltage of 1 V. This 
time, by using different VG2 values (from 0 to 1.8 V) at constant VG, we 
showed that the relaxation transient can be tuned from approximately 
50 μs to tens of milliseconds. A long-term change of the resistance from 
a HRS to a LRS was visible (Supplementary Fig. 21d). The characteristic 
relaxation time (τr) was extracted through an exponential decay fit,  
and the synaptic update ratio was evaluated after a 30-ms window  
(RHRS/LLRS, as depicted in Supplementary Fig. 21d).

To mimic biological processes, neuron devices need to show a char-
acteristic responsiveness to frequencies that are typically in the range 
20 Hz to 20 kHz (for example, for frequency mapping of audio signals). 
To assess this, we used a train of spikes of fixed duration (tspike = 5 µs) 
and different amplitudes (Vspike between 3.6 and 4.5 V) and frequencies 
(between 20 Hz and 200 kHz) at a fixed VG = 0.4 V and VG2 = 0.8 or 1.3 V, 
thus covering different relaxation dynamics. Under these conditions, 
we extracted the time elapsed until the neuron fired at each given input 
(Supplementary Fig. 22) and parametrically mapped it in Fig. 3d. The 
response can be tailored according to the system needs and to the 
process being mimicked. For tonotopic mapping29, different devices 
can be biased to provide a specific firing time at different frequencies 
to provide a full range of audio signal responses that spans from the 
lowest audible frequencies to signals well into the ultrasound range, 
such as for the efficient implementation of a smart hearing system. 
The wide configurability of the neuron can find application in various 
general-purpose neuromorphic implementations.

Charge-trapping mechanisms in long-term synaptic behaviour
For a detailed discussion, refer to Supplementary Note 4 and figures 
therein. From the theoretical aspect, it is probable that the injection of 
hot electrons during the reset (negative drain bias) in the floating-bulk 
condition contributes to the increase of the threshold voltage. Moreo-
ver, de-trapping some of this injected charge or hot-hole injection may 
be the mechanism through which the threshold voltage is reduced back 
to its initial value. In the reset process (the increase of the threshold 
voltage or, in other words, the increase of the resistance under a con-
stant bias), a negative bias is applied to the drain in the floating-bulk 
condition. Note that if the transistor bulk was indeed grounded, the 
current would be determined by the forward bias drain–bulk junction 
and would rise rapidly, as it would be limited only by the semiconductor 
spreading resistance and the interconnect resistance (see measure-
ments and TCAD simulation results for these conditions in Supple-
mentary Fig. 27a). However, with the floating bulk, the decreasing drain 
voltage tends to forward bias the drain–bulk junction, lowering the 
electrostatic potential of the silicon bulk and inducing an inversion 
channel under the gate (recall that VG was held at constant voltage).  

As the source was held at 0 V, it was biased above the electrostatic poten-
tial of the bulk and large currents were driven in the device channel. 
When the drain voltage was sufficiently negative, there were energetic 
electrons in the vicinity of the source terminal (see impact-ionization 
rates from the TCAD calculations in Supplementary Fig. 27b), and these 
were probably injected into the gate oxide. This would, logically, result 
in an increase of Vth and therefore a reduction in the current drive capa-
bility. This would tend to shift Vth to a higher voltage, therefore lowering 
the drive current capability of the transistor, which translates to a high 
resistivity state under read conditions.

During the set process, some de-trapping of the charge generated 
during the reset sweep would be expected, but the effect of hot electrons 
is typically non-reversible54 (at least without annealing conditions). 
Therefore, it is probable that the injection of holes through the gate 
dielectric on the drain side may also take place under impact-ionization 
conditions. This well-known process has been observed in standard 
silicon transistors since 198155–57. This phenomenon takes place at high 
drain voltages, where band-to-band tunnelling is likely in the drain–bulk 
junction and highly energetic holes and electrons are present under 
impact-ionization conditions. As excess holes are not collected by the 
bulk current in the floating-bulk condition and the density of holes 
tends to increase at the oxide interface close to the drain (as discussed 
previously in Supplementary Fig. 12 and Supplementary Note 3), the 
conditions are suitable for hole injection. As with electrons, hot holes 
can be injected through the gate dielectric if they have enough energy to 
overcome the energy barrier. As a result, this effect has been observed 
to be responsible for the read disturb instability in EEPROM58,59 and 
is employed as an erase mechanism in some commercial embedded 
Flash memories39, as injected trapped holes result in a decrease of the 
threshold voltage. In such cases, the hot holes that are injected can be 
effectively concealed within the floating-gate structure, but in standard 
MOSFET structures, fewer holes can become trapped in defect centres 
of the gate oxide or spacer oxide of the MOSFET structure.

Short-term plasticity experiments
In Fig. 4a, we applied pulse trains with a constant amplitude in groups 
of 15 potentiation pulses (Vpot = 4.1 V and tpot = 5 μs) followed by 20 
depression pulses (Vdep = −0.25 V and tdep = 1 μs). This set of potentia-
tion and depression pulses was intercalated by a read pulse (Vread = 0.3 V 
and tread = 5 μs) that measured the resistance of the device. For Fig. 4b, 
we tuned the amplitudes (Vpot = 4.0 V, Vdep = −0.4 V and Vread = 0.3 V) 
and applied this protocol continuously for approximately 200,000 
cycles (approximately 7 million pulses; Supplementary Fig. 23). We 
extracted statistics for the obtained synaptic weight after each pulse 
(Supplementary Fig. 23a). In Fig. 4d, the potentiation process consisted 
of 21 potentiation pulses at a lower potentiation voltage (Vpot = 2.8 V 
and Vread = 0.75 V) followed by a single depression pulse (Vdep = −0.7 V; 
Supplementary Fig. 24). This process allowed us to rapidly reset the 
neuro-synaptic characteristic of the device to a quiescent initial state. 
We observed that the depression pulse effectively reset the synapse to 
its initial weight, which was tunable over a window of approximately 
×10, following a roughly bilinear characteristic (Fig. 4d). The observed 
cycle-to-cycle variability was ascribed to drift in the time-domain 
measurement and some degree of probe-to-pad contact stability in 
pulsed experiments spanning several hours (760,000 cycles or 16.7 
million pulses; Supplementary Fig. 24). In Fig. 4e, the potentiation 
sequence (learning) was the same as for Fig. 4d, whereas the synaptic 
decay through time (forgetting) was performed under a slightly lower 
constant read voltage (Vread = 0.7 V).

Neuron bursting, spike frequency adaptation measurements
Bursting-mode neuron measurements (Supplementary Figs. 29–31) 
were carried in the same probe station set-up by forcing a current 
through the SMU connected to the drain of the floating-bulk device. 
This terminal was split and fed to the input of a high-input-impedance 



low-noise voltage follower (TLC2262). Its output drove a channel 
of a digital sampling oscilloscope (MSO-X 3024G, Keysight). The  
oscilloscope–semiconductor parameter analyser tandem was syn
chronized using a MATLAB script and the whole parametric space of 
VG1, VG2 and Iexcitatory was swept. The action potential bursts were captured 
in each condition (Supplementary Fig. 31a). Further details and results 
are given in Supplementary Note 6.
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