Work sheet on Electrochemistry

	1. Which one of the following is wrong about corro	sions of metals?					
	A. A region of the metal surface serves as both anode and cathode.						
	B. The standard cell emf for this process is 1.67	B. The standard cell emf for this process is 1.67v					
	C. The cathode half-cell rxn is : $Fe^{+2}(aq) + 2e \rightarrow C$	Fe(s)					
	D. The net cell rxn is: $2Fe(s)+O_2(g)+4H^+(aq) \rightarrow C_2(g)+4H^+(aq)$	2Fe ⁺² (aq) +2H ₂ O(l)					
	2. All of the following statements are true about H	-O fuel cells Except:					
	A. Fuel cells do not store chemical energy						
	B. Reactants must be continuously supplied an	d products removed fro	om the cell.				
	C. The anode half-cell rxn is: $O_2(g)+2H_2O(l)+4e^{-2}$	e → 40H ⁻ (aq)					
	D. The standard emf of the cell is 1.23v						
	E. The overall rxn is: $2H_2(g)+O_2(g) \rightarrow 2H_2O(l)$						
	3. A galvanic cell consists of a Mg electrode in a 1.) M Mg(NO ₃) ₂ solution	and a Ag electrode				
	in a 1.0 M AgNO $_3$ solution. The standard emf of	this cell at 25°C is:					
	A. 3.17V B1.57V C.	-3.17V	D. 1.57V				
	4. Which of the following metals will react with (that is, be oxidized by) HNO ₃ , but not with						
	HCI?						
	A. Ag B. Cu C.	, Zn	D. Pt				
	5. Which one of the following values favours the fo	rmation of reactants?					
	A. $\Delta G^0 < 0$ B. K<1 C. E ⁰ C	ell >0 D. K >1					
	6. For a rxn: $Mg^{+2} + 2e \rightarrow Mg(s), E^0 = -2.37V$. Which	of the following statem	ient is true?				
	A. E depends upon temperature						
	B. E changes when Mg plate is made bigger in	size					
	C. E becomes double if the above eqn is multip	lied by 2					
	D. Mg ⁺² can be reduced to Mg metal by SHE						
	7. A certain half-cell rxn: $X + e \rightarrow X^{*}$ has a very lar	ge value of negative re	duction potential.				
	This implies that :						
	A. X can be readily reduced B. X	can be readily oxidized	d				
C. X can be readily oxidized D. X ⁻ can be readily reduced							
8.	8. On the electrolysis of 10 ⁻⁶ M HCL soln,						
A. CL ₂ gas is produced at cathodeB. O ₂ gas is produced at cathodeC. H ₂ gas is produced at cathodeD. CL ₂ gas is produced at anode							
						9.	9. Which one of the following species can't be reduced
	A. Ni ⁺² ,E ⁰ red = -0.26V B. Mg ⁺² ,E ⁰ red = -2.37V	C. Ag^+, E^0 red = 0.	.80V				
	D. Cu^{+2} , E^{0} red = 0.34V						
10	10. Which species can be oxidized by SHE?						
	A. Cu,E ⁰ red = 0.34V B. Al,E ⁰ red = -1.66V	C. Au,E⁰red =1.50	V				
	D. Br ₂ ,E ⁰ red =1.07V						
11.	I. Which one of the following is the correct cell diagra	m representation for t	he rxn:				
	$Sn(s) + 2Fe^{+3}(aq) \rightarrow Sn^{+2}(aq) + 2Fe^{+2}(aq)$						
	A. $Sn(s)/Sn^{+2}(aq)//Fe^{+3}(aq)/Fe^{+2}(aq)/Pt$	C. Fe ⁺² (aq)/Fe ⁺³ (aq)//Sn	⁺² (aq)/Sn(s)/pt				
	B. Sn(s)/Sn ⁺² (aq)//Fe ⁺³ (aq),Fe ⁺² (aq)/Pt	D. Pt/Fe ⁺³ (aq),Fe ⁺² (aq)/	//Sn ⁺² (aq)/Sn(s)/				

	12. Under what conditions	s the voltage produced by	the cell equals to	the emf at standard cond	lition?			
	A. When the [react	ants] > [products]	B. When the [rea	ctants] < [products]				
	C. When the [react	ants] = [products]	D. Unpredictable	1				
	13. The voltage produced by a Daniell cell is observed to be 1.22v. If the $[Cu^{+2}]=1M$, then the $[Zn^{+2}]$							
	in the cell become:							
	A. 0.1M	B. 10 ⁻⁴ M	C. 0.5M	D. 0.2M				
	14. Which one of the following rxn is spontaneous ?							
	A. Cr(s)+3Fe ⁺³ (aq)	→ Cr ⁺³ (aq)+3Fe(aq)	B. Cu(s)+2H⁺(a	\mathbf{q}) \rightarrow $\mathbf{Cu}^{+2}(\mathbf{aq})$ + $\mathbf{H}_{2}(\mathbf{g})$				
	C. I ₂ (s)+2Fe ⁺² (aq) →	2Fe ⁺³ (aq)+2I ⁻ (aq)	D. $2Ag(s)+Cu^{+2}$	(aq) → 2Ag ⁺ (aq)+Cu(s)				
	Given that:E0 red of Cu	⁺² /Cu =0.34v,Ag ⁺ /Ag=0.80	v,Cr ⁺³ /Cr=-0.74v,	I ₂ /I ⁻ =0.53v,Fe ⁺³ /Fe ⁺² =0.77v	V			
	15. 0.5 farads of electricity was passed in to an electrolytic cell to deposits all the copper present in							
	500ml of CuSO₄ soln. The molarity of the electrolyte is:							
	A. 0.5M	B. 0.25M	C. 1.5M	D. 1M				
	16. The time required to r	emove electrolytically on	e-fourth of Ag fro	om 200ml of 0.1MAgNO ₃	soln			
	by a current of 0.5A is abo	by a current of 0.5A is about:						
	A. 64 minute	B. 16 minute	C. 28 minute	D. 32minute				
	17. The mass of copper th	at will be deposited at cat	hode in electrolys	is of 0.2M soln of CuSO4	when			
	a quantity of electricity eq	ual to that required to lit	berate 2.24L of H_2	from 0.1M H ₂ SO4 will b	e:			
	A. 1.59gm	B. 3.18gm	C. 6.35gm	D. 12.7gm				
_	18. The equilibrium constant for the redox reaction at 25°C is:							
	Sn(s) +2Cu²+(aq) ↔Sn	²⁺(aq) +2Cu⁺(aq). E⁰red o	f Cu ⁺² /Cu ⁺ = 0.15V	/ and that of Sn ⁺² /Sn = -0.	.14V			
	A $7x10^9$	B. 5x10 ⁴	C. $6x10^7$	D. $5x10^9$				
	19. The best oxidizing age	nt among the following is	S:					
	A. Fe	B. Ag	C. Na	D. Zn				
	20. The cell emf of the gal	vanic cell represented as:	2 Ag⁺(0.05M)+Zn	$(s) \rightarrow 2Ag(s) + Zn^{+2}(0.01M)$	is:			
	A. 1.58V	B. 1.56V	C1.4	2V D1.58V				
	21. The emf of the Zn-Cu	cell under the conditions	: Zn(s)+Cu ⁺² (0.2	$(M) \to Cu(s) + Zn^{+2}(0.4M)$ is	5:			
	A. 1.10V	B. 1.09V	C. 0.10	V D. 1.11V				
	22. The standard free-ene	rgy change for the follow	ing reaction at 25°	°C is:				
	2Au(s) + 3Ca ²⁺ (1.0 M)	$\rightarrow 2Au^{3+}(1.0 \text{ M}) + 3Ca(s)$	E ⁰ red of Au ⁺³ /Au	$= 1.50V$, $Ca^{+2}/Ca = -2.87$	V			
	A. 2.53x10 ³ KJ/mol	B. 1.48x10 ² KJ/mo	l C. 8.63	x10 ³ KJ/mol				
	D. 4.56x10²Kj/mol							
	23. Which one of the follo	wing metals can't be prep	ared by chemical	reduction process?				
	A. Cu	B. Zn	C. <i>A</i>	D. Ag	g			
	24. An electrochemical cel	ll constructed as:Cu ⁺² (aq)	$+M(s) \rightarrow Cu(s)+M$	⁺² (aq) has an E ⁰ cell =0.75	V. If			
	the E [®] red of Cu ⁺² /Cu is 0.34v, what is the E [®] red value for the metal M?							
	A1.09V	B0.41 V	C. 0. 4	IV D. 1.0	9 V			
	25. A soln at 25°c contains	the metal ions:Ni ⁺² ,Pt ⁺² a	nd Pd ⁺² ,all at 1M	conce. If the E ⁰ red value	s of			
	Ni, Pt and Pd respectively are -0.23V, 1.20V and 0.99V, then which metal will plate out first when							
	the soln is electrolyzed?							
	A. Ni	B. Pd	C. P	t D. Ni	& Pd			
	26. An electrolytic cell contains a soln of Ag_2SO4 and has Pt electrodes. A current is passed till							
	1.6gm of O_2 gas has been liberated at anode. The amount of Ag metal deposited at cathode will be:							
	A. 108gm	B. 1.6gm	C. 3.2	gm D. 21	.6gm			

27. A current of 1.72 A is passed through an electrolytic cell containing a dilute sulfuric acid solution for 6.42 h. The volume of O₂ and H₂ gases generated at STP respectively are:

A. 5.32L, 1.82L B. 2.31L, 4.62L C. 4.62L, 2.31L D. 1.82L, 5.32L 28. How many moles of MnO_2 are produced in a basic soln when MnO_4^- and CN^- ions react to form MnO_2 and CNO^- ?

A. 1B. 2C. 3D. 529. How long will it take to deposit Cadmium from 300ml of 0.4M Cadmium sulfate soln by using a current of 2A?

A. 193 minute B. 60 minute C. 248 minute D. 92 minute 30. The number of moles hydroxide when the rxn: $CrO_4^{2^2} + Fe(OH)_2 \rightarrow Cr(OH)_3 + Fe(OH)_3$ is balanced in basic media become: A. 3 B. 2 C. 5 D. 4 31. Consider the galvanic cell: Al(s)/Al³⁺(aq)//Fe²⁺(aq)/ Fe(s). What is the cell reaction?

A. Al(s) + Fe²⁺(aq) \rightarrow Fe(s) + Al³⁺ B. Fe(s) + Al³⁺(aq) \rightarrow Al(s) + Fe²⁺(aq)

C. $2Al(s) + 3Fe^{2+}(aq) \rightarrow 3Fe(s) + 2Al^{3+}(aq)$ D. $Al(s) + Al^{3+}(aq) \rightarrow Fe^{2+}(aq) + Fe(s)$

32. During charging of a car battery(Lead-storage battery), the anode half-cell rxn is:

A. $Pb(s)+SO4^{2-}(aq) \leftrightarrow PbSO4(s)+2e$ B. $PbSO4(s)+2H_2O(l) \leftrightarrow PbO_2(s)+4H^+(aq)+SO4^{2-}(aq)+2e$

C. PbSO4(s)+2e \leftrightarrow Pb(s)+SO4²⁻(aq) D. PbO₂(s)+4H⁺(aq)+2e \leftrightarrow PbSO4(s)+2H₂O(l)

33. During galvanizing iron with zinc to prevent corrosion, the substance that act as cathode is:

A. Zn B. Fe C. graphite D. both Zn &Fe

34. 3gms of Al is given off by passing a current through an electrolytic cell. Using the same quantity of electricity, we can produce all of the following Except:

 A. 7.67gm Na
 B. 6.67gm Ca
 C. 36gm Ag
 D. 2gm Mg

35. Unlike the electrolytic cell, galvanic cell:

A. is used in electroplating process.

B. has a spontaneous process

C. is used in the productions of metals from their ores

D. uses electrical energy to generate chemical energy

36. Permanganate ion oxidizes sulfite ion in basic solution according to the following skeleton equation: MnO_4 (aq) + SO_3 ²⁻(aq) $\rightarrow MnO_2(s)$ + SO_4 ²⁻(aq) . The coefficient of OH- when the rxn is balanced in basic media become:

A. 2 B. 3 C. 6 D. 4

37. In hydrogen-oxygen fuel cell, the anode rxn is:

$A. 2H_2 + O_2 \rightarrow 2H_2O$	$B. \ 2H_2 + 4OH^- \rightarrow 4H_2O + 4e$
$\mathbf{C.} \ \mathbf{O}_2 + \mathbf{2H}_2\mathbf{O} + \mathbf{4e} \ \rightarrow \mathbf{4OH}^-$	$D. \hspace{0.1cm} H_2 \hspace{0.1cm} \rightarrow \hspace{-0.1cm} 2H^{\scriptscriptstyle +} \hspace{0.1cm} + \hspace{-0.1cm} 2e$

38. A current of 2A passing through the molten tin salt for five hours deposits 22.2gm of tin. The
oxidation state of tin in the salt is:A. +4B. +2C. +3D. +1

39. An electrochemical cell has two half-cell rxns as:

i) $A^{2+} + 2e_- \rightarrow A_* E^0 = 0.34V$ A. 2.71V B. 2.03V C. -2.71V D. -2.03V

40. If the electropositive character the following metals is given as : Mg>Al>Zn>Cu>Ag , what will happen if copper spoon is used to stir a soln of aluminium nitrate ?

A. The spoon gets coated with Al B. An alloy of the spoon gets coated with Al B. An alloy of the spoon gets are spooned at the spooned statement of the spooned statement o	of Al and Cu is formed	l
--	------------------------	---

C. No reaction occurs D. The solution starts turning blue

41. Define : Sacrificial anode , Cathodic protection , Chromeplating

42. Predict whether the following reaction would proceed spontaneously as written at 298 K:

Co(s) + Fe²⁺(aq) ↔ Co²⁺(aq) + Fe(s) given that $[Co^{2+}] = 0.25$ M and $[Fe^{2+}] = 0.94$ M. 43. Consider the cell diagram: Mg(s) /MgSO4(0.40 M) //NiSO4(0.60 M) 0/Ni(s).

A. Calculate the cell voltage at 25°C.

B. How does the cell voltage change when (a) [Mg2+] is decreased by a factor of 4 and (b) [Ni2+]

is decreased by a factor of 3?

44. Given that $E^\circ = 0.52$ V for the reduction: $Cu^+(aq) + e^- \rightarrow Cu(s)$.

calculate E°, ΔG° and K for the following reaction at 25°C: 2Cu⁺(aq) \rightarrow Cu²⁺(aq) + Cu(s)

45. In a certain electrolysis experiment, 1.44 g of Ag were deposited in one cell (containing an aqueous AgNO₃ solution), while 0.120 g of an unknown metal X was deposited in another cell (containing an aqueous XCl₃ solution) in series with the AgNO₃ cell.

Calculate the molar mass of the unknown metal X

46. The concentration of a hydrogen peroxide solution can be conveniently determined by titration against a standardized potassium permanganate solution in an acidic medium according to the following unbalanced equation:

 $MnO_4^- + H_2O_2 \rightarrow O_2 + Mn^{2+}$. If 36.44 mL of a 0.01652 M KMnO₄ solution are required to completely oxidize 25.00 mL of a H_2O_2 solution, calculate the molarity of the H_2O_2 solution.

47. Zinc metal reacts with nitric acid, HNO_3 , to produce a number of products, depending on how dilute the acid solution is. In a concentrated solution, zinc reduces nitrate ion to ammonium ion; zinc is oxidized to zinc ion, Zn^{2+} . Write the net ionic equation for this reaction.

48. The cell potential of a particular voltaic cell with the cell reaction

 $Hg_2^{2+}(aq) + H_2(g) \rightarrow 2Hg(l) + 2H^+(aq)$ is 0.650 V. Calculate the maximum electrical work of this cell when 0.500 g H₂ is consumed.