

EDGE AI:

Artificial Intelligence at the Edge

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Course Outline

- Internet of Things
- Technical Development and Challenges
- Edge Computing
- Edge AI and TinyML
- TinyML Example and Key Players
- Neuromorphic Computing
- Challenges and Future perspectives
- Conclusion

EDGE AI: Artificial Intelligence at the Edge-May 2025, AUT, Tehran, Iran

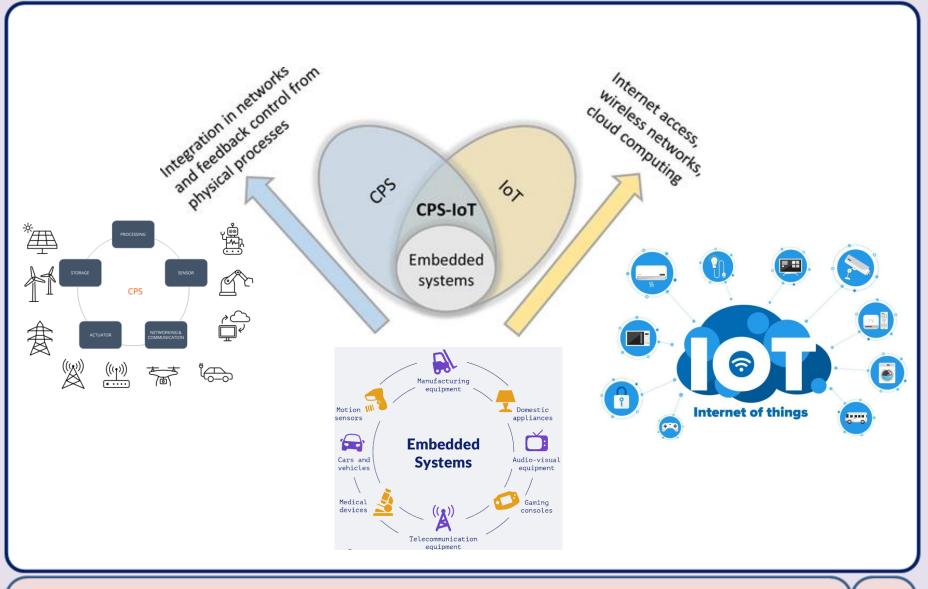
Robotics

Smart home

Security camera

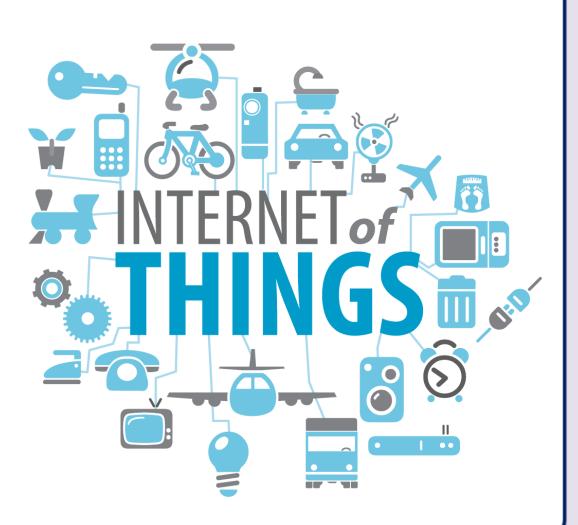
Wearables

Embedded Systems, CPS, and IoT



What is IoT

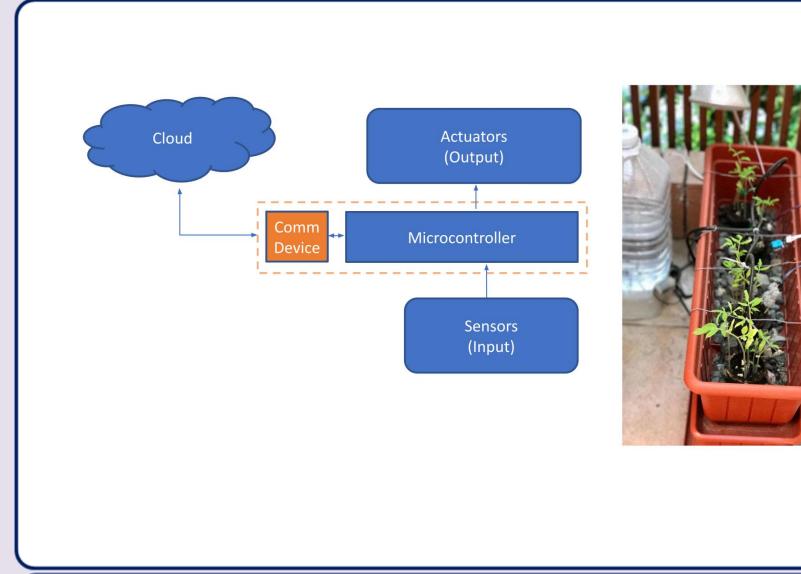
The Internet of things is the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data



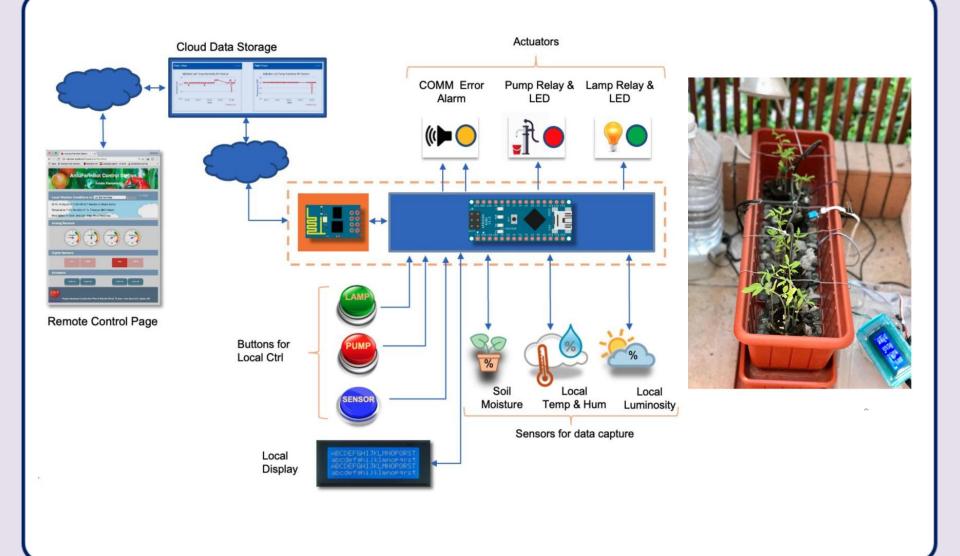
Technical developments for IoT realization

- Communication and cooperation
- Addressability
- Identification
- Sensing
- Actuation
- Embedded information processing
- Localization
- User interfaces

Typical IoT Project

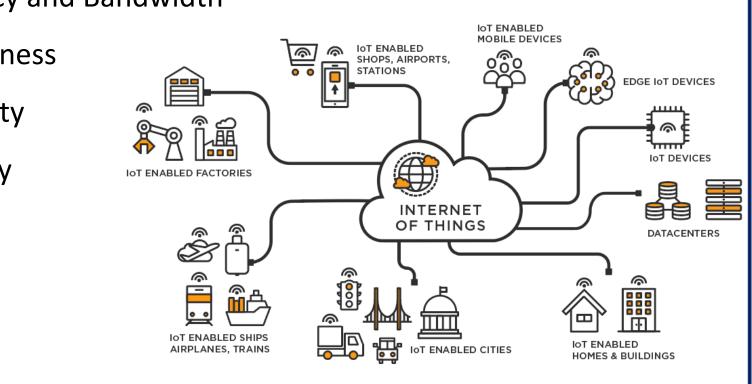


Typical IoT Project



Main IoT Challenges

- Energy Consumption
- Restricted Resources
- Latency and Bandwidth
- Timeliness
- Security
- Privacy



Edge Computing

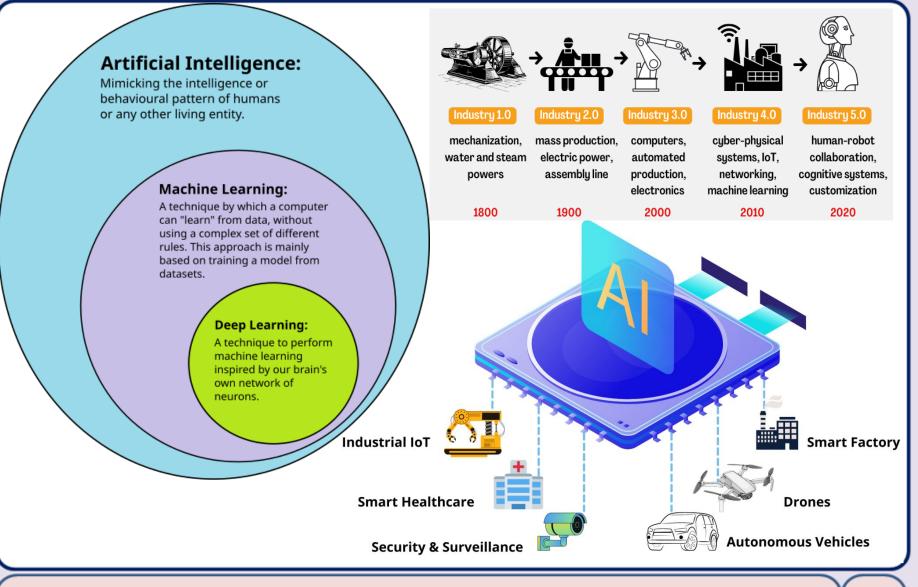
- Decentralized computing model: processes data closer to the source
- Reduces latency, bandwidth usage, and dependency on cloud servers
- Enables real-time processing for IoT applications

Key Applications

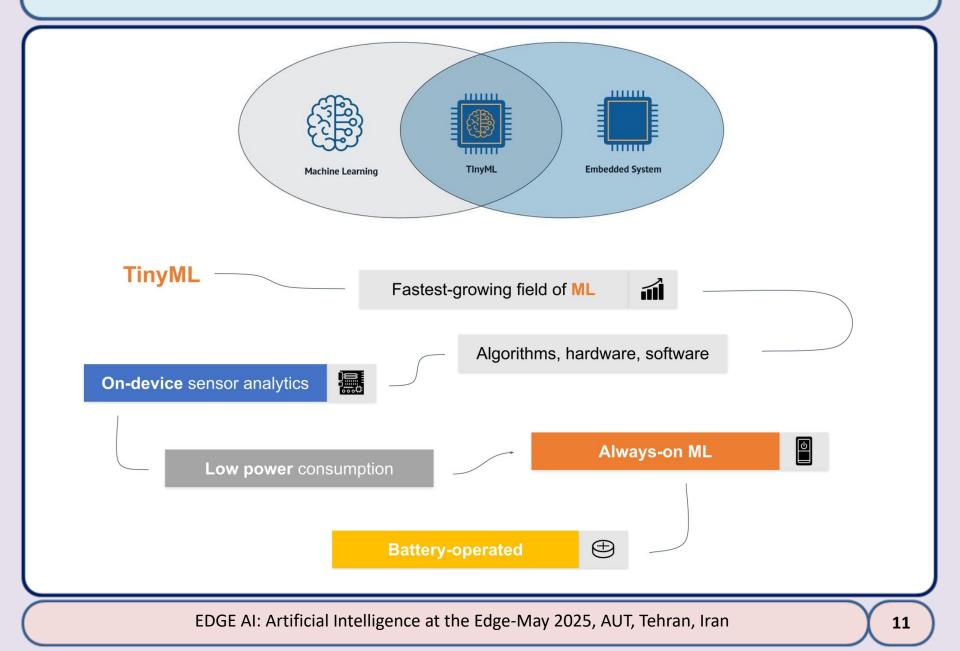
- Smart Cities Real-time traffic management & public safety
- Healthcare Wearable sensors for continuous monitoring
- Industry 4.0 Predictive maintenance in factories
- Autonomous Vehicles Instant decision-making without cloud dependency

or Cloud ance Edge nodes Edge devices

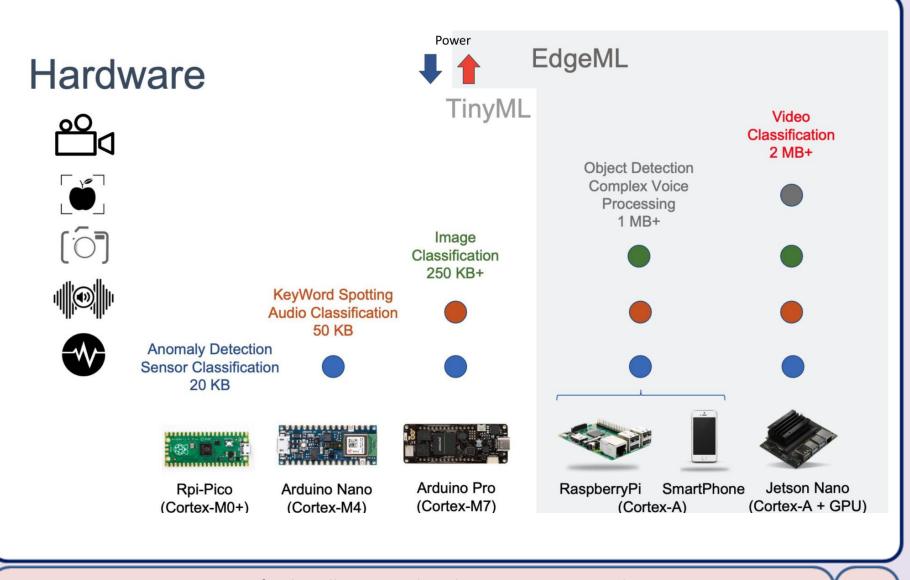
Edge Al



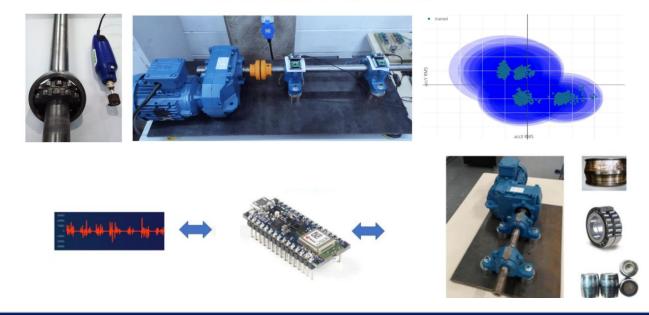
TinyML



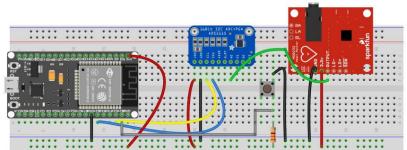
TinyML vs EdgeML



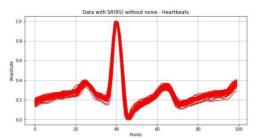
Predictive Maintenance



Health- Human Sensing

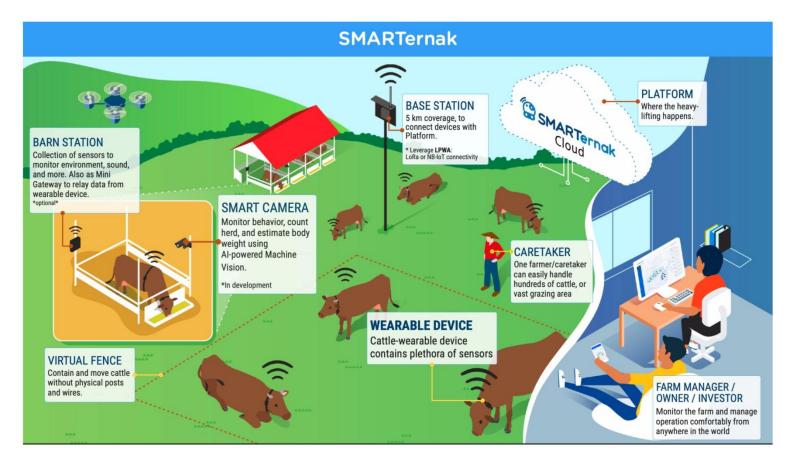


fritzing



Guilherme Silva Engenheiro - UNIFEI

Agriculture– Smart Farm



Cow Monitoring

Using the Internet of Things for Agricultural Monitoring

"We aim to deploy a variety of sensors for agricultural monitoring. One of the projects involves using accelerometer sensors to monitor activity levels in dairy cows with a view to determining when the cows are on heat or when they are sick."

Ciira wa Maina, Ph.D.

Senior Lecturer Department of Electrical and Electronic Engineering Dedan Kimathi University of Technology Nyeri Kenya Email: ciira.maina@dkut.ac.ke

Kenia

Predict and classify common Elephant behavior

Aggressive

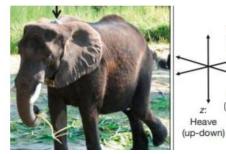
y:

Surge

(frontback)

Sway

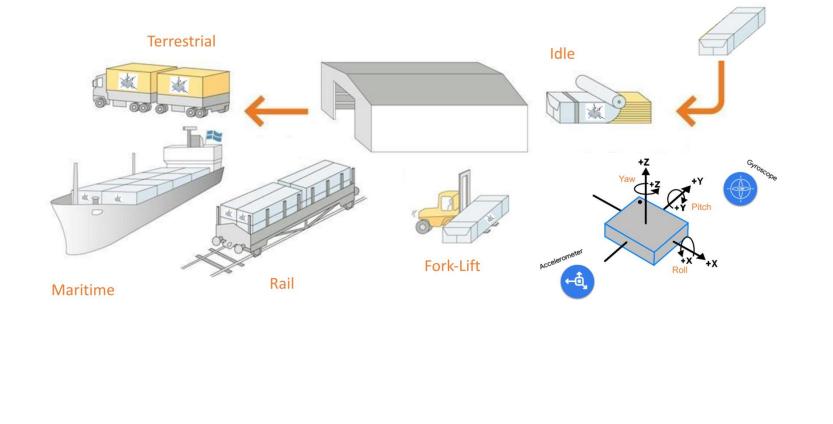
(lateral)



Standing

Sleeping

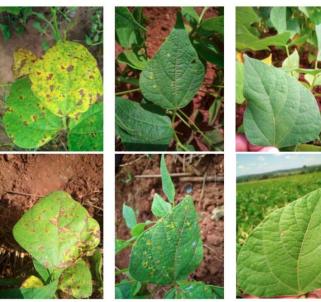
Mechanical Stresses in Transport



Forest Fire Detection

Detecting Diseases in the Bean plants

AIR Lab Makerere University UGANDA

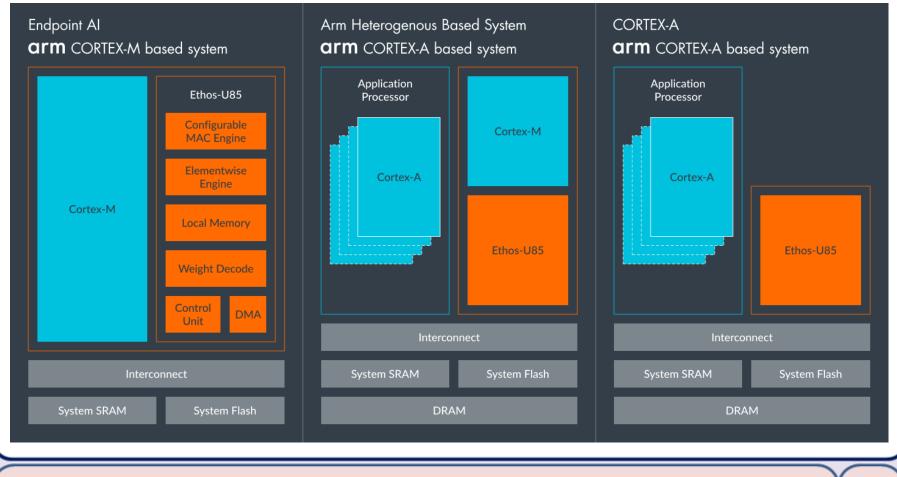


Angular Leaf Spot

Bean Rust

Healthy

arm



Arm Kleidi - Al Libraries for ML and CV (May 2024)

- Microkernels optimized for ARM processor cores
- Ease of adoption into C or C++ machine learning (ML) and AI frameworks
- No dependencies on
 - External libraries
 - Dynamic memory allocation
 - Memory management

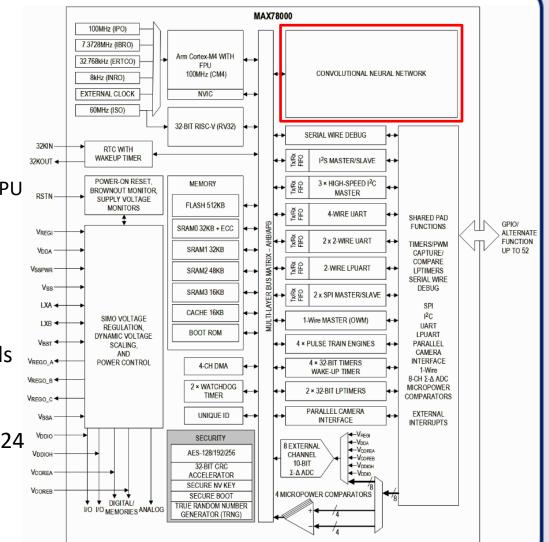
arm Kleidi

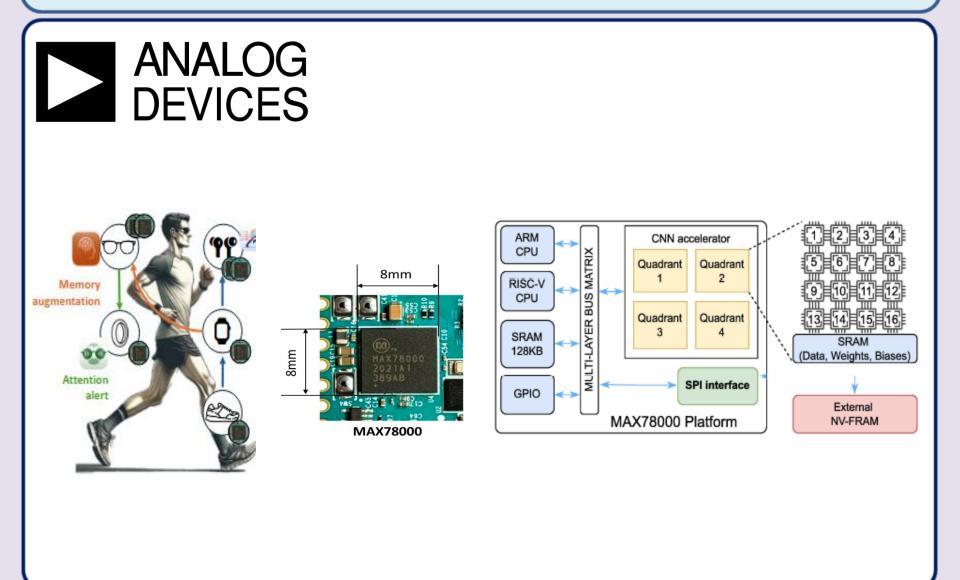
RISC-V is revolutionizing AI development

- Flexible and open Instruction Set Architecture (ISA)
- Seamlessly integrating software and hardware
- Standard Instruction Profiles
- Custom Instruction Capabilities

Design Tools		
	ChipFlow SIEMENS SYNOPSYS antmi	CLO
Operating Systems	8 Elektrobit VECTOR > & WNDRVR	
Green Hill		l Hat
Processors & Accelerat	tors	

- Dual-Core Ultra-Low-Power MCU
 - Arm Cortex-M4 Processor with FPU
 - 32-Bit RISC-V Coprocessor
- Neural Network Accelerator
- 442k 8-Bit Weight Capacity
- Image Size up to 1024 x 1024 Pixels
- Network Depth up to 64 Layers
- Network Channel Widths up to 1024

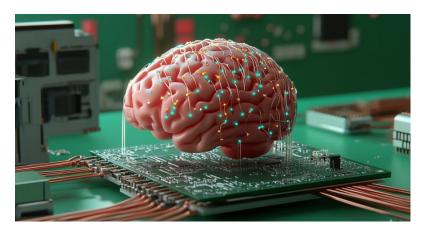




Neuromorphic Computing

AI past trend

- Feeding models more data
- Increasing processing speeds



AI systems rely on

- Conventional computing architectures
- Sequential data processing
- Consuming massive amounts of energy

Neuromorphic computing

- Inspired by biological neurons
- Enables AI to learn dynamically
- Process data using event-driven architectures

Neuromorphic Computing

Event-driven computation

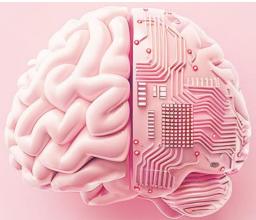
- Spiking neural networks (SNNs)
- Mimics how biological neurons communicate
- Discrete electrical spikes

Integrated Memory and Processing

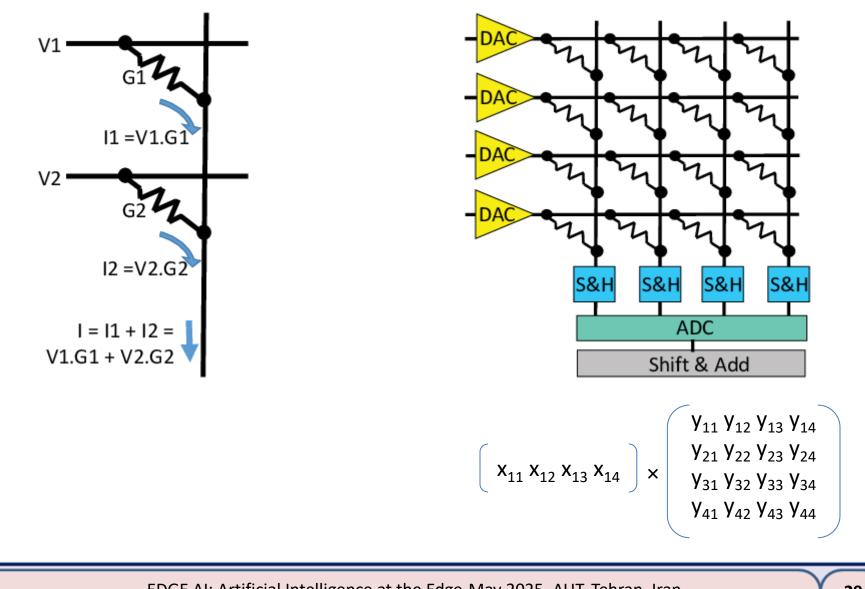
- Merge computation and memory within the same architecture
- Eliminating the von Neumann bottleneck
- Minimizes data transfer delays and power consumption

Analog Computing

- Stanford's Neurogrid system
- Energy-efficient drone navigation
- 1/10,000th the power of traditional GPUs



Neuromorphic Computing



Neuromorphic Chips Advantages

Energy Efficiency

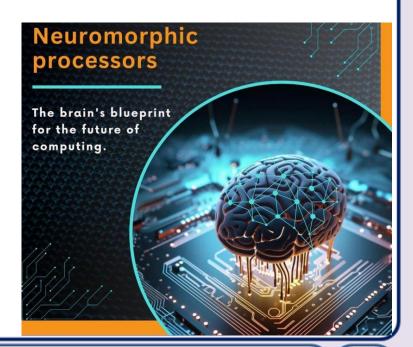
- Consume only 1% to 10% of the power
- Due to
 - Event-Driven Processing
 - Integrated Memory and Compute
- IBM's TrueNorth: 98% energy consumption reduction

Real-Time Processing

- Asynchronous Operations
- Sony's neuromorphic chips detect pedestrians 20ms faster

Scalability

- Compact Design
- Optimized for Sparse Data
- Adaptive Learning



Smarter Consumer Gadgets

- Smartphones: Neuromorphic vision sensors
- Wearables
 - BrainChip's Akida: fitness trackers and medical wearables
 - Real-time analysis of ECG, glucose levels, and sleep patterns
 - Extending battery life by 10–100x
- Smart Home Devices
 - Local processing of voice commands and gestures
 - Reducing cloud dependency and latency
 - Increasing Privacy

EDGE AI: Artificial Intelligence at the Edge-May 2025, AUT, Tehran, Iran

122 70 01+66

Wearable Technology Healthcare

Industries Benefiting from Neuromorphic Edge AI

Industrial IoT (IIoT)

- **Predictive Maintenance:** Accenture Labs' neuromorphic systems
 - Vibration and thermal data to detect machinery anomalies
- Robotic Automation: SynSense's Speck chip
 - Robots to mimic human movements with sub-millisecond latency
- Anomaly Detection
 - Analog neuromorphic circuits
 Sparse sensor data processing in noisy industrial environments

Industries Benefiting from Neuromorphic Edge AI

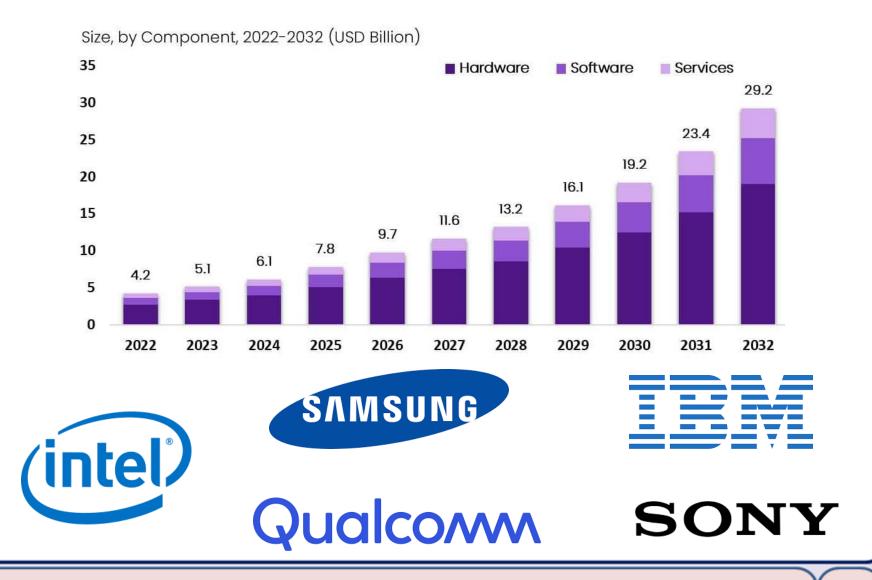
Autonomous Systems

- Autonomous Vehicles: Prophesee's Event-Based Metavision sensors
 - Process LIDAR and camera inputs at 0.1ms latency, enabling collision avoidance without cloud reliance
- **Drones:** SynSense's neuromorphic processors
 - Enable drones to navigate complex environments autonomously
- Vision-Based Robotics: Intel's Loihi chip powers warehouse robots
 - Reducing energy consumption by 40%

Healthcare AI

- Al-Powered Diagnostics: Neuromorphica's medical devices
 - detecting seizures and arrhythmias with 99% accuracy
- Medical Wearables: Stanford's Neurogrid
 - Continuous glucose monitoring with a 30-day battery life

Key Players and Market Availability Timeline



Neuromorphic Chips Examples

IBM's TrueNorth chip (2014)

- 4096 neurosynaptic cores
- 1 million neurons and 256 million synapses
- 5.4 billion transistor
- 46 billion synaptic operations per second
- mimics how biological neurons communicate
- discrete electrical spikes

IBM's NorthPole chip (2023)

- roughly 4,000 times faster than TrueNorth
- 22 billion transistors in 800 square millimeters
- 256 cores and can perform 2,048 operations per core per cycle
- 25 times more energy efficient than 12-nm GPUs and 14-nm CPUs
- process data using event-driven architectures

Neuromorphic Chips Examples

Intel's Loihi 2 chip

Resources/Features	Loihi	Loihi 2
Process	Intel 14nm	Intel 4
Die Area	60 mm ²	31 mm ²
Core Area	0.41 mm ²	0.21 mm ²
Transistors	2.1 billion	2.3 billion
Max # Neuron Cores/Chip	128	128
Max # Processors/Chip	3	6
Max # Neurons/Chip	128,000	1 million
Max # Synapses/Chip	128 million	120 million
Memory/Neuron Core	208 KB, fixed allocation	192 KB, flexible allocation
Neuron Models	Generalized LIF	Fully programmable
Neuron State Allocation	Fixed at 24 bytes per neuron	Variable from 0 to 4096 per neuron depending on neuron model requirements

Challenges in Adopting Neuromorphic Al

Lack of Industry-Wide Standardization

- Programming Interfaces
 - PyNN and Intel's Lava

Communication Protocols

 Vendor-specific implementations hinder seamless interoperability

Host Dependency

• Reliance on conventional computers for pre- and post-processing

Challenges in Adopting Neuromorphic Al

Immature Software Ecosystem

- Framework Compatibility
 - TensorFlow and PyTorch lack native support for SNNs
- Algorithm Development
 - SNN training methods lack standardization
- Toolchain Limitations
 - Neuromorphic-specific compilers and debuggers

Challenges in Adopting Neuromorphic Al

Scalability Concerns

- Physical Scaling
 - Loihi and TrueNorth, support only ~1 million neurons
 - Far below the 86 billion in biological brains
 - Advancements in 3D integration and high-density memristor technology
- Material Challenges
 - Trade-offs between endurance and energy efficiency
- Thermal Management
 - significant heat under load
 - limiting device density and long-term reliability

Conclusion

- Edge AI Enabling real-time intelligence
- Decentralized intelligence and efficient AI beyond traditional cloud computing
- TinyML Bringing machine learning to ultra-low-power devices
- Revolutionizing computing with brain-inspired architectures
 - Neuromorphic Processors
- **Final Thought:** "The future belongs to intelligent systems that think, learn, and adapt—right at the edge!"

Thanks for your

attention