
Advanced
Data Analytics
Using Python

With Machine Learning,
Deep Learning and NLP Examples
—
Sayan Mukhopadhyay

www.allitebooks.com

http://www.allitebooks.org

Advanced Data
Analytics Using

Python
With Machine Learning, Deep
Learning and NLP Examples

Sayan Mukhopadhyay

www.allitebooks.com

http://www.allitebooks.org

Advanced Data Analytics Using Python

ISBN-13 (pbk): 978-1-4842-3449-5		 ISBN-13 (electronic): 978-1-4842-3450-1
https://doi.org/10.1007/978-1-4842-3450-1

Library of Congress Control Number: 2018937906

Copyright © 2018 by Sayan Mukhopadhyay

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information,
reference our Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this
book is available to readers on GitHub via the book’s product page, located at
www.apress.com/978-1-4842-3449-5. For more detailed information, please visit
www.apress.com/source-code.

Printed on acid-free paper

Sayan Mukhopadhyay
Kolkata, West Bengal, India

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3450-1
http://www.allitebooks.org

This is dedicated to all my math teachers,
especially to Kalyan Chakraborty.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Table of Contents

Chapter 1: �Introduction���1

Why Python?��1

When to Avoid Using Python��2

OOP in Python��3

Calling Other Languages in Python��12

Exposing the Python Model as a Microservice��14

High-Performance API and Concurrent Programming���17

Chapter 2: �ETL with Python (Structured Data)�������������������������������������23

MySQL��23

How to Install MySQLdb?��23

Database Connection��24

INSERT Operation���24

READ Operation��25

DELETE Operation���26

UPDATE Operation��27

COMMIT Operation��28

ROLL-BACK Operation��28

www.allitebooks.com

http://www.allitebooks.org

vi

Elasticsearch��31

Connection Layer API��33

Neo4j Python Driver���34

neo4j-rest-client��35

In-Memory Database���35

MongoDB (Python Edition)���36

Import Data into the Collection���36

Create a Connection Using pymongo��37

Access Database Objects���37

Insert Data��38

Update Data��38

Remove Data��38

Pandas���38

ETL with Python (Unstructured Data)���40

E-mail Parsing��40

Topical Crawling���42

Chapter 3: �Supervised Learning Using Python������������������������������������49

Dimensionality Reduction with Python��49

Correlation Analysis��50

Principal Component Analysis��53

Mutual Information���56

Classifications with Python��57

Semisupervised Learning��58

Decision Tree��59

Which Attribute Comes First?���59

Random Forest Classifier���60

Table of ContentsTable of Contents

vii

Naive Bayes Classifier��61

Support Vector Machine���62

Nearest Neighbor Classifier���64

Sentiment Analysis��65

Image Recognition���67

Regression with Python���67

Least Square Estimation���68

Logistic Regression��69

Classification and Regression��70

Intentionally Bias the Model to Over-Fit or Under-Fit���71

Dealing with Categorical Data��73

Chapter 4: �Unsupervised Learning: Clustering������������������������������������77

K-Means Clustering���78

Choosing K: The Elbow Method��82

Distance or Similarity Measure��82

Properties���82

General and Euclidean Distance���83

Squared Euclidean Distance���84

Distance Between String-Edit Distance���85

Similarity in the Context of Document���87

Types of Similarity��87

What Is Hierarchical Clustering?��88

Bottom-Up Approach��89

Distance Between Clusters��90

Top-Down Approach���92

Graph Theoretical Approach���97

How Do You Know If the Clustering Result Is Good?��������������������������������������97

Table of ContentsTable of Contents

viii

Chapter 5: �Deep Learning and Neural Networks����������������������������������99

Backpropagation��100

Backpropagation Approach��100

Generalized Delta Rule���100

Update of Output Layer Weights���101

Update of Hidden Layer Weights��102

BPN Summary��103

Backpropagation Algorithm��104

Other Algorithms��106

TensorFlow���106

Recurrent Neural Network���113

Chapter 6: �Time Series��121

Classification of Variation��121

Analyzing a Series Containing a Trend���121

Curve Fitting���122

Removing Trends from a Time Series���123

Analyzing a Series Containing Seasonality��124

Removing Seasonality from a Time Series��125

By Filtering���125

By Differencing���126

Transformation���126

To Stabilize the Variance��126

To Make the Seasonal Effect Additive��127

To Make the Data Distribution Normal��127

Stationary Time Series���128

Stationary Process���128

Autocorrelation and the Correlogram���129

Estimating Autocovariance and Autocorrelation Functions��������������������������129

Table of ContentsTable of Contents

ix

Time-Series Analysis with Python��130

Useful Methods���131

Autoregressive Processes��133

Estimating Parameters of an AR Process���134

Mixed ARMA Models��137

Integrated ARMA Models��138

The Fourier Transform��140

An Exceptional Scenario��141

Missing Data��143

Chapter 7: �Analytics at Scale��145

Hadoop���145

MapReduce Programming��145

Partitioning Function��146

Combiner Function���147

HDFS File System���159

MapReduce Design Pattern��159

Spark��166

Analytics in the Cloud��168

Internet of Things���179

Index��181

Table of ContentsTable of Contents

xi

About the Author

Sayan Mukhopadhyay has more than

13 years of industry experience and has been

associated with companies such as Credit

Suisse, PayPal, CA Technologies, CSC, and

Mphasis. He has a deep understanding of

applications for data analysis in domains such

as investment banking, online payments,

online advertisement, IT infrastructure, and

retail. His area of expertise is in applying

high-performance computing in distributed

and data-driven environments such as real-time analysis, high-frequency

trading, and so on. 

He earned his engineering degree in electronics and instrumentation

from Jadavpur University and his master’s degree in research in

computational and data science from IISc in Bangalore.

xiii

About the Technical Reviewer

Sundar Rajan Raman has more than 14 years

of full stack IT experience in machine

learning, deep learning, and natural

language processing. He has six years

of big data development and architect

experience, including working with Hadoop

and its ecosystems as well as other NoSQL

technologies such as MongoDB and

Cassandra. In fact, he has been the technical

reviewer of several books on these topics. 

He is also interested in strategizing using Design Thinking principles

and in coaching and mentoring people.

xv

Acknowledgments

Thanks to Labonic Chakraborty (Ripa) and Kusumika Mukherjee.

1© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_1

CHAPTER 1

Introduction
In this book, I assume that you are familiar with Python programming.

In this introductory chapter, I explain why a data scientist should choose

Python as a programming language. Then I highlight some situations

where Python is not a good choice. Finally, I describe some good practices

in application development and give some coding examples that a data

scientist needs in their day-to-day job.

�Why Python?
So, why should you choose Python?

•	 It has versatile libraries. You always have a ready-

made library in Python for any kind of application.

From statistical programming to deep learning to

network application to web crawling to embedded

systems, you will always have a ready-made library in

Python. If you learn this language, you do not have to

stick to a specific use case. R has a rich set of analytics

libraries, but if you are working on an Internet of Things

(IoT) application and need to code in a device-side

embedded system, it will be difficult in R.

2

•	 It is very high performance. Java is also a versatile

language and has lots of libraries, but Java code runs

on a Java virtual machine, which adds an extra layer

of latency. Python uses high-performance libraries

built in other languages. For example, SciPy uses

LAPACK, which is a Fortran library for linear algebra

applications. TensorFlow uses CUDA, which is a C

library for parallel GPU processing.

•	 It is simple and gives you a lot of freedom to code.

Python syntax is just like a natural language. It is easy to

remember, and it does not have constraints in variables

(like constants or public/private).

�When to Avoid Using Python
Python has some downsides too.

•	 When you are writing very specific code, Python may

not always be the best choice. For example, if you are

writing code that deals only with statistics, R is a better

choice. If you are writing MapReduce code only, Java is

a better choice than Python.

•	 Python gives you a lot of freedom in coding. So, when

many developers are working on a large application,

Java/C++ is a better choice so that one developer/

architect can put constraints on another developer’s

code using public/private and constant keywords.

•	 For extremely high-performance applications, there is

no alternative to C/C++.

Chapter 1 Introduction

3

�OOP in Python
Before proceeding, I will explain some features of object-oriented

programming (OOP) in a Python context.

The most basic element of any modern application is an object. To

a programmer or architect, the world is a collection of objects. Objects

consist of two types of members: attributes and methods. Members can be

private, public, or protected. Classes are data types of objects. Every object

is an instance of a class. A class can be inherited in child classes. Two

classes can be associated using composition.

In a Python context, Python has no keywords for public, private, or

protected, so encapsulation (hiding a member from the outside world)

is not implicit in Python. Like C++, it supports multilevel and multiple

inheritance. Like Java, it has an abstract keyword. Classes and methods

both can be abstract.

The following code is an example of a generic web crawler that is

implemented as an airline’s web crawler on the Skytrax site and as a retail

crawler for the Mouthshut.com site. I’ll return to the topic of web crawling

in Chapter 2.

from abc import ABCMeta, abstractmethod

import BeautifulSoup

import urllib

import sys

import bleach

#################### Root Class (Abstract) ####################

class SkyThoughtCollector(object):

 __metaclass__ = ABCMeta

 baseURLString = "base_url"

 airlinesString = "air_lines"

 limitString = "limits"

Chapter 1 Introduction

4

 baseURl = ""

 airlines = []

 limit = 10

 @abstractmethod

 def collectThoughts(self):

 �print "Something Wrong!! You're calling

an abstract method"

 @classmethod

 def getConfig(self, configpath):

 #print "In get Config"

 config = {}

 conf = open(configpath)

 for line in conf:

 if ("#" not in line):

 words = line.strip().split('=')

 �config[words[0].strip()] = words[1].

strip()

 #print config

 self.baseURl = config[self.baseURLString]

 if config.has_key(self.airlinesString):

 �self.airlines = config[self.

airlinesString].split(',')

 if config.has_key(self.limitString):

 self.limit = int(config[self.limitString])

 #print self.airlines

 def downloadURL(self, url):

 #print "downloading url"

 pageFile = urllib.urlopen(url)

Chapter 1 Introduction

5

 if pageFile.getcode() != 200:

 return "Problem in URL"

 pageHtml = pageFile.read()

 pageFile.close()

 return "".join(pageHtml)

 def remove_junk(self, arg):

 f = open('junk.txt')

 for line in f:

 arg.replace(line.strip(),'')

 return arg

 def print_args(self, args):

 out =''

 last = 0

 for arg in args:

 if args.index(arg) == len(args) -1:

 last = 1

 reload(sys)

 sys.setdefaultencoding("utf-8")

 �arg = arg.decode('utf8','ignore').

encode('ascii','ignore').strip()

 arg = arg.replace('\n',' ')

 arg = arg.replace('\r','')

 arg = self.remove_junk(arg)

 if last == 0:

 out = out + arg + '\t'

 else:

 out = out + arg

 print out

Chapter 1 Introduction

6

####################### Airlines Chield #######################

class AirLineReviewCollector(SkyThoughtCollector):

 months = ['January', 'February', 'March', 'April', 'May',

'June', 'July', 'August', 'September', 'October', 'November',

'December']

 def __init__(self, configpath):

 #print "In Config"

 super(AirLineReviewCollector,self).getConfig(configpath)

 def parseSoupHeader(self, header):

 #print "parsing header"

 name = surname = year = month = date = country =''

 txt = header.find("h9")

 words = str(txt).strip().split(' ')

 for j in range(len(words)-1):

 if words[j] in self.months:

 date = words[j-1]

 month= words[j]

 year = words[j+1]

 name = words[j+3]

 surname = words[j+4]

 if ")" in words[-1]:

 country = words[-1].split(')')[0]

 if "(" in country:

 country = country.split('(')[1]

 else:

 country = words[-2].split('(')[1] + country

 return (name, surname, year, month, date, country)

Chapter 1 Introduction

7

 def parseSoupTable(self, table):

 #print "parsing table"

 images = table.findAll("img")

 �over_all = str(images[0]).split("grn_bar_")[1].

split(".gif")[0]

 �money_value = str(images[1]).split("SCORE_")[1].

split(".gif")[0]

 �seat_comfort = str(images[2]).split("SCORE_")[1].

split(".gif")[0]

 �staff_service = str(images[3]).split("SCORE_")[1].

split(".gif")[0]

 �catering = str(images[4]).split("SCORE_")[1].

split(".gif")[0]

 �entertainment = str(images[4]).split("SCORE_")[1].

split(".gif")[0]

 if 'YES' in str(images[6]):

 recommend = 'YES'

 else:

 recommend = 'NO'

 status = table.findAll("p", {"class":"text25"})

 stat = str(status[2]).split(">")[1].split("<")[0]

 �return (stat, over_all, money_value, seat_comfort,

staff_service, catering, entertainment, recomend)

 def collectThoughts(self):

 #print "Collecting Thoughts"

 for al in AirLineReviewCollector.airlines:

 count = 0

 while count < AirLineReviewCollector.limit:

 count = count + 1

 url = ''

Chapter 1 Introduction

8

 if count == 1:

 �url = AirLineReviewCollector.

baseURl + al + ".htm"

 else:

 �url = AirLineReviewCollector.

baseURl + al + "_"+str(count)+

".htm"

 �soup = BeautifulSoup.BeautifulSoup

(super(AirLineReviewCollector,self).

downloadURL(url))

 �blogs = soup.findAll("p",

{"class":"text2"})

 �tables = soup.findAll("table",

{"width":"192"})

 �review_headers = soup.findAll("td",

{"class":"airport"})

 for i in range(len(tables)-1):

 �(name, surname, year, month,

date, country) = self.parse

SoupHeader(review_headers[i])

 �(stat, over_all, money_value,

seat_comfort, staff_service,

catering, entertainment,

recomend) = self.parseSoup

Table(tables[i])

 �blog = str(blogs[i]).

split(">")[1].split("<")[0]

 �args = [al, name, surname,

year, month, date, country,

stat, over_all, money_value,

seat_comfort, staff_service,

catering, entertainment,

recomend, blog]

Chapter 1 Introduction

9

 �super(AirLineReviewCo

llector,self).print_

args(args)

######################## Retail Chield ########################

class RetailReviewCollector(SkyThoughtCollector):

 def __init__(self, configpath):

 #print "In Config"

 super(RetailReviewCollector,self).getConfig(configpath)

 def collectThoughts(self):

 �soup = BeautifulSoup.BeautifulSoup(super(RetailRev

iewCollector,self).downloadURL(RetailReviewCollect

or.baseURl))

 �lines = soup.findAll("a",{"style":

"font-size:15px;"})

 links = []

 for line in lines:

 �if ("review" in str(line)) & ("target" in

str(line)):

 ln = str(line)

 �link = ln.split("href=")[-1].split

("target=")[0].replace("\"","").

strip()

 links.append(link)

 for link in links:

 �soup = BeautifulSoup.BeautifulSoup(

super(RetailReviewCollector,self).

downloadURL(link))

Chapter 1 Introduction

10

 �comment = bleach.clean(str(soup.findAll("di

v",{"itemprop":"description"})[0]),tags=[],

strip=True)

 �tables = soup.findAll("table",

{"class":"smallfont space0 pad2"})

 �parking = ambience = range = economy =

product = 0

 for table in tables:

 if "Parking:" in str(table):

 �rows = table.findAll("tbody")

[0].findAll("tr")

 for row in rows:

 �if "Parking:" in

str(row):

 �parking =

str(row).

count("read-

barfull")

 �if "Ambience" in

str(row):

 �ambience =

str(row).

count("read-

barfull")

 if "Store" in str(row):

 �range = str(row).

count("read-

barfull")

Chapter 1 Introduction

11

 if "Value" in str(row):

 �economy =

str(row).

count("read-

barfull")

 if "Product" in str(row):

 �product =

str(row).count

("smallratefull")

 �author = bleach.clean(soup.findAll("spa

n",{"itemprop":"author"})[0], tags=[],

strip=True)

 �date = soup.findAll("meta",{"itemprop":"dat

ePublished"})[0]["content"]

 �args = [date, author,str(parking),

str(ambience),str(range), str(economy),

str(product), comment]

 �super(RetailReview

Collector,self).print_

args(args)

######################## Main Function ########################

if __name__ == "__main__":

 if sys.argv[1] == 'airline':

 instance = AirLineReviewCollector(sys.argv[2])

 instance.collectThoughts()

 else:

 if sys.argv[1] == 'retail':

 �instance = RetailReviewCollector(sys.argv[2])

 instance.collectThoughts()

Chapter 1 Introduction

12

 else:

 print "Usage is"

 �print sys.argv[0], '<airline/retail>',

"<Config File Path>"

The configuration for the previous code is shown here:

base_url = http://www.airlinequality.com/Forum/

#base_url = http://www.mouthshut.com/product-reviews/Mega-Mart-

Bangalore-reviews-925103466

#base_url = http://www.mouthshut.com/product-reviews/Megamart-

Chennai-reviews-925104102

air_lines = emrts,brit_awys,ual,biman,flydubai

limits = 10

I’ll now discuss the previous code in brief. It has a root class that is an

abstract class. It contains essential attributes such as a base URL and a

page limit; these are essential for all child classes. It also contains common

logic in class method functions such as the download URL, print output,

and read configuration. It also has an abstract method collectThoughts,

which must be implemented in child classes. This abstract method is

passing on a common behavior to every child class that all of them must

collect thoughts from the Web. Implementations of this thought collection

are child specific.

�Calling Other Languages in Python
Now I will describe how to use other languages’ code in Python. There are

two examples here; one is calling R code from Python. R code is required

for some use cases. For example, if you want a ready-made function for the

Holt-Winter method in a time series, it is difficult to do in Python. But it is

Chapter 1 Introduction

13

available in R. So, you can call R code from Python using the rpy2 module,

as shown here:

import rpy2.robjects as ro

ro.r('data(input)')

ro.r('x <-HoltWinters(input)')

Sometimes you need to call Java code from Python. For example,

say you are working on a name entity recognition problem in the field of

natural language processing (NLP); some text is given as input, and you

have to recognize the names in the text. Python’s NLTK package does have

a name entity recognition function, but its accuracy is not good. Stanford

NLP is a better choice here, which is written in Java. You can solve this

problem in two ways.

•	 You can call Java at the command line using

Python code.

import subprocess

subprocess.call(['java','-cp','*','edu.

stanford.nlp.sentiment.SentimentPipeline',

'-file','foo.txt'])

•	 You can expose Stanford NLP as a web service and call

it as a service.

nlp = StanfordCoreNLP('http://127.0.0.1:9000')

output = nlp.annotate(sentence, properties={

 "annotators": "tokenize,ssplit,parse,sentiment",

 "outputFormat": "json",

 # Only split the sentence at End Of Line.

We assume that this method only takes in one

single sentence.

 "ssplit.eolonly": "true",

Chapter 1 Introduction

14

 # Setting enforceRequirements to skip some

annotators and make the process faster

 "enforceRequirements": "false"

 })

�Exposing the Python Model
as a Microservice
You can expose the Python model as a microservice in the same way as

your Python model can be used by others to write their own code. The best

way to do this is to expose your model as a web service. As an example, the

following code exposes a deep learning model using Flask:

from flask import Flask, request, g

from flask_cors import CORS

import tensorflow as tf

from sqlalchemy import *

from sqlalchemy.orm import sessionmaker

import pygeoip

from pymongo import MongoClient

import json

import datetime as dt

import ipaddress

import math

app = Flask(__name__)

CORS(app)

@app.before_request

def before():

 db = create_engine('sqlite:///score.db')

 metadata = MetaData(db)

Chapter 1 Introduction

15

 g.scores = Table('scores', metadata, autoload=True)

 Session = sessionmaker(bind=db)

 g.session = Session()

 client = MongoClient()

 g.db = client.frequency

 g.gi = pygeoip.GeoIP('GeoIP.dat')

 sess = tf.Session()

 new_saver = tf.train.import_meta_graph('model.obj.meta')

 new_saver.restore(sess, tf.train.latest_checkpoint('./'))

 all_vars = tf.get_collection('vars')

 g.dropped_features = str(sess.run(all_vars[0]))

 g.b = sess.run(all_vars[1])[0]

 return

def get_hour(timestamp):

 return dt.datetime.utcfromtimestamp(timestamp / 1e3).hour

def get_value(session, scores, feature_name, feature_value):

 �s = scores.select((scores.c.feature_name == feature_

name) & (scores.c.feature_value == feature_value))

 rs = s.execute()

 row = rs.fetchone()

 if row is not None:

 return float(row['score'])

 else:

 return 0.0

Chapter 1 Introduction

16

@app.route('/predict', methods=['POST'])

def predict():

 input_json = request.get_json(force=True)

 �features = ['size','domain','client_time','device',

'ad_position','client_size', 'ip','root']

 predicted = 0

 feature_value = ''

 for f in features:

 if f not in g.dropped_features:

 if f == 'ip':

 �feature_value = str(ipaddress.

IPv4Address(ipaddress.ip_address

(unicode(request.remote_addr))))

 else:

 feature_value = input_json.get(f)

 if f == 'ip':

 if 'geo' not in g.dropped_features:

 �geo = g.gi.country_name_by_

addr(feature_value)

 �predicted = predicted + get_

value(g.session, g.scores,

'geo', geo)

 �if 'frequency' not in g.dropped_

features:

 �res = g.db.frequency.find_

one({"ip" : feature_value})

 freq = 1

 if res is not None:

 freq = res['frequency']

 �predicted = predicted + get_

value(g.session, g.scores,

'frequency', str(freq))

Chapter 1 Introduction

17

 if f == 'client_time':

 �feature_value = get_

hour(int(feature_value))

 �predicted = predicted + get_value(g.

session, g.scores, f, feature_value)

 �return str(math.exp(predicted + g.b)-1)

app.run(debug = True, host ='0.0.0.0')

This code exposes a deep learning model as a Flask web service.

A JavaScript client will send the request with web user parameters such

as the IP address, ad size, ad position, and so on, and it will return the

price of the ad as a response. The features are categorical. You will learn

how to convert them into numerical scores in Chapter 3. These scores

are stored in an in-memory database. The service fetches the score from

the database, sums the result, and replies to the client. This score will be

updated real time in each iteration of training of a deep learning model. It

is using MongoDB to store the frequency of that IP address in that site. It is

an important parameter because a user coming to a site for the first time

is really searching for something, which is not true for a user where the

frequency is greater than 5. The number of IP addresses is huge, so they

are stored in a distributed MongoDB database.

�High-Performance API and Concurrent
Programming
Flask is a good choice when you are building a general solution that is

also a graphical user interface (GUI). But if high performance is the most

critical requirement of your application, then Falcon is the best choice. The

following code is an example of the same model shown previously exposed

by the Falcon framework. Another improvement I made in this code is that

I implemented multithreading, so the code will be executed in parallel.

Chapter 1 Introduction

18

Except Falcon-specific changes, you should note the major changes in

parallelizing the calling get_score function using a thread pool class.

import falcon

from falcon_cors import CORS

import json

from sqlalchemy import *

from sqlalchemy.orm import sessionmaker

import pygeoip

from pymongo import MongoClient

import json

import datetime as dt

import ipaddress

import math

from concurrent.futures import *

from sqlalchemy.engine import Engine

from sqlalchemy import event

import sqlite3

@event.listens_for(Engine, "connect")

def set_sqlite_pragma(dbapi_connection, connection_record):

 cursor = dbapi_connection.cursor()

 cursor.execute("PRAGMA cache_size=100000")

 cursor.close()

class Predictor(object):

 def __init__(self,domain):

 �db1 = create_engine('sqlite:///score_' + domain +

'0test.db')

 �db2 = create_engine('sqlite:///probability_' +

domain +'0test.db')

 �db3 = create_engine('sqlite:///ctr_'+ domain +

'test.db')

Chapter 1 Introduction

19

 metadata1 = MetaData(db1)

 metadata2 = MetaData(db2)

 metadata3 = MetaData(db3)

 self.scores = Table('scores', metadata1, autoload=True)

 �self.probabilities = Table('probabilities', metadata2,

autoload=True)

 self.ctr = Table('ctr', metadata3, autoload=True)

 client = MongoClient(connect=False,maxPoolSize=1)

 self.db = client.frequency

 self.gi = pygeoip.GeoIP('GeoIP.dat')

 self.high = 1.2

 self.low = .8

 def get_hour(self,timestamp):

 return dt.datetime.utcfromtimestamp(timestamp / 1e3).hour

 def get_score(self, featurename, featurevalue):

 prob = 0

 pred = 0

 �s = self.scores.select((self.scores.c.feature_name

== featurename) & (self.scores.c.feature_value ==

featurevalue))

 rs = s.execute()

 row = rs.fetchone()

 if row is not None:

 pred = pred + float(row['score'])

 s = self.probabilities.select((self.probabilities.c.feature_

name == featurename) & (self.probabilities.c.feature_value ==

featurevalue))

 rs = s.execute()

 row = rs.fetchone()

Chapter 1 Introduction

20

 if row is not None:

 prob = prob + float(row['Probability'])

 return pred, prob

 def get_value(self, f, value):

 if f == 'ip':

 �ip = str(ipaddress.IPv4Address(ipaddress.

ip_address(value)))

 geo = self.gi.country_name_by_addr(ip)

 pred1, prob1 = self.get_score('geo', geo)

 res = self.db.frequency.find_one({"ip" : ip})

 freq = 1

 if res is not None:

 freq = res['frequency']

 �pred2, prob2 = self.get_score('frequency',

str(freq))

 return (pred1 + pred2), (prob1 + prob2)

 if f == 'root':

 s = self.ctr.select(self.ctr.c.root == value)

 rs = s.execute()

 row = rs.fetchone()

 if row is not None:

 ctr = row['ctr']

 avv = row['avt']

 avt = row['avv']

 �(pred1,prob1) = self.get_score

('ctr', ctr)

 �(pred2,prob2) = self.get_score

('avt', avt)

 �(pred3,prob3) = self.get_score

('avv', avv)

Chapter 1 Introduction

21

 �(pred4,prob4) = self.get_score(f,

value)

 �return (pred1 + pred2 + pred3 + pred4),

(prob1 + prob2 + prob3 + prob4)

 if f == 'client_time':

 value = str(self.get_hour(int(value)))

 if f == 'domain':

 conn = sqlite3.connect('multiplier.db')

 �cursor = conn.execute("SELECT high,low from

multiplier where domain='" + value + "'")

 row = cursor.fetchone()

 if row is not None:

 self.high = row[0]

 self.low = row[1]

 return self.get_score(f, value)

 def on_post(self, req, resp):

 �input_json = json.loads(req.stream.

read(),encoding='utf-8')

 input_json['ip'] = unicode(req.remote_addr)

 pred = 1

 prob = 1

 with ThreadPoolExecutor(max_workers=8) as pool:

 �future_array = { pool.submit(self.get_

value,f,input_json[f]) : f for f in

input_json}

 for future in as_completed(future_array):

 pred1, prob1 = future.result()

 pred = pred + pred1

 prob = prob - prob1

 resp.status = falcon.HTTP_200

Chapter 1 Introduction

22

 res = math.exp(pred)-1

 if res < 0:

 res = 0

 prob = math.exp(prob)

 if(prob <= .1):

 prob = .1

 if(prob >= .9):

 prob = .9

 multiplier = self.low + (self.high -self.low)*prob

 pred = multiplier*pred

 resp.body = str(pred)

cors = CORS(allow_all_origins=True,allow_all_

methods=True,allow_all_headers=True)

wsgi_app = api = falcon.API(middleware=[cors.middleware])

f = open('publishers1.list')

for domain in f:

 domain = domain.strip()

 p = Predictor(domain)

 url = '/predict/' + domain

 api.add_route(url, p)

Chapter 1 Introduction

23© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_2

CHAPTER 2

ETL with Python
(Structured Data)
Every data science professional has to extract, transform, and load (ETL)

data from different data sources. In this chapter, I will discuss how to do

ETL with Python for a selection of popular databases. For a relational

database, I’ll cover MySQL. As an example of a document database, I will

cover Elasticsearch. For a graph database, I’ll cover Neo4j, and for NoSQL,

I’ll cover MongoDB. I will also discuss the Pandas framework, which was

inspired by R’s data frame concept.

�MySQL
MySQLdb is an API in Python developed at the top of the MySQL C interface.

�How to Install MySQLdb?
First you need to install the Python MySQLdb module on your machine.

Then run the following script:

#!/usr/bin/python

import MySQLdb

24

If you get an import error exception, that means the module is not

installed properly.

The following is the instruction to install the MySQL Python module:

$ gunzip MySQL-python-1.2.2.tar.gz

$ tar -xvf MySQL-python-1.2.2.tar

$ cd MySQL-python-1.2.2

$ python setup.py build

$ python setup.py install

�Database Connection
Before connecting to a MySQL database, make sure you have the following:

•	 You need a database called TEST.

•	 In TEST you need a table STUDENT.

•	 STUDENT needs three fields: NAME, SUR_NAME, and ROLL_NO.

•	 There needs to be a user in TEST that has complete

access to the database.

�INSERT Operation
The following code carries out the SQL INSERT statement for the purpose

of creating a record in the STUDENT table:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST")

prepare a cursor object using cursor() method

cursor = db.cursor()

Chapter 2 ETL with Python (Structured Data)

25

Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO STUDENT(NAME,

 SUR_NAME, ROLL_NO)

 VALUES ('Sayan', 'Mukhopadhyay', 1)"""

try:

 # Execute the SQL command

cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

�READ Operation
The following code fetches data from the STUDENT table and prints it:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "SELECT * FROM STUDENT "

try:

Chapter 2 ETL with Python (Structured Data)

26

 # Execute the SQL command

cursor.execute(sql)

 # Fetch all the rows in a list of lists.

results = cursor.fetchall()

for row in results:

fname = row[0]

lname = row[1]

id = row[2]

 # Now print fetched result

print "name=%s,surname=%s,id=%d" % \

 (fname, lname, id)

except:

print "Error: unable to fecth data"

disconnect from server

db.close()

�DELETE Operation
The following code deletes a row from TEST with id=1:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","test","passwd","TEST")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to DELETE required records

sql = "DELETE FROM STUDENT WHERE ROLL_NO =1"

try:

Chapter 2 ETL with Python (Structured Data)

27

 # Execute the SQL command

cursor.execute(sql)

 # Commit your changes in the database

db.commit()

except:

 # Rollback in case there is any error

db.rollback()

disconnect from server

db.close()

�UPDATE Operation
The following code changes the lastname variable to Mukherjee, from

Mukhopadhyay:

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to UPDATE required records

sql = "UPDATE STUDENT SET SUR_NAME="Mukherjee"

 WHERE SUR_NAME="Mukhopadhyay"

try:

 # Execute the SQL command

cursor.execute(sql)

 # Commit your changes in the database

db.commit()

Chapter 2 ETL with Python (Structured Data)

28

except:

 # Rollback in case there is any error

db.rollback()

disconnect from server

db.close()

�COMMIT Operation
The commit operation provides its assent to the database to finalize the

modifications, and after this operation, there is no way that this can be

reverted.

�ROLL-BACK Operation
If you are not completely convinced about any of the modifications and you

want to reverse them, then you need to apply the roll-back() method.

The following is a complete example of accessing MySQL data through

Python. It will give the complete description of data stored in a CSV file or

MySQL database.

import MySQLdb

import sys

out = open('Config1.txt','w')

print "Enter the Data Source Type:"

print "1. MySql"

print "2. Text"

print "3. Exit"

while(1):

 data1 = sys.stdin.readline().strip()

 if(int(data1) == 1):

Chapter 2 ETL with Python (Structured Data)

29

 out.write("source begin"+"\n"+"type=mysql\n")

 print "Enter the ip:"

 ip = sys.stdin.readline().strip()

 out.write("host=" + ip + "\n")

 print "Enter the database name:"

 db = sys.stdin.readline().strip()

 out.write("database=" + db + "\n")

 print "Enter the user name:"

 usr = sys.stdin.readline().strip()

 out.write("user=" + usr + "\n")

 print "Enter the password:"

 passwd = sys.stdin.readline().strip()

 out.write("password=" + passwd + "\n")

 connection = MySQLdb.connect(ip, usr, passwd, db)

 cursor = connection.cursor()

 query = "show tables"

 cursor.execute(query)

 data = cursor.fetchall()

 tables = []

 for row in data:

 for field in row:

 tables.append(field.strip())

 for i in range(len(tables)):

 print i, tables[i]

 tb = tables[int(sys.stdin.readline().strip())]

 out.write("table=" + tb + "\n")

 query = "describe " + tb

 cursor.execute(query)

 data = cursor.fetchall()

 columns = []

 for row in data:

 columns.append(row[0].strip())

Chapter 2 ETL with Python (Structured Data)

30

 for i in range(len(columns)):

 print columns[i]

 �print "Not index choose the exact column names

seperated by coma"

 cols = sys.stdin.readline().strip()

 out.write("columns=" + cols + "\n")

 cursor.close()

 connection.close()

 out.write("source end"+"\n")

 print "Enter the Data Source Type:"

 print "1. MySql"

 print "2. Text"

 print "3. Exit"

 if(int(data1) == 2):

 print "path of text file:"

 path = sys.stdin.readline().strip()

 file = open(path)

 count = 0

 for line in file:

 print line

 count = count + 1

 if count > 3:

 break

 file.close()

 out.write("source begin"+"\n"+"type=text\n")

 out.write("path=" + path + "\n")

 print "enter delimeter:"

 dlm = sys.stdin.readline().strip()

 out.write("dlm=" + dlm + "\n")

 print "enter column indexes seperated by comma:"

Chapter 2 ETL with Python (Structured Data)

31

 cols = sys.stdin.readline().strip()

 out.write("columns=" + cols + "\n")

 out.write("source end"+"\n")

 print "Enter the Data Source Type:"

 print "1. MySql"

 print "2. Text"

 print "3. Exit"

 if(int(data1) == 3):

 out.close()

 sys.exit()

�Elasticsearch
The Elasticsearch (ES) low-level client gives a direct mapping from

Python to ES REST endpoints. One of the big advantages of Elasticsearch

is that it provides a full stack solution for data analysis in one place.

Elasticsearch is the database. It has a configurable front end called

Kibana, a data collection tool called Logstash, and an enterprise security

feature called Shield.

This example has the features called cat, cluster, indices, ingest,

nodes, snapshot, and tasks that translate to instances of CatClient,

ClusterClient, IndicesClient, CatClient, ClusterClient,

IndicesClient, IngestClient, NodesClient, SnapshotClient,

NodesClient, SnapshotClient, and TasksClient, respectively. These

instances are the only supported way to get access to these classes and

their methods.

You can specify your own connection class, which can be used by

providing the connection_class parameter.

create connection to local host using the ThriftConnection

Es1=Elasticsearch(connection_class=ThriftConnection)

Chapter 2 ETL with Python (Structured Data)

32

If you want to turn on sniffing, then you have several options

(described later in the chapter).

create connection that will automatically inspect the cluster to get

the list of active nodes. Start with nodes running on 'esnode1' and

'esnode2'

Es1=Elasticsearch(

 ['esnode1', 'esnode2'],

sniff before doing anything

sniff_on_start=True,

refresh nodes after a node fails to respond

sniff_on_connection_fail=True,

and also every 30 seconds

sniffer_timeout=30

)

Different hosts can have different parameters; you can use one

dictionary per node to specify them.

connect to localhost directly and

another node using SSL on port 443

and an url_prefix. Note that ``port`` needs to be an int.

Es1=Elasticsearch([

{'host':'localhost'},

{'host':'othernode','port':443,'url_prefix':'es','use_ssl':True},

])

SSL client authentication is also supported (see Urllib3HttpConnection

for a detailed description of the options).

Es1=Elasticsearch(

['localhost:443','other_host:443'],

turn on SSL

use_ssl=True,

Chapter 2 ETL with Python (Structured Data)

https://elasticsearch-py.readthedocs.io/en/master/index.html#sniffing

33

make sure we verify SSL certificates (off by default)

verify_certs=True,

provide a path to CA certs on disk

ca_certs='path to CA_certs',

PEM formatted SSL client certificate

client_cert='path to clientcert.pem',

PEM formatted SSL client key

client_key='path to clientkey.pem'

)

�Connection Layer API
Many classes are responsible for dealing with the Elasticsearch cluster.

Here, the default subclasses being utilized can be disregarded by handing

over parameters to the Elasticsearch class. Every argument belonging to

the client will be added onto Transport, ConnectionPool, and Connection.

As an example, if you want to use your own personal utilization of the

ConnectionSelector class, you just need to pass in the selector_class

parameter.

The entire API wraps the raw REST API with a high level of accuracy,

which includes the differentiation between the required and optional

arguments to the calls. This implies that the code makes a differentiation

between positional and keyword arguments; I advise you to use keyword

arguments for all calls to be consistent and safe. An API call becomes

successful (and will return a response) if Elasticsearch returns a 2XX

response. Otherwise, an instance of TransportError (or a more specific

subclass) will be raised. You can see other exceptions and error states in

exceptions. If you do not want an exception to be raised, you can always

pass in an ignore parameter with either a single status code that should be

ignored or a list of them.

Chapter 2 ETL with Python (Structured Data)

https://elasticsearch-py.readthedocs.io/en/master/connection.html#elasticsearch.Transport#elasticsearch.Transport

34

from elasticsearch import Elasticsearch

es=Elasticsearch()

ignore 400 cause by IndexAlreadyExistsException when creating

an index

es.indices.create(index='test-index',ignore=400)

ignore 404 and 400

es.indices.delete(index='test-index',ignore=[400,404])

�Neo4j Python Driver
The Neo4j Python driver is supported by Neo4j and connects with the

database through the binary protocol. It tries to remain minimalistic but at

the same time be idiomatic to Python.

pip install neo4j-driver

from neo4j.v1 import GraphDatabase, basic_auth

driver11 = GraphDatabase.driver("bolt://localhost", auth=basic_

auth("neo4j", "neo4j"))

session11 = driver11.session()

session11.run("CREATE (a:Person {name:'Sayan',

title:'Mukhopadhyay'})")

result 11= session11.run("MATCH (a:Person) WHERE a.name =

'Sayan' RETURN a.name AS name, a.title AS title")

for recordi n resul11t:

print("%s %s"% (record["title"], record["name"]))

session.close()

Chapter 2 ETL with Python (Structured Data)

35

�neo4j-rest-client
The main objective of neo4j-rest-client is to make sure that the Python

programmers already using Neo4j locally through python-embedded are

also able to access the Neo4j REST server. So, the structure of the neo4j-

rest-client API is completely in sync with python-embedded. But, a new

structure is brought in so as to arrive at a more Pythonic style and to

augment the API with the new features being introduced by the Neo4j team.

�In-Memory Database
Another important class of database is an in-memory database. It stores

and processes the data in RAM. So, operation on the database is very

fast, and the data is volatile. SQLite is a popular example of in-memory

database. In Python you need to use the sqlalchemy library to operate on

SQLite. In Chapter 1’s Flask and Falcon example, I showed you how to

select data from SQLite. Here I will show how to store a Pandas data frame

in SQLite:

from sqlalchemy import create_engine

import sqlite3

conn = sqlite3.connect('multiplier.db')

conn.execute('''CREATE TABLE if not exists multiplier

 (domain CHAR(50),

 low REAL,

 high REAL);''')

conn.close()

db_name = "sqlite:///" + prop + "_" + domain + str(i) + ".db"

disk_engine = create_engine(db_name)

df.to_sql('scores', disk_engine, if_exists='replace')

Chapter 2 ETL with Python (Structured Data)

36

�MongoDB (Python Edition)
MongoDB is an open source document database designed for superior

performance, easy availability, and automatic scaling. MongoDB makes

sure that object-relational mapping (ORM) is not required to facilitate

development. A document that contains a data structure made up of

field and value pairs is referred to as a record in MongoDB. These records

are akin to JSON objects. The values of fields may be comprised of other

documents, arrays, and arrays of documents.

{

"_id":ObjectId("01"),

"address": {

"street":"Siraj Mondal Lane",

"pincode":"743145",

"building":"129",

"coord": [-24.97, 48.68]

 },

"borough":"Manhattan",

�Import Data into the Collection
mongoimport can be used to place the documents into a collection in a

database, within the system shell or a command prompt. If the collection

preexists in the database, the operation will discard the original

collection first.

mongoimport --DB test --collection restaurants --drop --file ~/

downloads/primer-dataset.json

The mongoimport command is joined to a MongoDB instance running

on localhost on port number 27017. The --file option provides a way to

import the data; here it’s ~/downloads/primer-dataset.json.

Chapter 2 ETL with Python (Structured Data)

37

To import data into a MongoDB instance running on a different host

or port, the hostname or port needs to be mentioned specifically in the

mongoimport command by including the --host or --port option.

There is a similar load command in MySQL.

�Create a Connection Using pymongo
To create a connection, do the following:

import MongoClient from pymongo.

Client11 = MongoClient()

If no argument is mentioned to MongoClient, then it will default to the

MongoDB instance running on the localhost interface on port 27017.

A complete MongoDB URL may be designated to define the

connection, which includes the host and port number. For instance, the

following code makes a connection to a MongoDB instance that runs on

mongodb0.example.net and the port of 27017:

Client11 = MongoClient("mongodb://myhostname:27017")

�Access Database Objects
To assign the database named primer to the local variable DB, you can use

either of the following lines:

Db11 = client11.primer

db11 = client11['primer']

Collection objects can be accessed directly by using the dictionary

style or the attribute access from a database object, as shown in the

following two examples:

Coll11 = db11.dataset

coll = db11['dataset']

Chapter 2 ETL with Python (Structured Data)

http://api.mongodb.com/python/current/api/pymongo/mongo_client.html#pymongo.mongo_client.MongoClient#(in PyMongo v3.4rc0)
http://docs.mongodb.com/manual/reference/connection-string

38

�Insert Data
You can place a document into a collection that doesn’t exist, and the

following operation will create the collection:

result=db.addrss.insert_one({<<your json >>)

�Update Data
Here is how to update data:

result=db.address.update_one(

 {"building": "129",

 {"$set": {"address.street": "MG Road"}}

)

�Remove Data
To expunge all documents from a collection, use this:

result=db.restaurants.delete_many({})

�Pandas
The goal of this section is to show some examples to enable you to begin

using Pandas. These illustrations have been taken from real-world

data, along with any bugs and weirdness that are inherent. Pandas is a

framework inspired by the R data frame concept.

To read data from a CSV file, use this:

import pandas as pd

broken_df=pd.read_csv('data.csv')

Chapter 2 ETL with Python (Structured Data)

39

To look at the first three rows, use this:

broken_df[:3]

To select a column, use this:

fixed_df['Column Header']

To plot a column, use this:

fixed_df['Column Header'].plot()

To get a maximum value in the data set, use this:

MaxValue=df['Births'].max() where Births is the column header

Let’s assume there is another column in a data set named Name. The

command for Name is associated with the maximum value.

MaxName=df['Names'][df['Births']==df['Births'].max()].values

There are many other methods such as sort, groupby, and orderby

in Pandas that are useful to play with structured data. Also, Pandas has a

ready-made adapter for popular databases such as MongoDB, Google Big

Query, and so on.

One complex example with Pandas is shown next. In X data frame for

each distinct column value, find the average value of floor grouping by the

root column.

for col in X.columns:

 if col != 'root':

 �avgs = df.groupby([col,'root'],

as_index=False)['floor'].

aggregate(np.mean)

 for i,row in avgs.iterrows():

 k = row[col]

 v = row['floor']

Chapter 2 ETL with Python (Structured Data)

40

 r = row['root']

 �X.loc[(X[col] == k) &

(X['root'] == r), col]

= v2.

�ETL with Python (Unstructured Data)
Dealing with unstructured data is an important task in modern data

analysis. In this section, I will cover how to parse e-mails, and I’ll introduce

an advanced research topic called topical crawling.

�E-mail Parsing
See Chapter 1 for a complete example of web crawling using Python.

Like BeautifulSoup, Python has a library for e-mail parsing. The

following is the example code to parse e-mail data stored on a mail server.

The inputs in the configuration are the username and number of mails to

parse for the user.

from email.parser import Parser

import os

import sys

conf = open(sys.argv[1])

config={}

users={}

for line in conf:

 if ("," in line):

 fields = line.split(",")

 key = fields[0].strip().split("=")[1].strip()

 val = fields[1].strip().split("=")[1].strip()

 users[key] = val

Chapter 2 ETL with Python (Structured Data)

41

 else:

 if ("=" in line):

 words = line.strip().split('=')

 config[words[0].strip()] = words[1].strip()

conf.close()

for usr in users.keys():

 path = config["path"]+"/"+usr+"/"+config["folder"]

 files = os.listdir(path)

 for f in sorted(files):

 if(int(f) > int(users[usr])):

 users[usr] = f

 path1 = path + "/" + f

 data = ""

 with open (path1) as myfile:

 data=myfile.read()

 if data != "" :

 parser = Parser()

 email = parser.parsestr(data)

 out = ""

 �out = out + str(email.get('From')) + ","

+ str(email.get('To')) + "," + str(email.

get('Subject')) + "," + str(email.

get('Date')).replace(","," ")

 if email.is_multipart():

 for part in email.get_payload():

 �out = out + "," + str(part.

get_payload()).replace("\n","

").replace(","," ")

 else:

Chapter 2 ETL with Python (Structured Data)

42

 �out = out + "," + str(email.get_payload

()).replace("\n"," ").replace(","," ")

 print out,"\n"

conf = open(sys.argv[1],'w')

conf.write("path=" + config["path"] + "\n")

conf.write("folder=" + config["folder"] + "\n")

for usr in users.keys():

 conf.write("name="+ usr +",value=" + users[usr] + "\n")

conf.close()

Sample config file for above code.

path=/cygdrive/c/share/enron_mail_20110402/enron_mail_20110402/

maildir

folder=Inbox

name=storey-g,value=142

name=ybarbo-p,value=775

name=tycholiz-b,value=602

�Topical Crawling
Topical crawlers are intelligent crawlers that retrieve information from

anywhere on the Web. They start with a URL and then find links present in

the pages under it; then they look at new URLs, bypassing the scalability

limitations of universal search engines. This is done by distributing

the crawling process across users, queries, and even client computers.

Crawlers can use the context available to infinitely loop through the links

with a goal of systematically locating a highly relevant, focused page.

Web searching is a complicated task. A large chunk of machine

learning work is being applied to find the similarity between pages, such as

the maximum number of URLs fetched or visited.

Chapter 2 ETL with Python (Structured Data)

43

�Crawling Algorithms

The following diagram describes how the topical crawling algorithm works

with its major components.

The starting URL of a topical crawler is known as the seed URL. There

is another set of URLs known as the target URLs, which are examples of

desired output.

An interesting application of topical crawling is where an HR organization

is searching for a candidate from anywhere on the Web possessing a

particular skill set. One easy alternative solution is to use a search engine

API. The following code is an example of using the Google Search API,

BeautifulSoup, and regular expressions that search the e-mail ID and phone

number of potential candidates with a particular skill set from the Web.

#!/usr/bin/env python

-*- coding: utf-8 -*-

Chapter 2 ETL with Python (Structured Data)

44

import pprint, json, urllib2

import nltk, sys, urllib

from bs4 import BeautifulSoup

import csv

from googleapiclient.discovery import build

def link_score(link):

 if ('cv' in link or 'resume' in link) and 'job' not in link:

 return True

def process_file():

 try:

 with open('data1.json','r') as fl:

 data = json.load(fl)

 all_links = []

 # pprint.pprint(len(data['items']))

 for item in data['items']:

 # print item['formattedUrl']

 all_links.append(item['formattedUrl'])

 return all_links

 except:

 return []

def main(istart, search_query):

 service = build("customsearch", "v1",

 developerKey="abcd")

 res = service.cse().list(

 q= search_query,

 cx='1234',

 num=10,

 gl='in', #in for india comment this for whole web

Chapter 2 ETL with Python (Structured Data)

45

 start = istart,

).execute()

 import json

 with open('data1.json', 'w') as fp:

 json.dump(res, fp)

pprint.pprint(type(res))

pprint.pprint(res)

def get_email_ph(link_text, pdf=None):

 if pdf==True:

 from textract import process

 text = process(link_text)

 else:

 text = link_text

 # print text

 import re

 email = []

 ph = []

 valid_ph = re.compile("[789][0-9]{9}$")

 valid = re.compile("[A-Za-z]+[@]{1}[A-Za-z]+\.[a-z]+")

 for token in re.split(r'[,\s]',text):

for token in nltk.tokenize(text):

 # print token

 a = valid.match(token)

 b = valid_ph.match(token)

 if a != None:

 print a.group()

 email.append(a.group())

 if b != None:

 print b.group()

 ph.append(b.group())

 return email, ph

Chapter 2 ETL with Python (Structured Data)

46

def process_pdf_link(link):

 html = urllib2.urlopen(link)

 file = open("document.pdf", 'w')

 file.write(html.read())

 file.close()

 return get_email_ph("document.pdf", pdf=True)

def process_doc_link(link):

 testfile = urllib.URLopener()

 testfile.retrieve(link, "document.doc")

 return get_email_ph("document.doc", pdf=False)

def process_docx_link(link):

 testfile = urllib.URLopener()

 testfile.retrieve(link, "document.docx")

 return get_email_ph("document.docx", pdf=False)

def process_links(all_links):

 with open('email_ph.csv', 'wb') as csvfile:

 spamwriter = csv.writer(csvfile, delimiter=',')

 for link in all_links:

 if link[:4] !='http':

 link = "http://"+link

 print link

 try:

 if link[-3:] == 'pdf':

 try:

 email, ph = process_pdf_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

Chapter 2 ETL with Python (Structured Data)

47

 elif link[-4:] == 'docx':

 try:

 email, ph = process_docx_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 elif link[-3:] == 'doc':

 try:

 email, ph = process_doc_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 else:

 try:

 html = urllib2.urlopen(link)

 email, ph = get_email_ph(BeautifulSoup(html.read()).get_

text(), pdf=False)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 pass

 print "error",link

 print sys.exc_info()

if __name__ == '__main__':

Chapter 2 ETL with Python (Structured Data)

48

#

 search_query = ' ASP .NET, C#, WebServices, HTML Chicago USA

biodata cv'

#

#

 all_links = []

all_links.extend(links)

 for i in range(1,90,10):

 main(i, search_query)

 all_links.extend(process_file())

 process_links(all_links)

#

This code is used to find relevant contacts from the Web for a set of

given job-searching keywords. It uses the Google Search API to fetch

the links, filters them according to the presence of certain keywords in a

URL, and then parses the link content and finds the e-mail ID and phone

number. The content may be PDF or Word or HTML documents.

Chapter 2 ETL with Python (Structured Data)

49© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_3

CHAPTER 3

Supervised Learning
Using Python
In this chapter, I will introduce the three most essential components of

machine learning.

•	 Dimensionality reduction tells how to choose the most

important features from a set of features.

•	 Classification tells how to categorize data to a set of

target categories with the help of a given training/

example data set.

•	 Regression tells how to realize a variable as a linear or

nonlinear polynomial of a set of independent variables.

�Dimensionality Reduction with Python
Dimensionality reduction is an important aspect of data analysis. It is

required for both numerical and categorical data. Survey or factor analysis

is one of the most popular applications of dimensionality reduction. As an

example, suppose that an organization wants to find out which factors are

most important in influencing or bringing about changes in its operations.

It takes opinions from different employees in the organization and, based

on this survey data, does a factor analysis to derive a smaller set of factors

in conclusion.

50

In investment banking, different indices are calculated as a weighted

average of instruments. Thus, when an index goes high, it is expected

that instruments in the index with a positive weight will also go high and

those with a negative weight will go low. The trader trades accordingly.

Generally, indices consist of a large number of instruments (more than

ten). In high-frequency algorithmic trading, it is tough to send so many

orders in a fraction of a second. Using principal component analysis,

traders realize the index as a smaller set of instruments to commence with

the trading. Singular value decomposition is a popular algorithm that

is used both in principal component analysis and in factor analysis. In

this chapter, I will discuss it in detail. Before that, I will cover the Pearson

correlation, which is simple to use. That’s why it is a popular method of

dimensionality reduction. Dimensionality reduction is also required for

categorical data. Suppose a retailer wants to know whether a city is an

important contributor to sales volume; this can be measured by using

mutual information, which will also be covered in this chapter.

�Correlation Analysis
There are different measures of correlation. I will limit this discussion

to the Pearson correlation only. For two variables, x and y, the Pearson

correlation is as follows:

r
x x y y

x x y y

i
i i

i
i

i
i

=
-() -()

-() -()

å

å å2 2

The value of r will vary from -1 to +1. The formula clearly shows that

when x is greater than its average, then y is also greater, and therefore the r

value is bigger. In other words, if x increases, then y increases, and then r is

greater. So, if r is nearer to 1, it means that x and y are positively correlated.

Similarly, if r is nearer to -1, it means that x and y are negatively correlated.

Chapter 3 Supervised Learning Using Python

51

Likewise, if r is nearer to 0, it means that x and y are not correlated. A

simplified formula to calculate r is shown here:

r=
n xy x y

n x x n y y

å å å
å å å å

()-()()
- ()é

ëê
ù
ûú

- ()é
ëê

ù
ûú

2 2 2 2

You can easily use correlation for dimensionality reduction. Let’s say

Y is a variable that is a weighted sum of n variables: X1, X2, ... Xn. You

want to reduce this set of X to a smaller set. To do so, you need to calculate

the correlation coefficient for each X pair. Now, if Xi and Xj are highly

correlated, then you will investigate the correlation of Y with Xi and Xj. If

the correlation of Xi is greater than Xj, then you remove Xj from the set, and

vice versa. The following function is an example of the dropping feature

using correlation:

from scipy.stats.stats import pearsonr

def drop_features(y_train,X_train,X,index):

 i1 = 0

 processed = 0

 while(1):

 flag = True

 for i in range(X_train.shape[1]):

 if i > processed :

 i1 = i1 + 1

 corr = pearsonr(X_train[:,i], y_train)

 �PEr= .674 * (1- corr[0]*corr[0])/ (len(X_

train[:,i])**(1/2.0))

 if corr[0] < PEr:

 X_train = np.delete(X_train,i,1)

Chapter 3 Supervised Learning Using Python

52

 �index.append(X.

columns[i1-1])

 processed = i - 1

 flag = False

 break

 if flag:

 break

 return X_train, index

The actual use case of this code is shown at the end of the chapter.

Now, the question is, what should be the threshold value of the

previous correlation that, say, X and Y are correlated. A common practice

is to assume that if r > 0.5, it means the variables are correlated, and if

r < 0.5, then it means no correlation. One big limitation of this approach

is that it does not consider the length of the data. For example, a 0.5

correlation in a set of 20 data points should not have the same weight as a

0.5 correlation in a set of 10,000 data points. To overcome this problem, a

probable error concept has been introduced, as shown here:

PEr = ´
-

.674
1 2r

n

r is the correlation coefficient, and n is the sample size.

Here, r > 6PEr means that X and Y are highly correlated, and if r < Per,

this means that X and Y are independent. Using this approach, you can see

that even r = 0.1 means a high correlation when the data size is huge.

One interesting application of correlation is in product

recommendations on an e-commerce site. Recommendations can identify

similar users if you calculate the correlation of their common ratings for

the same products. Similarly, you can find similar products by calculating

the correlation of their common ratings from the same user. This approach

is known as collaborative filtering.

Chapter 3 Supervised Learning Using Python

53

�Principal Component Analysis
Theoretically correlation works well for variables with Gaussian

distribution, in other words, independent variables. For other scenarios,

you have to use principal component analysis. Suppose you want to

reduce the dimension of N variables: X1, X2, ... Xn. Let’s form a matrix

of N×N dimension where the i-th column represents the observation Xi,

assuming all variables have N number of observations. Now if k variables

are redundant, for simplicity you assume k columns are the same or

linear combination of each other. Then the rank of the matrix will be N-k.

So, the rank of this matrix is a measure of the number of independent

variables, and the eigenvalue indicates the strength of that variable. This

concept is used in principal component analysis and factor analysis. To

make the matrix square, a covariance matrix is chosen. Singular value

decomposition is used to find the eigenvalue.

Let Y be the input matrix of size p×q, where p is the number of data

rows and q is the number of parameters.

Then the q×q covariance matrix Co is given by the following:

Co=Y⊤Y/(q−1)

 It is a symmetric matrix, so it can be diagonalized as follows:

Co=UDUT

Each column of U is an eigenvector, and D is a diagonal matrix with

eigenvalues λi in the decreasing order on the diagonal. The eigenvectors

are referred to as principal axes or principal directions of the data.

Projections of the data on the principal axes called principal components

are also known as PC scores; these can be seen as new, transformed

variables. The j-th principal component is given by j-th column of YU. The

coordinates of the i-th data point in the new PC space are given by the i-th

row of YU.

Chapter 3 Supervised Learning Using Python

54

The singular value decomposition algorithm is used to find D and U.

The following code is an example of factor analysis in Python.

Here is the input data:

Government

Policy Changes

Competitors’

Strategic

Decisions

Competition Supplier

Relation

Customer

Feedback

Technology

Innovations

Strongly Agree Agree Agree Agree Somewhat

Agree

Somewhat

Disagree

Somewhat

Disagree

Somewhat

Disagree

Somewhat

Agree

Disagree Disagree Agree

Somewhat

Agree

Somewhat

Agree

Strongly

Agree

Agree Somewhat

Agree

Strongly

Agree

Somewhat

Disagree

Somewhat

Agree

Agree Somewhat

Disagree

Somewhat

Disagree

Somewhat

Agree

Somewhat

Disagree

Agree Agree Somewhat

Agree

Somewhat

Agree

Agree

Agree Somewhat

Disagree

Somewhat

Agree

Strongly

Agree

Somewhat

Agree

Somewhat

Agree

Agree Agree Strongly

Agree

Somewhat

Agree

Agree Somewhat

Agree

Somewhat

Disagree

Agree Somewhat

Agree

Agree Agree Somewhat

Agree

Somewhat

Agree

Somewhat

Agree

Agree Agree Agree Somewhat

Agree

Somewhat

Disagree

Agree Strongly

Agree

Somewhat

Disagree

Agree Somewhat

Disagree

Somewhat

Agree

Agree Somewhat

Disagree

Strongly

Agree

Somewhat

Agree

Disagree

Chapter 3 Supervised Learning Using Python

55

Somewhat

Disagree

Somewhat

Disagree

Somewhat

Agree

Somewhat

Disagree

Somewhat

Disagree

Somewhat

Agree

Somewhat

Agree

Agree Somewhat

Agree

Agree Somewhat

Agree

Somewhat

Agree

Somewhat

Disagree

Agree Strongly

Agree

Somewhat

Disagree

Somewhat

Agree

Disagree

Somewhat

Agree

Somewhat

Disagree

Strongly

Agree

Strongly

Agree

Strongly

Agree

Agree

Somewhat

Agree

Somewhat

Agree

Agree Somewhat

Disagree

Strongly

Agree

Disagree

Somewhat

Disagree

Agree Agree Somewhat

Disagree

Agree Somewhat

Agree

Somewhat

Agree

Strongly

Agree

Somewhat

Agree

Somewhat

Agree

Agree Somewhat

Agree

Strongly Agree Somewhat

Disagree

Somewhat

Disagree

Agree Somewhat

Agree

Somewhat

Disagree

Somewhat

Agree

Somewhat

Disagree

Agree Somewhat

Agree

Strongly

Agree

Somewhat

Disagree

Agree Somewhat

Agree

Strongly

Agree

Somewhat

Disagree

Agree Agree

Somewhat

Agree

Strongly

Agree

Somewhat

Agree

Somewhat

Disagree

Somewhat

Disagree

Disagree

Before running the code, you have to enter a numeric value for categorical data, for

example: Strongly Agree = 5, Agree = 4, Somewhat Agree = 3.

Chapter 3 Supervised Learning Using Python

56

import pandas as pd

data = pd.read_csv('<input csvfile>)

from sklearn.decomposition import FactorAnalysis

factors = FactorAnalysis(n_components=6).fit(data)

print (factors.components)

from sklearn.decomposition import PCA

pcomponents = PCA(n_components=6).fit(data)

print(pcomponents.components)

�Mutual Information
Mutual information (MI) of two random variables is a measure of the

mutual dependence between the two variables. It is also used as a

similarity measure of the distribution of two variables. A higher value of

mutual information indicates the distribution of two variables is similar.

I X Y p x y
p x y

p x p yx y

; , log
,

,

() = () ()
() ()å

Suppose a retailer wants to investigate whether a particular city

is a deciding factor for its sales volume. Then the retailer can see the

distribution of sales volume across the different cities. If the distribution is

the same for all cities, then a particular city is not an important factor as far

as sales volume is concerned. To calculate the difference between the two

probability distributions, mutual information is applied here.

Here is the sample Python code to calculate mutual information:

fromscipy.stats import chi2_contingency

defcalc_MI(x, y, bins):

c_xy = np.histogram2d(x, y, bins)[0]

Chapter 3 Supervised Learning Using Python

57

g, p, dof, expected = chi2_contingency(c_xy, lambda_="log-

likelihood")

mi = 0.5 * g / c_xy.sum()

return mi

�Classifications with Python
Classification is a well-accepted example of machine learning. It has a

set of a target classes and training data. Each training data is labeled by

a particular target class. The classification model is trained by training

data and predicts the target class of test data. One common application of

classification is in fraud identification in the credit card or loan approval

process. It classifies the applicant as fraud or nonfraud based on data.

Classification is also widely used in image recognition. From a set of

images, if you recognize the image of a computer, it is classifying the image

of a computer and not of a computer class.

Sentiment analysis is a popular application of text classification.

Suppose an airline company wants to analyze its customer textual

feedback. Then each feedback is classified according to sentiment

(positive/negative/neutral) and also according to context (about staff/

timing/food/price). Once this is done, the airline can easily find out

what the strength of that airline’s staff is or its level of punctuality or cost

effectiveness or even its weakness. Broadly, there are three approaches in

classification.

•	 Rule-based approach: I will discuss the decision tree

and random forest algorithm.

•	 Probabilistic approach: I will discuss the Naive Bayes

algorithm.

•	 Distance-based approach: I will discuss the support

vector machine.

Chapter 3 Supervised Learning Using Python

58

�Semisupervised Learning
Classification and regression are types of supervised learning. In this type

of learning, you have a set of training data where you train your model.

Then the model is used to predict test data. For example, suppose you

want to classify text according to sentiment. There are three target classes:

positive, negative, and neutral. To train your model, you have to choose

some sample text and label it as positive, negative, and neutral. You use

this training data to train the model. Once your model is trained, you can

apply your model to test data. For example, you may use the Naive Bayes

classifier for text classification and try to predict the sentiment of the

sentence “Food is good.” In the training phase, the program will calculate

the probability of a sentence being positive or negative or neutral when

the words Food, is, and good are presented separately and stored in the

model, and in the test phase it will calculate the joint probability when

Food, is, and good all come together. Conversely, clustering is an example

of unsupervised learning where there is no training data or target class

available. The program learns from data in one shot. There is an instance

of semisupervised learning also. Suppose you are classifying the text as

positive and negative sentiments but your training data has only positives.

The training data that is not positive is unlabeled. In this case, as the first

step, you train the model assuming all unlabeled data is negative and apply

the trained model on the training data. In the output, the data coming in

as negative should be labeled as negative. Finally, train your model with

the newly labeled data. The nearest neighbor classifier is also considered

as semisupervised learning. It has training data, but it does not have the

training phase of the model.

Chapter 3 Supervised Learning Using Python

59

�Decision Tree
A decision tree is a tree of rules. Each level of the tree represents a

parameter, each node of the level validates a constraint for that level

parameter, and each branch indicates a possible value of parent node

parameter. Figure 3-1 shows an example of a decision tree.

�Which Attribute Comes First?
One important aspect of the decision tree is to decide the order of features.

The entropy-based information gain measure decides it.

Entropy is a measure of randomness of a system.

Entropy S p p
i

c

i i() -
=
åº

1
2log

For example, for any obvious event like the sun rises in the east,

entropy is zero, P=1, and log(p)=0. More entropy means more uncertainty

or randomness in the system.

Sunny Overcast Rain

Yes

High Normal

Humidity

Outlook

Wind

No Yes No

Strong Weak

Yes

Figure 3-1.  Example of decision tree for good weather

Chapter 3 Supervised Learning Using Python

60

Information gain, which is the expected reduction in entropy caused

by partitioning the examples according to this attribute, is the measure

used in this case.

Specifically, the information gain, Gain(S,A), of an attribute A relative

to a collection of examples S is defined as follows:

Gain S A Entropy S
S

S
Entropy S

v Values A

v
v,() () - ()

Î ()
åº

So, an attribute with a higher information gain will come first in the

decision tree.

from sklearn.tree import DecisionTreeClassifier

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column]

X = df[col1, col2 ..]

clf= DecisionTreeClassifier()

clf.fit(X,y)

clf.predict(X_test)

�Random Forest Classifier
A random forest classifier is an extension of a decision tree in which the

algorithm creates N number of decision trees where each tree has M

number of features selected randomly. Now a test data will be classified by

all decision trees and be categorized in a target class that is the output of

the majority of the decision trees.

Chapter 3 Supervised Learning Using Python

61

from sklearn.ensemble import RandomForestClassifier

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column]

X = df[col1, col2 ..]

clf=RandomForestClassifier(n_jobs=2,random_state=0)

clf.fit(X,y)

clf.predict(X_test)

�Naive Bayes Classifier
X = (x1, x2, x3, ..., xn) is a vector of n dimension. The Bayesian

classifier assigns each X to one of the target classes of set {C1, C2, …, Cm,}.

This assignment is done on the basis of probability that X belongs to target

class Ci. That is to say, X is assigned to class Ci if and only if P(Ci |X) > P(Cj

|X) for all j such that 1 ≤ j ≤ m.

P C X
P X C P C

P Xi
i i() = () ()
()

In general, it can be costly computationally to compute P(X|Ci). If each

component xk of X can have one of r values, there are rn combinations

to consider for each of the m classes. To simplify the calculation, the

assumption of conditional class independence is made, which means that

for each class, the attributes are assumed to be independent. The classifier

developing from this assumption is known as the Naive Bayes classifier.

The assumption allows you to write the following:

P X C P x Ci
k

n

k i() = ()
=
Õ

1

Chapter 3 Supervised Learning Using Python

62

The following code is an example of the Naive Bayes classification of

numerical data:

#Import Library of Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

import numpy as np

#assigning predictor and target variables

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column]

X = df[col1, col2 ..]

#Create a Gaussian Classifier

model = GaussianNB()

Train the model using the training sets

model.fit(X, y)

#Predict Output

print model.predict([input array])

Note Y ou’ll see another example of the Naive Bayes classifier in the
“Sentiment Analysis” section.

�Support Vector Machine
If you look at Figure 3-2, you can easily understand that the circle and

square points are linearly separable in two dimensions (x1, x2). But they

are not linearly separable in either dimension x1 or x2. The support vector

machine algorithm works on this theory. It increases the dimension of

the data until points are linearly separable. Once that is done, you have

Chapter 3 Supervised Learning Using Python

63

to find two parallel hyperplanes that separate the data. This planes are

known as the margin. The algorithm chose the margins in such a way that

the distance between them is the maximum. That’s why it is the maximum

margin. The plane, which is at the middle of these two margins or at equal

distance between them, is known as an optimal hyperplane that is used to

classify the test data (see Figure 3-2). The separator can be nonlinear also.

The following code is an example of doing support vector machine

classification using Python:

from sklearn import svm

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column]

X = df[col1, col2 ..]

X2

X1

Optimal hyperplane

Maximum
margin

Figure 3-2.  Support vector machine

Chapter 3 Supervised Learning Using Python

64

model.fit(X, y)

model.score(X, y)

print model.predict(x_test)

�Nearest Neighbor Classifier
The nearest neighbor classifier is a simple distance-based classifier. It

calculates the distance of test data from the training data and groups

the distances according to the target class. The target class, which has a

minimum average distance from the test instance, is selected as the class

of the test data. A Python example is shown here:

def Distance(point1, point2, length):

 distance = 0

 for x in range(length):

 distance += pow((point1[x] -point2[x]), 2)

 return math.sqrt(distance)

def getClosePoints(trainingData, testData, k):

 distances = []

 length = len(testInstance)-1

 for x in range(len(trainingData)):

 dist = Distance(testData, trainingDatat[x], length)

 distances.append((trainingData[x], dist))

 distances.sort(key=operator.itemgetter(1))

 close= []

 for x in range(k):

 close.append(distances[x][0])

 return close

Chapter 3 Supervised Learning Using Python

65

trainData = [[3,3,3,, 'A'], [5,5,5,, 'B']]

testData = [7,7,7]

k = 1

neighbors = getClosePoints(trainData, testData, 1)

print(neighbors)

�Sentiment Analysis
Sentiment analysis is an interesting application of text classification. For

example, say one airline client wants to analyze its customer feedback.

It classifies the feedback according to sentiment (positive/negative) and

also by aspect (food/staff/punctuality). After that, it can easily understand

its strengths in business (the aspect that has the maximum positive

feedback) and its weaknesses (the aspect that has the maximum negative

feedback). The airline can also compare this result with its competitor.

One interesting advantage of doing a comparison with the competitor is

that it nullifies the impact of the accuracy of the model because the same

accuracy is applied to all competitors. This is simple to implement in

Python using the textblob library, as shown here:

from textblob.classifiers import NaiveBayesClassifier

train = [('I love this sandwich.', 'pos'), ('this is an

amazing place!', 'pos'),('I feel very good about these

beers.', 'pos'),('this is my best work.', 'pos'),("what

an awesome view", 'pos'),('I do not like this restaurant',

'neg'),('I am tired of this stuff.', 'neg'),("I can't deal with

this", 'neg'),('he is my sworn enemy!', 'neg'),('my boss is

horrible.', 'neg')]

Chapter 3 Supervised Learning Using Python

66

cl = NaiveBayesClassifier(train)

print (cl.classify("This is an amazing library!"))

output : pos

from textblob.classifiers import NaiveBayesClassifier

train = [('Air India did a poor job of queue management

both times.', 'staff service'), (“The 'cleaning' by flight

attendants involved regularly spraying air freshener in

the lavatories.", 'staff'),('The food tasted decent.',

'food'),('Flew Air India direct from New York to Delhi

round trip.', 'route'),('Colombo to Moscow via Delhi.',

'route'),('Flew Birmingham to Delhi with Air India.',

'route'),('Without toilet, food or anything!', 'food'),('Cabin

crew announcements included a sincere apology for the delay.',

'cabin flown')]

cl = NaiveBayesClassifier(train)

tests = ['Food is good.']

for c in tests:

 printcl.classify(c)

Output : food

The textblob library also supports a random forest classifier, which

works best on text written in proper English such as a formal letter might

be. For text that is not usually written with proper grammar, such as

customer feedback, Naive Bayes works better. Naive Bayes has another

advantage in real-time analytics. You can update the model without losing

the previous training.

Chapter 3 Supervised Learning Using Python

67

�Image Recognition
Image recognition is a common example of image classification. It is easy

to use in Python by applying the opencv library. Here is the sample code:

faceCascade=cv2.CascadeClassifier(cascPath)

image = cv2.imread(imagePath)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(

 gray,

 scaleFactor=1.1,

 minNeighbors=5,

 minSize=(30, 30),

 flags = cv2.cv.CV_HAAR_SCALE_IMAGE

)

print"Found {0} faces!".format(len(faces))

�Regression with Python
Regression realizes a variable as a linear or nonlinear polynomial of a set of

independent variables.

Here is an interesting use case: what is the sales price of a product that

maximizes its profit? This is a million-dollar question for any merchant.

The question is not straightforward. Maximizing the sales price may

not result in maximizing the profit because increasing the sales price

sometimes decreases the sales volume, which decreases the total profit.

So, there will be an optimized value of sales price for which the profit will

be at the maximum.

There is N number of records of the transaction with M number of

features called F1, F2, ... Fm (sales price, buy price, cash back, SKU, order

date, and so on). You have to find a subset of K(K<M) features that have an

Chapter 3 Supervised Learning Using Python

68

impact on the profit of the merchant and suggest an optimal value of

V1, V2, ... Vk for these K features that maximize the revenue.

You can calculate the profit of merchant using the following formula:

Profit = (SP - TCB – BP) * SV (1)

For this formula, here are the variables:

•	 SP = Sales price

•	 TCB = Total cash back

•	 BP = Buy price

•	 SV = Sales volume

Now using regression, you can realize SV as follows:

SV = a + b*SP + c*TCB + d*BP

Now you can express profit as a function of SP, TCB, and BP and use

mathematical optimization. With constraining in all parameter values,

 you can get optimal values of the parameters that maximize the profit.

This is an interesting use case of regression. There are many scenarios

where one variable has to be realized as the linear or polynomial function

of other variables.

�Least Square Estimation
Least square estimation is the simplest and oldest method for doing

regression. It is also known as the curve fitting method. Ordinary least

squares (OLS) regression is the most common technique and was invented

in the 18th century by Carl Friedrich Gauss and Adrien-Marie Legendre.

The following is a derivation of coefficient calculation in ordinary least

square estimation:

Chapter 3 Supervised Learning Using Python

69

Y X

X Y X X X

X Y X X

X X X Y

X X X Y

= +Î
= + Î
= +

() = +

=()

¢ ¢ ¢
¢ ¢

¢ ¢

¢ ¢

-

-

b
b
b

b

b

0

0
1

1

The following code is a simple example of OLS regression:

fromscipyimport stats

df = pd.read_csv('csv file path', index_col=0)

y = df[target column]

X = df[col1, col2 ..]

X=sm.add_constant(X)

slope, intercept, r_value, p_value, std_err = stats.

linregress(X,y)

�Logistic Regression
Logistic regression is an interesting application of regression that

calculates the probability of an event. It introduces an intermediate

variable that is a linear regression of linear variable. Then it passes

the intermediate variable through the logistic function, which maps

the intermediate variable from zero to one. The variable is treated as a

probability of the event.

The following code is an example of doing logistic regression on

numerical data:

import pandas as pd

import statsmodels.api as sm

df = pd.read_csv('csv file path', index_col=0)

Chapter 3 Supervised Learning Using Python

70

y = df[target column]

X = df[col1, col2 ..]

X=sm.add_constant(X)

logit=sm.Logit(y,X)

result=logit.fit()

result.summary()

�Classification and Regression
Classification and regression may be applied on the same problem. For

example, when a bank approves a credit card or loan, it calculates a credit

score of a candidate based on multiple parameters using regression and

then sets up a threshold. Candidates having a credit score greater than

the threshold are classified as potential nonfraud, and the remaining are

considered as potential fraud. Likewise, any binary classification problem

can be solved using regression by applying a threshold on the regression

result. In Chapter 4, I discussed in detail how to choose a threshold

value from the distribution of any parameter. Similarly, some binary

classifications can be used in place of logistic regression. For instance,

say an e-commerce site wants to predict the chances of a purchase order

being converted into a successful invoice. The site can easily do so using

logistic regression. The Naive Bayes classifier can be directly applied

on the problem because it calculates probability when it classifies the

purchase order to be in the successful or unsuccessful class. The random

forest algorithm can be used in the problem as well. In that case, among

the N decision tree, if the M decision tree says the purchase order will be

successful, then M/N will be the probability of the purchase order being

successful.

Chapter 3 Supervised Learning Using Python

71

�Intentionally Bias the Model to Over-Fit or
Under-Fit
Sometimes you need to over- or under-predict intentionally. In an

auction, when you are predicting from the buy side, it will always be good

if your bid is little lower than the original. Similarly, on the sell side, it

is desired that you set the price a little higher than the original. You can

do this in two ways. In regression, when you are selecting the features

using correlation, over-predicting intentionally drops some variable with

negative correlation. Similarly, under-predicting drops some variable with

positive correlation. There is another way of dealing with this. When you

are predicting the value, you can predict the error in the prediction. To

over-predict, when you see that the predicted error is positive, reduce the

prediction value by the error amount. Similarly, to over-predict, increase

the prediction value by the error amount when the error is positive.

Another problem in classification is biased training data. Suppose

you have two target classes, A and B. The majority (say 90 percent) of

training data is class A. So, when you train your model with this data, all

your predictions will become class A. One solution is a biased sampling

of training data. Intentionally remove the class A example from training.

Another approach can be used for binary classification. As class B is a

minority in the prediction probability of a sample, in class B it will always

be less than 0.5. Then calculate the average probability of all points coming

into class B. For any point, if the class B probability is greater than the

average probability, then mark it as class B and otherwise class A.

Chapter 3 Supervised Learning Using Python

72

The following code is an example of a tuning classification condition:

y_test_increasing, predicted_increasing = predict(d1, True, False)

y_test_decreasing, predicted_decreasing = predict(d2, False, False)

prob_increasing = predicted_increasing[:,1]

increasing_mean = prob_increasing.mean()

increasing_std = prob_increasing.std()

prob_decreasing = predicted_decreasing[:,0]

decreasing_mean = prob_decreasing.mean()

decreasing_std = prob_decreasing.std()

ifi> 0:

 mean_std_inc = (mean_std_inc + increasing_std)/2

 mean_std_dec = (mean_std_dec + decreasing_std)/2

else:

 mean_std_inc = increasing_std

 mean_std_dec = decreasing_std

for j in range(len(y_test_decreasing)-1):

 �ac_status = y_test_increasing[j] + y_test_

decreasing[j]

 pr_status = 0

 if True:

 �inc = (prob_increasing[j] -

increasing_mean + mean_std_inc)

 �dec = (prob_decreasing[j] -

decreasing_mean + mean_std_dec)

 ifinc> 0 or dec> 0:

 ifinc>dec:

 pr_status = 1

 else:

 pr_status = -1

 else:

 pr_status = 0

Chapter 3 Supervised Learning Using Python

73

�Dealing with Categorical Data
For algorithm-like support, vector or regression input data must be

numeric. So, if you are dealing with categorical data, you need to convert

to numeric data. One strategy for conversion is to use an ordinal number

as the numerical score. A more sophisticated way to do this is to use

an expected value of the target variable for that value. This is good for

regression.

for col in X.columns:

 �avgs = df.groupby(col, as_index=False)['floor'].

aggregate(np.mean)

 fori,row in avgs.iterrows():

 k = row[col]

 v = row['floor']

 X.loc[X[col] == k, col] = v

For logistic regression, you can use the expected probability of the

target variable for that categorical value.

for col in X.columns:

 if str(col) != 'success':

 if str(col) not in index:

 �feature_prob = X.groupby(col).size().

div(len(df))

 �cond_prob = X.groupby(['success',

str(col)]).size().div(len(df)).div(feature_

prob, axis=0, level=str(col)).reset_

index(name="Probability")

 cond_prob = cond_prob[cond_prob.success != '0']

 cond_prob.drop("success",inplace=True, axis=1)

 �cond_prob['feature_value'] = cond_

prob[str(col)].apply(str).as_matrix()

Chapter 3 Supervised Learning Using Python

74

 �cond_prob.drop(str(col),inplace=True, axis=1)

 for i, row in cond_prob.iterrows():

 k = row["feature_value"]

 v = row["Probability"]

 X.loc[X[col] == k, col] = v

 else:

 X.drop(str(col),inplace=True, axis=1)

The following example shows how to deal with categorical data and

how to use correlation to select a feature. The following is the complete

code of data preprocessing. The data for this code example is also available

online at the Apress website.

def process_real_time_data(time_limit):

 df = pd.read_json(json.loads(<input>))

 df.replace('^\s+', '', regex=True, inplace=True) #front

 df.replace('\s+$', '', regex=True, inplace=True) #end

 time_limit = df['server_time'].max()

 �df['floor'] = pd.to_numeric(df['floor'],

errors='ignore')

 �df['client_time'] = pd.to_numeric(df['client_time'],

errors='ignore')

 �df['client_time'] = df.apply(lambda row: get_hour(row.

client_time), axis=1)

 y = df['floor']

 �X = df[['ip','size','domain','client_time','device','ad_

position','client_size','root']]

 �X_back = df[['ip','size','domain','client_

time','device','ad_position','client_size','root']]

Chapter 3 Supervised Learning Using Python

75

 for col in X.columns:

 �avgs = df.groupby(col, as_index=False)['floor'].

aggregate(np.mean)

 for index,row in avgs.iterrows():

 k = row[col]

 v = row['floor']

 X.loc[X[col] == k, col] = v

 X.drop('ip', inplace=True, axis=1)

 X_back.drop('ip', inplace=True, axis=1)

 �X_train, X_test, y_train, y_test = cross_validation.

train_test_split(X, y, test_size= 0, random_state=42)

 X_train = X_train.astype(float)

 y_train = y_train.astype(float)

 X_train = np.log(X_train + 1)

 y_train = np.log(y_train + 1)

 X_train = X_train.as_matrix()

 y_train = y_train.as_matrix()

 index = []

 i1 = 0

 processed = 0

 while(1):

 flag = True

 for i in range(X_train.shape[1]):

 if i > processed :

 #print(i1,X_train.shape[1],X.columns[i1])

 i1 = i1 + 1

 corr = pearsonr(X_train[:,i], y_train)

Chapter 3 Supervised Learning Using Python

76

 �PEr= .674 * (1- corr[0]*corr[0])/

(len(X_train[:,i])**(1/2.0))

 if corr[0] < PEr:

 �X_train = np.delete(X_train,i,1)

 index.append(X.columns[i1-1])

 processed = i - 1

 flag = False

 break

 if flag:

 break

 �return y_train, X_train, y, X_back, X, time_limit,

index

Chapter 3 Supervised Learning Using Python

77© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_4

CHAPTER 4

Unsupervised
Learning: Clustering
In Chapter 3 we discussed how training data can be used to categorize

customer comments according to sentiment (positive, negative, neutral),

as well as according to context. For example, in the airline domain, the

context can be punctuality, food, comfort, entertainment, and so on. Using

this analysis, a business owner can determine the areas that his business

he needs to concentrate on. For instance, if he observes that the highest

percentage of negative comments has been about food, then his priority

will be the quality of food being served to the customers. However, there

are scenarios where business owners are not sure about the context. There

are also cases where training data is not available. Moreover, the frame

of reference can change with time. Classification algorithms cannot be

applied where target classes are unknown. A clustering algorithm is used

in these kinds of situations. A conventional application of clustering is

found in the wine-making industry where each cluster represents a brand

of wine, and wines are clustered according to their component ratio in

wine. In Chapter 3, you learned that classification can be used to recognize

a type of image, but there are scenarios where one image has multiple

shapes and an algorithm is needed to separate the figures. Clustering

algorithms are used in this kind of use case.

78

Clustering classifies objects into groups based on similarity or

distance measure. This is an example of unsupervised learning. The main

difference between clustering and classification is that the latter has well-

defined target classes. The characteristics of target classes are defined by

the training data and the models learned from it. That is why classification

is supervised in nature. In contrast, clustering tries to define meaningful

classes based on data and its similarity or distance. Figure 4-1 illustrates a

document clustering process.

�K-Means Clustering
Let’s suppose that a retail distributer has an online system where local

agents enter trading information manually. One of the fields they have

to fill in is City. But because this data entry process is manual, people

normally tend to make lots of spelling errors. For example, instead of

Delhi, people enter Dehi, Dehli, Delly, and so on. You can try to solve

this problem using clustering because the number of clusters are already

known; in other words, the retailer is aware of how many cities the agents

operate in. This is an example of K-means clustering.

The K-means algorithm has two inputs. The first one is the data X, which

is a set of N number of vectors, and the second one is K, which represents

the number of clusters that needs to be created. The output is a set of K

centroids in each cluster as well as a label to each vector in X that indicates

Figure 4-1.  Document clustering

Chapter 4 Unsupervised Learning: Clustering

79

the points assigned to the respective cluster. All points within a cluster are

nearer in distance to their centroid than any other centroid. The condition

for the K clusters Ck and the K centroids μk can be expressed as follows:

minimize
k

K

C
n k

n k= Î
å å -

1

2

x

x m with respect to Ck, μk.

However, this optimization problem cannot be solved in polynomial

time. But Lloyd has proposed an iterative method as a solution. It consists

of two steps that iterate until the program converges to the solution.

	 1.	 It has a set of K centroids, and each point is assigned

to a unique cluster or centroid, where the distance

of the concerned centroid from that particular point

is the minimum.

	 2.	 It recalculates the centroid of each cluster by using

the following formula:

	
C Xn k Xn lk = - £ -{ }Xn all: m m 	 (1)

	
mk = Îå1

Ck
XnXn Ck 	

(2)

The two-step procedure continues until there is no further re-arrangement

of cluster points. The convergence of the algorithm is guaranteed, but it may

converge to a local minima.

The following is a simple implementation of Lloyd’s algorithm for

performing K-means clustering in Python:

import random

def ED(source, target):

if source == "":

return len(target)

if target == "":

return len(source)

Chapter 4 Unsupervised Learning: Clustering

80

if source[-1] == target[-1]:

cost = 0

else:

cost = 1

res = min([ED(source[:-1], target)+1,

ED(source, target[:-1])+1,

ED(source[:-1], target[:-1]) + cost])

return res

def find_centre(x, X, mu):

min = 100

cent = 0

for c in mu:

dist = ED(x, X[c])

if dist< min:

min = dist

cent = c

return cent

def cluster_arrange(X, cent):

clusters = {}

for x in X:

bestcent = find_centre(x, X, cent)

try:

clusters[bestcent].append(x)

exceptKeyError:

clusters[bestcent] = [x]

return clusters

def rearrange_centers(cent, clusters):

newcent = []

keys = sorted(clusters.keys())

Chapter 4 Unsupervised Learning: Clustering

81

for k in keys:

newcent.append(k)

return newcent

def has_converged(cent, oldcent):

return sorted(cent) == sorted(oldcent)

def locate_centers(X, K):

oldcent = random.sample(range(0,5), K)

cent = random.sample(range(0,5), K)

while not has_converged(cent, oldcent):

oldcent = cent

 # Assign all points in X to clusters

clusters = cluster_arrange(X, cent)

 # Reevaluate centers

cent = rearrange_centers(oldcent, clusters)

return(cent, clusters)

X = ['Delhi','Dehli', 'Delli','Kolkata','Kalkata','Kalkota']

print(locate_centers(X,2))

However, K-means clustering has a limitation. For example, suppose

all of your data points are located in eastern India. For K=4 clustering,

the initial step is that you randomly choose a center in Delhi, Mumbai,

Chennai, and Kolkata. All of your points lie in eastern India, so all

the points are nearest to Kolkata and are always assigned to Kolkata.

Therefore, the program will converge in one step. To avoid this problem,

the algorithm is run multiple times and averaged. Programmers can use

various tricks to initialize the centroids in the first step.

Chapter 4 Unsupervised Learning: Clustering

82

�Choosing K: The Elbow Method
There are certain cases where you have to determine the K in K-means

clustering. For this purpose, you have to use the elbow method, which

uses a percentage of variance as a variable dependent on the number

of clusters. Initially, several clusters are chosen. Then another cluster is

added, which doesn’t make the modeling of data much better. The number

of clusters is chosen at this point, which is the elbow criterion. This “elbow”

cannot always be unambiguously identified. The percentage of variance is

realized as the ratio of the between-group variance of individual clusters

to the total variance. Assume that in the previous example, the retailer

has four cities: Delhi, Kolkata, Mumbai, and Chennai. The programmer

does not know that, so he does clustering with K=2 to K=9 and plots the

percentage of variance. He will get an elbow curve that clearly indicates

K=4 is the right number for K.

�Distance or Similarity Measure
The measure of distance or similarity is one of the key factors of clustering.

In this section, I will describe the different kinds of distance and similarity

measures. Before that, I’ll explain what distance actually means here.

�Properties
The distances are measures that satisfy the following properties:

•	 dist(x, y) = 0 if and only if x=y.

•	 dist(x, y) > 0 when x ≠ y.

•	 dist(x, y) = dist(x, y).

•	 dist(x,y) + dist(y,z) >= d(z,x) for all x, y, and z.

Chapter 4 Unsupervised Learning: Clustering

83

�General and Euclidean Distance
The distance between the points p and q is the length of the geometrical

line between them: (pq) . This is called Euclidean distance.

According to Cartesian coordinates, if p = (p1, p2,…, pn) and

q = (q1, q2,…, qn) are the two points in Euclidean n-space, then the

distance (d) from q to p or from p to q is derived from the Pythagorean

theorem, as shown here:

d p q d q p, ,

.

() = () = -() + -() +¼+ -()

= -()
=
å

q p q p q p

q p

n n

i

n

i i

1 1

2

2 2

2 2

1

2

The Euclidean vector is the position of a point in a Euclidean n-space.

The magnitude of a vector is a measure. Its length is calculated by the

following formula:

p p p= + + + = ×p p pn1
2

2
2 2
 ,

A vector has direction along with a distance. The distance between two

points, p and q, may have a direction, and therefore, it may be represented

by another vector, as shown here:

q – p = (q1–p1, q2–p2, …. , qn–pn)

The Euclidean distance between p and q is simply the Euclidean length

of this distance (or displacement) vector.

q p q p q p- = -()× -()
- = + - ×q p p q p q

2 2
2

Chapter 4 Unsupervised Learning: Clustering

https://en.wikipedia.org/wiki/Cartesian_coordinates#Cartesian coordinates
https://en.wikipedia.org/wiki/Euclidean_space#Euclidean space
https://en.wikipedia.org/wiki/Pythagorean_theorem#Pythagorean theorem
https://en.wikipedia.org/wiki/Euclidean_vector#Euclidean vector

84

In one dimension:

x y x y-() = -2
.

In two dimensions:
In the Euclidean plane, if p = (p1, p2) and q = (q1, q2), then the distance

is given by the following:

d(p,q) = √(q1–p1)^2 + (q2–p2)^2

Alternatively, it follows from the equation that if the polar coordinates

of the point p are (r1, θ1) and those of q are (r2, θ2), then the distance

between the points is as follows:

√r1^2 + r2^2 – 2r1r2cos(θ
1 − θ2)

In n dimensions:
In the general case, the distance is as follows:

D2(p,q) = (p1 – q1)2 + (p2 – q2)2 + … + (pi – qi)2 + … + (pn – qn)2.

In Chapter 3, you will find an example of Euclidian distance in the

nearest neighbor classifier example.

�Squared Euclidean Distance
The standard Euclidean distance can be squared to place progressively

greater weight on objects that are farther apart. In this case, the equation

becomes the following:

d2(p,q) = (p1 – q1)2 + (p2 – q2)2 + … + (pi – qi)2 + … + (pn – qn)2.

Squared Euclidean distance is not a metric because it does not satisfy

the triangle inequality. However, it is frequently used in optimization

problems in which distances are to be compared only.

Chapter 4 Unsupervised Learning: Clustering

https://en.wikipedia.org/wiki/Euclidean_plane#Euclidean plane
https://en.wikipedia.org/wiki/Polar_coordinates#Polar coordinates
https://en.wikipedia.org/wiki/Triangle_inequality#Triangle inequality

85

�Distance Between String-Edit Distance
Edit distance is a measure of dissimilarity between two strings. It counts

the minimum number of operations required to make two strings

identical. Edit distance finds applications in natural language processing,

where automatic spelling corrections can indicate candidate corrections

for a misspelled word. Edit distance is of two types.

•	 Levenshtein edit distance

•	 Needleman edit distance

�Levenshtein Distance

The Levenshtein distance between two words is the least number of

insertions, deletions, or replacements that need to be made to change one

word into another. In 1965, it was Vladimir Levenshtein who considered

this distance.

Levenshtein distance is also known as edit distance, although that

might denote a larger family of distance metrics as well. It is affiliated with

pair-wise string alignments.

For example, the Levenshtein distance between Calcutta and Kolkata

is 5, since the following five edits change one into another:

Calcutta → Kalcutta (substitution of C for K)

Kalcutta → Kolcutta (substitution of a for o)

Kolcutta → Kolkutta (substitution of c for k)

Kolkutta → Kolkatta (substitution of u for a)

Kolkatta → Kolkata (deletion of t)

When the strings are identical, the Levenshtein distance has several

simple upper bounds that are the lengths of the larger strings and the

lower bounds are zero. The code example of the Levinstein distance is

given in K-mean clustering code.

Chapter 4 Unsupervised Learning: Clustering

86

�Needleman–Wunsch Algorithm

The Needleman–Wunsch algorithm is used in bioinformatics to align

protein or nucleotide sequences. It was one of the first applications of

dynamic programming for comparing biological sequences. It works

using dynamic programming. First it creates a matrix where the rows and

columns are alphabets. Each cell of the matrix is a similarity score of the

corresponding alphabet in that row and column. Scores are one of three

types: matched, not matched, or matched with insert or deletion. Once

the matrix is filled, the algorithm does a backtracing operation from the

bottom-right cell to the top-left cell and finds the path where the neighbor

score distance is the minimum. The sum of the score of the backtracing

path is the Needleman–Wunsch distance for two strings.

Pyopa is a Python module that provides a ready-made Needleman–

Wunsch distance between two strings.

import pyopa

data = {'gap_open': -20.56,

 'gap_ext': -3.37,

 'pam_distance': 150.87,

 'scores': [[10.0]],

 'column_order': 'A',

 'threshold': 50.0}

env = pyopa.create_environment(**data)

s1 = pyopa.Sequence('AAA')

s2 = pyopa.Sequence('TTT')

print(pyopa.align_double(s1, s1, env))

print(env.estimate_pam(aligned_strings[0], aligned_strings[1]))

Chapter 4 Unsupervised Learning: Clustering

87

Although Levenshtein is simple in implementation and

computationally less expensive, if you want to introduce a gap in string

matching (for example, New Delhi and NewDelhi), then the Needleman-

Wunsch algorithm is the better choice.

�Similarity in the Context of Document
A similarity measure between documents indicates how identical two

documents are. Generally, similarity measures are bounded in the range

[-1,1] or [0,1] where a similarity score of 1 indicates maximum similarity.

�Types of Similarity
To measure similarity, documents are realized as a vector of terms

excluding the stop words. Let’s assume that A and B are vectors

representing two documents. In this case, the different similarity measures

are shown here:

•	 Dice

	 The Dice coefficient is denoted by the following:

	 sim(q,dj) = D(A,B) =
A B

A B

Ç
a a+ -()1

	 Also,

	 aÎ 0 1,[] and let a =
1

2
•	 Overlap

	 The Overlap coefficient is computed as follows:

	 Sim(q,dj) = O(A,B) =
A B

A B

Ç

()min ,

	 The Overlap coefficient is calculated using the max

operator instead of min.

Chapter 4 Unsupervised Learning: Clustering

88

•	 Jaccard

	 The Jaccard coefficient is given by the following:

	 Sim(q,dj) = J(A,B) =
A B

A B

Ç
È

	 The Jaccard measure signifies the degree of relevance.

•	 Cosine

	 The cosine of the angle between two vectors is given by

the following:

	 Sim(q,dj) = C(A,B) =
A B

A B

Ç

Distance and similarity are two opposite measures. For example,

numeric data correlation is a similarity measure, and Euclidian distance

is a distance measure. Generally, the value of the similarity measure is

limited to between 0 and 1, but distance has no such upper boundary.

Similarity can be negative, but by definition, distance cannot be negative.

The clustering algorithms are almost the same as from the beginning of

this field, but researchers are continuously finding new distance measures

for varied applications.

�What Is Hierarchical Clustering?
Hierarchical clustering is an iterative method of clustering data objects.

There are two types.

•	 Agglomerative hierarchical algorithms, or a bottom-up

approach

•	 Divisive hierarchical algorithms, or a top-down

approach

Chapter 4 Unsupervised Learning: Clustering

89

�Bottom-Up Approach
The bottom-up clustering method is called agglomerative hierarchical

clustering. In this approach, each input object is considered as a separate

cluster. In each iteration, an algorithm merges the two most similar clusters

into only a single cluster. The operation is continued until all the clusters

merge into a single cluster. The complexity of the algorithm is O(n^3).

In the algorithm, a set of input objects, I = {I1,I2,….,In}, is given. A set

of ordered triples is <D,K,S>, where D is the threshold distance, K is the

number of clusters, and S is the set of clusters.

Some variations of the algorithm might allow multiple clusters with

identical distances to be merged into a single iteration.

Algorithm

Input: I={I1,I2,…., In}

Output: O

fori = 1 to n do

 Ci ← {Ii};

end for

D ← 0;

K ← n;

S ← {C1,....., Cn};

O ← <d, k, S>;

repeat

 Dist ← CalcultedMinimumDistance(S);

 D ← ∞;

 Fori = 1 to K–1 do

 Forj = i+1 to Kdo

 ifDist(i, j)< Dthen

 D← Dist(i, j);

 u ← i;

 v ← j;

Chapter 4 Unsupervised Learning: Clustering

90

 end if

 end for

 end for

 K ← K-1;

 Cnew ← Cu ∪Cv;
 S ← S∪ Cnew –Cu – Cv;
 O ← O∪<D, K, S>
Until K = 1;

A Python example of hierarchical clustering is given later in the chapter.

�Distance Between Clusters
In hierarchical clustering, calculating the distance between two clusters is

a critical step. There are three methods to calculate this.

•	 Single linkage method

•	 Complete linkage method

•	 Average linkage method

�Single Linkage Method

In the single linkage method, the distance between two clusters is the

minimum distance of all distances between pairs of objects in two clusters.

As the distance is the minimum, there will be a single pair of objects that

has less than equal distance between two clusters. So, the single linkage

method may be given as follows:

Dist(Ci, Cj) = min dist(X , Y)

X€Ci ,Y€Cj

Chapter 4 Unsupervised Learning: Clustering

91

�Complete Linkage Method

In the complete linkage method, the distance between two clusters is the

maximum distance of all distance between pairs of objects in two clusters.

The distance is the maximum, so all pairs of distances are less than equal

than the distance between two clusters. So, the complete linkage method

can be given by the following:

Dist(Ci, Cj) = max dist(X, Y)

X€Ci,Y€Cj

�Average Linkage Method

The average linkage method is a compromise between the previous two

linkage methods. It avoids the extremes of large or compact clusters. The

distance between clusters Ci and Cj is defined by the following:

Dist C C
dist

C C
j

i j

(),
(X,Y)

i j =
´

åå X YCi C

| Ck | is the number of data objects in cluster Ck.

The centroid linkage method is similar to the average linkage method,

but here the distance between two clusters is actually the distance between

the centroids. The centroid of cluster Ci is defined as follows:

Xc = (c1,…., cm), with

cj = 1/m ∑Xkj,

Xkj is the j-th dimension of the k-th data object in cluster Ci.

€ €

Chapter 4 Unsupervised Learning: Clustering

92

�Top-Down Approach
The top-down clustering method is also called the divisive hierarchical

clustering. It the reverse of bottom-up clustering. It starts with a single

cluster consisting of all input objects. After each iteration, it splits the

cluster into two parts having the maximum distance.

Algorithm

Input: I = {I1, I2, … , In}

Output: O

D ← ∞;

K ← 1;

S ← {I1,I2 , ... , In};
O ← <D, K, S >;
repeat

 X ← �containing two data objects with the longest

distance dist;

 Y ← ∅;

 S ← S – X;

 Xi ← data object in A with maximum − D(Xi, X);
 X ← X − {Xi};
 Y ← Y ∪ {Xi};

 repeat

 forall data object Xj in Xdo

 e(j) ← − D(Xj, X) − − D(Xj, Y);
 end for

 if∃e(j) > 0 then
 Xk ← data object in X with maximum e(j);

 X ← X − {Xk};

 Y ← Y ∪ {Xk};
 split ← TRUTH;

 else

Chapter 4 Unsupervised Learning: Clustering

93

 split← FALSE;

 end if

 untilsplit == FALSE;

 D ← dist;
 K ← K+1;

 S ← S∪ X ∪ Y
 O ← 0 ∪ <D, K, S>;
Until K = n;

A dendrogram O is an output of any hierarchical clustering. Figure 4-2

illustrates a dendrogram.

Figure 4-2.  A dendrogram

Chapter 4 Unsupervised Learning: Clustering

94

To create a cluster from a dendrogram, you need a threshold of

distance or similarity. An easy way to do this is to plot the distribution

of distance or similarity and find the inflection point of the curve. For

Gaussian distribution data, the inflection point is located at x = mean +

n*std and x = mean – n*std, as shown Figure 4-3.

The following code creates a hierarchical cluster using Python:

From numpy import *

class cluster_node:

def \ __init__(self,vec1,left1=None,right1=None,distance1=0.0,i

d1=None,count1=1):

self.left1=left1

self.right1=right1

self.vec1=vec1

 self.id1=id1

self.distance1=distance1

self.count1=count1 #only used for weighted average

 def L2dist(v1,v2):

 return sqrt(sum((v1-v2)**2))

 def hcluster(features1,distanc1e=L2dist):

Figure 4-3.  The inflection point

Chapter 4 Unsupervised Learning: Clustering

95

 #cluster the rows of the "features" matrix

 distances1={}

 currentclustid1=-1

 # clusters are initially just the individual rows

 �clust1=[cluster_node(array(features1[i1]),id1=i1)

for i1 in range(len(features1))]

 while len(clust1)>1:

 lowestpair1=(0,1)

 closest1=distance(clust1[0].vec1,clust1[1].vec1)

 �# loop through every pair looking for the

smallest distance

 for i1 in range(len(clust1)):

 for j1 in range(i+1,len(clust)):

 �# distances is the cache of

distance calculations

 �if (clust1[i1].id1,clust1[j1].

id1) not in distances1:

 distances[(clust1[i1].id1,clust1[j1].id1)]=\

 distance1(clust1[i1].vec1,clust1[j1].vec1)

 d1=distances1[(clust1[i1].id1,clust1[j1].id1)]

 if d1< closest1:

 closest1=d1

 lowestpair1=(i1,j1)

 # calculate the average of the two clusters

 mergevec1=[(clust1[lowestpair1[10]].vec1[i1]\

 +clust1[lowestpair1[1]].vec1[i1])/2.0 \

 For i in range(len(clust1[0].vec1))]

 # create the new cluster

 newcluster1=cluster_node1(array(mergevec1),\

 �left1=clust1[lowestpair1[0]],\

right1=clust1[lowestpair1[1]],\

distance1=closes1t,id1=currentclustid1)

Chapter 4 Unsupervised Learning: Clustering

96

 �# cluster ids that weren't in the original

set are negative

 currentclustid1-=1

 delclust1[lowestpair1[1]]

 delclust1[lowestpair1[0]]

 clust1.append(newcluster1)

 return clust1[0]

The previous code will create the dendogram. Creation of the cluster

from that dendogram using some threshold distance is given by the

following:

def extract_clusters(clust1, dist1):

 �# extract list of sub-tree clusters from h-cluster tree

with distance <dist

 clusters1 = {}

 if clust.distance1<dis1:

 # we have found a cluster subtree

 return [clust1]

 else:

 # check the right and left branches

 cl1 = []

 cr1 = []

 if clust1.left1!=None:

 cl = extract_clusters(clust1.left1,dist1=dist1)

 if clust1.right1!=None:

 �cr1 = extract_clusters(clust1.

right1,dist1=dist1)

 return cl1+cr1

Chapter 4 Unsupervised Learning: Clustering

97

�Graph Theoretical Approach
The clustering problem can be mapped to a graph, where every node in

the graph is an input data point. If the distance between two graphs is

less than the threshold, then the corresponding nodes are connected.

Now using the graph partition algorithm, you can cluster the graph. One

industry example of clustering is in investment banking, where the cluster

instruments depend on the correlation of their time series of price and

performance trading of each cluster taken together. This is known as

basket trading in algorithmic trading. So, by using the similarity measure,

you can construct the graph where the nodes are instruments and the

edges between the nodes indicate that the instruments are correlated. To

create the basket, you need a set of instruments where all are correlated

to each other. In a graph, this is a set of nodes or subgraphs where all the

nodes in the subgraph are connected to each other. This kind of subgraph

is known as a clique. Finding the clique of maximum size is an NP-

complete problem. People use heuristic solutions to solve this problem of

clustering.

�How Do You Know If the Clustering Result Is
Good?
After applying the clustering algorithm, verifying the result as good or bad

is a crucial step in cluster analysis. Three parameters are used to measure

the quality of cluster, namely, centroid, radius, and diameter.

Centroid C
Nm= = å i=1
N

mit

Chapter 4 Unsupervised Learning: Clustering

98

Radius R
t C

Nm
mi mi= =
-

=å N()2
1

Diameter D
t C

N Nm
i mi mj= =

-

-
= =å åN N()

()()
1

2

1

1

If you consider the cluster as a circle in a space surrounding all

member points in that cluster, then you can take the centroid as the center

of the circle. Similarly, the radius and diameter of the cluster are the radius

and diameter of the circle. Any cluster can be represented by using these

three parameters. One measure of good clustering is that the distance

between centers should be greater than the sum of radius.

General measures of the goodness of the machine learning algorithm

are precision and recall. If A denotes the set of retrieved results, B denotes

the set of relevant results, P denotes the precision, and R denotes the

recall, then:

P A B,() = ÇA B

A

and

R A B,() = ÇA B

B

Chapter 4 Unsupervised Learning: Clustering

99© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_5

CHAPTER 5

Deep Learning
and Neural Networks
Neural networks, specifically known as artificial neural networks

(ANNs), were developed by the inventor of one of the first neurocomputers,

Dr. Robert Hecht-Nielsen. He defines a neural network as follows:

“…a computing system made up of a number of simple, highly

interconnected processing elements, which process information by their

dynamic state response to external inputs.”

Customarily, neutral networks are arranged in multiple layers. The

layers consist of several interconnected nodes containing an activation

function. The input layer, communicating to the hidden layers, delineates

the patterns. The hidden layers are linked to an output layer.

Neural networks have many uses. As an example, you can cite the fact

that in a passenger load prediction in the airline domain, passenger load

in month t is heavily dependent on t-12 months of data rather on t-1 or t-2

data. Hence, the neural network normally produces a better result than

the time-series model or even image classification. In a chatbot dialogue

system, the memory network, which is actually a neural network of a bag

of words of the previous conversation, is a popular approach. There are

many ways to realize a neural network. In this book, I will focus only the

backpropagation algorithm because it is the most popular.

100

�Backpropagation
Backpropagation, which usually substitutes an optimization method

like gradient descent, is a common method of training artificial neural

networks. The method computes the error in the outermost layer and

backpropagates up to the input layer and then updates the weights as

a function of that error, input, and learning rate. The final result is to

minimize the error as far as possible.

�Backpropagation Approach
Problems like the noisy image to ASCII examples are challenging to solve

through a computer because of the basic incompatibility between the

machine and the problem. Nowadays, computer systems are customized

to perform mathematical and logical functions at speeds that are beyond

the capability of humans. Even the relatively unsophisticated desktop

microcomputers, widely prevalent currently, can perform a massive

number of numeric comparisons or combinations every second.

The problem lies in the inherent sequential nature of the computer.

The “fetch-execute” cycle of the von Neumann architecture allows the

machine to perform only one function at a time. In such cases, the time

required by the computer to perform each instruction is so short that the

average time required for even a large program is negligible to users.

A new processing system that can evaluate all the pixels in the image in

parallel is referred to as the backpropagation network (BPN).

�Generalized Delta Rule
I will now introduce the backpropagation learning procedure for

knowing about internal representations. A neural network is termed a

mapping network if it possesses the ability to compute certain functional

relationships between its input and output.

Chapter 5 Deep Learning and Neural Networks

https://en.wikipedia.org/wiki/Mathematical_optimization#Mathematical optimization

101

Suppose a set of P vector pairs, x y x y x yP P1 1 2 2, , ,() () (), , , , which are

examples of the functional mapping y x x R y RN M= () Î Îf : , .

The equations for information processing in the three-layer network

are shown next. An input vector is as follows:

net xpj
h

i

N

ji
h

pi j
h= +

=
å

1

w q

An output node is as follows:

i f netpj j
h

pj
h= ()

The equations for output nodes are as follows:

net i

o f net

pk
o

j

L

kj
o

pj k
o

pk k
o

pk
o

= +

= ()
=
å

1

w q

�Update of Output Layer Weights
The following equation is the error term:

E y o

E
y o

f

net

net

p
k

pk pk

p

kj
o pk pk

k
o

pk
o

pk
o

= -()

¶

¶
= - -() ¶

¶()
¶()

å12
2

w ¶¶wkj
o

The last factor in the equation of the output layer weight is as follows:

¶()
¶

=
¶

¶
+

æ

è
çç

ö

ø
÷÷ =

=
å

net
i i

pk
o

kj
o

kj
o

j

L

kj
o

pj k
o

pjw w
w q
1

Chapter 5 Deep Learning and Neural Networks

102

The negative gradient is as follows:

-
¶

¶
= -() ()¢E

y o f net ip

kj
o pk pk k

o
pk
o

pjw

The weights on the output layer are updated according to the following:

w w w

w h
kj kj

o
p kj

o

p kj
o

pk pk k
o

pk
o

p

t t t

y o f net i

o +() = () + ()
= -() ()¢

1 D

D jj

There are two forms of the output function.

•	 	 f net netk
o

jk
o

jk
o() = 	

•	 	 f net ek
o

jk
o net jk

o() = +()-
-

1
1

	

�Update of Hidden Layer Weights
Look closely at the network illustrated previously consisting of one layer

of hidden neurons and one output neuron. When an input vector is

circulated through the network, for the current set of weights there is an

output prediction. Automatically, the total error somehow relates to the

output values in the hidden layer. The equation is as follows:

E y o

y f net

y f

p
k

pk pk

k
pk k

o
pk
o

k
pk k

o

j
kj
o

= -()

= - ()()

= -

å

å

å å

1

2

1

2

1

2

2

2

w iipj k
o+

æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷q
2

Chapter 5 Deep Learning and Neural Networks

103

You can exploit the fact to calculate the gradient of Ep with respect to

the hidden layer weights.

¶

¶
=

¶
¶

-()

= - -() ¶

¶()
¶

å

å

E
y o

y o
o

net

ne

p

ji
h

k ji
h pk pk

k
pk pk

pk

pk
o

w w
1

2

2

tt

i

i

net

netpk
o

pj

pj

pj
h

pj
h

ji
h

()
¶

¶

¶()
¶()
¶w

Each of the factors in the equation can be calculated explicitly from the

previous equation. The result is as follows:

¶

¶
= - -() () ()å

E
y o f net f net xp

ji
h

k
pk pk k

o
pk
o

kj
o

j
h

pj
h

piw
w’ ’

�BPN Summary
Apply the input vector X x x xp p p pN

t
= ¼()1 2, , , to the input units.

Calculate the net input values to the hidden layer units.

net xpj
h

i

N

ji
h

pi j
h= +

=
å

1

w q

Calculate the outputs from the hidden layer.

i f netpj j
h

pj
h= ()

Calculate the net input values to each unit.

net ipk
o

j

L

kj
o

pj k
o= +

=
å

1

w q

Chapter 5 Deep Learning and Neural Networks

104

Calculate the outputs.

o f netpk k
o

pk
o= ()

Calculate the error terms for the output units.

d pk
o

pk pk k
o

pk
oy o f net= -() ()’

Calculate the error terms for the hidden units.

d dpj
h

j
h

pj
h

pk
o

kj
o

k

f net= ()å’ w

Update weights on the output layer.

w w hdkj
o

kj
o

pk
o

pjt t i+() = () +1

Update weights on the hidden layer.

w w hdji
h

ji
h

pj
h

it t x+() = () +1

�Backpropagation Algorithm
Let’s see some code:

class NeuralNetwork(object):

 def backpropagate(self,x,y):

 �"""Return a tuple "(nabla_b, nabla_w)"

representing the

 gradient for the cost function C_x. "nabla_b" and

 �"nabla_w" are layer-by-layer lists of numpy

arrays, similar

Chapter 5 Deep Learning and Neural Networks

105

 to "self.biases" and "self.weights"."""

 nabla_b1=[np.zeros(b1.shape)for b 1in self.biases]

 nabla_w1=[np.zeros(w1.shape)for w1in self.weights]

 # feedforward

 activation1=x1

 activations1=[x1]

 zs1=[]

 for b,winzip(self.biases,self.weights):

 z1=np.dot(w1,activation1)+b1

 zs1.append(z1)

 activation1=sigmoid(z1)

 activations1.append(activation1)

 # backward pass

 delta1=self.cost_derivative(activations1[-1],y1)* \

 sigmoid_prime(zs1[-1])

 nabla_b1[-1]=delta1

 �nabla_w1[-1]=np.dot(delta,activations1[-2].

transpose())

 for l in xrange(2,self.num_layers):

 z1=zs1[-l]

 sp1=sigmoid_prime(z1)

 �delta1=np.dot(self.weights1[-l+1].

transpose(),delta)*sp1

 nabla_b1[-l]=delta1

 �nabla_w1[-l]=np.

dot(delta,activations1[-l-1].transpose())

 return(nabla_b1,nabla_w1)

 def cost_derivative(self,output_activations,y):

 �"""Return the vector of partial derivatives \

partial C_x /

Chapter 5 Deep Learning and Neural Networks

106

 \partial a for the output activations."""

 return(output_activations1-y1)

 def sigmoid(z1):

 """The sigmoid function."""

 Return1.0/(1.0+np.exp(-z1))

 def sigmoid_prime(z1):

 """Derivative of the sigmoid function."""

 Return sigmoid(z)*(1-sigmoid(z1))

�Other Algorithms
Many techniques are available to train neural networks besides

backpropagation. One of the methods is to use common optimization

algorithms such as gradient descent, Adam Optimizer, and so on. The

simple perception method is also frequently applied. Hebb’s postulate

is another popular method. In Hebb’s learning, instead of the error, the

product of the input and output goes as the feedback to correct the weight.

w t w t y t x tij ij j i+() = () + () ()1 h

�TensorFlow
TensorFlow is a popular deep learning library in Python. It is a Python

wrapper on the original library. It supports parallelism on the CUDA-

based GPU platform. The following code is an example of simple linear

regression with TensorFlow:

learning_rate = 0.0001

 y_t = tf.placeholder("float", [None,1])

 x_t = tf.placeholder("float", [None,X_train.shape[1]])

Chapter 5 Deep Learning and Neural Networks

107

 �W = tf.Variable(tf.random_normal([X_train.

shape[1],1],stddev=.01))

 b = tf.constant(1.0)

 model = tf.matmul(x_t, W) + b

 cost_function = tf.reduce_sum(tf.pow((y_t - model),2))

 �optimizer = tf.train.AdamOptimizer(learning_rate).

minimize(cost_function)

 init = tf.initialize_all_variables()

 with tf.Session() as sess:

 sess.run(init)

 w = W.eval(session = sess)

 of = b.eval(session = sess)

 �print("Before Training ########################

#########################")

 print(w,of)

 �print("#######################################

##########################")

 step = 0

 previous = 0

 while(1):

 step = step + 1

 �sess.run(optimizer, feed_dict={x_t: X_

train.reshape(X_train.shape[0],X_train.

shape[1]), y_t: y_train.reshape(y_

train.shape[0],1)})

 �cost = sess.run(cost_function, feed_

dict={x_t: X_train.reshape(X_train.

shape[0],X_train.shape[1]), y_t: y_

train.reshape(y_train.shape[0],1)})

Chapter 5 Deep Learning and Neural Networks

108

 if step%1000 == 0:

 print(cost)

 if((previous- cost) < .0001):

 break

 previous = cost

 w = W.eval(session = sess)

 of = b.eval(session = sess)

 �print("Before Training ########################

#########################")

 print(w,of)

 �print("#######################################

##########################")

With a little change, you can make it multilayer linear regression, as

shown here:

learning_rate = 0.0001

 y_t = tf.placeholder("float", [None,1])

 if not multilayer:

 �x_t = tf.placeholder("float", [None,X_train.

shape[1]])

 �W = tf.Variable(tf.random_normal([X_train.

shape[1],1],stddev=.01))

 b = tf.constant(0.0)

 model = tf.matmul(x_t, W) + b

 else:

 �x_t_user = tf.placeholder("float", [None,

X_train_user.shape[1]])

 �x_t_context = tf.placeholder("float", [None,

X_train_context.shape[1]])

Chapter 5 Deep Learning and Neural Networks

109

 �W_user = tf.Variable(tf.random_normal([X_train_

user.shape[1],1],stddev=.01))

 �W_context = tf.Variable(tf.random_normal([X_

train_context.shape[1],1],stddev=.01))

 �W_out_user = tf.Variable(tf.random_

normal([1,1],stddev=.01))

 �W_out_context = tf.Variable(tf.random_

normal([1,1],stddev=.01))

 �model = tf.add(tf.matmul(tf.matmul(x_t_user,

W_user),W_out_user),tf.matmul(tf.matmul(x_t_

context, W_context),W_out_context))

 cost_function = tf.reduce_sum(tf.pow((y_t - model),2))

 �optimizer = tf.train.AdamOptimizer(learning_rate).

minimize(cost_function)

 init = tf.initialize_all_variables()

 with tf.Session() as sess:

 sess.run(init)

 �print("Before Training ########################

#########################")

 step = 0

 previous = 0

 cost = 0

 while(1):

 step = step + 1

 if not multilayer:

 �sess.run(optimizer, feed_

dict={x_t: X_train.reshape

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.

reshape(y_train.shape[0],1)})

Chapter 5 Deep Learning and Neural Networks

110

 �cost = sess.run(cost_function,

feed_dict={x_t: X_train.reshape

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.reshape

(y_train.shape[0],1)})

 else:

 �sess.run(optimizer, feed_

dict={x_t_user: X_train_

user.reshape(X_train_user.

shape[0],X_train_user.shape[1]),

x_t_context: X_train_context.

reshape(X_train_context.

shape[0],X_train_context.

shape[1]), y_t: y_train.

reshape(y_train.shape[0],1)})

 �cost = sess.run(cost_function,

feed_dict={x_t_user: X_train_user.

reshape(X_train_user.shape[0],X_

train_user.shape[1]), x_t_context:

X_train_context.reshape(X_train_

context.shape[0],X_train_context.

shape[1]), y_t: y_train.reshape(y_

train.shape[0],1)})

 if step%1000 == 0:

 print(cost)

 if previous == cost or step > 50000:

 break

 if cost != cost :

 raise Exception("NaN value")

 previous = cost

Chapter 5 Deep Learning and Neural Networks

111

 �print("######################################

###########################")

 if multilayer:

 w_user = W_user.eval(session = sess)

 w_context = W_context.eval(session = sess)

 �w_out_context = W_out_context.eval(session

= sess)

 �w_out_user = W_out_user.eval(session = sess)

 w_user = np.dot(w_user, w_out_user)

 �w_context = np.dot(w_context, w_out_context)

 else:

 w = W.eval(session = sess)

You can do logistic regresson with the same code with a little change,

as shown here:

learning_rate = 0.001

 no_of_level = 2

 y_t = tf.placeholder("float", [None,no_of_level])

 if True:

 �x_t = tf.placeholder("float", [None,X_train.

shape[1]])

 �W = tf.Variable(tf.random_normal([X_train.

shape[1],no_of_level],stddev=.01))

 model = tf.nn.softmax(tf.matmul(x_t, W))

 �cost_function = tf.reduce_mean(-tf.reduce_sum(y_t*tf.

log(model), reduction_indices=1))

 �optimizer = tf.train.GradientDescentOptimizer(learni

ng_rate).minimize(cost_function)

 init = tf.initialize_all_variables()

Chapter 5 Deep Learning and Neural Networks

112

 with tf.Session() as sess:

 sess.run(init)

 �print("Before Training ########################

#########################")

 step = 0

 previous = 0

 cost = 0

 while(1):

 step = step + 1

 if True:

 �sess.run(optimizer, feed_

dict={x_t: X_train.reshape

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.

reshape(y_train.shape[0],

no_of_level)})

 �cost = sess.run(cost_function,

feed_dict={x_t: X_train.reshape(X_

train.shape[0],X_train.shape[1]),

y_t: y_train.reshape(y_train.

shape[0],no_of_level)})

 if step%1000 == 0:

 print(cost)

 if previous == cost or step > 50000:

 break

 if cost != cost :

 raise Exception("NaN value")

 previous = cost

 �print("######################################

###########################")

 if True:

 w = W.eval(session = sess)

Chapter 5 Deep Learning and Neural Networks

113

�Recurrent Neural Network
A recurrent neural network is an extremely popular kind of network

where the output of the previous step goes to the feedback or is input

to the hidden layer. It is an extremely useful solution for a problem like

a sequence leveling algorithm or time-series prediction. One of the

more popular applications of the sequence leveling algorithm is in an

autocomplete feature of a search engine.

As an example, say one algorithmic trader wants to predict the price

of a stock for trading. But his strategy requires the following criteria for

prediction:

	 a)	 The predicted tick is higher than the current tick and

the next tick. Win.

	 b)	 The predicted tick is lower than the current tick and

the next tick. Win.

	 c)	 The predicted tick is higher than the current tick but

lower than the next tick. Loss.

	 d)	 The predicted tick is lower than the current tick but

higher than the next tick. Loss.

To satisfy his criteria, the developer takes the following strategy.

For generating predictions for 100 records, he is considering preceding

1,000 records as input 1, prediction errors in the last 1,000 records as input

2, and differences between two consecutive records as input 3. Using these

inputs, an RNN-based engine predicts results, errors, and inter-record

differences for the next 100 records.

Then he takes the following strategy:

If predicted diff > 1 and predicted err < 1, then

prediction += pred_err + 1.

If predicted diff < 1 and predicted err > 1, then

prediction -= pred_err -1.

Chapter 5 Deep Learning and Neural Networks

114

In this way, prediction satisfies the developer need. The detailed code

is shown next. It is using Keras, which is a wrapper above TensorFlow.

import matplotlib.pyplot as plt

import numpy as np

import time

import csv

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Sequential

import sys

np.random.seed(1234)

def read_data(path_to_dataset,

 sequence_length=50,

 ratio=1.0):

 max_values = ratio * 2049280

 with open(path_to_dataset) as f:

 data = csv.reader(f, delimiter=",")

 power = []

 nb_of_values = 0

 for line in data:

 #print(line)

 #if nb_of_values == 3500:

 # break

 try:

 power.append(float(line[1]))

 nb_of_values += 1

 except ValueError:

 pass

Chapter 5 Deep Learning and Neural Networks

115

 �# 2049280.0 is the total number of valid values,

i.e. ratio = 1.0

 if nb_of_values >= max_values:

 break

 return power

def process_data(power, sequence_length, ratio, error):

 #print("Data loaded from csv. Formatting...")

 #fig = plt.figure()

 #plt.plot(power)

 #plt.show()

 result = []

 for index in range(len(power) - sequence_length):

 result.append(power[index: index + sequence_length])

 result = np.array(result) # shape (2049230, 50)

 if not error:

 global result_mean, result_std

 result_mean = result.mean()

 result_std = result.std()

 result -= result_mean

 result /= result_std

 #result = np.log(result+1)

 #print result

 #exit(0)

print ("Shift : ", result_mean)

 print ("Data : ", result.shape)

 row = int(round(0.9 * result.shape[0]))

 print row

 train = result[:row, :]

 np.random.shuffle(train)

 X_train = train[:, :-1]

Chapter 5 Deep Learning and Neural Networks

116

 y_train = train[:, -1]

 X_test = result[row:, :-1]

 y_test = result[row:, -1]

 �X_train = np.reshape(X_train, (X_train.shape[0], X_train.

shape[1], 1))

 �X_test = np.reshape(X_test, (X_test.shape[0], X_test.

shape[1], 1))

 return [X_train, y_train, X_test, y_test]

def build_model():

 model = Sequential()

 layers = [1, 50, 100, 1]

 model.add(LSTM(

 layers[1],

 input_shape=(None, layers[0]),

 return_sequences=True))

 model.add(Dropout(0.2))

 model.add(LSTM(

 layers[2],

 return_sequences=False))

 model.add(Dropout(0.2))

 model.add(Dense(

 layers[3]))

 model.add(Activation("linear"))

 start = time.time()

 model.compile(loss="mse", optimizer="rmsprop")

 print ("Compilation Time : ", time.time() - start)

 return model

Chapter 5 Deep Learning and Neural Networks

117

def run_network(model=None, data=None, error=False):

 global_start_time = time.time()

 epochs = 2

 ratio = 0.5

 sequence_length = 100

 X_train, y_train, X_test, y_test = process_data(

 data, sequence_length, ratio,error)

 print ('\nData Loaded. Compiling...\n')

 if model is None:

 model = build_model()

 try:

 model.fit(

 X_train, y_train,

 �batch_size=512, nb_epoch=epochs, validation_

split=0.05)

 predicted = model.predict(X_test)

 predicted = np.reshape(predicted, (predicted.size,))

 except KeyboardInterrupt:

 �print ('Training duration (s) : ', time.time() -

global_start_time)

 return model, y_test, 0

 try:

 fig = plt.figure()

 ax = fig.add_subplot(111)

 ax.plot(y_test[:100]*result_max)

 plt.plot(predicted[:100]*result_max)

 plt.show()

Chapter 5 Deep Learning and Neural Networks

118

 except Exception as e:

 print (str(e))

 �print ('Training duration (s) : ', time.time() - global_

start_time)

 return model, y_test, predicted

if __name__ == '__main__':

 path_to_dataset = '20170301_ltp.csv'

 data = read_data(path_to_dataset)

 error = []

 diff_predicted = []

 err_predicted = []

 print len(data)

 for i in range(0,len(data)-1000,89):

 d = data[i:i+1000]

 model, y_test, predicted = run_network(None,d, False)

 if i > 11 and len(error) >= 1000:

 �model,err_test, err_predicted =

run_network(None,error, True)

 error = error[90:]

 d1 = data[i:i+1001]

 diff = [0]*1000

 for k in range(1000):

 diff[k] = d1[k+1] - d1[k]

 �model,diff_test, diff_predicted =

run_network(None,diff, True)

 print i,len(d), len(y_test)

 y_test *= result_std

 predicted *= result_std

 y_test += result_mean

 predicted += result_mean

Chapter 5 Deep Learning and Neural Networks

119

 e = (y_test - predicted)/predicted

 error = np.concatenate([error, e])

 #print error

 #error.append(y_test - predicted)

 �if i > 11 and len(error) >= 1000 and len(err_

predicted)>=90:

 for j in range(len(y_test)-1):

 �if diff_predicted[j] > 1 and err_

predicted[j]*predicted[j] <= 1:

 �predicted[j] += abs(err_

predicted[j]*predicted[j]) + 1

 �if diff_predicted[j] <= 1 and err_

predicted[j]*predicted[j] > 1:

 �predicted[j] -= abs(err_

predicted[j]*predicted[j]) - 1

 print y_test[j], ',',predicted[j]

 print "length of error",len(error)

Chapter 5 Deep Learning and Neural Networks

121© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_6

CHAPTER 6

Time Series
A time series is a series of data points arranged chronologically. Most

commonly, the time points are equally spaced. A few examples are the

passenger loads of an airline recorded each month for the past two years

or the price of an instrument in the share market recorded each day for the

last year. The primary aim of time-series analysis is to predict the future

value of a parameter based on its past data.

�Classification of Variation
Traditionally time-series analysis divides the variation into three major

components, namely, trends, seasonal variations, and other cyclic

changes. The variation that remains is attributed to “irregular” fluctuations

or error term. This approach is particularly valuable when the variation is

mostly comprised of trends and seasonality.

�Analyzing a Series Containing a Trend
A trend is a change in the mean level that is long-term in nature. For

example, if you have a series like 2, 4, 6, 8 and someone asks you for the

next value, the obvious answer is 10. You can justify your answer by fitting

a line to the data using the simple least square estimation or any other

regression method. A trend can also be nonlinear. Figure 6-1 shows an

example of a time series with trends.

122

The simplest type of time series is the familiar “linear trend plus noise”

for which the observation at time t is a random variable Xt, as follows:

Xt = + +a b et t

Here, α,β are constants, and εt denotes a random error term with

a mean of 0. The average level at time t is given by mt= (α + βt). This is

sometimes called the trend term.

�Curve Fitting
Fitting a simple function of time such as a polynomial curve (linear,

quadratic, etc.), a Gompertz curve, or a logistic curve is a well-known

Figure 6-1.  A time series with trends

Chapter 6 Time Series

123

method of dealing with nonseasonal data that contains a trend,

particularly yearly data. The global linear trend is the simplest type of

polynomial curve. The Gompertz curve can be written in the following

format, where α, β, and γ are parameters with 0 < r < 1:

xt = αexp [β exp(−γt)]

This looks quite different but is actually equivalent, provided γ > 0. The

logistic curve is as follows:

xt = a / (1+be-ct)

Both these curves are S-shaped and approach an asymptotic value

as t→∞, with the Gompertz curve generally converging slower than the

logistic one. Fitting the curves to data may lead to nonlinear simultaneous

equations.

For all curves of this nature, the fitted function provides a measure

of the trend, and the residuals provide an estimate of local fluctuations

where the residuals are the differences between the observations and the

corresponding values of the fitted curve.

�Removing Trends from a Time Series
Differentiating a given time series until it becomes stationary is a special

type of filtering that is particularly useful for removing a trend. You will

see that this is an integral part of the Box-Jenkins procedure. For data with

a linear trend, a first-order differencing is usually enough to remove the

trend.

Mathematically, it looks like this:

y(t) = a*t + c

y(t+1) = a*(t+1) + c

z(t) = y(t+1) –y(t) = a + c ; no trend present in z(t)

Chapter 6 Time Series

124

A trend can be exponential as well. In this case, you will have to do a

logarithmic transformation to convert the trend from exponential to linear.

Mathematically, it looks like this:

y(t) = a*exp(t)

z(t) = log(y(t)) = t*log(a); z(t) is a linear function of t

�Analyzing a Series Containing Seasonality
Many time series, such as airline passenger loads or weather readings,

display variations that repeat after a specific time period. For instance, in

India, there will always be an increase in airline passenger loads during

the holiday of Diwali. This yearly variation is easy to understand and can

be estimated if seasonality is of direct interest. Similarly, like trends, if you

have a series such as 1, 2, 1, 2, 1, 2, your obvious choices for the next values

of the series will be 1 and 2.

The Holt-Winters model is a popular model to realize time series with

seasonality and is also known as exponential smoothing. The Holt-Winters

model has two variations: additive and multiplicative. In the additive

model with a single exponential smoothing time series, seasonality is

realized as follows:

X(t+1) = α ∗Xt + (1 − α) ∗ St−1

In this model, every point is realized as a weighted average of the

previous point and seasonality. So, X(t+1) will be calculated as a function

X(t-1) and S(t-2) and square of α. In this way, the more you go on, the

α value increases exponentially. This is why it is known as exponential

smoothing. The starting value of St is crucial in this method. Commonly,

this value starts with a 1 or with an average of the first four observations.

The multiplicative seasonal model time series is as follows:

X(t+1)= (b1 + b2*t)St + noise,

Chapter 6 Time Series

125

Here, b1, often referred to as the permanent component, is the initial

weight of the seasonality; b2 represents the trend, which is linear in this

case.

However, there is no standard implementation of the Holt-Winters

model in Python. It is available in R (see Chapter 1 for how R’s Holt-

Winters model can be called from Python code).

�Removing Seasonality from a Time Series
There are two ways of removing seasonality from a time series.

•	 By filtering

•	 By differencing

�By Filtering
The series {xt} is converted into another called {yt} with the linear operation

shown here, where {ar} is a set of weights:

Yt = ∑+s
r=-qarxt+r

To smooth out local fluctuations and estimate the local mean, you

should clearly choose the weights so that ∑ ar = 1; then the operation is

often referred to as a moving average. They are often symmetric with

s = q and aj = a-j. The simplest example of a symmetric smoothing filter is

the simple moving average, for which ar = 1 / (2q+1) for r = -q, …, + q.

The smoothed value of xt is given by the following:

Sm(xt) =
1

2 1q +
 ∑+q

r=-qxt+r

Chapter 6 Time Series

126

The simple moving average is useful for removing seasonal variations,

but it is unable to deal well with trends.

�By Differencing
Differencing is widely used and often works well. Seasonal differencing

removes seasonal variation.

Mathematically, if time series y(t) contains additive seasonality S(t)

with time period T, then:

y(t) = a*S(t) + b*t + c

y(t+T) = aS(t+T) + b*(t+T) + c

z(t) = y(t+T) – y(t) = b*T + noise term

Similar to trends, you can convert the multiplicative seasonality to

additive by log transformation.

Now, finding time period T in a time series is the critical part. It can

be done in two ways, either by using an autocorrelation function in the

time domain or by using the Fourier transform in the frequency domain.

In both cases, you will see a spike in the plot. For autocorrelation, the

plot spike will be at lag T, whereas for FT distribution, the spike will be at

frequency 1/T.

�Transformation
Up to now I have discussed the various kinds of transformation in a time

series. The three main reasons for making a transformation are covered in

the next sections.

�To Stabilize the Variance
The standard way to do this is to take a logarithmic transformation of the

series; it brings closer the points in space that are widely scattered.

Chapter 6 Time Series

127

�To Make the Seasonal Effect Additive
If the series has a trend and the volume of the seasonal effect appears to be

on the rise with the mean, then it may be advisable to modify the data so as

to make the seasonal effect constant from year to year. This seasonal effect

is said to be additive. However, if the volume of the seasonal effect is directly

proportional to the mean, then the seasonal effect is said to be multiplicative,

and a logarithmic transformation is needed to make it additive again.

�To Make the Data Distribution Normal
In most probability models, it is assumed that distribution of data is

Gaussian or normal. For example, there can be evidence of skewness in a

trend that causes “spikes” in the time plot that are all in the same direction.

To transform the data in a normal distribution, the most common

transform is to subtract the mean and then divide by the standard

deviation. I gave an example of this transformation in the RNN example in

Chapter 5; I’ll give another in the final example of the current chapter. The

logic behind this transformation is it makes the mean 0 and the standard

deviation 1, which is a characteristic of a normal distribution. Another

popular transformation is to use the logarithm. The major advantage of a

logarithm is it reduces the variation and logarithm of Gaussian distribution

data that is also Gaussian. Transformation may be problem-specific or

domain-specific. For instance, in a time series of an airline’s passenger

load data, the series can be normalized by dividing by the number of days

in the month or by the number of holidays in a month.

�Cyclic Variation

In some time series, seasonality is not a constant but a stochastic variable.

That is known as cyclic variation. In this case, the periodicity first has to

be predicted and then has to be removed in the same way as done for

seasonal variation.

Chapter 6 Time Series

128

�Irregular Fluctuations

A time series without trends and cyclic variations can be realized as a

weekly stationary time series. In the next section, you will examine various

probabilistic models to realize weekly time series.

�Stationary Time Series
Normally, a time series is said to be stationary if there is no systematic

change in mean and variance and if strictly periodic variations have

been done away with. In real life, there are no stationary time series.

Whatever data you receive by using transformations, you may try to make

it somehow nearer to a stationary series.

�Stationary Process
A time series is strictly stationary if the joint distribution of X(t1),...,X(tk) is

the same as the joint distribution of X(t1 + τ),...,X(tk + τ) for all t1,…,tk,τ. If k

=1, strict stationary implies that the distribution of X(t) is the same for all t,

so provided the first two moments are finite, you have the following:

μ(t) = μ

σ2(t) = σ2

They are both constants, which do not depend on the value of t.

A weekly stationary time series is a stochastic process where the mean

is constant and autocovariance is a function of time lag.

Chapter 6 Time Series

129

�Autocorrelation and the Correlogram
Quantities called sample autocorrelation coefficients act as an important

guide to the properties of a time series. They evaluate the correlation,

if any, between observations at different distances apart and provide

valuable descriptive information. You will see that they are also an

important tool in model building and often provide valuable clues for

a suitable probability model for a given set of data. The quantity lies in

the range [-1,1] and measures the forcefulness of the linear association

between the two variables. It can be easily shown that the value does

not depend on the units in which the two variables are measured; if the

variables are independent, then the ideal correlation is zero.

A helpful supplement in interpreting a set of autocorrelation

coefficients is a graph called a correlogram. The correlogram may be

alternatively called the sample autocorrelation function.

Suppose a stationary stochastic process X(t) has a mean μ, variance σ2,

auto covariance function (acv.f.) γ(t), and auto correlation function (ac.f.) ρ(τ).

r t
g t
g

g t s() = ()
()

= ()
0

2/

�Estimating Autocovariance and Autocorrelation
Functions
In the stochastic process, the autocovariance is the covariance of the

process with itself at pairs of time points. Autocovariance is calculated as

follows:

g h
n

x x x x n h n
t

n h

t h t() = -() -() - < <
=

-

+å1
1

,

Chapter 6 Time Series

https://en.wikipedia.org/wiki/Stochastic_process#Stochastic process
https://en.wikipedia.org/wiki/Covariance#Covariance

130

Figure 6-2 shows a sample autocorrelation distribution.

�Time-Series Analysis with Python
A complement to SciPy for statistical computations including descriptive

statistics and estimation of statistical models is provided by Statsmodels,

which is a Python package. Besides the early models, linear regression,

robust linear models, generalized linear models, and models for discrete

data, the latest release of scikits.statsmodels includes some basic tools and

models for time-series analysis, such as descriptive statistics, statistical

tests, and several linear model classes. The linear model classes include

autoregressive (AR), autoregressive moving-average (ARMA), and vector

autoregressive models (VAR).

Figure 6-2.  Sample autocorrelations

Chapter 6 Time Series

131

�Useful Methods
Let’s start with a moving average.

�Moving Average Process

Suppose that {Zt} is a purely random process with mean 0 and variance σz
2.

Then a process {Xt} is said to be a moving average process of order q.

X Z Z Zt t t t q= + + +- -b b b0 1 1  q

Here, {βi} are constants. The Zs are usually scaled so that β0 = 1.

E X

X

t

t Z
i

q

i

() =

() =
=
å

0

2

0

2Var s b

The Zs are independent.

g

b b b b

k X X

Z Z Z Z

k

t t k

t q t q t k q t k q

() = ()
= + + + +()

=

>

+

- + + -

Cov ,

Cov 0 0

0

 ,

qq

k q

k k

Z
i

q k

i i ks b b

g

2

0

0 1

0
=

-

+å = ¼

-() <

ì

í
ï
ï

î
ï
ï

, , ,

Cov ,Z Z
s t

s t
s t

Z() = =
¹

ì
í
î

s 2

0

As γ(k) is not dependent on t and the mean is constant, the process is

second-order stationary for all values of {βi}.

Chapter 6 Time Series

132

r
b b b

r

k

k

k q

k q

k k

i

q k

i i k
i

q

i() =

=

= ¼

>
-() <

ì

í

ï
ïï

î

ï
ï

=

-

+
=

å å

1

0

0

1

0

0 0

2/ , ,

ïï

�Fitting Moving Average Process

The moving-average (MA) model is a well-known approach for realizing a

single-variable weekly stationary time series (see Figure 6-3). The moving-

average model specifies that the output variable is linearly dependant on

its own previous error terms as well as on a stochastic term. The AR model

is called the Moving-Average model, which is a special case and a key

component of the ARMA and ARIMA models of time series.

X X dt t
i

p

i t i
i

q

i t i
i

b

i t i= + + +
=

-
=

-
=

-å å åe j q e h
1 1 1

Figure 6-3.  Example of moving average

Chapter 6 Time Series

https://en.wikipedia.org/wiki/Linear_prediction#Linear prediction
https://en.wikipedia.org/wiki/Time_series#Time series

133

Here’s the example code for a moving average model:

import numpy as np

def running_mean(l, N):

 # Also works for the(strictly invalid) cases when N is even.

 if (N//2)*2 == N:

 N = N - 1

 front = np.zeros(N//2)

 back = np.zeros(N//2)

 for i in range(1, (N//2)*2, 2):

 �front[i//2] = np.convolve(l[:i], np.ones((i,))/i, mode

= 'valid')

 for i in range(1, (N//2)*2, 2):

 �back[i//2] = np.convolve(l[-i:], np.ones((i,))/i, mode

= 'valid')

 �return np.concatenate([front, np.convolve(l,

np.ones((N,))/N, mode = 'valid'), back[::-1]])

print running_mean(2,21)

�Autoregressive Processes
Suppose {Zt} is a purely random process with mean 0 and variance σz

2.

After that, a process {Xt} is said to be of autoregressive process of order p if

you have this:

x x x z or

x x z

t t p t p t

t
i

p

i i t

= +¼ +

= +

- -

=
-å

a a

a

1 1

1
1

,

Chapter 6 Time Series

134

The autocovariance function is given by the following:

g
a s

a

r
g
g

a

k k

k

k
z

k
k

() =
-()

= ¼

=
()
()

=

2

21
0 1 2

0

, , , , hence

Figure 6-4 shows a time series and its autocorrelation plot of the AR

model.

�Estimating Parameters of an AR Process
A process is called weakly stationary if its mean is constant and the

autocovariance function depends only on time lag. There is no weakly

stationary process, but it is imposed on time-series data to do some

stochastic analysis. Suppose Z(t) is a weak stationary process with mean 0

and constant variance. Then X(t) is an autoregressive process of order p if

you have the following:

X(t) = a1 x X(t-1) + a2 x X(t-2) + … + ap x X(t-p) +Z(t), where a ∊ R and p ∊ I

Figure 6-4.  A time series and AR model

Chapter 6 Time Series

135

Now, E[X(t)] is the expected value of X(t).

Covariance(X(t),X(t+h)) = E[(X(t) - E[X(t)]) * (X(t+h) – E[X(t+h)])]

= E[(X(t) - m) * (X(t+h) - m)]

If X(t) is a weak stationary process, then:

E[X(t)] = E[X(t+h)] = m (constant)

= E[X(t) * X(t+h)] – m2 = c(h)

Here, m is constant, and cov[X(t),X(t+h)] is the function of only h(c(h))

for the weakly stationary process. c(h) is known as autocovariance.

Similarly, the correlation (X(t),X(t+h) = ρ(h) = r(h) = c(h) = ¸ c(0) is

known as autocorrelation.

If X(t) is a stationary process that is realized as an autoregressive

model, then:

X(t) = a1 * X(t-1) + a2 * X(t-2) + ….. + ap * X(t-p) + Z(t)

Correlation(X(t),X(t)) = a1 * correlation (X(t),X(t-1)) + …. +

ap * correlation (X(t),X(t-p))+0

As covariance, (X(t),X(t+h)) is dependent only on h, so:

r0 = a1 * r1 + a2 * r2 + … + ap * rp

r1 = a1 * r0 + a2 * r1 + …. + ap * r(p-1)

So, for an n-order model, you can easily generate the n equation and

from there find the n coefficient by solving the n equation system.

Chapter 6 Time Series

136

In this case, realize the data sets only in the first-order and second-

order autoregressive model and choose the model whose mean of residual

is less. For that, the reduced formulae are as follows:

•	 First order: a1 = r1

•	 Second order: a r r r a r r r1 1 1 2 11 2 1
2

2 1
2

1
2= -()¸ -() = -() ¸ -(),

Here is some example code for an autoregressive model:

from pandas import Series

from matplotlib import pyplot

from statsmodels.tsa.ar_model import AR

from sklearn.metrics import mean_squared_error

series = series.from_csv('input.csv', header=0)

J = series.value

train, test = J[1:len(J)-10], J[len(J)-10:]

model = AR(train)

model_fit = model.fit()

print('Lag: %s' % model_fit.k_ar)

print('Coefficients: %s' % model_fit.params)

predictions = model_fit.predict(start=len(train),

end=len(train)+len(test)-1, dynamic=False)

for t in range(len(predictions)):

 print('predicted=%f, expected=%f' % (predictions[t],

test[t]))

error = mean_squared_error(test, predictions)

print('Test MSE: %.3f' % error)

pyplot.plot(test)

pyplot.plot(predictions, color='red')

pyplot.show()

Chapter 6 Time Series

137

�Mixed ARMA Models
Mixed ARMA models are a combination of MA and AR processes. A mixed

autoregressive/moving average process containing p AR terms and q

MA terms is said to be an ARMA process of order (p,q). It is given by the

following:

X X X Z Z Zt t p t p t t q t q= + + + + + +- - - -a a b b1 1 1 1 

The following example code was taken from the stat model site to

realize time-series data as an ARMA model:

r1,q1,p1 = sm.tsa.acf(resid.values.squeeze(), qstat=True)

data1 = np.c_[range(1,40), r1[1:], q1, p1]

table1 = pandas.DataFrame(data1, columns=['lag', "AC", "Q",

"Prob(>Q)"])

predict_sunspots1 = arma_mod40.predict('startyear', 'endyear',

dynamic=True)

Here is the simulated ARMA (4,1) model identification code:

from statsmodels. import tsa.arima_processimportarma_generate_

sample, ArmaProcess

np.random.seed(1234)

data = np.array([1, .85, -.43, -.63, .8])

parameter = np.array([1, .41]

model = ArmaProcess(data, parameter)

model.isinvertible()

True

Model.isstationary()

True

Chapter 6 Time Series

138

Here is how to estimate parameters of an ARMA model:

	 1.	 After specifying the order of a stationary ARMA

process, you need to estimate the parameters.

	 2.	 Assume the following:

•	 The model order (p and q) is known.

•	 The data has zero mean.

	 3.	 If step 2 is not a reasonable assumption, you can

subtract the sample mean Y and fit a 0 mean ARMA

model, as in ∅(B)Xt = θ(B)at where Xt = Yt – Y. Then

use Xt + Y as the model for Yt.

�Integrated ARMA Models
To fit a stationary model such as the one discussed earlier, it is imperative

to remove nonstationary sources of variation. Differencing is widely used

for econometric data. If Xt is replaced by ∇dXt, then you have a model

capable of describing certain types of nonstationary series.

Y L Xt

d

t= -()1

These are the estimating parameters of an ARIMA model:

•	 ARIMA models are designated by the level of

autoregression, integration, and moving averages.

•	 This does not assume any pattern uses an iterative

approach of identifying a model.

•	 The model “fits” if residuals are generally small,

randomly distributed, and, in general, contain no

useful information.

Chapter 6 Time Series

139

Here is the example code for an ARIMA model:

from pandas import read_csv

from pandas import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima_model import ARIMA

from sklearn.metrics import mean_squared_error

def parser(p):

 return datetime.strptime('190'+p, '%Y-%m')

series = read_csv('input.csv', header=0, parse_dates=[0],

index_col=0, squeeze=True, date_parser=parser)

P = series.values

size = int(len(P) * 0.66)

train, test = P[0:size], P[size:len(P)]

history = [p for p in train]

predictions = list()

for t in range(len(test)):

 model = ARIMA(history, order=(5,1,0))

 model_fit = model.fit(disp=0)

 output = model_fit.forecast()

 yhat = output[0]

 predictions.append(yhat)

 obs = test[t]

 history.append(obs)

 print('predicted=%f, expected=%f' % (yhat, obs))

error = mean_squared_error(test, predictions)

print('Test MSE: %.3f' % error)

plot

pyplot.plot(test)

pyplot.plot(predictions, color='red')

pyplot.show()

Chapter 6 Time Series

140

�The Fourier Transform
The representation of nonperiodic signals by everlasting exponential

signals can be accomplished by a simple limiting process, and I will

illustrate that nonperiodic signals can be expressed as a continuous sum

(integral) of everlasting exponential signals. Say you want to represent the

nonperiodic signal g(t). Realizing any nonperiodic signal as a periodic

signal with an infinite time period, you get the following:

g t G e dj t() = ()
-¥

¥

ò
1

2p
w ww

G n g t e dt

g t e dt

T
T

T

p
jn t

jn t

D D

D

w w

w

() = ()

= ()

®¥
-

-

-¥

¥
-

ò

ò

lim
/

/

0

0

2

2

Hence:

G g t e dtj tw w() = ()
-¥

¥
-ò

G(w) is known as a Fourier transform of g(t).

Here is the relation between autocovariance and the Fourier

transform:

g s w p
p

0 2

0

() = = () = ()òX dF F

Chapter 6 Time Series

141

�An Exceptional Scenario
In the airline or hotel domain, the passenger load of month t is less

correlated with data of t-1 or t-2 month, but it is more correlated for t-12

month. For example, the passenger load in the month of Diwali (October)

is more correlated with last year’s Diwali data than with the same year’s

August and September data. Historically, the pick-up model is used to

predict this kind of data. The pick-up model has two variations.

In the additive pick-up model,

X(t) = X(t-1) + [X(t-12) –X(t-13)]

In the multiplicative pick-up model,

X(t) = X(t-1) * [X(t-12) / X(t-13)]

Studies have shown that for this kind of data the neural network–based

predictor gives more accuracy than the time-series model.

In high-frequency trading in investment banking, time-series models

are too time-consuming to capture the latest pattern of the instrument.

So, they on the fly calculate dX/dt and d2X/dt2, where X is the price of

the instruments. If both are positive, they blindly send an order to buy the

instrument. If both are negative, they blindly sell the instrument if they

have it in their portfolio. But if they have an opposite sign, then they do a

more detailed analysis using the time series data.

As I stated earlier, there are many scenarios in time-series analysis

where R is a better choice than Python. So, here is an example of time-

series forecasting using R. The beauty of the auto.arima model is that it

automatically finds the order, trends, and seasonality of the data and fits

the model. In the forecast, we are printing only the mean value, but the

Chapter 6 Time Series

142

model provides the upper limit and the lower limit of the prediction in

forecasting.

asm_weekwise<-read.csv("F:/souravda/New ASM Weekwise.

csv",header=TRUE)

asm_weekwise$Week <- NULL

library(MASS, lib.loc="F:/souravda/lib/")

library(tseries, lib.loc="F:/souravda/lib/")

library(forecast, lib.loc="F:/souravda/lib/")

asm_weekwise[is.na(asm_weekwise)] <- 0

asm_weekwise[asm_weekwise <= 0] <- mean(as.matrix(asm_weekwise))

weekjoyforecastvalues <- data.frame("asm" = integer(), "value"

= integer(), stringsAsFactors=FALSE)

for(i in 2:ncol(asm_weekwise))

{

 asmname<-names(asm_weekwise)[i]

 temparimadata<-asm_weekwise[,i]

 m <- mean(as.matrix(temparimadata))

 #print(m)

 s <- sd(temparimadata)

 #print(s)

 temparimadata <- (temparimadata - m)

 temparimadata <- (temparimadata / s)

 temparima<-auto.arima(temparimadata, stationary = FALSE,

seasonal = TRUE, allowdrift = TRUE, allowmean = FALSE, biasadj

= FALSE)

 tempforecast<-forecast(temparima,h=12)

 #tempforecast <- (tempforecast * s)

 #print(tempforecast)

Chapter 6 Time Series

143

 temp_forecasted_data<-sum(data.frame(tempforecast$mean)*s + m)

 weekjoyforecastvalues[nrow(weekjoyforecastvalues) + 1,] <-

c(asmname, temp_forecasted_data)

}

weekjoyforecastvalues$value<-as.integer(weekjoyforecastvalues$value)

#weekjoyforecastvalues

(sum(weekjoyforecastvalues$value)- 53782605)/53782605

#103000000)/103000000

�Missing Data
One important aspect of time series and many other data analysis work is

figuring out how to deal with missing data. In the previous code, you fill in

the missing record with the average value. This is fine when the number of

missing data instances is not very high. But if it is high, then the average of

the highest and lowest values is a better alternative.

Chapter 6 Time Series

145© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1_7

CHAPTER 7

Analytics at Scale
In recent decades, a revolutionary change has taken place in the field of

analytics technology because of big data. Data is being collected from a

variety of sources, so technology has been developed to analyze this data

in a distributed environment, even in real time.

�Hadoop
The revolution started with the development of the Hadoop framework,

which has two major components, namely, MapReduce programming and

the HDFS file system.

�MapReduce Programming
MapReduce is a programming style inspired by functional programming

to deal with large amounts of data. The programmer can process big data

using MapReduce code without knowing the internals of the distributed

environment. Before MapReduce, frameworks like Condor did parallel

computing on distributed data. But the main advantage of MapReduce

is that it is RPC based. The data does not move; on the contrary, the code

jumps to different machines to process the data. In the case of big data, it is

a huge savings of network bandwidth as well as computational time.

146

A MapReduce program has two major components: the mapper and

the reducer. In the mapper, the input is split into small units. Generally,

each line of input file becomes an input for each map job. The mapper

processes the input and emits a key-value pair to the reducer. The reducer

receives all the values for a particular key as input and processes the data

for final output.

The following pseudocode is an example of counting the frequency of

words in a document:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

�Partitioning Function
Sometimes it is required to send a particular data set to a particular reduce

job. The partitioning function solves this purpose. For example, in the

previous MapReduce example, say the user wants the output to be stored

in sorted order. Then he mentions the number of the reduce job 32 for 32

Chapter 7 Analytics at Scale

147

alphabets, and in the practitioner he returns 1 for the key starting with a, 2

for b, and so on. Then all the words that start with the same letters and go

to the same reduce job. The output will be stored in the same output file,

and because MapReduce assures that the intermediate key-value pairs are

processed in increasing key order, within a given partition, the output will

be stored in sorted order.

�Combiner Function
The combiner is a facility in MapReduce where partial aggregation is

done in the map phase. Not only does it increase the performance, but

sometimes it is essential to use if the data set so huge that the reducer is

throwing a stack overflow exception. Usually the reducer and combiner

logic are the same, but this might be necessary depending on how

MapReduce deals with the output.

To implement this word count example, we will follow a particular

design pattern. There will be a root RootBDAS (BDAS stands for Big Data

Analytic System) class that has two abstract methods: a mapper task and a

reducer task. All child classes implement these mapper and reducer tasks.

The main class will create an instance of the child class using reflection,

and in MapReduce map functions call the mapper task of the instance

and the reducer function of the reducer task. The major advantages of this

pattern are that you can do unit testing of the MapReduce functionality

and that it is adaptive. Any new child class addition does not require any

changes in the main class or unit testing. You just have to change the

configuration. Some code may need to implement combiner or partitioner

logics. They have to inherit the ICombiner or IPartitioner interface.

Chapter 7 Analytics at Scale

148

Figure 7-1 shows a class diagram of the system.

Here is the RootBDAS class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

Figure 7-1.  The class diagram

Chapter 7 Analytics at Scale

149

public abstract class RootBDAS {

 �abstract HashMap<String, ArrayList<String>>

mapper_task(String line);

 �abstract HashMap<String, ArrayList<String>>

reducer_task(String key, ArrayList<String> values);

}

Here is the child class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public final class WordCounterBDAS extends RootBDAS{

 @Override

 �HashMap<String, ArrayList<String>> mapper_task

(String line) {

 // TODO Auto-generated method stub

 String[] words = line.split(" ");

 �HashMap<String, ArrayList<String>> result = new

HashMap<String, ArrayList<String>>();

 for(String w : words)

 {

 if(result.containsKey(w))

Chapter 7 Analytics at Scale

150

 {

 �ArrayList<String> vals = result.

get(w);

 vals.add("1");

 result.put(w, vals);

 }

 else

 {

 �ArrayList<String> vals = new

ArrayList<String>();

 vals.add("1");

 result.put(w, vals);

 }

 }

 return result;

 }

 @Override

 �HashMap<String, ArrayList<String>> reducer_task

(String key, ArrayList<String> values) {

 // TODO Auto-generated method stub

 �HashMap<String, ArrayList<String>> result = new

HashMap<String, ArrayList<String>>();

 �ArrayList<String> tempres = new ArrayList

<String>();

 tempres.add(values.size()+ "");

 result.put(key, tempres);

 return result;

 }

}

Chapter 7 Analytics at Scale

151

Here is the WordCounterBDAS utility class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public final class WordCounterBDAS extends RootBDAS{

 @Override

 �HashMap<String, ArrayList<String>> mapper_task

(String line) {

 // TODO Auto-generated method stub

 String[] words = line.split(" ");

 �HashMap<String, ArrayList<String>> result = new

HashMap<String, ArrayList<String>>();

 for(String w : words)

 {

 if(result.containsKey(w))

 {

 �ArrayList<String> vals = result.

get(w);

 vals.add("1");

 result.put(w, vals);

 }

 else

Chapter 7 Analytics at Scale

152

 {

 �ArrayList<String> vals = new

ArrayList<String>();

 vals.add("1");

 result.put(w, vals);

 }

 }

 return result;

 }

 @Override

 �HashMap<String, ArrayList<String>> reducer_task

(String key, ArrayList<String> values) {

 // TODO Auto-generated method stub

 �HashMap<String, ArrayList<String>> result = new

HashMap<String, ArrayList<String>>();

 �ArrayList<String> tempres = new

ArrayList<String>();

 tempres.add(values.size()+ "");

 result.put(key, tempres);

 return result;

 }

}

Here is the MainBDAS class:

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

Chapter 7 Analytics at Scale

153

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public class MainBDAS {

 �public static class MapperBDAS extends

Mapper<LongWritable, Text, Text, Text> {

 �protected void map(LongWritable key, Text value,

Context context)

 �throws IOException, Interrupted

Exception {

 �String classname = context.

getConfiguration().get("classname");

 try {

 �RootBDAS instance = (RootBDAS)

Class.forName(classname).

getConstructor().newInstance();

Chapter 7 Analytics at Scale

154

 String line = value.toString();

 �HashMap<String, ArrayList<String>>

result = instance.mapper_task(line);

 for(String k : result.keySet())

 {

 for(String v : result.get(k))

 {

 �context.write(new

Text(k), new Text(v));

 }

 }

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

 �public static class ReducerBDAS extendsReducer<Text,

Text, Text, Text> {

 �protected void reduce(Text key, Iterable<Text>

values,

 �Context context) throws IOException,

InterruptedException {

 �String classname = context.

getConfiguration().get("classname");

 try {

Chapter 7 Analytics at Scale

155

 �RootBDAS instance = (RootBDAS)

Class.forName(classname).

getConstructor().newInstance();

 �ArrayList<String> vals = new

ArrayList<String>();

 for(Text v : values)

 {

 vals.add(v.toString());

 }

 �HashMap<String, ArrayList<String>>

result = instance.reducer_task(key.

toString(), vals);

 for(String k : result.keySet())

 {

 for(String v : result.get(k))

 {

 �context.write(new

Text(k), new Text(v));

 }

 }

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

 }

Chapter 7 Analytics at Scale

156

 public static void main(String[] args) throws Exception

{

 // TODO Auto-generated method stub

 �String classname = Utility.getClassName(Utility.

configpath);

 Configuration con = new Configuration();

 con.set("classname", classname);

 Job job = new Job(con);

 job.setJarByClass(MainBDAS.class);

 job.setJobName("MapReduceBDAS");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(Text.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 �FileInputFormat.setInputPaths(job, new

Path(args[0]));

 �FileOutputFormat.setOutputPath(job, new

Path(args[1]));

 job.setMapperClass(MapperBDAS.class);

 job.setReducerClass(ReducerBDAS.class);

 System.out.println(job.waitForCompletion(true));

 }

}

Chapter 7 Analytics at Scale

157

To test the example, you can use this unit testing class:

import static org.junit.Assert.*;

import java.util.ArrayList;

import java.util.HashMap;

import org.junit.Test;

public class testBDAS {

 @Test

 public void testMapper() throws Exception{

 �String classname = Utility.getClassName(Utility.

testconfigpath);

 �RootBDAS instance = (RootBDAS) Class.

forName(classname).getConstructor().

newInstance();

 �String line = Utility.getMapperInput(Utility.

testconfigpath);

 �HashMap<String, ArrayList<String>> actualresult =

instance.mapper_task(line);

 �HashMap<String, ArrayList<String>> expectedresult

= Utility.getMapOutput(Utility.testconfigpath);

 for(String key : actualresult.keySet())

 {

 �boolean haskey = expectedresult.

containsKey(key);

 assertEquals(true, haskey);

 �ArrayList<String> actvals = actualresult.

get(key);

 for(String v : actvals)

 {

Chapter 7 Analytics at Scale

158

 �boolean hasval = expectedresult.

get(key).contains(v);

 assertEquals(true, hasval);

 }

 }

 }

 @Test

 public void testReducer(){

 fail();

 }

}

Finally, here are the interfaces:

import java.util.ArrayList;

import java.util.HashMap;

public interface ICombiner {

 HashMap<String, ArrayList<String>> combiner_task(String

key, ArrayList<String> values);

}

public interface IPartitioner {

 public int partitioner_task(String line);

}

Chapter 7 Analytics at Scale

159

�HDFS File System
Other than MapReduce, HDFS is the second component in the

Hadoop framework. It is designed to deal with big data in a distributed

environment for general-purpose low-cost hardware. HDFS is built on top

of the Unix POSSIX file system with some modifications, with the goal of

dealing with streaming data.

The Hadoop cluster consists of two types of host: the name node and

the data node. The name node stores the metadata, controls execution,

and acts like the master of the cluster. The data node does the actual

execution; it acts like a slave and performs instructions sent by the name

node.

�MapReduce Design Pattern
MapReduce is an archetype for processing the data that resides in

hundreds of computers. There are some design patterns that are common

in MapReduce programming.

�Summarization Pattern

In summary, the reducer creates the summary for each key (see Figure 7-2).

The practitioner can be used if you want to sort the data or for any other

purpose. The word count is an example of the summarizer pattern. This

pattern can be used to find the minimum, maximum, and count of data or

to find the average, median, and standard deviation.

Chapter 7 Analytics at Scale

160

�Filtering Pattern

In MapReduce filtering is done in a divide-and-conquer way (Figure 7-3).

Each mapper job filters a subset of data, and the reducer aggregates the

filtered subset and produces the final output. Generating the top N records,

searching data, and sampling data are the common use cases of the

filtering pattern.

Figure 7-2.  Details of the summarization pattern

Figure 7-3.  Details of the filtering pattern

Chapter 7 Analytics at Scale

161

�Join Patterns

In MapReduce, joining (Figure 7-4) can be done on the map side or the

reduce side. For the map side, the join data sets that will be joined should

exist in the same cluster; otherwise, the reduce-side join is required. The

join can be an outer join, inner join, or anti-join.

The following code is an example of the reducer-side join:

package MapreduceJoin;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.lib.MultipleInputs;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.Reducer;

Figure 7-4.  Details of the join pattern

Chapter 7 Analytics at Scale

162

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapred.TextInputFormat;

@SuppressWarnings("deprecation")

public class MapreduceJoin {

//

 @SuppressWarnings("deprecation")

 �public static class JoinReducer extends MapReduceBase

implements Reducer<Text, Text, Text, Text>

 {

 �public void reduce(Text key, Iterator<Text>

values, OutputCollector<Text, Text> output,

Reporter reporter) throws IOException

 {

 �ArrayList<String> translist = new

ArrayList<String>();

 String secondvalue = "";

 while (values.hasNext())

 {

 �String currValue = values.next().

toString().trim();

 if(currValue.contains("trans:")){

 �String[] temp = currValue.

split("trans:");

 if(temp.length > 1)

 �translist.

add(temp[1]);

 }

 if(currValue.contains("sec:"))

Chapter 7 Analytics at Scale

163

 {

 �String[] temp = currValue.

split("sec:");

 if(temp.length > 1)

 secondvalue = temp[1];

 }

 }

 for(String trans : translist)

 {

 �output.collect(key, new Text(trans

+'\t' + secondvalue));

 }

 }

 }

 //

 @SuppressWarnings("deprecation")

 �public static class TransactionMapper extends

MapReduceBase implements Mapper<LongWritable, Text,

Text, Text>

 {

 int index1 = 0;

 public void configure(JobConf job) {

 �index1 = Integer.parseInt(job.

get("index1"));

 }

 �public void map(LongWritable key, Text value,

OutputCollector<Text, Text> output, Reporter

reporter) throws IOException

Chapter 7 Analytics at Scale

164

 {

 String line = value.toString().trim();

 if(line=="") return;

 String splitarray[] = line.split("\t");

 String id = splitarray[index1].trim();

 String ids = "trans:" + line;

 output.collect(new Text(id), new Text(ids));

 }

 }

 //

 @SuppressWarnings("deprecation")

 �public static class SecondaryMapper extends

MapReduceBase implements Mapper<LongWritable, Text,

Text, Text>

 {

 int index2 = 0;

 public void configure(JobConf job) {

 �index2 = Integer.parseInt(job.

get("index2"));

 }

 �public void map(LongWritable key, Text value,

OutputCollector<Text, Text> output, Reporter

reporter) throws IOException

 {

 String line = value.toString().trim();

 if(line=="") return;

 String splitarray[] = line.split("\t");

Chapter 7 Analytics at Scale

165

 String id = splitarray[index2].trim();

 String ids = "sec:" + line;

 output.collect(new Text(id), new Text(ids));

 }

 }

 //

 �@SuppressWarnings({ "deprecation", "rawtypes",

"unchecked" })

 �public static void main(String[] args)

throws IOException, ClassNotFoundException,

InterruptedException {

 // TODO Auto-generated method stub

 JobConf conf = new JobConf();

 conf.set("index1", args[3]);

 conf.set("index2", args[4]);

 conf.setReducerClass(JoinReducer.class);

 �MultipleInputs.addInputPath(conf, new

Path(args[0]), TextInputFormat.class, (Class<?

extends org.apache.hadoop.mapred.Mapper>)

TransactionMapper.class);

 �MultipleInputs.addInputPath(conf, new

Path(args[1]), TextInputFormat.class, (Class<?

extends org.apache.hadoop.mapred.Mapper>)

SecondaryMapper.class);

 Job job = new Job(conf);

 job.setJarByClass(MapreduceJoin.class);

 job.setJobName("MapReduceJoin");

 job.setOutputKeyClass(Text.class);

Chapter 7 Analytics at Scale

166

 job.setOutputValueClass(Text.class);

 �FileOutputFormat.setOutputPath(job, new

Path(args[2]));

 System.out.println(job.waitForCompletion(true));

 }

}

�Spark
After Hadoop, Spark is the next and latest revolution in big data technology.

The major advantage of Spark is that it gives a unified interface to the entire

big data stack. Previously, if you needed a SQL-like interface for big data,

you would use Hive. If you needed real-time data processing, you would

use Storm. If you wanted to build a machine learning model, you would use

Mahout. Spark brings all these facilities under one umbrella. In addition, it

enables in-memory computation of big data, which makes the processing

very fast. Figure 7-5 describes all the components of Spark.

Figure 7-5.  The components of Spark

Chapter 7 Analytics at Scale

167

Spark Core is the fundamental component of Spark. It can run on

top of Hadoop or stand-alone. It abstracts the data set as a resilient

distributed data set (RDD). RDD is a collection of read-only objects.

Because it is read only, there will not be any synchronization problems

when it is shared with multiple parallel operations. Operations on

RDD are lazy. There are two types of operations happening on RDD:

transformation and action. In transformation, there is no execution

happening on a data set. Spark only stores the sequence of operations as

a directed acyclic graph called a lineage. When an action is called, then

the actual execution takes place. After the first execution, the result is

cached in memory. So, when a new execution is called, Spark makes a

traversal of the lineage graph and makes maximum reuse of the previous

computation, and the computation for the new operation becomes the

minimum. This makes data processing very fast and also makes the data

fault tolerant. If any node fails, Spark looks at the lineage graph for the

data in that node and easily reproduces it.

One limitation of the Hadoop framework is that it does not have any

message-passing interface in parallel computation. But there are several

use cases where parallel jobs need to talk with each other. Spark achieves

this using two kinds of shared variable. They are the broadcast variable

and the accumulator. When one job needs to send a message to all other

jobs, the job uses the broadcast variable, and when multiple jobs want to

aggregate their results to one place, they use an accumulator. RDD splits its

data set into a unit called a partition. Spark provides an interface to specify

the partition of the data, which is very effective for future operations

like join or find. The user can specify the storage type of partition in

Spark. Spark has a programming interface in Python, Java, and Scala. The

following code is an example of a word count program in Spark:

Chapter 7 Analytics at Scale

168

val conf = new SparkConf().setAppName("wiki_test") // create a

spark config object

val sc = new SparkContext(conf) // Create a spark context

val data = sc.textFile("/path/to/somedir") // Read files from

"somedir" into an RDD of (filename, content) pairs.

val tokens = data.flatMap(_.split(" ")) // Split each file into

a list of tokens (words).

val wordFreq = tokens.map((_, 1)).reduceByKey(_ + _) // Add a

count of one to each token, then sum the counts per word type.

wordFreq.sortBy(s => -s._2).map(x => (x._2, x._1)).top(10)

// Get the top 10 words. Swap word and count to sort by count.

On top of Spark Core, Spark provides the following:

•	 Spark SQL, which is a SQL interface through the

command line or a database connector interface. It

also provides a SQL interface for the Spark data frame

object.

•	 Spark Streaming, which enables you to process

streaming data in real time.

•	 MLib, a machine learning library to build analytical

models on Spark data.

•	 GraphX, a distributed graph processing framework.

�Analytics in the Cloud
Like many other fields, analytics is being impacted by the cloud. It is

affected in two ways. Big cloud providers are continuously releasing

machine learning APIs. So, a developer can easily write a machine

learning application without worrying about the underlining algorithm.

For example, Google provides APIs for computer vision, natural language,

Chapter 7 Analytics at Scale

169

speech processing, and many more. A user can easily write code that can

give the sentiment of an image of a face or voice in two or three lines of

code.

The second aspect of the cloud is in the data engineering part.

In Chapter 1 I gave an example of how to expose a model as a high-

performance REST API using Falcon. Now if a million users are going to

use it and if the load varies by much, then autoscale is a required feature

of this application. If you deploy the application in Google App Engine

or AWS Lambda, you can achieve the autoscale feature in 15 minutes.

Once the application is autoscaled, you need to think about the database.

DynamoDB from Amazon and Cloud Datastore by Google are autoscaled

databases in the cloud. If you use one of them, your application is now

high performance and autoscaled, but people around globe will access it,

so the geographical distance will create extra latency or a negative impact

on performance. You also have to make sure that your application is always

available. Further, you need to deploy your application in three regions:

Europe, Asia, and the United States (you can choose more regions if your

budget permits). If you use an elastic load balancer with a geobalancing

routing rule, which routes the traffic from a region to the app engine of

that region, then it will be available across the globe. In geobalancing,

you can mention a secondary app engine for each rule, which makes

your application highly available. If a primary app engine is down, the

secondary app engine will take care of the things.

Figure 7-6 describes this system.

Chapter 7 Analytics at Scale

170

In Chapter 1 I showed some example code of publishing a deep

learning model as a REST API. The following code is the implementation of

the same logic in a cloud environment where the other storage is replaced

by a Google data store:

import falcon

from falcon_cors import CORS

import json

import pygeoip

import json

import datetime as dt

import ipaddress

import math

from concurrent.futures import *

import numpy as np

from google.cloud import datastore

def logit(x):

 return (np.exp(x) / (1 + np.exp(x)))

def is_visible(client_size, ad_position):

Elastic load balancer

System instance 1

Primary: Asia

Secondary: US

System instance 2

Primary: US

Secondary: Europe

System instance 3

Primary: Europe

Secondary: Asia

Figure 7-6.  The system

Chapter 7 Analytics at Scale

171

 y=height=0

 try:

 height = int(client_size.split(',')[1])

 y = int(ad_position.split(',')[1])

 except:

 pass

 if y < height:

 return "1"

 else:

 return "0"

class Predictor(object):

 def __init__(self,domain,is_big):

 self.client = datastore.Client('sulvo-east')

 self.ctr = 'ctr_' + domain

 self.ip = "ip_" + domain

 self.scores = "score_num_" + domain

 self.probabilities = "probability_num_" + domain

 if is_big:

 self.is_big = "is_big_num_" + domain

 self.scores_big = "score_big_num_" + domain

 �self.probabilities_big = "probability_big_

num_" + domain

 self.gi = pygeoip.GeoIP('GeoIP.dat')

 self.big = is_big

 self.domain = domain

 def get_hour(self,timestamp):

 �return dt.datetime.utcfromtimestamp(timestamp /

1e3).hour

Chapter 7 Analytics at Scale

172

 def fetch_score(self, featurename, featurevalue, kind):

 pred = 0

 try:

 �key = self.client.key(kind,featurename +

"_" + featurevalue)

 res= self.client.get(key)

 if res is not None:

 pred = res['score']

 except:

 pass

 return pred

 def get_score(self, featurename, featurevalue):

 with ThreadPoolExecutor(max_workers=5) as pool:

 �future_score = pool.submit(self.fetch_

score,featurename, featurevalue,self.

scores)

 �future_prob = pool.submit(self.fetch_

score,featurename, featurevalue,self.

probabilities)

 if self.big:

 �future_howbig = pool.submit(self.

fetch_score,featurename,

featurevalue,self.is_big)

 �future_predbig = pool.submit(self.

fetch_score,featurename,

featurevalue,self.scores_big)

 �future_probbig = pool.submit(self.

fetch_score,featurename,

featurevalue,self.probabilities_big)

 pred = future_score.result()

 prob = future_prob.result()

Chapter 7 Analytics at Scale

173

 if not self.big:

 return pred, prob

 howbig = future_howbig.result()

 pred_big = future_predbig.result()

 prob_big = future_probbig.result()

 return howbig, pred, prob, pred_big, prob_big

 def get_value(self, f, value):

 if f == 'visible':

 fields = value.split("_")

 value = is_visible(fields[0], fields[1])

 if f == 'ip':

 �ip = str(ipaddress.IPv4Address(ipaddress.

ip_address(value)))

 geo = self.gi.country_name_by_addr(ip)

 if self.big:

 �howbig1,pred1, prob1, pred_big1,

prob_big1 = self.get_score('geo',

geo)

 else:

 �pred1, prob1 = self.get_score('geo',

geo)

 freq = '1'

 key = self.client.key(self.ip,ip)

 res = self.client.get(key)

 if res is not None:

 freq = res['ip']

 if self.big:

 �howbig2, pred2, prob2, pred_

big2, prob_big2 = self.get_

score('frequency', freq)

Chapter 7 Analytics at Scale

174

 else:

 �pred2, prob2 = self.get_

score('frequency', freq)

 if self.big:

 �return (howbig1 + howbig2), (pred1 +

pred2), (prob1 + prob2), (pred_big1

+ pred_big2), (prob_big1 + prob_

big2)

 else:

 return (pred1 + pred2), (prob1 + prob2)

 if f == 'root':

 try:

 res = client.get('root', value)

 if res is not None:

 ctr = res['ctr']

 avt = res['avt']

 avv = res['avv']

 if self.big:

 �(howbig1,pred1,prob1,pred_

big1,prob_big1) = self.

get_score('ctr', str(ctr))

 �(howbig2,pred2,prob2,pred_

big2,prob_big2) = self.

get_score('avt', str(avt))

 �(howbig3,pred3,prob3,pred_

big3,prob_big3) = self.

get_score('avv', str(avv))

 �(howbig4,pred4,prob4,pred_

big4,prob_big4) = self.

get_score(f, value)

Chapter 7 Analytics at Scale

175

 else:

 �(pred1,prob1) = self.get_

score('ctr', str(ctr))

 �(pred2,prob2) = self.get_

score('avt', str(avt))

 �(pred3,prob3) = self.get_

score('avv', str(avv))

 �(pred4,prob4) = self.get_

score(f, value)

 if self.big:

 �return (howbig1 + howbig2 +

howbig3 + howbig4), (pred1

+ pred2 + pred3 + pred4),

(prob1 + prob2 + prob3 +

prob4),(pred_big1 + pred_

big2 + pred_big3 + pred_

big4),(prob_big1 + prob_big2

+ prob_big3 + prob_big4)

 else:

 �return (pred1 + pred2 + pred3

+ pred4), (prob1 + prob2 +

prob3 + prob4)

 except:

 return 0,0

 if f == 'client_time':

 value = str(self.get_hour(int(value)))

 return self.get_score(f, value)

 def get_multiplier(self):

 �key = self.client.key('multiplier_all_num',

self.domain)

 res = self.client.get(key)

Chapter 7 Analytics at Scale

176

 high = res['high']

 low = res['low']

 if self.big:

 �key = self.client.key('multiplier_

all_num', self.domain + "_big")

 res = self.client.get(key)

 high_big = res['high']

 low_big = res['low']

 return high, low, high_big, low_big

 return high, low

 def on_post(self, req, resp):

 if True:

 �input_json = json.loads(req.stream.

read(),encoding='utf-8')

 �input_json['visible'] = input_json['client_

size'] + "_" + input_json['ad_position']

 del input_json['client_size']

 del input_json['ad_position']

 howbig = 0

 pred = 0

 prob = 0

 pred_big = 0

 prob_big = 0

 worker = ThreadPoolExecutor(max_workers=1)

 thread = worker.submit(self.get_multiplier)

 �with ThreadPoolExecutor(max_workers=8) as

pool:

 �future_array = { pool.submit(self.

get_value,f,input_json[f]) : f for f

in input_json}

Chapter 7 Analytics at Scale

177

 �for future in as_completed(future_

array):

 if self.big:

 �howbig1, pred1,

prob1,pred_big1,prob_

big1 = future.result()

 pred = pred + pred1

 �pred_big = pred_big +

pred_big1

 prob = prob + prob1

 �prob_big = prob_big +

prob_big1

 �howbig = howbig +

howbig

 else:

 �pred1, prob1 = future.

result()

 pred = pred + pred1

 prob = prob + prob1

 if self.big:

 if howbig > .65:

 �pred, prob = pred_big, prob_

big

 resp.status = falcon.HTTP_200

 res = math.exp(pred)-1

 if res < 0.1:

 res = 0.1

 if prob < 0.1 :

 prob = 0.1

Chapter 7 Analytics at Scale

178

 if prob > 0.9:

 prob = 0.9

 if self.big:

 �high, low, high_big, low_big =

thread.result()

 if howbig > 0.6:

 high = high_big

 low = low_big

 else:

 high, low = thread.result()

 multiplier = low + (high -low)*prob

 res = multiplier*res

 resp.body = str(res)

 #except Exception,e:

 # print(str(e))

 # resp.status = falcon.HTTP_200

 # resp.body = str("0.1")

cors = CORS(allow_all_origins=True,allow_all_

methods=True,allow_all_headers=True)

wsgi_app = api = falcon.API(middleware=[cors.middleware])

f = open('publishers2.list_test')

for line in f:

 if "#" not in line:

 fields = line.strip().split('\t')

 domain = fields[0].strip()

 big = (fields[1].strip() == '1')

 p = Predictor(domain, big)

 url = '/predict/' + domain

 api.add_route(url, p)

f.close()

Chapter 7 Analytics at Scale

179

You can deploy this application in the Google App Engine with the

following:

gcloud app deploy --prject <prject id> --version <version no>

�Internet of Things
The IoT is simply the network of interconnected things/devices embedded

with sensors, software, network connectivity, and necessary electronics

that enable them to collect and exchange data, making them responsive.

The field is emerging with the rise of technology just like big data, real-

time analytics frameworks, mobile communication, and intelligent

programmable devices. In the IoT, you can do the analysis of data on the

server side using the techniques shown throughout the book; you can also

put logic on the device side using the Raspberry Pi, which is an embedded

system version of Python.

Chapter 7 Analytics at Scale

181© Sayan Mukhopadhyay 2018
S. Mukhopadhyay, Advanced Data Analytics Using Python,
https://doi.org/10.1007/978-1-4842-3450-1

Index

A
Agglomerative hierarchical

clustering, 89
API, 33

get_score, 18–22
GUI, 17

ARMA, see Autoregressive moving-
average (ARMA)

AR model, see Autoregressive (AR)
model

Artificial neural network (ANN), 99
Autoregressive (AR) model

parameters, 134–136
time series, 134

Autoregressive moving-average
(ARMA), 137–139

Average linkage method, 91
AWS Lambda, 169

B
Backpropagation network (BPN)

algorithm, 104–105
computer systems, 100
definition, 100
fetch-execute cycle, 100
generalized delta rule, 100
hidden layer weights, 102–104

mapping network, 100
output layer weights, 101, 104

Basket trading, 97

C
Clique, 97
Cloud Datastore by Google,

168–172, 174, 176–178
Clustering

business owners, 77
centroid, radius, and

diameter, 97
and classification, 78
distances

edit, 85–86
Euclidean, 83–84
general, 84
properties, 82
squared Euclidean, 84

document, 78
elbow method, 82
hierarchical (see Hierarchical

clustering)
K-means, 78–81
machine learning algorithm, 98
similarity types, 87–88
wine-making industry, 77

https://doi.org/10.1007/978-1-4842-3450-1

182

Collaborative filtering, 52
Complete linkage method, 91
Correlogram, 129
Curve fitting method, 68

D
Decision tree

entropy, 59
good weather, 59
information gain, 60
parameter, 59
random forest classifier, 60–61

Divisive hierarchical
clustering, 92

DynamoDB, 169

E
Edit distance

Levenshtein, 85
Needleman–Wunsch

algorithm, 86–87
Elasticsearch (ES)

API, 33
connection_class, 31–32
Kibana, 31
Logstash, 31

Euclidean distance, 83–84
Exponential smoothing, 124
Extract, transform, and load (ETL)

API, 34
e-mail parsing, 40–42
ES (see Elasticsearch (ES))

in-memory database (see
In-memory database)

MongoDB (see MongoDB)
MySQL (see MySQL)
Neo4j, 34
Neo4j REST, 35
topical crawling, 40, 42–48

F
Fourier Transform, 140

G
Gaussian distribution data, 127
Google Cloud Datastore, 168–172,

174, 176–178

H
Hadoop

combiner function, 147
class diagram, 148
interfaces, 158
MainBDAS class, 152–155
RootBDAS class, 147, 150
unit testing class, 157–158
WordCounterBDAS utility

class, 151–152
HDFS file system, 159
MapReduce design pattern

filtering, 160
joining, 161–163, 165–166
summarization, 159–160

Index

183

MapReduce programming,
145–146

partitioning function, 146
HDFS file system, 159
Hierarchical clustering

bottom-up approach, 89–90
centroid, radius, and

diameter, 97
definition, 88
distance between clusters

average linkage method, 91
complete linkage method, 91
single linkage method, 90

graph theoretical approach, 97
top-down approach, 92–96

Holt-Winters model, 124–125

I, J
Image recognition, 67
In-memory database, 35
Internet of Things (IoT), 179

K
Kibana, 31
K-means clustering, 78–81

L
Least square estimation, 68–69
Levenshtein distance, 85
Logistic regression, 69–70
Logstash, 31

M
MA model, see Moving-average

(MA) model
MapReduce programming,

145–146
MongoDB

database object, 37
document database, 36
insert data, 38
mongoimport, 36
pandas, 38–39
pymongo, 37
remove data, 38
update data, 38

Moving-average (MA) model,
131–133

Mutual information (MI), 56
MySQL

COMMIT, 28
database, 24
DELETE, 26–27
INSERT, 24–25
installation, 23–24
READ, 25–26
ROLL-BACK, 28–31
UPDATE, 27–28

N
Naive Bayes classifier, 61–62
Nearest neighbor classifier, 64
Needleman–Wunsch

algorithm, 86–87

Index

184

Neo4j, 34
Neo4j REST, 35
Neural networks

BPN (see Backpropagation
network (BPN))

definition, 99
Hebb’s postulate, 106
layers, 99
passenger load, 99
RNN, 113, 115–116, 118–119
TensorFlow, 106, 108–109,

111–112

O
Object-oriented programming

(OOP), 3–9, 11–12
Ordinary least squares (OLS),

68–69

P, Q
Pearson correlation, 50–52
Permanent component, 125
Principal component analysis,

53–55
Python

API, 17–22
high-performance

applications, 2
IoT, 1
microservice, 14–17
NLP, 13–14

OOP, 3–9, 11–12
R, 13

R
Random forest classifier, 60–61
Recurrent neural network (RNN),

113, 115–116, 118–119
Regression, 68

and classification, 70
least square estimation, 68–69
logistic, 69–70

Resilient distributed data set
(RDD), 167

RNN, see Recurrent neural network
(RNN)

S
Sample autocorrelation

coefficients, 129
Sample autocorrelation function,

129
Seasonality, time series

airline passenger loads, 124
exponential smoothing, 124
Holt-Winters model, 124–125
permanent component, 125
removing

differencing, 126
filtering, 125–126

Semisupervised learning, 58
Sentiment analysis, 65–66

Index

185

Single linkage method, 90
Spark

advantage, 166
broadcast variable, 167
components, 166
lineage, 167
message-passing

interface, 167
partition, 167
RDD, 167
shared variable, 167
Spark Core, 168
word count program, 167

Squared Euclidean distance, 84
Stationary time series

autocorrelation and
correlogram, 129, 130

autocovariance, 129
description, 128
joint distribution, 128

Supervised learning
classifications, 57
dealing, categorical

data, 73–76
decision tree, 59–61
dimensionality reduction

investment banking, 50
mutual information (MI), 56
Pearson correlation, 50–52
principal component

analysis, 53–55
survey/factor analysis, 49
weighted average of

instruments, 50

image recognition, 67
Naive Bayes classifier, 61–62
nearest neighbor

classifier, 64
over-or under-predict

intentionally, 71–72
regression (see Regression)
semi, 58
sentiment analysis, 65–66
support vector

machine, 62–63
Support vector machine, 62–63

T
Topical crawling, 40
TensorFlow

logistic regresson, 111–112
multilayer linear regression,

108–109, 111
simple linear regression,

106, 108
Time series

ARMA models, 137–139
AR model, 133
definition, 121
exceptional scenario, 141, 143
Fourier Transform, 140
MA model, 131–133
missing data, 143
SciPy, 130
seasonality, 124–126
stationary (see Stationary time

series)

Index

186

transformation
cyclic variation, 127
data distribution

normal, 127
irregular fluctuations, 128
seasonal effect additive, 127
variance stabilization, 126

trends, 121–122

curve fitting, 122
removing, 123–124

variation, 121
Topical crawling, 42–48

U, V, W, X, Y, Z
Unsupervised learning, see

Clustering

Time series (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction
	Why Python?
	When to Avoid Using Python
	OOP in Python
	Calling Other Languages in Python
	Exposing the Python Model as a Microservice
	High-Performance API and Concurrent Programming

	Chapter 2: ETL with Python (Structured Data)
	MySQL
	How to Install MySQLdb?
	Database Connection
	INSERT Operation
	READ Operation
	DELETE Operation
	UPDATE Operation
	COMMIT Operation
	ROLL-BACK Operation

	Elasticsearch
	Connection Layer API

	Neo4j Python Driver
	neo4j-rest-client
	In-Memory Database
	MongoDB (Python Edition)
	Import Data into the Collection
	Create a Connection Using pymongo
	Access Database Objects
	Insert Data
	Update Data
	Remove Data

	Pandas
	ETL with Python (Unstructured Data)
	E-mail Parsing
	Topical Crawling
	Crawling Algorithms

	Chapter 3: Supervised Learning Using Python
	Dimensionality Reduction with Python
	Correlation Analysis
	Principal Component Analysis
	Mutual Information

	Classifications with Python
	Semisupervised Learning
	Decision Tree
	Which Attribute Comes First?
	Random Forest Classifier

	Naive Bayes Classifier
	Support Vector Machine
	Nearest Neighbor Classifier
	Sentiment Analysis
	Image Recognition
	Regression with Python
	Least Square Estimation
	Logistic Regression

	Classification and Regression
	Intentionally Bias the Model to Over-Fit or Under-Fit
	Dealing with Categorical Data

	Chapter 4: Unsupervised Learning: Clustering
	K-Means Clustering
	Choosing K: The Elbow Method
	Distance or Similarity Measure
	Properties
	General and Euclidean Distance
	Squared Euclidean Distance
	Distance Between String-Edit Distance
	Levenshtein Distance
	Needleman–Wunsch Algorithm

	Similarity in the Context of Document
	Types of Similarity

	What Is Hierarchical Clustering?
	Bottom-Up Approach
	Algorithm

	Distance Between Clusters
	Single Linkage Method
	Complete Linkage Method
	Average Linkage Method

	Top-Down Approach
	Algorithm

	Graph Theoretical Approach
	How Do You Know If the Clustering Result Is Good?

	Chapter 5: Deep Learning and Neural Networks
	Backpropagation
	Backpropagation Approach
	Generalized Delta Rule
	Update of Output Layer Weights
	Update of Hidden Layer Weights
	BPN Summary

	Backpropagation Algorithm
	Other Algorithms
	TensorFlow
	Recurrent Neural Network

	Chapter 6: Time Series
	Classification of Variation
	Analyzing a Series Containing a Trend
	Curve Fitting
	Removing Trends from a Time Series

	Analyzing a Series Containing Seasonality
	Removing Seasonality from a Time Series
	By Filtering
	By Differencing

	Transformation
	To Stabilize the Variance
	To Make the Seasonal Effect Additive
	To Make the Data Distribution Normal
	Cyclic Variation
	Irregular Fluctuations

	Stationary Time Series
	Stationary Process
	Autocorrelation and the Correlogram
	Estimating Autocovariance and Autocorrelation Functions

	Time-Series Analysis with Python
	Useful Methods
	Moving Average Process
	Fitting Moving Average Process

	Autoregressive Processes
	Estimating Parameters of an AR Process

	Mixed ARMA Models
	Integrated ARMA Models
	The Fourier Transform
	An Exceptional Scenario
	Missing Data

	Chapter 7: Analytics at Scale
	Hadoop
	MapReduce Programming
	Partitioning Function
	Combiner Function
	HDFS File System
	MapReduce Design Pattern
	Summarization Pattern
	Filtering Pattern
	Join Patterns

	Spark
	Analytics in the Cloud
	Internet of Things

	Index

