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CHAPTER 1

Introduction
In this book, I assume that you are familiar with Python programming. 

In this introductory chapter, I explain why a data scientist should choose 

Python as a programming language. Then I highlight some situations 

where Python is not a good choice. Finally, I describe some good practices 

in application development and give some coding examples that a data 

scientist needs in their day-to-day job.

�Why Python?
So, why should you choose Python?

•	 It has versatile libraries. You always have a ready-

made library in Python for any kind of application. 

From statistical programming to deep learning to 

network application to web crawling to embedded 

systems, you will always have a ready-made library in 

Python. If you learn this language, you do not have to 

stick to a specific use case. R has a rich set of analytics 

libraries, but if you are working on an Internet of Things 

(IoT) application and need to code in a device-side 

embedded system, it will be difficult in R.
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•	 It is very high performance. Java is also a versatile 

language and has lots of libraries, but Java code runs 

on a Java virtual machine, which adds an extra layer 

of latency. Python uses high-performance libraries 

built in other languages. For example, SciPy uses 

LAPACK, which is a Fortran library for linear algebra 

applications. TensorFlow uses CUDA, which is a C 

library for parallel GPU processing.

•	 It is simple and gives you a lot of freedom to code. 

Python syntax is just like a natural language. It is easy to 

remember, and it does not have constraints in variables 

(like constants or public/private).

�When to Avoid Using Python
Python has some downsides too.

•	 When you are writing very specific code, Python may 

not always be the best choice. For example, if you are 

writing code that deals only with statistics, R is a better 

choice. If you are writing MapReduce code only, Java is 

a better choice than Python.

•	 Python gives you a lot of freedom in coding. So, when 

many developers are working on a large application, 

Java/C++ is a better choice so that one developer/

architect can put constraints on another developer’s 

code using public/private and constant keywords.

•	 For extremely high-performance applications, there is 

no alternative to C/C++.

Chapter 1  Introduction
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�OOP in Python
Before proceeding, I will explain some features of object-oriented 

programming (OOP) in a Python context.

The most basic element of any modern application is an object. To 

a programmer or architect, the world is a collection of objects. Objects 

consist of two types of members: attributes and methods. Members can be 

private, public, or protected. Classes are data types of objects. Every object 

is an instance of a class. A class can be inherited in child classes. Two 

classes can be associated using composition.

In a Python context, Python has no keywords for public, private, or 

protected, so encapsulation (hiding a member from the outside world) 

is not implicit in Python. Like C++, it supports multilevel and multiple 

inheritance. Like Java, it has an abstract keyword. Classes and methods 

both can be abstract.

The following code is an example of a generic web crawler that is 

implemented as an airline’s web crawler on the Skytrax site and as a retail 

crawler for the Mouthshut.com site. I’ll return to the topic of web crawling 

in Chapter 2.

from abc import ABCMeta, abstractmethod

import BeautifulSoup

import urllib

import sys

import bleach

#################### Root Class (Abstract) ####################

class SkyThoughtCollector(object):

       __metaclass__ = ABCMeta

       baseURLString = "base_url"

       airlinesString = "air_lines"

       limitString = "limits"
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       baseURl = ""

       airlines = []

       limit = 10

       @abstractmethod

       def collectThoughts(self):

             �print "Something Wrong!! You're calling  

an abstract method"

       @classmethod

       def getConfig(self, configpath):

             #print "In get Config"

             config = {}

             conf = open(configpath)

             for line in conf:

                    if ("#" not in line):

                          words = line.strip().split('=')

                          �config[words[0].strip()] = words[1].

strip()

             #print config

             self.baseURl = config[self.baseURLString]

             if config.has_key(self.airlinesString):

                    �self.airlines = config[self.

airlinesString].split(',')

             if config.has_key(self.limitString):

                    self.limit = int(config[self.limitString])

             #print self.airlines

       def downloadURL(self, url):

             #print "downloading url"

             pageFile = urllib.urlopen(url)
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             if pageFile.getcode() != 200:

                    return "Problem in URL"

             pageHtml = pageFile.read()

             pageFile.close()

             return "".join(pageHtml)

       def remove_junk(self, arg):

             f = open('junk.txt')

             for line in f:

                    arg.replace(line.strip(),'')

             return arg

       def print_args(self, args):

             out =''

             last = 0

             for arg in args:

                    if args.index(arg) == len(args) -1:

                          last = 1

                    reload(sys)

                    sys.setdefaultencoding("utf-8")

                    �arg = arg.decode('utf8','ignore').

encode('ascii','ignore').strip()

                    arg = arg.replace('\n',' ')

                    arg = arg.replace('\r','')

                    arg = self.remove_junk(arg)

                    if last == 0:

                          out = out + arg + '\t'

                    else:

                          out = out + arg

             print out
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####################### Airlines Chield #######################

class AirLineReviewCollector(SkyThoughtCollector):

      months = ['January', 'February', 'March', 'April', 'May', 

'June', 'July', 'August', 'September', 'October', 'November', 

'December' ]

       def __init__(self, configpath):

             #print "In Config"

       super(AirLineReviewCollector,self).getConfig(configpath)

       def parseSoupHeader(self, header):

             #print "parsing header"

             name = surname = year = month = date = country =''

             txt = header.find("h9")

             words = str(txt).strip().split(' ')

             for j in range(len(words)-1):

                    if words[j] in self.months:

                          date = words[j-1]

                          month= words[j]

                          year = words[j+1]

                          name = words[j+3]

                          surname = words[j+4]

             if ")" in words[-1]:

                    country = words[-1].split(')')[0]

             if "(" in country:

                    country = country.split('(')[1]

             else:

                    country = words[-2].split('(')[1] + country

             return (name, surname, year, month, date, country)
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       def parseSoupTable(self, table):

             #print "parsing table"

             images = table.findAll("img")

             �over_all = str(images[0]).split("grn_bar_")[1].

split(".gif")[0]

             �money_value = str(images[1]).split("SCORE_")[1].

split(".gif")[0]

             �seat_comfort = str(images[2]).split("SCORE_")[1].

split(".gif")[0]

             �staff_service = str(images[3]).split("SCORE_")[1].

split(".gif")[0]

             �catering = str(images[4]).split("SCORE_")[1].

split(".gif")[0]

             �entertainment = str(images[4]).split("SCORE_")[1].

split(".gif")[0]

             if 'YES' in str(images[6]):

                    recommend = 'YES'

             else:

                    recommend = 'NO'

             status = table.findAll("p", {"class":"text25"})

             stat = str(status[2]).split(">")[1].split("<")[0]

             �return (stat, over_all, money_value, seat_comfort, 

staff_service, catering, entertainment, recomend)

       def collectThoughts(self):

             #print "Collecting Thoughts"

             for al in AirLineReviewCollector.airlines:

                    count = 0

                    while count < AirLineReviewCollector.limit:

                          count = count + 1

                          url = ''
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                          if count == 1:

                                 �url = AirLineReviewCollector.

baseURl + al + ".htm"

                          else:

                                 �url = AirLineReviewCollector.

baseURl + al + "_"+str(count)+ 

".htm"

                          �soup = BeautifulSoup.BeautifulSoup 

(super(AirLineReviewCollector,self).

downloadURL(url))

                          �blogs = soup.findAll("p", 

{"class":"text2"})

                          �tables = soup.findAll("table", 

{"width":"192"})

                          �review_headers = soup.findAll("td", 

{"class":"airport"})

                          for i in range(len(tables)-1):

                                 �(name, surname, year, month, 

date, country) = self.parse 

SoupHeader(review_headers[i])

                                 �(stat, over_all, money_value, 

seat_comfort, staff_service, 

catering, entertainment, 

recomend) = self.parseSoup 

Table(tables[i])

                                 �blog = str(blogs[i]).

split(">")[1].split("<")[0]

                                 �args = [al, name, surname, 

year, month, date, country, 

stat, over_all, money_value, 

seat_comfort, staff_service, 

catering, entertainment, 

recomend, blog]
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                                        �super(AirLineReviewCo

llector,self).print_

args(args)

######################## Retail Chield ########################

class RetailReviewCollector(SkyThoughtCollector):

       def __init__(self, configpath):

             #print "In Config"

       super(RetailReviewCollector,self).getConfig(configpath)

       def collectThoughts(self):

             �soup = BeautifulSoup.BeautifulSoup(super(RetailRev

iewCollector,self).downloadURL(RetailReviewCollect

or.baseURl))

             �lines = soup.findAll("a",{"style": 

"font-size:15px;"})

             links = []

             for line in lines:

                    �if ("review" in str(line)) & ("target" in 

str(line)):

                          ln = str(line)

                          �link = ln.split("href=")[-1].split 

("target=")[0].replace("\"","").

strip()

                          links.append(link)

             for link in links:

                    �soup = BeautifulSoup.BeautifulSoup(

super(RetailReviewCollector,self).

downloadURL(link))
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                    �comment = bleach.clean(str(soup.findAll("di

v",{"itemprop":"description"})[0]),tags=[], 

strip=True)

                    �tables = soup.findAll("table", 

{"class":"smallfont space0 pad2"})

                    �parking = ambience = range = economy = 

product = 0

                    for table in tables:

                          if "Parking:" in str(table):

                                 �rows = table.findAll("tbody")

[0].findAll("tr")

                                 for row in rows:

                                       �if "Parking:" in 

str(row):

                                              �parking = 

str(row).

count("read-

barfull")

                                       �if "Ambience" in 

str(row):

                                              �ambience = 

str(row).

count("read-

barfull")

                                       if "Store" in str(row):

                                              �range = str(row).

count("read-

barfull")
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                                       if "Value" in str(row):

                                              �economy = 

str(row). 

count("read-

barfull")

                                       if "Product" in str(row):

                                              �product = 

str(row).count 

("smallratefull")

                    �author = bleach.clean(soup.findAll("spa

n",{"itemprop":"author"})[0], tags=[], 

strip=True)

                    �date = soup.findAll("meta",{"itemprop":"dat

ePublished"})[0]["content"]

                    �args = [date, author,str(parking), 

str(ambience),str(range), str(economy), 

str(product), comment]

                                        �super(RetailReview 

Collector,self).print_

args(args)

######################## Main Function ########################

if __name__ == "__main__":

       if sys.argv[1] == 'airline':

             instance = AirLineReviewCollector(sys.argv[2])

             instance.collectThoughts()

       else:

             if sys.argv[1] == 'retail':

                    �instance = RetailReviewCollector(sys.argv[2])

                    instance.collectThoughts()
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             else:

                    print "Usage is"

                    �print sys.argv[0], '<airline/retail>', 

"<Config File Path>"

The configuration for the previous code is shown here:

base_url = http://www.airlinequality.com/Forum/

#base_url = http://www.mouthshut.com/product-reviews/Mega-Mart-

Bangalore-reviews-925103466

#base_url = http://www.mouthshut.com/product-reviews/Megamart-

Chennai-reviews-925104102

air_lines = emrts,brit_awys,ual,biman,flydubai

limits = 10

I’ll now discuss the previous code in brief. It has a root class that is an 

abstract class. It contains essential attributes such as a base URL and a 

page limit; these are essential for all child classes. It also contains common 

logic in class method functions such as the download URL, print output, 

and read configuration. It also has an abstract method collectThoughts, 

which must be implemented in child classes. This abstract method is 

passing on a common behavior to every child class that all of them must 

collect thoughts from the Web. Implementations of this thought collection 

are child specific.

�Calling Other Languages in Python
Now I will describe how to use other languages’ code in Python. There are 

two examples here; one is calling R code from Python. R code is required 

for some use cases. For example, if you want a ready-made function for the 

Holt-Winter method in a time series, it is difficult to do in Python. But it is 
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available in R. So, you can call R code from Python using the rpy2 module, 

as shown here:

import rpy2.robjects as ro

ro.r('data(input)')

ro.r('x <-HoltWinters(input)')

Sometimes you need to call Java code from Python. For example, 

say you are working on a name entity recognition problem in the field of 

natural language processing (NLP); some text is given as input, and you 

have to recognize the names in the text. Python’s NLTK package does have 

a name entity recognition function, but its accuracy is not good. Stanford 

NLP is a better choice here, which is written in Java. You can solve this 

problem in two ways.

•	 You can call Java at the command line using  

Python code.

import subprocess

subprocess.call(['java','-cp','*','edu.

stanford.nlp.sentiment.SentimentPipeline', 

'-file','foo.txt'])

•	 You can expose Stanford NLP as a web service and call 

it as a service.

nlp = StanfordCoreNLP('http://127.0.0.1:9000')

output = nlp.annotate(sentence, properties={

 "annotators": "tokenize,ssplit,parse,sentiment",

 "outputFormat": "json",

 # Only split the sentence at End Of Line. 

We assume that this method only takes in one 

single sentence.

 "ssplit.eolonly": "true",
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 # Setting enforceRequirements to skip some 

annotators and make the process faster

 "enforceRequirements": "false"

 })

�Exposing the Python Model 
as a Microservice
You can expose the Python model as a microservice in the same way as 

your Python model can be used by others to write their own code. The best 

way to do this is to expose your model as a web service. As an example, the 

following code exposes a deep learning model using Flask:

from flask import Flask, request, g

from flask_cors import CORS

import tensorflow as tf

from sqlalchemy import *

from sqlalchemy.orm import sessionmaker

import pygeoip

from pymongo import MongoClient

import json

import datetime as dt

import ipaddress

import math

app = Flask(__name__)

CORS(app)

@app.before_request

def before():

       db = create_engine('sqlite:///score.db')

       metadata = MetaData(db)

Chapter 1  Introduction



15

       g.scores = Table('scores', metadata, autoload=True)

       Session = sessionmaker(bind=db)

       g.session = Session()

       client = MongoClient()

       g.db = client.frequency

       g.gi = pygeoip.GeoIP('GeoIP.dat')

       sess = tf.Session()

       new_saver = tf.train.import_meta_graph('model.obj.meta')

       new_saver.restore(sess, tf.train.latest_checkpoint('./'))

       all_vars = tf.get_collection('vars')

       g.dropped_features = str(sess.run(all_vars[0]))

       g.b = sess.run(all_vars[1])[0]

       return

def get_hour(timestamp):

       return dt.datetime.utcfromtimestamp(timestamp / 1e3).hour

def get_value(session, scores, feature_name, feature_value):

       �s = scores.select((scores.c.feature_name == feature_

name) & (scores.c.feature_value == feature_value))

       rs = s.execute()

       row = rs.fetchone()

       if row is not None:

             return float(row['score'])

       else:

             return 0.0
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@app.route('/predict', methods=['POST'])

def predict():

       input_json = request.get_json(force=True)

       �features = ['size','domain','client_time','device', 

'ad_position','client_size', 'ip','root']

       predicted = 0

       feature_value = ''

       for f in features:

             if f not in g.dropped_features:

                    if f == 'ip':

                          �feature_value = str(ipaddress.

IPv4Address(ipaddress.ip_address 

(unicode(request.remote_addr))))

                    else:

                          feature_value = input_json.get(f)

                    if f == 'ip':

                          if 'geo' not in g.dropped_features:

                                 �geo = g.gi.country_name_by_

addr(feature_value)

                                 �predicted = predicted + get_

value(g.session, g.scores, 

'geo', geo)

                          �if 'frequency' not in g.dropped_

features:

                                 �res = g.db.frequency.find_

one({"ip" : feature_value})

                                 freq = 1

                                 if res is not None:

                                       freq = res['frequency']

                                 �predicted = predicted + get_

value(g.session, g.scores, 

'frequency', str(freq))
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                    if f == 'client_time':

                           �feature_value = get_

hour(int(feature_value))

                    �predicted = predicted + get_value(g.

session, g.scores, f, feature_value)

       �return str(math.exp(predicted + g.b)-1)

app.run(debug = True, host ='0.0.0.0')

This code exposes a deep learning model as a Flask web service.  

A JavaScript client will send the request with web user parameters such 

as the IP address, ad size, ad position, and so on, and it will return the 

price of the ad as a response. The features are categorical. You will learn 

how to convert them into numerical scores in Chapter 3. These scores 

are stored in an in-memory database. The service fetches the score from 

the database, sums the result, and replies to the client. This score will be 

updated real time in each iteration of training of a deep learning model. It 

is using MongoDB to store the frequency of that IP address in that site. It is 

an important parameter because a user coming to a site for the first time 

is really searching for something, which is not true for a user where the 

frequency is greater than 5. The number of IP addresses is huge, so they 

are stored in a distributed MongoDB database.

�High-Performance API and Concurrent 
Programming
Flask is a good choice when you are building a general solution that is 

also a graphical user interface (GUI). But if high performance is the most 

critical requirement of your application, then Falcon is the best choice. The 

following code is an example of the same model shown previously exposed 

by the Falcon framework. Another improvement I made in this code is that 

I implemented multithreading, so the code will be executed in parallel. 
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Except Falcon-specific changes, you should note the major changes in 

parallelizing the calling get_score function using a thread pool class.

import falcon

from falcon_cors import CORS

import json

from sqlalchemy import *

from sqlalchemy.orm import sessionmaker

import pygeoip

from pymongo import MongoClient

import json

import datetime as dt

import ipaddress

import math

from concurrent.futures import *

from sqlalchemy.engine import Engine

from sqlalchemy import event

import sqlite3

@event.listens_for(Engine, "connect")

def set_sqlite_pragma(dbapi_connection, connection_record):

 cursor = dbapi_connection.cursor()

 cursor.execute("PRAGMA cache_size=100000")

 cursor.close()

class Predictor(object):

       def __init__(self,domain):

             �db1 = create_engine('sqlite:///score_' + domain + 

'0test.db')

             �db2 = create_engine('sqlite:///probability_' + 

domain +'0test.db')

             �db3 = create_engine('sqlite:///ctr_'+ domain + 

'test.db')

Chapter 1  Introduction



19

        metadata1 = MetaData(db1)

        metadata2 = MetaData(db2)

        metadata3 = MetaData(db3)

        self.scores = Table('scores', metadata1, autoload=True)

        �self.probabilities = Table('probabilities', metadata2, 

autoload=True)

        self.ctr = Table('ctr', metadata3, autoload=True)

       client = MongoClient(connect=False,maxPoolSize=1)

       self.db = client.frequency

       self.gi = pygeoip.GeoIP('GeoIP.dat')

             self.high = 1.2

             self.low = .8

       def get_hour(self,timestamp):

       return dt.datetime.utcfromtimestamp(timestamp / 1e3).hour

       def get_score(self, featurename, featurevalue):

             prob = 0

             pred = 0

             �s = self.scores.select((self.scores.c.feature_name 

== featurename) & (self.scores.c.feature_value == 

featurevalue))

 rs = s.execute()

 row = rs.fetchone()

 if row is not None:

      pred = pred + float(row['score'])

 s = self.probabilities.select((self.probabilities.c.feature_

name == featurename) & (self.probabilities.c.feature_value == 

featurevalue))

 rs = s.execute()

 row = rs.fetchone()
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 if row is not None:

      prob = prob + float(row['Probability'])

             return pred, prob

      def get_value(self, f, value):

             if f == 'ip':

                    �ip = str(ipaddress.IPv4Address(ipaddress.

ip_address(value)))

 geo = self.gi.country_name_by_addr(ip)

                    pred1, prob1 = self.get_score('geo', geo)

       res = self.db.frequency.find_one({"ip" : ip})

       freq = 1

 if res is not None:

       freq = res['frequency']

                    �pred2, prob2 = self.get_score('frequency', 

str(freq))

                    return (pred1 + pred2), (prob1 + prob2)

             if f == 'root':

                    s = self.ctr.select(self.ctr.c.root == value)

                    rs = s.execute()

       row = rs.fetchone()

                    if row is not None:

                          ctr = row['ctr']

                          avv = row['avt']

                          avt = row['avv']

                          �(pred1,prob1) = self.get_score 

('ctr', ctr)

                          �(pred2,prob2) = self.get_score 

('avt', avt)

                          �(pred3,prob3) = self.get_score 

('avv', avv)
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                          �(pred4,prob4) = self.get_score(f, 

value)

                          �return (pred1 + pred2 + pred3 + pred4), 

(prob1 + prob2 + prob3 + prob4)

       if f == 'client_time':

             value = str(self.get_hour(int(value)))

             if f == 'domain':

                    conn = sqlite3.connect('multiplier.db')

                    �cursor = conn.execute("SELECT high,low from 

multiplier where domain='" + value + "'")

                    row = cursor.fetchone()

                    if row is not None:

                          self.high = row[0]

                          self.low = row[1]

             return self.get_score(f, value)

       def on_post(self, req, resp):

             �input_json = json.loads(req.stream.

read(),encoding='utf-8')

             input_json['ip'] = unicode(req.remote_addr)

       pred = 1

             prob = 1

             with ThreadPoolExecutor(max_workers=8) as pool:

                    �future_array = { pool.submit(self.get_

value,f,input_json[f]) : f for f in  

input_json}

                    for future in as_completed(future_array):

       pred1, prob1 = future.result()

                          pred = pred + pred1

                          prob = prob - prob1

             resp.status = falcon.HTTP_200
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       res = math.exp(pred)-1

             if res < 0:

                   res = 0

             prob = math.exp(prob)

             if(prob <= .1):

                   prob = .1

             if(prob >= .9):

                   prob = .9

             multiplier = self.low + (self.high -self.low)*prob

             pred = multiplier*pred

             resp.body = str(pred)

cors = CORS(allow_all_origins=True,allow_all_

methods=True,allow_all_headers=True)

wsgi_app = api = falcon.API(middleware=[cors.middleware])

f = open('publishers1.list')

for domain in f:

       domain = domain.strip()

       p = Predictor(domain)

       url = '/predict/' + domain

       api.add_route(url, p)
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CHAPTER 2

ETL with Python 
(Structured Data)
Every data science professional has to extract, transform, and load (ETL) 

data from different data sources. In this chapter, I will discuss how to do 

ETL with Python for a selection of popular databases. For a relational 

database, I’ll cover MySQL. As an example of a document database, I will 

cover Elasticsearch. For a graph database, I’ll cover Neo4j, and for NoSQL, 

I’ll cover MongoDB. I will also discuss the Pandas framework, which was 

inspired by R’s data frame concept.

�MySQL
MySQLdb is an API in Python developed at the top of the MySQL C interface.

�How to Install MySQLdb?
First you need to install the Python MySQLdb module on your machine. 

Then run the following script:

#!/usr/bin/python

import MySQLdb
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If you get an import error exception, that means the module is not 

installed properly.

The following is the instruction to install the MySQL Python module:

$ gunzip MySQL-python-1.2.2.tar.gz

$ tar -xvf MySQL-python-1.2.2.tar

$ cd MySQL-python-1.2.2

$ python setup.py build

$ python setup.py install

�Database Connection
Before connecting to a MySQL database, make sure you have the following:

•	 You need a database called TEST.

•	 In TEST you need a table STUDENT.

•	 STUDENT needs three fields: NAME, SUR_NAME, and ROLL_NO.

•	 There needs to be a user in TEST that has complete 

access to the database.

�INSERT Operation
The following code carries out the SQL INSERT statement for the purpose 

of creating a record in the STUDENT table:

#!/usr/bin/python

import MySQLdb

# Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST" )

# prepare a cursor object using cursor() method

cursor = db.cursor()
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# Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO STUDENT(NAME,

         SUR_NAME, ROLL_NO)

         VALUES ('Sayan', 'Mukhopadhyay', 1)"""

try:

   # Execute the SQL command

cursor.execute(sql)

   # Commit your changes in the database

   db.commit()

except:

   # Rollback in case there is any error

   db.rollback()

# disconnect from server

db.close()

�READ Operation
The following code fetches data from the STUDENT table and prints it:

#!/usr/bin/python

import MySQLdb

# Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST" )

# prepare a cursor object using cursor() method

cursor = db.cursor()

# Prepare SQL query to INSERT a record into the database.

sql = "SELECT * FROM STUDENT "

try:
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   # Execute the SQL command

cursor.execute(sql)

   # Fetch all the rows in a list of lists.

results = cursor.fetchall()

for row in results:

fname = row[0]

lname = row[1]

id = row[2]

      # Now print fetched result

print "name=%s,surname=%s,id=%d" % \

             (fname, lname, id )

except:

print "Error: unable to fecth data"

# disconnect from server

db.close()

�DELETE Operation
The following code deletes a row from TEST with id=1:

#!/usr/bin/python

import MySQLdb

# Open database connection

db = MySQLdb.connect("localhost","test","passwd","TEST" )

# prepare a cursor object using cursor() method

cursor = db.cursor()

# Prepare SQL query to DELETE required records

sql = "DELETE FROM STUDENT WHERE ROLL_NO =1"

try:
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   # Execute the SQL command

cursor.execute(sql)

   # Commit your changes in the database

db.commit()

except:

   # Rollback in case there is any error

db.rollback()

# disconnect from server

db.close()

�UPDATE Operation
The following code changes the lastname variable to Mukherjee, from 

Mukhopadhyay:

#!/usr/bin/python

import MySQLdb

# Open database connection

db = MySQLdb.connect("localhost","user","passwd","TEST" )

# prepare a cursor object using cursor() method

cursor = db.cursor()

# Prepare SQL query to UPDATE required records

sql = "UPDATE STUDENT SET SUR_NAME="Mukherjee"

                          WHERE SUR_NAME="Mukhopadhyay"

try:

   # Execute the SQL command

cursor.execute(sql)

   # Commit your changes in the database

db.commit()
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except:

   # Rollback in case there is any error

db.rollback()

# disconnect from server

db.close()

�COMMIT Operation
The commit operation provides its assent to the database to finalize the 

modifications, and after this operation, there is no way that this can be 

reverted.

�ROLL-BACK Operation
If you are not completely convinced about any of the modifications and you 

want to reverse them, then you need to apply the roll-back() method.

The following is a complete example of accessing MySQL data through 

Python. It will give the complete description of data stored in a CSV file or 

MySQL database.

import MySQLdb

import sys

out = open('Config1.txt','w')

print "Enter the Data Source Type:"

print "1. MySql"

print "2. Text"

print "3. Exit"

while(1):

       data1 = sys.stdin.readline().strip()

       if(int(data1) == 1):
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             out.write("source begin"+"\n"+"type=mysql\n")

             print "Enter the ip:"

             ip = sys.stdin.readline().strip()

             out.write("host=" + ip + "\n")

             print "Enter the database name:"

             db = sys.stdin.readline().strip()

             out.write("database=" + db + "\n")

             print "Enter the user name:"

             usr = sys.stdin.readline().strip()

             out.write("user=" + usr + "\n")

             print "Enter the password:"

             passwd = sys.stdin.readline().strip()

             out.write("password=" + passwd + "\n")

             connection = MySQLdb.connect(ip, usr, passwd, db)

             cursor = connection.cursor()

             query = "show tables"

             cursor.execute(query)

             data = cursor.fetchall()

             tables = []

             for row in data:

                    for field in row:

                           tables.append(field.strip())

             for i in range(len(tables)):

                    print i, tables[i]

             tb = tables[int(sys.stdin.readline().strip())]

             out.write("table=" + tb + "\n")

             query = "describe " + tb

             cursor.execute(query)

             data = cursor.fetchall()

             columns = []

             for row in data:

                    columns.append(row[0].strip())
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             for i in range(len(columns)):

                    print columns[i]

             �print "Not index choose the exact column names 

seperated by coma"

             cols = sys.stdin.readline().strip()

             out.write("columns=" + cols + "\n")

             cursor.close()

             connection.close()

             out.write("source end"+"\n")

             print "Enter the Data Source Type:"

             print "1. MySql"

             print "2. Text"

             print "3. Exit"

       if(int(data1) == 2):

             print "path of text file:"

             path = sys.stdin.readline().strip()

             file = open(path)

             count = 0

             for line in file:

                    print line

                    count = count + 1

                    if count > 3:

                          break

             file.close()

             out.write("source begin"+"\n"+"type=text\n")

             out.write("path=" + path + "\n")

             print "enter delimeter:"

             dlm = sys.stdin.readline().strip()

             out.write("dlm=" + dlm + "\n")

             print "enter column indexes seperated by comma:"
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             cols = sys.stdin.readline().strip()

             out.write("columns=" + cols + "\n")

             out.write("source end"+"\n")

             print "Enter the Data Source Type:"

             print "1. MySql"

             print "2. Text"

             print "3. Exit"

       if(int(data1) == 3):

             out.close()

             sys.exit()

�Elasticsearch
The Elasticsearch (ES) low-level client gives a direct mapping from 

Python to ES REST endpoints. One of the big advantages of Elasticsearch 

is that it provides a full stack solution for data analysis in one place. 

Elasticsearch is the database. It has a configurable front end called 

Kibana, a data collection tool called Logstash, and an enterprise security 

feature called Shield.

This example has the features called cat, cluster, indices, ingest, 

nodes, snapshot, and tasks that translate to instances of CatClient, 

ClusterClient, IndicesClient, CatClient, ClusterClient, 

IndicesClient, IngestClient, NodesClient, SnapshotClient, 

NodesClient, SnapshotClient, and TasksClient, respectively. These 

instances are the only supported way to get access to these classes and 

their methods.

You can specify your own connection class, which can be used by 

providing the connection_class parameter.

# create connection to local host using the ThriftConnection

Es1=Elasticsearch(connection_class=ThriftConnection)
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If you want to turn on sniffing, then you have several options 

(described later in the chapter).

# create connection that will automatically inspect the cluster to get

# the list of active nodes. Start with nodes running on 'esnode1' and

# 'esnode2'

Es1=Elasticsearch(

    ['esnode1', 'esnode2'],

# sniff before doing anything

sniff_on_start=True,

# refresh nodes after a node fails to respond

sniff_on_connection_fail=True,

# and also every 30 seconds

sniffer_timeout=30

)

Different hosts can have different parameters; you can use one 

dictionary per node to specify them.

# connect to localhost directly and

another node using SSL on port 443

# and an url_prefix. Note that ``port`` needs to be an int.

Es1=Elasticsearch([

{'host':'localhost'},

{'host':'othernode','port':443,'url_prefix':'es','use_ssl':True},

])

SSL client authentication is also supported (see Urllib3HttpConnection 

for a detailed description of the options).

Es1=Elasticsearch(

['localhost:443','other_host:443'],

# turn on SSL

use_ssl=True,
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# make sure we verify SSL certificates (off by default)

verify_certs=True,

# provide a path to CA certs on disk

ca_certs='path to CA_certs',

# PEM formatted SSL client certificate

client_cert='path to clientcert.pem',

# PEM formatted SSL client key

client_key='path to clientkey.pem'

)

�Connection Layer API
Many classes are responsible for dealing with the Elasticsearch cluster. 

Here, the default subclasses being utilized can be disregarded by handing 

over parameters to the Elasticsearch class. Every argument belonging to 

the client will be added onto Transport, ConnectionPool, and Connection.

As an example, if you want to use your own personal utilization of the 

ConnectionSelector class, you just need to pass in the selector_class 

parameter.

The entire API wraps the raw REST API with a high level of accuracy, 

which includes the differentiation between the required and optional 

arguments to the calls. This implies that the code makes a differentiation 

between positional and keyword arguments; I advise you to use keyword 

arguments for all calls to be consistent and safe. An API call becomes 

successful (and will return a response) if Elasticsearch returns a 2XX 

response. Otherwise, an instance of TransportError (or a more specific 

subclass) will be raised. You can see other exceptions and error states in 

exceptions. If you do not want an exception to be raised, you can always 

pass in an ignore parameter with either a single status code that should be 

ignored or a list of them.
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from elasticsearch import Elasticsearch

es=Elasticsearch()

# ignore 400 cause by IndexAlreadyExistsException when creating 

an index

es.indices.create(index='test-index',ignore=400)

# ignore 404 and 400

es.indices.delete(index='test-index',ignore=[400,404])

�Neo4j Python Driver
The Neo4j Python driver is supported by Neo4j and connects with the 

database through the binary protocol. It tries to remain minimalistic but at 

the same time be idiomatic to Python.

pip install neo4j-driver

from neo4j.v1 import GraphDatabase, basic_auth

driver11 = GraphDatabase.driver("bolt://localhost", auth=basic_

auth("neo4j", "neo4j"))

session11 = driver11.session()

session11.run("CREATE (a:Person {name:'Sayan', 

title:'Mukhopadhyay'})")

result 11= session11.run("MATCH (a:Person) WHERE a.name = 

'Sayan' RETURN a.name AS name, a.title AS title")

for recordi n resul11t:

print("%s %s"% (record["title"], record["name"]))

session.close()
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�neo4j-rest-client
The main objective of neo4j-rest-client is to make sure that the Python 

programmers already using Neo4j locally through python-embedded are 

also able to access the Neo4j REST server. So, the structure of the neo4j-

rest-client API is completely in sync with python-embedded. But, a new 

structure is brought in so as to arrive at a more Pythonic style and to 

augment the API with the new features being introduced by the Neo4j team.

�In-Memory Database
Another important class of database is an in-memory database. It stores 

and processes the data in RAM. So, operation on the database is very 

fast, and the data is volatile. SQLite is a popular example of in-memory 

database. In Python you need to use the sqlalchemy library to operate on 

SQLite. In Chapter 1’s Flask and Falcon example, I showed you how to 

select data from SQLite. Here I will show how to store a Pandas data frame 

in SQLite:

from sqlalchemy import create_engine

import sqlite3

conn = sqlite3.connect('multiplier.db')

conn.execute('''CREATE TABLE if not exists multiplier

       (domain        CHAR(50),

        low        REAL,

        high        REAL);''')

conn.close()

db_name = "sqlite:///" + prop + "_" + domain + str(i) + ".db"

disk_engine = create_engine(db_name)

df.to_sql('scores', disk_engine, if_exists='replace')

Chapter 2  ETL with Python (Structured Data)



36

�MongoDB (Python Edition)
MongoDB is an open source document database designed for superior 

performance, easy availability, and automatic scaling. MongoDB makes 

sure that object-relational mapping (ORM) is not required to facilitate 

development. A document that contains a data structure made up of 

field and value pairs is referred to as a record in MongoDB. These records 

are akin to JSON objects. The values of fields may be comprised of other 

documents, arrays, and arrays of documents.

{

"_id":ObjectId("01"),

"address": {

"street":"Siraj Mondal Lane",

"pincode":"743145",

"building":"129",

"coord": [ -24.97, 48.68 ]

   },

"borough":"Manhattan",

�Import Data into the Collection
mongoimport can be used to place the documents into a collection in a 

database, within the system shell or a command prompt. If the collection 

preexists in the database, the operation will discard the original 

collection first.

mongoimport --DB test --collection restaurants --drop --file ~/

downloads/primer-dataset.json

The mongoimport command is joined to a MongoDB instance running 

on localhost on port number 27017. The --file option provides a way to 

import the data; here it’s ~/downloads/primer-dataset.json.
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To import data into a MongoDB instance running on a different host 

or port, the hostname or port needs to be mentioned specifically in the 

mongoimport command by including the --host or --port option.

There is a similar load command in MySQL.

�Create a Connection Using pymongo
To create a connection, do the following:

import MongoClient from pymongo.

Client11 = MongoClient()

If no argument is mentioned to MongoClient, then it will default to the 

MongoDB instance running on the localhost interface on port 27017.

A complete MongoDB URL may be designated to define the 

connection, which includes the host and port number. For instance, the 

following code makes a connection to a MongoDB instance that runs on 

mongodb0.example.net and the port of 27017:

Client11 = MongoClient("mongodb://myhostname:27017")

�Access Database Objects
To assign the database named primer to the local variable DB, you can use 

either of the following lines:

Db11 = client11.primer

db11 = client11['primer']

Collection objects can be accessed directly by using the dictionary 

style or the attribute access from a database object, as shown in the 

following two examples:

Coll11 = db11.dataset

coll = db11['dataset']
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�Insert Data
You can place a document into a collection that doesn’t exist, and the 

following operation will create the collection:

result=db.addrss.insert_one({<<your json >>)

�Update Data
Here is how to update data:

result=db.address.update_one(

 {"building": "129",

 {"$set": {"address.street": "MG Road"}}

)

�Remove Data
To expunge all documents from a collection, use this:

result=db.restaurants.delete_many({})

�Pandas
The goal of this section is to show some examples to enable you to begin 

using Pandas. These illustrations have been taken from real-world 

data, along with any bugs and weirdness that are inherent. Pandas is a 

framework inspired by the R data frame concept.

To read data from a CSV file, use this:

import pandas as pd

broken_df=pd.read_csv('data.csv')
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To look at the first three rows, use this:

broken_df[:3]

To select a column, use this:

fixed_df['Column Header']

To plot a column, use this:

fixed_df['Column Header'].plot()

To get a maximum value in the data set, use this:

MaxValue=df['Births'].max() where Births is the column header

Let’s assume there is another column in a data set named Name. The 

command for Name is associated with the maximum value.

MaxName=df['Names'][df['Births']==df['Births'].max()].values

There are many other methods such as sort, groupby, and orderby 

in Pandas that are useful to play with structured data. Also, Pandas has a 

ready-made adapter for popular databases such as MongoDB, Google Big 

Query, and so on.

One complex example with Pandas is shown next. In X data frame for 

each distinct column value, find the average value of floor grouping by the 

root column.

for col in X.columns:

                        if col != 'root':

                                �avgs = df.groupby([col,'root'], 

as_index=False)['floor']. 

aggregate(np.mean)

                                for i,row in avgs.iterrows():

                                        k = row[col]

                                        v = row['floor']
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                                        r = row['root']

                                        �X.loc[(X[col] == k) & 

(X['root'] == r), col] 

= v2.

�ETL with Python (Unstructured Data)
Dealing with unstructured data is an important task in modern data 

analysis. In this section, I will cover how to parse e-mails, and I’ll introduce 

an advanced research topic called topical crawling.

�E-mail Parsing
See Chapter 1 for a complete example of web crawling using Python.

Like BeautifulSoup, Python has a library for e-mail parsing. The 

following is the example code to parse e-mail data stored on a mail server. 

The inputs in the configuration are the username and number of mails to 

parse for the user.

from email.parser import Parser

import os

import sys

conf = open(sys.argv[1])

config={}

users={}

for line in conf:

       if ("," in line):

             fields = line.split(",")

             key = fields[0].strip().split("=")[1].strip()

             val = fields[1].strip().split("=")[1].strip()

             users[key] = val
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       else:

             if ("=" in line):

                    words = line.strip().split('=')

                    config[words[0].strip()] = words[1].strip()

conf.close()

for usr in users.keys():

       path = config["path"]+"/"+usr+"/"+config["folder"]

       files = os.listdir(path)

       for f in sorted(files):

             if(int(f) > int(users[usr])):

                    users[usr] = f

                    path1 = path + "/" + f

                    data = ""

                    with open (path1) as myfile:

                          data=myfile.read()

                    if data != "" :

                          parser = Parser()

                    email = parser.parsestr(data)

                    out = ""

                    �out = out + str(email.get('From')) + "," 

+ str(email.get('To')) + "," + str(email.

get('Subject')) + "," + str(email.

get('Date')).replace(","," ")

                    if email.is_multipart():

                          for part in email.get_payload():

                                 �out = out + "," + str(part.

get_payload()).replace("\n"," 

").replace(","," ")

                    else:
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                          �out = out + "," + str(email.get_payload 

()).replace("\n"," ").replace(","," ")

                    print out,"\n"

conf = open(sys.argv[1],'w')

conf.write("path=" + config["path"] + "\n")

conf.write("folder=" + config["folder"] + "\n")

for usr in users.keys():

       conf.write("name="+ usr +",value=" + users[usr] + "\n")

conf.close()

Sample config file for above code.

path=/cygdrive/c/share/enron_mail_20110402/enron_mail_20110402/

maildir

folder=Inbox

name=storey-g,value=142

name=ybarbo-p,value=775

name=tycholiz-b,value=602

�Topical Crawling
Topical crawlers are intelligent crawlers that retrieve information from 

anywhere on the Web. They start with a URL and then find links present in 

the pages under it; then they look at new URLs, bypassing the scalability 

limitations of universal search engines. This is done by distributing 

the crawling process across users, queries, and even client computers. 

Crawlers can use the context available to infinitely loop through the links 

with a goal of systematically locating a highly relevant, focused page.

Web searching is a complicated task. A large chunk of machine 

learning work is being applied to find the similarity between pages, such as 

the maximum number of URLs fetched or visited.
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�Crawling Algorithms

The following diagram describes how the topical crawling algorithm works 

with its major components.

The starting URL of a topical crawler is known as the seed URL. There 

is another set of URLs known as the target URLs, which are examples of 

desired output.

An interesting application of topical crawling is where an HR organization 

is searching for a candidate from anywhere on the Web possessing a 

particular skill set. One easy alternative solution is to use a search engine 

API. The following code is an example of using the Google Search API, 

BeautifulSoup, and regular expressions that search the e-mail ID and phone 

number of potential candidates with a particular skill set from the Web.

#!/usr/bin/env python

# -*- coding: utf-8 -*-
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import pprint, json, urllib2

import nltk, sys, urllib

from bs4 import BeautifulSoup

import csv

from googleapiclient.discovery import build

def link_score(link):

 if ('cv' in link or 'resume' in link) and 'job' not in link:

 return True

def process_file():

 try:

 with open('data1.json','r') as fl:

 data = json.load(fl)

 all_links = []

 # pprint.pprint(len(data['items']))

 for item in data['items']:

 # print item['formattedUrl']

 all_links.append(item['formattedUrl'])

 return all_links

 except:

 return []

def main(istart, search_query):

 service = build("customsearch", "v1",

 developerKey="abcd")

 res = service.cse().list(

 q= search_query,

 cx='1234',

 num=10,

 gl='in', #in for india comment this for whole web
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 start = istart,

 ).execute()

 import json

 with open('data1.json', 'w') as fp:

 json.dump(res, fp)

# pprint.pprint(type(res))

# pprint.pprint(res)

def get_email_ph(link_text, pdf=None):

 if pdf==True:

 from textract import process

 text = process(link_text)

 else:

 text = link_text

 # print text

 import re

 email = []

 ph = []

 valid_ph = re.compile("[789][0-9]{9}$")

 valid = re.compile("[A-Za-z]+[@]{1}[A-Za-z]+\.[a-z]+")

 for token in re.split(r'[,\s]',text):

# for token in nltk.tokenize(text):

 # print token

 a = valid.match(token)

 b = valid_ph.match(token)

 if a != None:

 print a.group()

 email.append(a.group())

 if b != None:

 print b.group()

 ph.append(b.group())

 return email, ph
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def process_pdf_link(link):

 html = urllib2.urlopen(link)

 file = open("document.pdf", 'w')

 file.write(html.read())

 file.close()

 return get_email_ph("document.pdf", pdf=True)

def process_doc_link(link):

 testfile = urllib.URLopener()

 testfile.retrieve(link, "document.doc")

 return get_email_ph("document.doc", pdf=False)

def process_docx_link(link):

 testfile = urllib.URLopener()

 testfile.retrieve(link, "document.docx")

 return get_email_ph("document.docx", pdf=False)

def process_links(all_links):

 with open('email_ph.csv', 'wb') as csvfile:

 spamwriter = csv.writer(csvfile, delimiter=',')

 for link in all_links:

 if link[:4] !='http':

 link = "http://"+link

 print link

 try:

 if link[-3:] == 'pdf':

 try:

 email, ph = process_pdf_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()
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 elif link[-4:] == 'docx':

 try:

 email, ph = process_docx_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 elif link[-3:] == 'doc':

 try:

 email, ph = process_doc_link(link)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 else:

 try:

 html = urllib2.urlopen(link)

 email, ph = get_email_ph(BeautifulSoup(html.read()).get_

text(), pdf=False)

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 print "error",link

 print sys.exc_info()

 spamwriter.writerow([link, ' '.join(email), ' '.join(ph)])

 except:

 pass

 print "error",link

 print sys.exc_info()

if __name__ == '__main__':
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#

 search_query = ' ASP .NET, C#, WebServices, HTML Chicago USA 

biodata cv'

#

#

 all_links = []

# all_links.extend(links)

 for i in range(1,90,10):

 main(i, search_query)

 all_links.extend(process_file())

 process_links(all_links)

#

This code is used to find relevant contacts from the Web for a set of 

given job-searching keywords. It uses the Google Search API to fetch 

the links, filters them according to the presence of certain keywords in a 

URL, and then parses the link content and finds the e-mail ID and phone 

number. The content may be PDF or Word or HTML documents.
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CHAPTER 3

Supervised Learning 
Using Python
In this chapter, I will introduce the three most essential components of 

machine learning.

•	 Dimensionality reduction tells how to choose the most 

important features from a set of features.

•	 Classification tells how to categorize data to a set of 

target categories with the help of a given training/

example data set.

•	 Regression tells how to realize a variable as a linear or 

nonlinear polynomial of a set of independent variables.

�Dimensionality Reduction with Python
Dimensionality reduction is an important aspect of data analysis. It is 

required for both numerical and categorical data. Survey or factor analysis 

is one of the most popular applications of dimensionality reduction. As an 

example, suppose that an organization wants to find out which factors are 

most important in influencing or bringing about changes in its operations. 

It takes opinions from different employees in the organization and, based 

on this survey data, does a factor analysis to derive a smaller set of factors 

in conclusion.
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In investment banking, different indices are calculated as a weighted 

average of instruments. Thus, when an index goes high, it is expected 

that instruments in the index with a positive weight will also go high and 

those with a negative weight will go low. The trader trades accordingly. 

Generally, indices consist of a large number of instruments (more than 

ten). In high-frequency algorithmic trading, it is tough to send so many 

orders in a fraction of a second. Using principal component analysis, 

traders realize the index as a smaller set of instruments to commence with 

the trading. Singular value decomposition is a popular algorithm that 

is used both in principal component analysis and in factor analysis. In 

this chapter, I will discuss it in detail. Before that, I will cover the Pearson 

correlation, which is simple to use. That’s why it is a popular method of 

dimensionality reduction. Dimensionality reduction is also required for 

categorical data. Suppose a retailer wants to know whether a city is an 

important contributor to sales volume; this can be measured by using 

mutual information, which will also be covered in this chapter.

�Correlation Analysis
There are different measures of correlation. I will limit this discussion 

to the Pearson correlation only. For two variables, x and y, the Pearson 

correlation is as follows:

r
x x y y

x x y y

i
i i

i
i

i
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The value of r will vary from -1 to +1. The formula clearly shows that 

when x is greater than its average, then y is also greater, and therefore the r 

value is bigger. In other words, if x increases, then y increases, and then r is 

greater. So, if r is nearer to 1, it means that x and y are positively correlated. 

Similarly, if r is nearer to -1, it means that x and y are negatively correlated. 
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Likewise, if r is nearer to 0, it means that x and y are not correlated. A 

simplified formula to calculate r is shown here:

r=
n xy x y

n x x n y y

å å å
å å å å
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You can easily use correlation for dimensionality reduction. Let’s say 

Y is a variable that is a weighted sum of n variables: X1, X2, ... Xn. You 

want to reduce this set of X to a smaller set. To do so, you need to calculate 

the correlation coefficient for each X pair. Now, if Xi and Xj are highly 

correlated, then you will investigate the correlation of Y with Xi and Xj. If 

the correlation of Xi is greater than Xj, then you remove Xj from the set, and 

vice versa. The following function is an example of the dropping feature 

using correlation:

from scipy.stats.stats import pearsonr

def drop_features(y_train,X_train,X,index):

        i1 = 0

        processed = 0

       while(1):

       flag = True

                for i in range(X_train.shape[1]):

       if i > processed :

              i1 = i1 + 1

                       corr = pearsonr(X_train[:,i], y_train)

               �PEr= .674 * (1- corr[0]*corr[0])/ (len(X_

train[:,i])**(1/2.0))

      if corr[0] < PEr:

      X_train = np.delete(X_train,i,1)
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                                        �index.append(X.

columns[i1-1])

                                      processed = i - 1

                              flag = False

                      break

             if flag:

             break

       return X_train, index

The actual use case of this code is shown at the end of the chapter.

Now, the question is, what should be the threshold value of the 

previous correlation that, say, X and Y are correlated. A common practice 

is to assume that if r > 0.5, it means the variables are correlated, and if  

r < 0.5, then it means no correlation. One big limitation of this approach 

is that it does not consider the length of the data. For example, a 0.5 

correlation in a set of 20 data points should not have the same weight as a 

0.5 correlation in a set of 10,000 data points. To overcome this problem, a 

probable error concept has been introduced, as shown here:

PEr = ´
-

.674
1 2r

n

r is the correlation coefficient, and n is the sample size.

Here, r > 6PEr means that X and Y are highly correlated, and if r < Per, 

this means that X and Y are independent. Using this approach, you can see 

that even r = 0.1 means a high correlation when the data size is huge.

One interesting application of correlation is in product 

recommendations on an e-commerce site. Recommendations can identify 

similar users if you calculate the correlation of their common ratings for 

the same products. Similarly, you can find similar products by calculating 

the correlation of their common ratings from the same user. This approach 

is known as collaborative filtering.
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�Principal Component Analysis
Theoretically correlation works well for variables with Gaussian 

distribution, in other words, independent variables. For other scenarios, 

you have to use principal component analysis. Suppose you want to 

reduce the dimension of N variables: X1, X2, ... Xn. Let’s form a matrix 

of N×N dimension where the i-th column represents the observation Xi, 

assuming all variables have N number of observations. Now if k variables 

are redundant, for simplicity you assume k columns are the same or 

linear combination of each other. Then the rank of the matrix will be N-k. 

So, the rank of this matrix is a measure of the number of independent 

variables, and the eigenvalue indicates the strength of that variable. This 

concept is used in principal component analysis and factor analysis. To 

make the matrix square, a covariance matrix is chosen. Singular value 

decomposition is used to find the eigenvalue.

Let Y be the input matrix of size p×q, where p is the number of data 

rows and q is the number of parameters.

Then the q×q covariance matrix Co is given by the following:

Co=Y⊤Y/(q−1)

 It is a symmetric matrix, so it can be diagonalized as follows:

Co=UDUT

Each column of U is an eigenvector, and D is a diagonal matrix with 

eigenvalues λi in the decreasing order on the diagonal. The eigenvectors 

are referred to as principal axes or principal directions of the data. 

Projections of the data on the principal axes called principal components 

are also known as PC scores; these can be seen as new, transformed 

variables. The j-th principal component is given by j-th column of YU. The 

coordinates of the i-th data point in the new PC space are given by the i-th 

row of YU.
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The singular value decomposition algorithm is used to find D and U. 

The following code is an example of factor analysis in Python.

Here is the input data:

Government 

Policy Changes

Competitors’ 

Strategic 

Decisions

Competition Supplier 

Relation

Customer 

Feedback

Technology 

Innovations

Strongly Agree Agree Agree Agree Somewhat 

Agree

Somewhat 

Disagree

Somewhat 

Disagree

Somewhat 

Disagree

Somewhat 

Agree

Disagree Disagree Agree

Somewhat 

Agree

Somewhat 

Agree

Strongly 

Agree

Agree Somewhat 

Agree

Strongly 

Agree

Somewhat 

Disagree

Somewhat 

Agree

Agree Somewhat 

Disagree

Somewhat 

Disagree

Somewhat 

Agree

Somewhat 

Disagree

Agree Agree Somewhat 

Agree

Somewhat 

Agree

Agree

Agree Somewhat 

Disagree

Somewhat 

Agree

Strongly 

Agree

Somewhat 

Agree

Somewhat 

Agree

Agree Agree Strongly 

Agree

Somewhat 

Agree

Agree Somewhat 

Agree

Somewhat 

Disagree

Agree Somewhat 

Agree

Agree Agree Somewhat 

Agree

Somewhat 

Agree

Somewhat 

Agree

Agree Agree Agree Somewhat 

Agree

Somewhat 

Disagree

Agree Strongly 

Agree

Somewhat 

Disagree

Agree Somewhat 

Disagree

Somewhat 

Agree

Agree Somewhat 

Disagree

Strongly 

Agree

Somewhat 

Agree

Disagree
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Somewhat 

Disagree

Somewhat 

Disagree

Somewhat 

Agree

Somewhat 

Disagree

Somewhat 

Disagree

Somewhat 

Agree

Somewhat 

Agree

Agree Somewhat 

Agree

Agree Somewhat 

Agree

Somewhat 

Agree

Somewhat 

Disagree

Agree Strongly 

Agree

Somewhat 

Disagree

Somewhat 

Agree

Disagree

Somewhat 

Agree

Somewhat 

Disagree

Strongly 

Agree

Strongly 

Agree

Strongly 

Agree

Agree

Somewhat 

Agree

Somewhat 

Agree

Agree Somewhat 

Disagree

Strongly 

Agree

Disagree

Somewhat 

Disagree

Agree Agree Somewhat 

Disagree

Agree Somewhat 

Agree

Somewhat 

Agree

Strongly 

Agree

Somewhat 

Agree

Somewhat 

Agree

Agree Somewhat 

Agree

Strongly Agree Somewhat 

Disagree

Somewhat 

Disagree

Agree Somewhat 

Agree

Somewhat 

Disagree

Somewhat 

Agree

Somewhat 

Disagree

Agree Somewhat 

Agree

Strongly 

Agree

Somewhat 

Disagree

Agree Somewhat 

Agree

Strongly 

Agree

Somewhat 

Disagree

Agree Agree

Somewhat 

Agree

Strongly 

Agree

Somewhat 

Agree

Somewhat 

Disagree

Somewhat 

Disagree

Disagree

Before running the code, you have to enter a numeric value for categorical data, for 

example: Strongly Agree = 5, Agree = 4, Somewhat Agree = 3.
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import pandas as pd

data = pd.read_csv('<input csvfile>)

from sklearn.decomposition import FactorAnalysis

factors = FactorAnalysis(n_components=6).fit(data)

print (factors.components)

from sklearn.decomposition import PCA

pcomponents = PCA(n_components=6).fit(data)

print(pcomponents.components)

�Mutual Information
Mutual information (MI) of two random variables is a measure of the 

mutual dependence between the two variables. It is also used as a 

similarity measure of the distribution of two variables. A higher value of 

mutual information indicates the distribution of two variables is similar.

I X Y p x y
p x y

p x p yx y

; , log
,

,

( ) = ( ) ( )
( ) ( )å

Suppose a retailer wants to investigate whether a particular city 

is a deciding factor for its sales volume. Then the retailer can see the 

distribution of sales volume across the different cities. If the distribution is 

the same for all cities, then a particular city is not an important factor as far 

as sales volume is concerned. To calculate the difference between the two 

probability distributions, mutual information is applied here.

Here is the sample Python code to calculate mutual information:

fromscipy.stats import chi2_contingency

defcalc_MI(x, y, bins):

c_xy = np.histogram2d(x, y, bins)[0]
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g, p, dof, expected = chi2_contingency(c_xy, lambda_="log-

likelihood")

mi = 0.5 * g / c_xy.sum()

return mi

�Classifications with Python
Classification is a well-accepted example of machine learning. It has a 

set of a target classes and training data. Each training data is labeled by 

a particular target class. The classification model is trained by training 

data and predicts the target class of test data. One common application of 

classification is in fraud identification in the credit card or loan approval 

process. It classifies the applicant as fraud or nonfraud based on data. 

Classification is also widely used in image recognition. From a set of 

images, if you recognize the image of a computer, it is classifying the image 

of a computer and not of a computer class.

Sentiment analysis is a popular application of text classification. 

Suppose an airline company wants to analyze its customer textual 

feedback. Then each feedback is classified according to sentiment 

(positive/negative/neutral) and also according to context (about staff/

timing/food/price). Once this is done, the airline can easily find out 

what the strength of that airline’s staff is or its level of punctuality or cost 

effectiveness or even its weakness. Broadly, there are three approaches in 

classification.

•	 Rule-based approach: I will discuss the decision tree 

and random forest algorithm.

•	 Probabilistic approach: I will discuss the Naive Bayes 

algorithm.

•	 Distance-based approach: I will discuss the support 

vector machine.
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�Semisupervised Learning
Classification and regression are types of supervised learning. In this type 

of learning, you have a set of training data where you train your model. 

Then the model is used to predict test data. For example, suppose you 

want to classify text according to sentiment. There are three target classes: 

positive, negative, and neutral. To train your model, you have to choose 

some sample text and label it as positive, negative, and neutral. You use 

this training data to train the model. Once your model is trained, you can 

apply your model to test data. For example, you may use the Naive Bayes 

classifier for text classification and try to predict the sentiment of the 

sentence “Food is good.” In the training phase, the program will calculate 

the probability of a sentence being positive or negative or neutral when 

the words Food, is, and good are presented separately and stored in the 

model, and in the test phase it will calculate the joint probability when 

Food, is, and good all come together. Conversely, clustering is an example 

of unsupervised learning where there is no training data or target class 

available. The program learns from data in one shot. There is an instance 

of semisupervised learning also. Suppose you are classifying the text as 

positive and negative sentiments but your training data has only positives. 

The training data that is not positive is unlabeled. In this case, as the first 

step, you train the model assuming all unlabeled data is negative and apply 

the trained model on the training data. In the output, the data coming in 

as negative should be labeled as negative. Finally, train your model with 

the newly labeled data. The nearest neighbor classifier is also considered 

as semisupervised learning. It has training data, but it does not have the 

training phase of the model.
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�Decision Tree
A decision tree is a tree of rules. Each level of the tree represents a 

parameter, each node of the level validates a constraint for that level 

parameter, and each branch indicates a possible value of parent node 

parameter. Figure 3-1 shows an example of a decision tree.

�Which Attribute Comes First?
One important aspect of the decision tree is to decide the order of features. 

The entropy-based information gain measure decides it.

Entropy is a measure of randomness of a system.

Entropy S p p
i

c

i i( ) -
=
åº

1
2log

For example, for any obvious event like the sun rises in the east, 

entropy is zero, P=1, and log(p)=0. More entropy means more uncertainty 

or randomness in the system.

Sunny Overcast Rain

Yes

High Normal

Humidity

Outlook

Wind

No Yes No

Strong Weak

Yes

Figure 3-1.  Example of decision tree for good weather
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Information gain, which is the expected reduction in entropy caused 

by partitioning the examples according to this attribute, is the measure 

used in this case.

Specifically, the information gain, Gain(S,A), of an attribute A relative 

to a collection of examples S is defined as follows:

Gain S A Entropy S
S

S
Entropy S

v Values A

v
v,( ) ( ) - ( )

Î ( )
åº

So, an attribute with a higher information gain will come first in the 

decision tree.

from sklearn.tree import DecisionTreeClassifier

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column ]

X = df[ col1, col2 ..]

clf= DecisionTreeClassifier()

clf.fit(X,y)

clf.predict(X_test)

�Random Forest Classifier
A random forest classifier is an extension of a decision tree in which the 

algorithm creates N number of decision trees where each tree has M 

number of features selected randomly. Now a test data will be classified by 

all decision trees and be categorized in a target class that is the output of 

the majority of the decision trees.
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from sklearn.ensemble import RandomForestClassifier

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column ]

X = df[ col1, col2 ..]

clf=RandomForestClassifier(n_jobs=2,random_state=0)

clf.fit(X,y)

clf.predict(X_test)

�Naive Bayes Classifier
X = (x1, x2, x3, ..., xn) is a vector of n dimension. The Bayesian 

classifier assigns each X to one of the target classes of set {C1, C2, …, Cm,}. 

This assignment is done on the basis of probability that X belongs to target 

class Ci. That is to say, X is assigned to class Ci if and only if P(Ci |X) > P(Cj 

|X) for all j such that 1 ≤ j ≤ m.

P C X
P X C P C

P Xi
i i( ) = ( ) ( )
( )

In general, it can be costly computationally to compute P(X|Ci). If each 

component xk of X can have one of r values, there are rn combinations 

to consider for each of the m classes. To simplify the calculation, the 

assumption of conditional class independence is made, which means that 

for each class, the attributes are assumed to be independent. The classifier 

developing from this assumption is known as the Naive Bayes classifier. 

The assumption allows you to write the following:

P X C P x Ci
k

n

k i( ) = ( )
=
Õ

1
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The following code is an example of the Naive Bayes classification of 

numerical data:

#Import Library of Gaussian Naive Bayes model

from sklearn.naive_bayes import GaussianNB

import numpy as np

#assigning predictor and target variables

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column ]

X = df[ col1, col2 ..]

#Create a Gaussian Classifier

model = GaussianNB()

# Train the model using the training sets

model.fit(X, y)

#Predict Output

print model.predict([input array])

Note Y ou’ll see another example of the Naive Bayes classifier in the 
“Sentiment Analysis” section.

�Support Vector Machine
If you look at Figure 3-2, you can easily understand that the circle and 

square points are linearly separable in two dimensions (x1, x2). But they 

are not linearly separable in either dimension x1 or x2. The support vector 

machine algorithm works on this theory. It increases the dimension of 

the data until points are linearly separable. Once that is done, you have 

Chapter 3  Supervised Learning Using Python



63

to find two parallel hyperplanes that separate the data. This planes are 

known as the margin. The algorithm chose the margins in such a way that 

the distance between them is the maximum. That’s why it is the maximum 

margin. The plane, which is at the middle of these two margins or at equal 

distance between them, is known as an optimal hyperplane that is used to 

classify the test data (see Figure 3-2). The separator can be nonlinear also.

The following code is an example of doing support vector machine 

classification using Python:

from sklearn import svm

df = pd.read_csv('csv file path', index_col=0)

y = df[target class column ]

X = df[ col1, col2 ..]

X2

X1

Optimal hyperplane

Maximum
margin

Figure 3-2.  Support vector machine
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model.fit(X, y)

model.score(X, y)

print model.predict(x_test)

�Nearest Neighbor Classifier
The nearest neighbor classifier is a simple distance-based classifier. It 

calculates the distance of test data from the training data and groups 

the distances according to the target class. The target class, which has a 

minimum average distance from the test instance, is selected as the class 

of the test data. A Python example is shown here:

def Distance(point1, point2, length):

      distance = 0

      for x in range(length):

            distance += pow((point1[x] -point2[x]), 2)

      return math.sqrt(distance)

def getClosePoints(trainingData, testData, k):

      distances = []

      length = len(testInstance)-1

      for x in range(len(trainingData)):

            dist = Distance(testData, trainingDatat[x], length)

            distances.append((trainingData[x], dist))

      distances.sort(key=operator.itemgetter(1))

      close= []

      for x in range(k):

            close.append(distances[x][0])

      return close
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trainData = [[3,3,3,, 'A'], [5,5,5,, 'B']]

testData = [7,7,7]

k = 1

neighbors = getClosePoints(trainData, testData, 1)

print(neighbors)

�Sentiment Analysis
Sentiment analysis is an interesting application of text classification. For 

example, say one airline client wants to analyze its customer feedback. 

It classifies the feedback according to sentiment (positive/negative) and 

also by aspect (food/staff/punctuality). After that, it can easily understand 

its strengths in business (the aspect that has the maximum positive 

feedback) and its weaknesses (the aspect that has the maximum negative 

feedback). The airline can also compare this result with its competitor. 

One interesting advantage of doing a comparison with the competitor is 

that it nullifies the impact of the accuracy of the model because the same 

accuracy is applied to all competitors. This is simple to implement in 

Python using the textblob library, as shown here:

from textblob.classifiers import NaiveBayesClassifier

train = [('I love this sandwich.', 'pos'),  ('this is an 

amazing place!', 'pos'),('I feel very good about these 

beers.', 'pos'),('this is my best work.', 'pos'),("what 

an awesome view", 'pos'),('I do not like this restaurant', 

'neg'),('I am tired of this stuff.', 'neg'),("I can't deal with 

this", 'neg'),('he is my sworn enemy!', 'neg'),('my boss is 

horrible.', 'neg')]
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cl = NaiveBayesClassifier(train)

print (cl.classify("This is an amazing library!"))

output :  pos

from textblob.classifiers import NaiveBayesClassifier

train = [('Air India did a poor job of queue management 

both times.', 'staff service'),  (“The 'cleaning' by flight 

attendants involved regularly spraying air freshener in 

the lavatories.", 'staff'),('The food tasted decent.', 

'food'),('Flew Air India direct from New York to Delhi 

round trip.', 'route'),('Colombo to Moscow via Delhi.', 

'route'),('Flew Birmingham to Delhi with Air India.', 

'route'),('Without toilet, food or anything!', 'food'),('Cabin 

crew announcements included a sincere apology for the delay.', 

'cabin flown')]

cl = NaiveBayesClassifier(train)

tests = ['Food is good.']

for c in tests:

      printcl.classify(c)

Output : food

The textblob library also supports a random forest classifier, which 

works best on text written in proper English such as a formal letter might 

be. For text that is not usually written with proper grammar, such as 

customer feedback, Naive Bayes works better. Naive Bayes has another 

advantage in real-time analytics. You can update the model without losing 

the previous training.
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�Image Recognition
Image recognition is a common example of image classification. It is easy 

to use in Python by applying the opencv library. Here is the sample code:

faceCascade=cv2.CascadeClassifier(cascPath)

image = cv2.imread(imagePath)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(

    gray,

    scaleFactor=1.1,

    minNeighbors=5,

    minSize=(30, 30),

    flags = cv2.cv.CV_HAAR_SCALE_IMAGE

)

print"Found {0} faces!".format(len(faces))

�Regression with Python
Regression realizes a variable as a linear or nonlinear polynomial of a set of 

independent variables.

Here is an interesting use case: what is the sales price of a product that 

maximizes its profit? This is a million-dollar question for any merchant. 

The question is not straightforward. Maximizing the sales price may 

not result in maximizing the profit because increasing the sales price 

sometimes decreases the sales volume, which decreases the total profit. 

So, there will be an optimized value of sales price for which the profit will 

be at the maximum.

There is N number of records of the transaction with M number of 

features called F1, F2, ... Fm (sales price, buy price, cash back, SKU, order 

date, and so on). You have to find a subset of K(K<M) features that have an 
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impact on the profit of the merchant and suggest an optimal value of  

V1, V2, ... Vk for these K features that maximize the revenue.

You can calculate the profit of merchant using the following formula:

Profit = ( SP - TCB – BP ) * SV                (1)

For this formula, here are the variables:

•	 SP = Sales price

•	 TCB = Total cash back

•	 BP = Buy price

•	 SV = Sales volume

Now using regression, you can realize SV as follows:

SV = a + b*SP + c*TCB + d*BP

Now you can express profit as a function of SP, TCB, and BP and use 

mathematical optimization. With constraining in all parameter values, 

 you can get optimal values of the parameters that maximize the profit.

This is an interesting use case of regression. There are many scenarios 

where one variable has to be realized as the linear or polynomial function 

of other variables.

�Least Square Estimation
Least square estimation is the simplest and oldest method for doing 

regression. It is also known as the curve fitting method. Ordinary least 

squares (OLS) regression is the most common technique and was invented 

in the 18th century by Carl Friedrich Gauss and Adrien-Marie Legendre. 

The following is a derivation of coefficient calculation in ordinary least 

square estimation:
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The following code is a simple example of OLS regression:

fromscipyimport stats

df = pd.read_csv('csv file path', index_col=0)

y = df[target column ]

X = df[ col1, col2 ..]

X=sm.add_constant(X)

slope, intercept, r_value, p_value, std_err = stats.

linregress(X,y)

�Logistic Regression
Logistic regression is an interesting application of regression that 

calculates the probability of an event. It introduces an intermediate 

variable that is a linear regression of linear variable. Then it passes 

the intermediate variable through the logistic function, which maps 

the intermediate variable from zero to one. The variable is treated as a 

probability of the event.

The following code is an example of doing logistic regression on 

numerical data:

import pandas as pd

import statsmodels.api as sm

df = pd.read_csv('csv file path', index_col=0)
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y = df[target column ]

X = df[ col1, col2 ..]

X=sm.add_constant(X)

logit=sm.Logit(y,X)

result=logit.fit()

result.summary()

�Classification and Regression
Classification and regression may be applied on the same problem. For 

example, when a bank approves a credit card or loan, it calculates a credit 

score of a candidate based on multiple parameters using regression and 

then sets up a threshold. Candidates having a credit score greater than 

the threshold are classified as potential nonfraud, and the remaining are 

considered as potential fraud. Likewise, any binary classification problem 

can be solved using regression by applying a threshold on the regression 

result. In Chapter 4, I discussed in detail how to choose a threshold 

value from the distribution of any parameter. Similarly, some binary 

classifications can be used in place of logistic regression. For instance, 

say an e-commerce site wants to predict the chances of a purchase order 

being converted into a successful invoice. The site can easily do so using 

logistic regression. The Naive Bayes classifier can be directly applied 

on the problem because it calculates probability when it classifies the 

purchase order to be in the successful or unsuccessful class. The random 

forest algorithm can be used in the problem as well. In that case, among 

the N decision tree, if the M decision tree says the purchase order will be 

successful, then M/N will be the probability of the purchase order being 

successful.
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�Intentionally Bias the Model to Over-Fit or 
Under-Fit
Sometimes you need to over- or under-predict intentionally. In an 

auction, when you are predicting from the buy side, it will always be good 

if your bid is little lower than the original. Similarly, on the sell side, it 

is desired that you set the price a little higher than the original. You can 

do this in two ways. In regression, when you are selecting the features 

using correlation, over-predicting intentionally drops some variable with 

negative correlation. Similarly, under-predicting drops some variable with 

positive correlation. There is another way of dealing with this. When you 

are predicting the value, you can predict the error in the prediction. To 

over-predict, when you see that the predicted error is positive, reduce the 

prediction value by the error amount. Similarly, to over-predict, increase 

the prediction value by the error amount when the error is positive.

Another problem in classification is biased training data. Suppose 

you have two target classes, A and B. The majority (say 90 percent) of 

training data is class A. So, when you train your model with this data, all 

your predictions will become class A. One solution is a biased sampling 

of training data. Intentionally remove the class A example from training. 

Another approach can be used for binary classification. As class B is a 

minority in the prediction probability of a sample, in class B it will always 

be less than 0.5. Then calculate the average probability of all points coming 

into class B. For any point, if the class B probability is greater than the 

average probability, then mark it as class B and otherwise class A.
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The following code is an example of a tuning classification condition:

y_test_increasing, predicted_increasing = predict(d1, True, False)

y_test_decreasing, predicted_decreasing = predict(d2, False, False)

prob_increasing = predicted_increasing[:,1]

increasing_mean = prob_increasing.mean()

increasing_std = prob_increasing.std()

prob_decreasing = predicted_decreasing[:,0]

decreasing_mean = prob_decreasing.mean()

decreasing_std = prob_decreasing.std()

ifi> 0:

    mean_std_inc = (mean_std_inc + increasing_std)/2

    mean_std_dec = (mean_std_dec + decreasing_std)/2

else:

    mean_std_inc = increasing_std

    mean_std_dec = decreasing_std

for j in range(len(y_test_decreasing)-1):

                   �ac_status = y_test_increasing[j] + y_test_

decreasing[j]

                   pr_status = 0

                   if True:

                          �inc = (prob_increasing[j] - 

increasing_mean + mean_std_inc)

                          �dec = (prob_decreasing[j] - 

decreasing_mean + mean_std_dec)

                          ifinc> 0 or dec> 0:

                                ifinc>dec:

                                       pr_status = 1

                                else:

                                       pr_status = -1

                          else:

                                pr_status = 0
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�Dealing with Categorical Data
For algorithm-like support, vector or regression input data must be 

numeric. So, if you are dealing with categorical data, you need to convert 

to numeric data. One strategy for conversion is to use an ordinal number 

as the numerical score. A more sophisticated way to do this is to use 

an expected value of the target variable for that value. This is good for 

regression.

for col in X.columns:

       �avgs = df.groupby(col, as_index=False)['floor'].

aggregate(np.mean)

       fori,row in avgs.iterrows():

       k = row[col]

                               v = row['floor']

       X.loc[X[col] == k, col] = v

For logistic regression, you can use the expected probability of the 

target variable for that categorical value.

for col in X.columns:

       if str(col) != 'success':

             if str(col) not in index:

                   �feature_prob = X.groupby(col).size().

div(len(df))

                   �cond_prob = X.groupby(['success', 

str(col)]).size().div(len(df)).div(feature_

prob, axis=0, level=str(col)).reset_

index(name="Probability")

                   cond_prob = cond_prob[cond_prob.success != '0']

                   cond_prob.drop("success",inplace=True, axis=1)

                   �cond_prob['feature_value'] = cond_

prob[str(col)].apply(str).as_matrix()
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                   �cond_prob.drop(str(col),inplace=True, axis=1)

                   for i, row in cond_prob.iterrows():

                              k = row["feature_value"]

                              v = row["Probability"]

                              X.loc[X[col] == k, col] = v

       else:

             X.drop(str(col),inplace=True, axis=1)

The following example shows how to deal with categorical data and 

how to use correlation to select a feature. The following is the complete 

code of data preprocessing. The data for this code example is also available 

online at the Apress website.

def process_real_time_data(time_limit):

       df = pd.read_json(json.loads(<input>))

       df.replace('^\s+', '', regex=True, inplace=True) #front

       df.replace('\s+$', '', regex=True, inplace=True) #end

       time_limit = df['server_time'].max()

       �df['floor'] = pd.to_numeric(df['floor'], 

errors='ignore')

       �df['client_time'] = pd.to_numeric(df['client_time'], 

errors='ignore')

       �df['client_time'] = df.apply(lambda row: get_hour(row.

client_time), axis=1)

       y = df['floor']

       �X = df[['ip','size','domain','client_time','device','ad_

position','client_size','root']]

       �X_back = df[['ip','size','domain','client_

time','device','ad_position','client_size','root']]
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       for col in X.columns:

             �avgs = df.groupby(col, as_index=False)['floor'].

aggregate(np.mean)

             for index,row in avgs.iterrows():

                    k = row[col]

                    v = row['floor']

                    X.loc[X[col] == k, col] = v

       X.drop('ip', inplace=True, axis=1)

       X_back.drop('ip', inplace=True, axis=1)

       �X_train, X_test, y_train, y_test = cross_validation.

train_test_split(X, y, test_size= 0, random_state=42)

       X_train = X_train.astype(float)

       y_train = y_train.astype(float)

       X_train = np.log(X_train + 1)

       y_train = np.log(y_train + 1)

       X_train = X_train.as_matrix()

       y_train = y_train.as_matrix()

       index = []

       i1 = 0

       processed = 0

       while(1):

             flag = True

             for i in range(X_train.shape[1]):

                    if i > processed :

       #print(i1,X_train.shape[1],X.columns[i1])

                          i1 = i1 + 1

                          corr = pearsonr(X_train[:,i], y_train)
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                          �PEr= .674 * (1- corr[0]*corr[0])/ 

(len(X_train[:,i])**(1/2.0))

                          if corr[0] < PEr:

                                 �X_train = np.delete(X_train,i,1)

                                 index.append(X.columns[i1-1])

                                 processed = i - 1

                                 flag = False

                                 break

              if flag:

                    break

           �return y_train, X_train, y, X_back, X, time_limit, 

index
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CHAPTER 4

Unsupervised 
Learning: Clustering
In Chapter 3 we discussed how training data can be used to categorize 

customer comments according to sentiment (positive, negative, neutral), 

as well as according to context. For example, in the airline domain, the 

context can be punctuality, food, comfort, entertainment, and so on. Using 

this analysis, a business owner can determine the areas that his business 

he needs to concentrate on. For instance, if he observes that the highest 

percentage of negative comments has been about food, then his priority 

will be the quality of food being served to the customers. However, there 

are scenarios where business owners are not sure about the context. There 

are also cases where training data is not available. Moreover, the frame 

of reference can change with time. Classification algorithms cannot be 

applied where target classes are unknown. A clustering algorithm is used 

in these kinds of situations. A conventional application of clustering is 

found in the wine-making industry where each cluster represents a brand 

of wine, and wines are clustered according to their component ratio in 

wine. In Chapter 3, you learned that classification can be used to recognize 

a type of image, but there are scenarios where one image has multiple 

shapes and an algorithm is needed to separate the figures. Clustering 

algorithms are used in this kind of use case.
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Clustering classifies objects into groups based on similarity or 

distance measure. This is an example of unsupervised learning. The main 

difference between clustering and classification is that the latter has well-

defined target classes. The characteristics of target classes are defined by 

the training data and the models learned from it. That is why classification 

is supervised in nature. In contrast, clustering tries to define meaningful 

classes based on data and its similarity or distance. Figure 4-1 illustrates a 

document clustering process.

�K-Means Clustering
Let’s suppose that a retail distributer has an online system where local 

agents enter trading information manually. One of the fields they have 

to fill in is City. But because this data entry process is manual, people 

normally tend to make lots of spelling errors. For example, instead of 

Delhi, people enter Dehi, Dehli, Delly, and so on. You can try to solve 

this problem using clustering because the number of clusters are already 

known; in other words, the retailer is aware of how many cities the agents 

operate in. This is an example of K-means clustering.

The K-means algorithm has two inputs. The first one is the data X, which 

is a set of N number of vectors, and the second one is K, which represents 

the number of clusters that needs to be created. The output is a set of K 

centroids in each cluster as well as a label to each vector in X that indicates 

Figure 4-1.  Document clustering
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the points assigned to the respective cluster. All points within a cluster are 

nearer in distance to their centroid than any other centroid. The condition 

for the K clusters Ck and the K centroids μk can be expressed as follows: 

minimize 
k

K

C
n k

n k= Î
å å -

1

2

x

x m  with respect to Ck, μk.

However, this optimization problem cannot be solved in polynomial 

time. But Lloyd has proposed an iterative method as a solution. It consists 

of two steps that iterate until the program converges to the solution.

	 1.	 It has a set of K centroids, and each point is assigned 

to a unique cluster or centroid, where the distance 

of the concerned centroid from that particular point 

is the minimum.

	 2.	 It recalculates the centroid of each cluster by using 

the following formula:

	
C Xn k Xn lk = - £ -{ }Xn all: m m 	 (1)

	
mk = Îå1

Ck
XnXn Ck 	

(2)

The two-step procedure continues until there is no further re-arrangement 

of cluster points. The convergence of the algorithm is guaranteed, but it may 

converge to a local minima.

The following is a simple implementation of Lloyd’s algorithm for 

performing K-means clustering in Python:

import random

def ED(source, target):

if source == "":

return len(target)

if target == "":

return len(source)
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if source[-1] == target[-1]:

cost = 0

else:

cost = 1

res = min([ED(source[:-1], target)+1,

ED(source, target[:-1])+1,

ED(source[:-1], target[:-1]) + cost])

return res

def find_centre(x, X, mu):

min = 100

cent = 0

for c in mu:

dist = ED(x, X[c])

if dist< min:

min = dist

cent = c

return cent

def cluster_arrange(X, cent):

clusters  = {}

for x in X:

bestcent = find_centre(x, X, cent)

try:

clusters[bestcent].append(x)

exceptKeyError:

clusters[bestcent] = [x]

return clusters

def rearrange_centers(cent, clusters):

newcent = []

keys = sorted(clusters.keys())
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for k in keys:

newcent.append(k)

return newcent

def has_converged(cent, oldcent):

return sorted(cent) == sorted(oldcent)

def locate_centers(X, K):

oldcent = random.sample(range(0,5), K)

cent = random.sample(range(0,5), K)

while not has_converged(cent, oldcent):

oldcent = cent

        # Assign all points in X to clusters

clusters = cluster_arrange(X, cent)

        # Reevaluate centers

cent = rearrange_centers(oldcent, clusters)

return(cent, clusters)

X = ['Delhi','Dehli', 'Delli','Kolkata','Kalkata','Kalkota']

print(locate_centers(X,2))

However, K-means clustering has a limitation. For example, suppose 

all of your data points are located in eastern India. For K=4 clustering, 

the initial step is that you randomly choose a center in Delhi, Mumbai, 

Chennai, and Kolkata. All of your points lie in eastern India, so all 

the points are nearest to Kolkata and are always assigned to Kolkata. 

Therefore, the program will converge in one step. To avoid this problem, 

the algorithm is run multiple times and averaged. Programmers can use 

various tricks to initialize the centroids in the first step.

Chapter 4  Unsupervised Learning: Clustering



82

�Choosing K: The Elbow Method
There are certain cases where you have to determine the K in K-means 

clustering. For this purpose, you have to use the elbow method, which 

uses a percentage of variance as a variable dependent on the number 

of clusters. Initially, several clusters are chosen. Then another cluster is 

added, which doesn’t make the modeling of data much better. The number 

of clusters is chosen at this point, which is the elbow criterion. This “elbow” 

cannot always be unambiguously identified. The percentage of variance is 

realized as the ratio of the between-group variance of individual clusters 

to the total variance. Assume that in the previous example, the retailer 

has four cities: Delhi, Kolkata, Mumbai, and Chennai. The programmer 

does not know that, so he does clustering with K=2 to K=9 and plots the 

percentage of variance. He will get an elbow curve that clearly indicates 

K=4 is the right number for K.

�Distance or Similarity Measure
The measure of distance or similarity is one of the key factors of clustering. 

In this section, I will describe the different kinds of distance and similarity 

measures. Before that, I’ll explain what distance actually means here.

�Properties
The distances are measures that satisfy the following properties:

•	 dist(x, y) = 0 if and only if x=y.

•	 dist(x, y) > 0 when x ≠ y.

•	 dist(x, y) = dist(x, y).

•	 dist(x,y) + dist(y,z) >= d(z,x) for all x, y, and z.
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�General and Euclidean Distance
The distance between the points p and q is the length of the geometrical 

line between them: ( pq) . This is called Euclidean distance.

According to Cartesian coordinates, if p = (p1, p2,…, pn) and  

q = (q1, q2,…, qn) are the two points in Euclidean n-space, then the  

distance (d) from q to p or from p to q is derived from the Pythagorean 

theorem, as shown here:

d p q d q p, ,
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( ) = ( ) = -( ) + -( ) +¼+ -( )

= -( )
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The Euclidean vector is the position of a point in a Euclidean n-space. 

The magnitude of a vector is a measure. Its length is calculated by the 

following formula:

p p p= + + + = ×p p pn1
2

2
2 2
 ,

A vector has direction along with a distance. The distance between two 

points, p and q, may have a direction, and therefore, it may be represented 

by another vector, as shown here:

q – p = (q1–p1, q2–p2, …. , qn–pn)

The Euclidean distance between p and q is simply the Euclidean length 

of this distance (or displacement) vector.

q p q p q p- = -( )× -( )
- = + - ×q p p q p q

2 2
2
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In one dimension:

x y x y-( ) = -2
.

In two dimensions:
In the Euclidean plane, if p = (p1, p2) and q = (q1, q2), then the distance 

is given by the following:

d(p,q) = √(q1–p1)^2 + (q2–p2)^2

Alternatively, it follows from the equation that if the polar coordinates 

of the point p are (r1, θ1) and those of q are (r2, θ2), then the distance 

between the points is as follows:

√r1^2 + r2^2 – 2r1r2cos(θ
1 − θ2)

In n dimensions:
In the general case, the distance is as follows:

D2(p,q) = (p1 – q1)2 + (p2 – q2)2 + … + (pi – qi)2 + … + (pn – qn)2.

In Chapter 3, you will find an example of Euclidian distance in the 

nearest neighbor classifier example.

�Squared Euclidean Distance
The standard Euclidean distance can be squared to place progressively 

greater weight on objects that are farther apart. In this case, the equation 

becomes the following:

d2(p,q) = (p1 – q1)2 + (p2 – q2)2 + … + (pi – qi)2 + … + (pn – qn)2.

Squared Euclidean distance is not a metric because it does not satisfy 

the triangle inequality. However, it is frequently used in optimization 

problems in which distances are to be compared only.
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�Distance Between String-Edit Distance
Edit distance is a measure of dissimilarity between two strings. It counts 

the minimum number of operations required to make two strings 

identical. Edit distance finds applications in natural language processing, 

where automatic spelling corrections can indicate candidate corrections 

for a misspelled word. Edit distance is of two types.

•	 Levenshtein edit distance

•	 Needleman edit distance

�Levenshtein Distance

The Levenshtein distance between two words is the least number of 

insertions, deletions, or replacements that need to be made to change one 

word into another. In 1965, it was Vladimir Levenshtein who considered 

this distance.

Levenshtein distance is also known as edit distance, although that 

might denote a larger family of distance metrics as well. It is affiliated with 

pair-wise string alignments.

For example, the Levenshtein distance between Calcutta and Kolkata 

is 5, since the following five edits change one into another:

Calcutta → Kalcutta (substitution of C for K)

Kalcutta → Kolcutta (substitution of a for o)

Kolcutta → Kolkutta (substitution of c for k)

Kolkutta → Kolkatta (substitution of u for a)

Kolkatta → Kolkata (deletion of t )

When the strings are identical, the Levenshtein distance has several 

simple upper bounds that are the lengths of the larger strings and the 

lower bounds are zero. The code example of the Levinstein distance is 

given in K-mean clustering code.
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�Needleman–Wunsch Algorithm

The Needleman–Wunsch algorithm is used in bioinformatics to align 

protein or nucleotide sequences. It was one of the first applications of 

dynamic programming for comparing biological sequences. It works 

using dynamic programming. First it creates a matrix where the rows and 

columns are alphabets. Each cell of the matrix is a similarity score of the 

corresponding alphabet in that row and column. Scores are one of three 

types: matched, not matched, or matched with insert or deletion. Once 

the matrix is filled, the algorithm does a backtracing operation from the 

bottom-right cell to the top-left cell and finds the path where the neighbor 

score distance is the minimum. The sum of the score of the backtracing 

path is the Needleman–Wunsch distance for two strings.

Pyopa is a Python module that provides a ready-made Needleman–

Wunsch distance between two strings.

import pyopa

data = {'gap_open': -20.56,

        'gap_ext': -3.37,

        'pam_distance': 150.87,

        'scores': [[10.0]],

        'column_order': 'A',

        'threshold': 50.0}

env = pyopa.create_environment(**data)

s1 = pyopa.Sequence('AAA')

s2 = pyopa.Sequence('TTT')

print(pyopa.align_double(s1, s1, env))

print(env.estimate_pam(aligned_strings[0], aligned_strings[1]))
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Although Levenshtein is simple in implementation and 

computationally less expensive, if you want to introduce a gap in string 

matching (for example, New Delhi and NewDelhi), then the Needleman-

Wunsch algorithm is the better choice.

�Similarity in the Context of Document
A similarity measure between documents indicates how identical two 

documents are. Generally, similarity measures are bounded in the range 

[-1,1] or [0,1] where a similarity score of 1 indicates maximum similarity.

�Types of Similarity
To measure similarity, documents are realized as a vector of terms 

excluding the stop words. Let’s assume that A and B are vectors 

representing two documents. In this case, the different similarity measures 

are shown here:

•	 Dice

	 The Dice coefficient is denoted by the following:

	 sim(q,dj) = D(A,B) = 
A B

A B

Ç
a a+ -( )1

	 Also,

	 aÎ 0 1,[ ]  and let a =
1

2
•	 Overlap

	 The Overlap coefficient is computed as follows:

	 Sim(q,dj) = O(A,B) = 
A B

A B

Ç

( )min ,

	 The Overlap coefficient is calculated using the max 

operator instead of min.
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•	 Jaccard

	 The Jaccard coefficient is given by the following:

	 Sim(q,dj) = J(A,B) = 
A B

A B

Ç
È

	 The Jaccard measure signifies the degree of relevance.

•	 Cosine

	 The cosine of the angle between two vectors is given by 

the following:

	 Sim(q,dj) = C(A,B) = 
A B

A B

Ç

Distance and similarity are two opposite measures. For example, 

numeric data correlation is a similarity measure, and Euclidian distance 

is a distance measure. Generally, the value of the similarity measure is 

limited to between 0 and 1, but distance has no such upper boundary. 

Similarity can be negative, but by definition, distance cannot be negative. 

The clustering algorithms are almost the same as from the beginning of 

this field, but researchers are continuously finding new distance measures 

for varied applications.

�What Is Hierarchical Clustering?
Hierarchical clustering is an iterative method of clustering data objects. 

There are two types.

•	 Agglomerative hierarchical algorithms, or a bottom-up 

approach

•	 Divisive hierarchical algorithms, or a top-down 

approach
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�Bottom-Up Approach
The bottom-up clustering method is called agglomerative hierarchical 

clustering. In this approach, each input object is considered as a separate 

cluster. In each iteration, an algorithm merges the two most similar clusters 

into only a single cluster. The operation is continued until all the clusters 

merge into a single cluster. The complexity of the algorithm is O(n^3).

In the algorithm, a set of input objects, I = {I1,I2,….,In}, is given. A set 

of ordered triples is <D,K,S>, where D is the threshold distance, K is the 

number of clusters, and S is the set of clusters.

Some variations of the algorithm might allow multiple clusters with 

identical distances to be merged into a single iteration.

Algorithm

Input: I={I1,I2,…., In}

Output: O

fori = 1 to n do

        Ci ← {Ii};

end for

D ← 0;

K ← n;

S ← {C1,....., Cn};

O ← <d, k, S>;

repeat

        Dist ← CalcultedMinimumDistance(S);

        D ← ∞;

        Fori = 1 to K–1 do

                Forj = i+1 to Kdo

                        ifDist(i, j)< Dthen

                                D← Dist(i, j);

                                u ← i;

                                v ← j;
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                        end if

                end for

        end for

        K ← K-1;

        Cnew ← Cu ∪Cv;
        S ← S∪ Cnew –Cu – Cv;
        O ← O∪<D, K, S>
Until K = 1;

A Python example of hierarchical clustering is given later in the chapter.

�Distance Between Clusters
In hierarchical clustering, calculating the distance between two clusters is 

a critical step. There are three methods to calculate this.

•	 Single linkage method

•	 Complete linkage method

•	 Average linkage method

�Single Linkage Method

In the single linkage method, the distance between two clusters is the 

minimum distance of all distances between pairs of objects in two clusters. 

As the distance is the minimum, there will be a single pair of objects that 

has less than equal distance between two clusters. So, the single linkage 

method may be given as follows:

Dist(Ci, Cj) = min dist(X , Y)

X€Ci ,Y€Cj
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�Complete Linkage Method

In the complete linkage method, the distance between two clusters is the 

maximum distance of all distance between pairs of objects in two clusters. 

The distance is the maximum, so all pairs of distances are less than equal 

than the distance between two clusters. So, the complete linkage method 

can be given by the following:

Dist(Ci, Cj) = max dist(X, Y)

X€Ci,Y€Cj

�Average Linkage Method

The average linkage method is a compromise between the previous two 

linkage methods. It avoids the extremes of large or compact clusters. The 

distance between clusters Ci and Cj is defined by the following:

Dist C C
dist

C C
j

i j

( ),
(X,Y)

i j =
´

åå X YCi C

| Ck | is the number of data objects in cluster Ck.

The centroid linkage method is similar to the average linkage method, 

but here the distance between two clusters is actually the distance between 

the centroids. The centroid of cluster Ci is defined as follows:

Xc = (c1,…., cm), with

cj = 1/m ∑Xkj,

Xkj is the j-th dimension of the k-th data object in cluster Ci.

€ €
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�Top-Down Approach
The top-down clustering method is also called the divisive hierarchical 

clustering. It the reverse of bottom-up clustering. It starts with a single 

cluster consisting of all input objects. After each iteration, it splits the 

cluster into two parts having the maximum distance.

Algorithm

Input: I = {I1, I2, … , In}

Output: O

D ← ∞;

K ← 1;

S ← {I1,I2 , ... , In};
O ← <D, K, S >;
repeat

        X ← �containing two data objects with the longest 

distance dist;

        Y ← ∅;

        S ← S – X;

        Xi ← data object in A with maximum − D(Xi, X);
        X ← X − {Xi};
        Y ← Y ∪ {Xi};

        repeat

                forall data object Xj in Xdo

                        e(j) ← − D(Xj, X) − − D(Xj, Y);
                end for

                if∃e(j) > 0 then
                        Xk ← data object in X with maximum e(j);

                        X ← X − {Xk};

                        Y ← Y ∪ {Xk};
                        split ← TRUTH;

                else
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                        split← FALSE;

                end if

        untilsplit == FALSE;

        D ← dist;
        K ← K+1;

        S ← S∪ X ∪ Y
        O ← 0 ∪ <D, K, S>;
Until  K = n;

A dendrogram O is an output of any hierarchical clustering. Figure 4-2 

illustrates a dendrogram.

Figure 4-2.  A dendrogram
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To create a cluster from a dendrogram, you need a threshold of 

distance or similarity. An easy way to do this is to plot the distribution 

of distance or similarity and find the inflection point of the curve. For 

Gaussian distribution data, the inflection point is located at x = mean + 

n*std and x = mean – n*std, as shown Figure 4-3.

The following code creates a hierarchical cluster using Python:

From numpy import *

class cluster_node:

def \ __init__(self,vec1,left1=None,right1=None,distance1=0.0,i

d1=None,count1=1):

self.left1=left1

self.right1=right1

self.vec1=vec1

        self.id1=id1

self.distance1=distance1

self.count1=count1 #only used for weighted average

       def L2dist(v1,v2):

             return sqrt(sum((v1-v2)**2))

       def hcluster(features1,distanc1e=L2dist):

Figure 4-3.  The inflection point
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             #cluster the rows of the "features" matrix

             distances1={}

             currentclustid1=-1

             # clusters are initially just the individual rows

             �clust1=[cluster_node(array(features1[i1]),id1=i1) 

for i1 in range(len(features1))]

             while len(clust1)>1:

                   lowestpair1=(0,1)

       closest1=distance(clust1[0].vec1,clust1[1].vec1)

                   �# loop through every pair looking for the 

smallest distance

                   for i1 in range(len(clust1)):

                          for j1 in range(i+1,len(clust)):

                                �# distances is the cache of 

distance calculations

                                �if (clust1[i1].id1,clust1[j1].

id1) not in distances1:

                     distances[(clust1[i1].id1,clust1[j1].id1)]=\

       distance1(clust1[i1].vec1,clust1[j1].vec1)

       d1=distances1[(clust1[i1].id1,clust1[j1].id1)]

                                 if d1< closest1:

                    closest1=d1

                    lowestpair1=(i1,j1)

                    # calculate the average of the two clusters

       mergevec1=[(clust1[lowestpair1[10]].vec1[i1]\

       +clust1[lowestpair1[1]].vec1[i1])/2.0 \

                    For i in range(len(clust1[0].vec1))]

                    # create the new cluster

                    newcluster1=cluster_node1(array(mergevec1),\

                                 �left1=clust1[lowestpair1[0]],\

right1=clust1[lowestpair1[1]],\

distance1=closes1t,id1=currentclustid1)
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                    �# cluster ids that weren't in the original 

set are negative

                    currentclustid1-=1

                    delclust1[lowestpair1[1]]

                    delclust1[lowestpair1[0]]

                    clust1.append(newcluster1)

             return clust1[0]

The previous code will create the dendogram. Creation of the cluster 

from that dendogram using some threshold distance is given by the 

following:

def extract_clusters(clust1, dist1):

       �# extract list of sub-tree clusters from h-cluster tree 

with distance <dist

       clusters1 = {}

       if clust.distance1<dis1:

       # we have found a cluster subtree

              return [clust1]

       else:

             # check the right and left branches

             cl1 = []

             cr1 = []

             if clust1.left1!=None:

                    cl = extract_clusters(clust1.left1,dist1=dist1)

             if clust1.right1!=None:

                    �cr1 = extract_clusters(clust1.

right1,dist1=dist1)

             return cl1+cr1
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�Graph Theoretical Approach
The clustering problem can be mapped to a graph, where every node in 

the graph is an input data point. If the distance between two graphs is 

less than the threshold, then the corresponding nodes are connected. 

Now using the graph partition algorithm, you can cluster the graph. One 

industry example of clustering is in investment banking, where the cluster 

instruments depend on the correlation of their time series of price and 

performance trading of each cluster taken together. This is known as 

basket trading in algorithmic trading. So, by using the similarity measure, 

you can construct the graph where the nodes are instruments and the 

edges between the nodes indicate that the instruments are correlated. To 

create the basket, you need a set of instruments where all are correlated 

to each other. In a graph, this is a set of nodes or subgraphs where all the 

nodes in the subgraph are connected to each other. This kind of subgraph 

is known as a clique. Finding the clique of maximum size is an NP-

complete problem. People use heuristic solutions to solve this problem of 

clustering.

�How Do You Know If the Clustering Result Is 
Good?
After applying the clustering algorithm, verifying the result as good or bad 

is a crucial step in cluster analysis. Three parameters are used to measure 

the quality of cluster, namely, centroid, radius, and diameter.

Centroid C
Nm= = å i=1
N

mit
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Radius R
t C

Nm
mi mi= =
-

=å N( )2
1

Diameter D
t C

N Nm
i mi mj= =

-

-
= =å åN N( )

( )( )
1

2

1

1

If you consider the cluster as a circle in a space surrounding all 

member points in that cluster, then you can take the centroid as the center 

of the circle. Similarly, the radius and diameter of the cluster are the radius 

and diameter of the circle. Any cluster can be represented by using these 

three parameters. One measure of good clustering is that the distance 

between centers should be greater than the sum of radius.

General measures of the goodness of the machine learning algorithm 

are precision and recall. If A denotes the set of retrieved results, B denotes 

the set of relevant results, P denotes the precision, and R denotes the 

recall, then:

P A B,( ) = ÇA B

A
 
and

R A B,( ) = ÇA B

B
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CHAPTER 5

Deep Learning 
and Neural Networks
Neural networks, specifically known as artificial neural networks  

(ANNs), were developed by the inventor of one of the first neurocomputers, 

Dr. Robert Hecht-Nielsen. He defines a neural network as follows:

“…a computing system made up of a number of simple, highly 

interconnected processing elements, which process information by their 

dynamic state response to external inputs.”

Customarily, neutral networks are arranged in multiple layers. The 

layers consist of several interconnected nodes containing an activation 

function. The input layer, communicating to the hidden layers, delineates 

the patterns. The hidden layers are linked to an output layer.

Neural networks have many uses. As an example, you can cite the fact 

that in a passenger load prediction in the airline domain, passenger load 

in month t is heavily dependent on t-12 months of data rather on t-1 or t-2 

data. Hence, the neural network normally produces a better result than 

the time-series model or even image classification. In a chatbot dialogue 

system, the memory network, which is actually a neural network of a bag 

of words of the previous conversation, is a popular approach. There are 

many ways to realize a neural network. In this book, I will focus only the 

backpropagation algorithm because it is the most popular.
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�Backpropagation
Backpropagation, which usually substitutes an optimization method 

like gradient descent, is a common method of training artificial neural 

networks. The method computes the error in the outermost layer and 

backpropagates up to the input layer and then updates the weights as 

a function of that error, input, and learning rate. The final result is to 

minimize the error as far as possible.

�Backpropagation Approach
Problems like the noisy image to ASCII examples are challenging to solve 

through a computer because of the basic incompatibility between the 

machine and the problem. Nowadays, computer systems are customized 

to perform mathematical and logical functions at speeds that are beyond 

the capability of humans. Even the relatively unsophisticated desktop 

microcomputers, widely prevalent currently, can perform a massive 

number of numeric comparisons or combinations every second.

The problem lies in the inherent sequential nature of the computer. 

The “fetch-execute” cycle of the von Neumann architecture allows the 

machine to perform only one function at a time. In such cases, the time 

required by the computer to perform each instruction is so short that the 

average time required for even a large program is negligible to users.

A new processing system that can evaluate all the pixels in the image in 

parallel is referred to as the backpropagation network (BPN).

�Generalized Delta Rule
I will now introduce the backpropagation learning procedure for 

knowing about internal representations. A neural network is termed a 

mapping network if it possesses the ability to compute certain functional 

relationships between its input and output.
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Suppose a set of P vector pairs, x y x y x yP P1 1 2 2, , ,( ) ( ) ( ), , , , which are 

examples of the functional mapping y x x R y RN M= ( ) Î Îf : , .

The equations for information processing in the three-layer network 

are shown next. An input vector is as follows:
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An output node is as follows:
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The equations for output nodes are as follows:
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�Update of Output Layer Weights
The following equation is the error term:
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The last factor in the equation of the output layer weight is as follows:
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The negative gradient is as follows:
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The weights on the output layer are updated according to the following:
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�Update of Hidden Layer Weights
Look closely at the network illustrated previously consisting of one layer 

of hidden neurons and one output neuron. When an input vector is 

circulated through the network, for the current set of weights there is an 

output prediction. Automatically, the total error somehow relates to the 

output values in the hidden layer. The equation is as follows:
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You can exploit the fact to calculate the gradient of Ep with respect to 

the hidden layer weights.
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Each of the factors in the equation can be calculated explicitly from the 

previous equation. The result is as follows:
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�BPN Summary
Apply the input vector X x x xp p p pN

t
= ¼( )1 2, , , to the input units.

Calculate the net input values to the hidden layer units.
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Calculate the outputs from the hidden layer.
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Calculate the net input values to each unit.
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Calculate the outputs.

o f netpk k
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Calculate the error terms for the output units.
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Calculate the error terms for the hidden units.
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Update weights on the output layer.
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�Backpropagation Algorithm
Let’s see some code:

class NeuralNetwork(object):

       def  backpropagate(self,x,y):

              �"""Return a tuple "(nabla_b, nabla_w)" 

representing the

              gradient for the cost function C_x.  "nabla_b" and

              �"nabla_w" are layer-by-layer lists of numpy 

arrays, similar
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              to "self.biases" and "self.weights"."""

              nabla_b1=[np.zeros(b1.shape)for b 1in self.biases]

              nabla_w1=[np.zeros(w1.shape)for w1in self.weights]

              # feedforward

              activation1=x1

              activations1=[x1]

              zs1=[]

              for b,winzip(self.biases,self.weights):

              z1=np.dot(w1,activation1)+b1

              zs1.append(z1)

              activation1=sigmoid(z1)

              activations1.append(activation1)

              # backward pass

              delta1=self.cost_derivative(activations1[-1],y1)* \

              sigmoid_prime(zs1[-1])

              nabla_b1[-1]=delta1

              �nabla_w1[-1]=np.dot(delta,activations1[-2].

transpose())

              for l in xrange(2,self.num_layers):

                     z1=zs1[-l]

                     sp1=sigmoid_prime(z1)

                     �delta1=np.dot(self.weights1[-l+1].

transpose(),delta)*sp1

                     nabla_b1[-l]=delta1

                     �nabla_w1[-l]=np.

dot(delta,activations1[-l-1].transpose())

              return(nabla_b1,nabla_w1)

       def  cost_derivative(self,output_activations,y):

              �"""Return the vector of partial derivatives \

partial C_x /
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              \partial a for the output activations."""

              return(output_activations1-y1)

       def sigmoid(z1):

              """The sigmoid function."""

              Return1.0/(1.0+np.exp(-z1))

       def sigmoid_prime(z1):

              """Derivative of the sigmoid function."""

              Return sigmoid(z)*(1-sigmoid(z1))

�Other Algorithms
Many techniques are available to train neural networks besides 

backpropagation. One of the methods is to use common optimization 

algorithms such as gradient descent, Adam Optimizer, and so on. The 

simple perception method is also frequently applied. Hebb’s postulate 

is another popular method. In Hebb’s learning, instead of the error, the 

product of the input and output goes as the feedback to correct the weight.

w t w t y t x tij ij j i+( ) = ( ) + ( ) ( )1 h

�TensorFlow
TensorFlow is a popular deep learning library in Python. It is a Python 

wrapper on the original library. It supports parallelism on the CUDA-

based GPU platform. The following code is an example of simple linear 

regression with TensorFlow:

learning_rate = 0.0001

        y_t = tf.placeholder("float", [None,1])

        x_t = tf.placeholder("float", [None,X_train.shape[1]])
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        �W = tf.Variable(tf.random_normal([X_train.

shape[1],1],stddev=.01))

        b = tf.constant(1.0)

        model = tf.matmul(x_t, W) + b

        cost_function = tf.reduce_sum(tf.pow((y_t - model),2))

        �optimizer = tf.train.AdamOptimizer(learning_rate).

minimize(cost_function)

        init = tf.initialize_all_variables()

       with tf.Session() as sess:

                sess.run(init)

                w = W.eval(session = sess)

                of = b.eval(session = sess)

                �print("Before Training ########################

#########################")

                print(w,of)

                �print("####################################### 

##########################")

                step = 0

                previous = 0

                while(1):

                        step = step + 1

                        �sess.run(optimizer, feed_dict={x_t: X_

train.reshape(X_train.shape[0],X_train.

shape[1]), y_t: y_train.reshape(y_

train.shape[0],1)})

                        �cost = sess.run(cost_function, feed_

dict={x_t: X_train.reshape(X_train.

shape[0],X_train.shape[1]), y_t: y_

train.reshape(y_train.shape[0],1)})
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                        if step%1000 == 0:

                                print(cost)

                                if((previous- cost) < .0001):

                                        break

                                previous = cost

                w = W.eval(session = sess)

                of = b.eval(session = sess)

                �print("Before Training ######################## 

#########################")

                print(w,of)

                �print("####################################### 

##########################")

With a little change, you can make it multilayer linear regression, as 

shown here:

learning_rate = 0.0001

        y_t = tf.placeholder("float", [None,1])

       if not multilayer:

              �x_t = tf.placeholder("float", [None,X_train.

shape[1]])

              �W = tf.Variable(tf.random_normal([X_train.

shape[1],1],stddev=.01))

              b = tf.constant(0.0)

              model = tf.matmul(x_t, W) + b

       else:

              �x_t_user = tf.placeholder("float", [None, 

X_train_user.shape[1]])

              �x_t_context = tf.placeholder("float", [None, 

X_train_context.shape[1]])
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              �W_user = tf.Variable(tf.random_normal([X_train_

user.shape[1],1],stddev=.01))

              �W_context = tf.Variable(tf.random_normal([X_

train_context.shape[1],1],stddev=.01))

              �W_out_user = tf.Variable(tf.random_

normal([1,1],stddev=.01))

              �W_out_context = tf.Variable(tf.random_

normal([1,1],stddev=.01))

              �model  = tf.add(tf.matmul(tf.matmul(x_t_user, 

W_user),W_out_user),tf.matmul(tf.matmul(x_t_

context, W_context),W_out_context))

        cost_function = tf.reduce_sum(tf.pow((y_t - model),2))

        �optimizer = tf.train.AdamOptimizer(learning_rate).

minimize(cost_function)

        init = tf.initialize_all_variables()

        with tf.Session() as sess:

                sess.run(init)

                �print("Before Training ########################

#########################")

                step = 0

                previous = 0

             cost = 0

             while(1):

                        step = step + 1

                    if not multilayer:

                               �sess.run(optimizer, feed_

dict={x_t: X_train.reshape 

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.

reshape(y_train.shape[0],1)})
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                             �cost = sess.run(cost_function, 

feed_dict={x_t: X_train.reshape 

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.reshape 

(y_train.shape[0],1)})

                    else:

                               �sess.run(optimizer, feed_

dict={x_t_user: X_train_

user.reshape(X_train_user.

shape[0],X_train_user.shape[1]), 

x_t_context: X_train_context.

reshape(X_train_context.

shape[0],X_train_context.

shape[1]), y_t: y_train.

reshape(y_train.shape[0],1)})

                             �cost = sess.run(cost_function, 

feed_dict={x_t_user: X_train_user.

reshape(X_train_user.shape[0],X_

train_user.shape[1]), x_t_context: 

X_train_context.reshape(X_train_

context.shape[0],X_train_context.

shape[1]), y_t: y_train.reshape(y_

train.shape[0],1)})

                        if step%1000 == 0:

                                print(cost)

                        if previous == cost or step > 50000:

                           break

                    if cost != cost :

                           raise Exception("NaN value")

                        previous = cost
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                �print("###################################### 

###########################")

              if multilayer:

                    w_user = W_user.eval(session = sess)

                    w_context = W_context.eval(session = sess)

                    �w_out_context = W_out_context.eval(session 

= sess)

                    �w_out_user = W_out_user.eval(session = sess)

                    w_user = np.dot(w_user, w_out_user)

                    �w_context = np.dot(w_context, w_out_context)

              else:

                    w = W.eval(session = sess)

You can do logistic regresson with the same code with a little change, 

as shown here:

learning_rate = 0.001

       no_of_level = 2

       y_t = tf.placeholder("float", [None,no_of_level])

       if True:

              �x_t = tf.placeholder("float", [None,X_train.

shape[1]])

               �W = tf.Variable(tf.random_normal([X_train.

shape[1],no_of_level],stddev=.01))

              model = tf.nn.softmax(tf.matmul(x_t, W))

        �cost_function = tf.reduce_mean(-tf.reduce_sum(y_t*tf.

log(model), reduction_indices=1))

        �optimizer = tf.train.GradientDescentOptimizer(learni

ng_rate).minimize(cost_function)

        init = tf.initialize_all_variables()
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       with tf.Session() as sess:

                sess.run(init)

                �print("Before Training ########################

#########################")

                step = 0

                previous = 0

              cost = 0

              while(1):

                        step = step + 1

                    if True:

                               �sess.run(optimizer, feed_

dict={x_t: X_train.reshape 

(X_train.shape[0],X_train.

shape[1]), y_t: y_train.

reshape(y_train.shape[0], 

no_of_level)})

                             �cost = sess.run(cost_function, 

feed_dict={x_t: X_train.reshape(X_

train.shape[0],X_train.shape[1]), 

y_t: y_train.reshape(y_train.

shape[0],no_of_level)})

                        if step%1000 == 0:

                                print(cost)

                        if previous == cost or step > 50000:

                           break

                    if cost != cost :

                           raise Exception("NaN value")

                        previous = cost

                �print("###################################### 

###########################")

              if True:

                    w = W.eval(session = sess)
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�Recurrent Neural Network
A recurrent neural network is an extremely popular kind of network 

where the output of the previous step goes to the feedback or is input 

to the hidden layer. It is an extremely useful solution for a problem like 

a sequence leveling algorithm or time-series prediction. One of the 

more popular applications of the sequence leveling algorithm is in an 

autocomplete feature of a search engine.

As an example, say one algorithmic trader wants to predict the price 

of a stock for trading. But his strategy requires the following criteria for 

prediction:

	 a)	 The predicted tick is higher than the current tick and 

the next tick. Win.

	 b)	 The predicted tick is lower than the current tick and 

the next tick. Win.

	 c)	 The predicted tick is higher than the current tick but 

lower than the next tick. Loss.

	 d)	 The predicted tick is lower than the current tick but 

higher than the next tick. Loss.

To satisfy his criteria, the developer takes the following strategy.

For generating predictions for 100 records, he is considering preceding 

1,000 records as input 1, prediction errors in the last 1,000 records as input 

2, and differences between two consecutive records as input 3. Using these 

inputs, an RNN-based engine predicts results, errors, and inter-record 

differences for the next 100 records.

Then he takes the following strategy:

If predicted diff > 1 and predicted err < 1, then 

prediction += pred_err + 1.

If predicted diff < 1 and predicted err > 1, then 

prediction -= pred_err -1.
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In this way, prediction satisfies the developer need. The detailed code 

is shown next. It is using Keras, which is a wrapper above TensorFlow.

import matplotlib.pyplot as plt

import numpy as np

import time

import csv

from keras.layers.core import Dense, Activation, Dropout

from keras.layers.recurrent import LSTM

from keras.models import Sequential

import sys

np.random.seed(1234)

def read_data(path_to_dataset,

                           sequence_length=50,

                           ratio=1.0):

    max_values = ratio * 2049280

    with open(path_to_dataset) as f:

        data = csv.reader(f, delimiter=",")

        power = []

        nb_of_values = 0

        for line in data:

            #print(line)

            #if nb_of_values == 3500:

             #   break

            try:

                power.append(float(line[1]))

                nb_of_values += 1

            except ValueError:

                pass
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            �# 2049280.0 is the total number of valid values, 

i.e. ratio = 1.0

            if nb_of_values >= max_values:

                break

    return power

def process_data(power, sequence_length, ratio, error):

    #print("Data loaded from csv. Formatting...")

    #fig = plt.figure()

    #plt.plot(power)

    #plt.show()

    result = []

    for index in range(len(power) - sequence_length):

        result.append(power[index: index + sequence_length])

    result = np.array(result)  # shape (2049230, 50)

    if not error:

       global result_mean, result_std

       result_mean = result.mean()

       result_std = result.std()

       result -= result_mean

       result /= result_std

    #result = np.log(result+1)

    #print result

    #exit(0)

#     print ("Shift : ", result_mean)

    print ("Data  : ", result.shape)

    row = int(round(0.9 * result.shape[0]))

    print row

    train = result[:row, :]

    np.random.shuffle(train)

    X_train = train[:, :-1]
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    y_train = train[:, -1]

    X_test = result[row:, :-1]

    y_test = result[row:, -1]

    �X_train = np.reshape(X_train, (X_train.shape[0], X_train.

shape[1], 1))

    �X_test = np.reshape(X_test, (X_test.shape[0], X_test.

shape[1], 1))

    return [X_train, y_train, X_test, y_test]

def build_model():

    model = Sequential()

    layers = [1, 50, 100, 1]

    model.add(LSTM(

        layers[1],

        input_shape=(None, layers[0]),

        return_sequences=True))

    model.add(Dropout(0.2))

    model.add(LSTM(

        layers[2],

        return_sequences=False))

    model.add(Dropout(0.2))

    model.add(Dense(

        layers[3]))

    model.add(Activation("linear"))

    start = time.time()

    model.compile(loss="mse", optimizer="rmsprop")

    print ("Compilation Time : ", time.time() - start)

    return model
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def run_network(model=None, data=None, error=False):

    global_start_time = time.time()

    epochs = 2

    ratio = 0.5

    sequence_length = 100

    X_train, y_train, X_test, y_test = process_data(

            data, sequence_length, ratio,error)

    print ('\nData Loaded. Compiling...\n')

    if model is None:

        model = build_model()

    try:

        model.fit(

            X_train, y_train,

            �batch_size=512, nb_epoch=epochs, validation_

split=0.05)

        predicted = model.predict(X_test)

        predicted = np.reshape(predicted, (predicted.size,))

    except KeyboardInterrupt:

        �print ('Training duration (s) : ', time.time() - 

global_start_time)

        return model, y_test, 0

    try:

        fig = plt.figure()

        ax = fig.add_subplot(111)

        ax.plot(y_test[:100]*result_max)

        plt.plot(predicted[:100]*result_max)

        plt.show()
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    except Exception as e:

        print (str(e))

    �print ('Training duration (s) : ', time.time() - global_

start_time)

    

    return model, y_test, predicted

if __name__ == '__main__':

    path_to_dataset = '20170301_ltp.csv'

    data = read_data(path_to_dataset)

    error = []

    diff_predicted = []

    err_predicted = []

    print len(data)

    for i in range(0,len(data)-1000,89):

        d = data[i:i+1000]

        model, y_test, predicted = run_network(None,d, False)

        if i > 11 and len(error) >= 1000:

             �model,err_test, err_predicted =  

run_network(None,error, True)

              error = error[90:]

              d1 = data[i:i+1001]

              diff = [0]*1000

              for k in range(1000):

                    diff[k] = d1[k+1] - d1[k]

                �model,diff_test, diff_predicted =  

run_network(None,diff, True)

        print i,len(d), len(y_test)

        y_test *= result_std

        predicted *= result_std

        y_test += result_mean

        predicted += result_mean
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       e = (y_test - predicted)/predicted

       error = np.concatenate([error, e])

        #print error

        #error.append(y_test - predicted)

       �if i > 11 and len(error) >= 1000 and len(err_

predicted)>=90:

               for j in range(len(y_test)-1):

                     �if diff_predicted[j] > 1 and err_

predicted[j]*predicted[j] <= 1:

                           �predicted[j] += abs(err_

predicted[j]*predicted[j]) + 1

                    �if diff_predicted[j] <= 1 and err_

predicted[j]*predicted[j] > 1:

                                �predicted[j] -= abs(err_

predicted[j]*predicted[j]) - 1

                     print y_test[j], ',',predicted[j]

       print "length of error",len(error)
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CHAPTER 6

Time Series
A time series is a series of data points arranged chronologically. Most 

commonly, the time points are equally spaced. A few examples are the 

passenger loads of an airline recorded each month for the past two years 

or the price of an instrument in the share market recorded each day for the 

last year. The primary aim of time-series analysis is to predict the future 

value of a parameter based on its past data.

�Classification of Variation
Traditionally time-series analysis divides the variation into three major 

components, namely, trends, seasonal variations, and other cyclic 

changes. The variation that remains is attributed to “irregular” fluctuations 

or error term. This approach is particularly valuable when the variation is 

mostly comprised of trends and seasonality.

�Analyzing a Series Containing a Trend
A trend is a change in the mean level that is long-term in nature. For 

example, if you have a series like 2, 4, 6, 8 and someone asks you for the 

next value, the obvious answer is 10. You can justify your answer by fitting 

a line to the data using the simple least square estimation or any other 

regression method. A trend can also be nonlinear. Figure 6-1 shows an 

example of a time series with trends.
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The simplest type of time series is the familiar “linear trend plus noise” 

for which the observation at time t is a random variable Xt, as follows:

Xt = + +a b et t

Here, α,β are constants, and εt denotes a random error term with 

a mean of 0. The average level at time t is given by mt= (α + βt). This is 

sometimes called the trend term.

�Curve Fitting
Fitting a simple function of time such as a polynomial curve (linear, 

quadratic, etc.), a Gompertz curve, or a logistic curve is a well-known 

Figure 6-1.  A time series with trends
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method of dealing with nonseasonal data that contains a trend, 

particularly yearly data. The global linear trend is the simplest type of 

polynomial curve. The Gompertz curve can be written in the following 

format, where  α, β, and γ are parameters with 0 < r < 1:

xt = αexp [β exp(−γt)]

This looks quite different but is actually equivalent, provided γ > 0. The 

logistic curve is as follows:

xt = a / (1+be-ct)

Both these curves are S-shaped and approach an asymptotic value 

as t→∞, with the Gompertz curve generally converging slower than the 

logistic one. Fitting the curves to data may lead to nonlinear simultaneous 

equations.

For all curves of this nature, the fitted function provides a measure 

of the trend, and the residuals provide an estimate of local fluctuations 

where the residuals are the differences between the observations and the 

corresponding values of the fitted curve.

�Removing Trends from a Time Series
Differentiating a given time series until it becomes stationary is a special 

type of filtering that is particularly useful for removing a trend. You will 

see that this is an integral part of the Box-Jenkins procedure. For data with 

a linear trend, a first-order differencing is usually enough to remove the 

trend.

Mathematically, it looks like this:

y(t) = a*t + c

y(t+1) = a*(t+1) + c

z(t) = y(t+1) –y(t) = a + c ; no trend present in z(t)
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A trend can be exponential as well. In this case, you will have to do a 

logarithmic transformation to convert the trend from exponential to linear.

Mathematically, it looks like this:

y(t) = a*exp(t)

z(t) = log(y(t)) = t*log(a); z(t) is a linear function of t

�Analyzing a Series Containing Seasonality
Many time series, such as airline passenger loads or weather readings, 

display variations that repeat after a specific time period. For instance, in 

India, there will always be an increase in airline passenger loads during 

the holiday of Diwali. This yearly variation is easy to understand and can 

be estimated if seasonality is of direct interest. Similarly, like trends, if you 

have a series such as 1, 2, 1, 2, 1, 2, your obvious choices for the next values 

of the series will be 1 and 2.

The Holt-Winters model is a popular model to realize time series with 

seasonality and is also known as exponential smoothing. The Holt-Winters 

model has two variations: additive and multiplicative. In the additive 

model with a single exponential smoothing time series, seasonality is 

realized as follows:

X(t+1) = α ∗Xt + (1 − α) ∗ St−1

In this model, every point is realized as a weighted average of the 

previous point and seasonality. So, X(t+1) will be calculated as a function 

X(t-1) and S(t-2) and square of α. In this way, the more you go on, the 

α value increases exponentially. This is why it is known as exponential 

smoothing. The starting value of St is crucial in this method. Commonly, 

this value starts with a 1 or with an average of the first four observations.

The multiplicative seasonal model time series is as follows:

X(t+1)= (b1 + b2*t)St + noise,
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Here, b1, often referred to as the permanent component, is the initial 

weight of the seasonality; b2 represents the trend, which is linear in this 

case.

However, there is no standard implementation of the Holt-Winters 

model in Python. It is available in R (see Chapter 1 for how R’s Holt-

Winters model can be called from Python code).

�Removing Seasonality from a Time Series
There are two ways of removing seasonality from a time series.

•	 By filtering

•	 By differencing

�By Filtering
The series {xt} is converted into another called {yt} with the linear operation 

shown here, where {ar} is a set of weights:

Yt = ∑+s
r=-qarxt+r

To smooth out local fluctuations and estimate the local mean, you 

should clearly choose the weights so that ∑ ar = 1; then the operation is 

often referred to as a moving average. They are often symmetric with  

s = q and aj = a-j. The simplest example of a symmetric smoothing filter is 

the simple moving average, for which ar = 1 / (2q+1) for r = -q, …, + q. 

The smoothed value of xt is given by the following:

Sm(xt) = 
1

2 1q +
 ∑+q

r=-qxt+r
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The simple moving average is useful for removing seasonal variations, 

but it is unable to deal well with trends.

�By Differencing
Differencing is widely used and often works well. Seasonal differencing 

removes seasonal variation.

Mathematically, if time series y(t) contains additive seasonality S(t) 

with time period T, then:

y(t) = a*S(t) + b*t + c

y(t+T) = aS(t+T) + b*(t+T) + c

z(t) = y(t+T) – y(t) = b*T + noise term

Similar to trends, you can convert the multiplicative seasonality to 

additive by log transformation.

Now, finding time period T in a time series is the critical part. It can 

be done in two ways, either by using an autocorrelation function in the 

time domain or by using the Fourier transform in the frequency domain. 

In both cases, you will see a spike in the plot. For autocorrelation, the 

plot spike will be at lag T, whereas for FT distribution, the spike will be at 

frequency 1/T.

�Transformation
Up to now I have discussed the various kinds of transformation in a time 

series. The three main reasons for making a transformation are covered in 

the next sections.

�To Stabilize the Variance
The standard way to do this is to take a logarithmic transformation of the 

series; it brings closer the points in space that are widely scattered.
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�To Make the Seasonal Effect Additive
If the series has a trend and the volume of the seasonal effect appears to be 

on the rise with the mean, then it may be advisable to modify the data so as 

to make the seasonal effect constant from year to year. This seasonal effect 

is said to be additive. However, if the volume of the seasonal effect is directly 

proportional to the mean, then the seasonal effect is said to be multiplicative, 

and a logarithmic transformation is needed to make it additive again.

�To Make the Data Distribution Normal
In most probability models, it is assumed that distribution of data is 

Gaussian or normal. For example, there can be evidence of skewness in a 

trend that causes “spikes” in the time plot that are all in the same direction.

To transform the data in a normal distribution, the most common 

transform is to subtract the mean and then divide by the standard 

deviation. I gave an example of this transformation in the RNN example in 

Chapter 5; I’ll give another in the final example of the current chapter. The 

logic behind this transformation is it makes the mean 0 and the standard 

deviation 1, which is a characteristic of a normal distribution. Another 

popular transformation is to use the logarithm. The major advantage of a 

logarithm is it reduces the variation and logarithm of Gaussian distribution 

data that is also Gaussian. Transformation may be problem-specific or 

domain-specific. For instance, in a time series of an airline’s passenger 

load data, the series can be normalized by dividing by the number of days 

in the month or by the number of holidays in a month.

�Cyclic Variation

In some time series, seasonality is not a constant but a stochastic variable. 

That is known as cyclic variation. In this case, the periodicity first has to 

be predicted and then has to be removed in the same way as done for 

seasonal variation.
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�Irregular Fluctuations

A time series without trends and cyclic variations can be realized as a 

weekly stationary time series. In the next section, you will examine various 

probabilistic models to realize weekly time series.

�Stationary Time Series
Normally, a time series is said to be stationary if there is no systematic 

change in mean and variance and if strictly periodic variations have 

been done away with. In real life, there are no stationary time series. 

Whatever data you receive by using transformations, you may try to make 

it somehow nearer to a stationary series.

�Stationary Process
A time series is strictly stationary if the joint distribution of X(t1),...,X(tk) is 

the same as the joint distribution of X(t1 + τ),...,X(tk + τ) for all t1,…,tk,τ. If k 

=1, strict stationary implies that the distribution of X(t) is the same for all t, 

so provided the first two moments are finite, you have the following:

μ(t) = μ

σ2(t) = σ2

They are both constants, which do not depend on the value of t.

A weekly stationary time series is a stochastic process where the mean 

is constant and autocovariance is a function of time lag.
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�Autocorrelation and the Correlogram
Quantities called sample autocorrelation coefficients act as an important 

guide to the properties of a time series. They evaluate the correlation, 

if any, between observations at different distances apart and provide 

valuable descriptive information. You will see that they are also an 

important tool in model building and often provide valuable clues for 

a suitable probability model for a given set of data. The quantity lies in 

the range [-1,1] and measures the forcefulness of the linear association 

between the two variables. It can be easily shown that the value does 

not depend on the units in which the two variables are measured; if the 

variables are independent, then the ideal correlation is zero.

A helpful supplement in interpreting a set of autocorrelation 

coefficients is a graph called a correlogram. The correlogram may be 

alternatively called the sample autocorrelation function.

Suppose a stationary stochastic process X(t) has a mean μ, variance σ2, 

auto covariance function (acv.f.)  γ(t), and auto correlation function (ac.f.) ρ(τ).

r t
g t
g

g t s( ) = ( )
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= ( )
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�Estimating Autocovariance and Autocorrelation 
Functions
In the stochastic process, the autocovariance is the covariance of the 

process with itself at pairs of time points. Autocovariance is calculated as 

follows:
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Figure 6-2 shows a sample autocorrelation distribution.

�Time-Series Analysis with Python
A complement to SciPy for statistical computations including descriptive 

statistics and estimation of statistical models is provided by Statsmodels, 

which is a Python package. Besides the early models, linear regression, 

robust linear models, generalized linear models, and models for discrete 

data, the latest release of scikits.statsmodels includes some basic tools and 

models for time-series analysis, such as descriptive statistics, statistical 

tests, and several linear model classes. The linear model classes include 

autoregressive (AR), autoregressive moving-average (ARMA), and vector 

autoregressive models (VAR).

Figure 6-2.  Sample autocorrelations
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�Useful Methods
Let’s start with a moving average.

�Moving Average Process

Suppose that {Zt} is a purely random process with mean 0 and variance σz
2. 

Then a process {Xt} is said to be a moving average process of order q.

X Z Z Zt t t t q= + + +- -b b b0 1 1  q

Here, {βi} are constants. The Zs are usually scaled so that β0 = 1.
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As γ(k) is not dependent on t and the mean is constant, the process is 

second-order stationary for all values of {βi}.
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�Fitting Moving Average Process

The moving-average (MA) model is a well-known approach for realizing a 

single-variable weekly stationary time series (see Figure 6-3). The moving-

average model specifies that the output variable is linearly dependant on 

its own previous error terms as well as on a stochastic term. The AR model 

is called the Moving-Average model, which is a special case and a key 

component of the ARMA and ARIMA models of time series.

X X dt t
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i t i
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Figure 6-3.  Example of moving average
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Here’s the example code for a moving average model:

import  numpy as np

def running_mean(l, N):

    # Also works for the(strictly invalid) cases when N is even.

    if (N//2)*2 == N:

        N = N - 1

    front = np.zeros(N//2)

    back = np.zeros(N//2)

    for i in range(1, (N//2)*2, 2):

        �front[i//2] = np.convolve(l[:i], np.ones((i,))/i, mode 

= 'valid')

    for i in range(1, (N//2)*2, 2):

        �back[i//2] = np.convolve(l[-i:], np.ones((i,))/i, mode 

= 'valid')

    �return np.concatenate([front, np.convolve(l, 

np.ones((N,))/N, mode = 'valid'), back[::-1]])

print running_mean(2,21)

�Autoregressive Processes
Suppose {Zt} is a purely random process with mean 0 and variance σz

2. 

After that, a process {Xt} is said to be of autoregressive process of order p if 

you have this:
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The autocovariance function is given by the following:
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Figure 6-4 shows a time series and its autocorrelation plot of the AR 

model.

�Estimating Parameters of an AR Process
A process is called weakly stationary if its mean is constant and the 

autocovariance function depends only on time lag. There is no weakly 

stationary process, but it is imposed on time-series data to do some 

stochastic analysis. Suppose Z(t) is a weak stationary process with mean 0 

and constant variance. Then X(t) is an autoregressive process of order p if 

you have the following:

X(t) = a1 x X(t-1) + a2 x X(t-2) + … + ap x X(t-p) +Z(t), where a ∊ R and p ∊ I

Figure 6-4.  A time series and AR model
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Now, E[X(t)] is the expected value of X(t).

Covariance(X(t),X(t+h)) = E[(X(t) - E[X(t)]) * (X(t+h) – E[X(t+h)])]

= E[(X(t) - m) * (X(t+h) - m)]

If X(t) is a weak stationary process, then:

E[X(t)] = E[X(t+h)] = m (constant)

= E[X(t) * X(t+h)] – m2 = c(h)

Here, m is constant, and cov[X(t),X(t+h)] is the function of only h(c(h)) 

for the weakly stationary process. c(h) is known as autocovariance.

Similarly, the correlation (X(t),X(t+h) = ρ(h) = r(h) = c(h) = ¸  c(0) is 

known as autocorrelation.

If X(t) is a stationary process that is realized as an autoregressive 

model, then:

X(t) = a1 * X(t-1) + a2 * X(t-2) + ….. + ap * X(t-p) + Z(t)

Correlation(X(t),X(t)) = a1 * correlation (X(t),X(t-1)) + …. +  

ap * correlation (X(t),X(t-p))+0

As covariance, (X(t),X(t+h)) is dependent only on h, so:

r0 = a1 * r1 + a2 * r2 + … + ap * rp

r1 = a1 * r0 + a2 * r1 + …. + ap * r(p-1)

So, for an n-order model, you can easily generate the n equation and 

from there find the n coefficient by solving the n equation system.
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In this case, realize the data sets only in the first-order and second-

order autoregressive model and choose the model whose mean of residual 

is less. For that, the reduced formulae are as follows:

•	 First order: a1 = r1

•	 Second order: a r r r a r r r1 1 1 2 11 2 1
2

2 1
2

1
2= -( )¸ -( ) = -( ) ¸ -( ),

Here is some example code for an autoregressive model:

from pandas import Series

from matplotlib import pyplot

from statsmodels.tsa.ar_model import AR

from sklearn.metrics import mean_squared_error

series = series.from_csv('input.csv', header=0)

J = series.value

train, test = J[1:len(J)-10], J[len(J)-10:]

model = AR(train)

model_fit = model.fit()

print('Lag: %s' % model_fit.k_ar)

print('Coefficients: %s' % model_fit.params)

predictions = model_fit.predict(start=len(train), 

end=len(train)+len(test)-1, dynamic=False)

for t in range(len(predictions)):

        print('predicted=%f, expected=%f' % (predictions[t], 

test[t]))

error = mean_squared_error(test, predictions)

print('Test MSE: %.3f' % error)

pyplot.plot(test)

pyplot.plot(predictions, color='red')

pyplot.show()
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�Mixed ARMA Models
Mixed ARMA models are a combination of MA and AR processes. A mixed 

autoregressive/moving average process containing p AR terms and q 

MA terms is said to be an ARMA process of order (p,q). It is given by the 

following:

X X X Z Z Zt t p t p t t q t q= + + + + + +- - - -a a b b1 1 1 1 

The following example code was taken from the stat model site to 

realize time-series data as an ARMA model:

r1,q1,p1 = sm.tsa.acf(resid.values.squeeze(), qstat=True)

data1 = np.c_[range(1,40), r1[1:], q1, p1]

table1 = pandas.DataFrame(data1, columns=['lag', "AC", "Q", 

"Prob(>Q)"])

predict_sunspots1 = arma_mod40.predict('startyear', 'endyear', 

dynamic=True)

Here is the simulated ARMA (4,1) model identification code:

from statsmodels. import tsa.arima_processimportarma_generate_

sample, ArmaProcess

np.random.seed(1234)

data = np.array([1, .85, -.43, -.63, .8])

parameter = np.array([1, .41]

model = ArmaProcess(data, parameter)

model.isinvertible()

True

Model.isstationary()

True
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Here is how to estimate parameters of an ARMA model:

	 1.	 After specifying the order of a stationary ARMA 

process, you need to estimate the parameters.

	 2.	 Assume the following:

•	 The model order (p and q) is known.

•	 The data has zero mean.

	 3.	 If step 2 is not a reasonable assumption, you can 

subtract the sample mean Y and fit a 0 mean ARMA 

model, as in ∅(B)Xt = θ(B)at where Xt = Yt – Y. Then 

use Xt + Y as the model for Yt.

�Integrated ARMA Models
To fit a stationary model such as the one discussed earlier, it is imperative 

to remove nonstationary sources of variation. Differencing is widely used 

for econometric data. If Xt is replaced by ∇dXt, then you have a model 

capable of describing certain types of nonstationary series.

Y L Xt

d

t= -( )1

These are the estimating parameters of an ARIMA model:

•	 ARIMA models are designated by the level of 

autoregression, integration, and moving averages.

•	 This does not assume any pattern uses an iterative 

approach of identifying a model.

•	 The model “fits” if residuals are generally small, 

randomly distributed, and, in general, contain no 

useful information.
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Here is the example code for an ARIMA model:

from pandas import read_csv

from pandas import datetime

from matplotlib import pyplot

from statsmodels.tsa.arima_model import ARIMA

from sklearn.metrics import mean_squared_error

def parser(p):

        return datetime.strptime('190'+p, '%Y-%m')

series = read_csv('input.csv', header=0, parse_dates=[0], 

index_col=0, squeeze=True, date_parser=parser)

P = series.values

size = int(len(P) * 0.66)

train, test = P[0:size], P[size:len(P)]

history = [p for p in train]

predictions = list()

for t in range(len(test)):

        model = ARIMA(history, order=(5,1,0))

        model_fit = model.fit(disp=0)

        output = model_fit.forecast()

        yhat = output[0]

        predictions.append(yhat)

        obs = test[t]

        history.append(obs)

        print('predicted=%f, expected=%f' % (yhat, obs))

error = mean_squared_error(test, predictions)

print('Test MSE: %.3f' % error)

# plot

pyplot.plot(test)

pyplot.plot(predictions, color='red')

pyplot.show()
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�The Fourier Transform
The representation of nonperiodic signals by everlasting exponential 

signals can be accomplished by a simple limiting process, and I will 

illustrate that nonperiodic signals can be expressed as a continuous sum 

(integral) of everlasting exponential signals. Say you want to represent the 

nonperiodic signal g(t). Realizing any nonperiodic signal as a periodic 

signal with an infinite time period, you get the following:
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G(w) is known as a Fourier transform of g(t).

Here is the relation between autocovariance and the Fourier 

transform:
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�An Exceptional Scenario
In the airline or hotel domain, the passenger load of month t is less 

correlated with data of t-1 or t-2 month, but it is more correlated for t-12 

month. For example, the passenger load in the month of Diwali (October) 

is more correlated with last year’s Diwali data than with the same year’s 

August and September data. Historically, the pick-up model is used to 

predict this kind of data. The pick-up model has two variations.

In the additive pick-up model,

X(t) = X(t-1) + [X(t-12) –X(t-13)]

In the multiplicative pick-up model,

X(t) = X(t-1) * [X(t-12) / X(t-13)]

Studies have shown that for this kind of data the neural network–based 

predictor gives more accuracy than the time-series model.

In high-frequency trading in investment banking, time-series models 

are too time-consuming to capture the latest pattern of the instrument. 

So, they on the fly calculate dX/dt and d2X/dt2, where X is the price of 

the instruments. If both are positive, they blindly send an order to buy the 

instrument. If both are negative, they blindly sell the instrument if they 

have it in their portfolio. But if they have an opposite sign, then they do a 

more detailed analysis using the time series data.

As I stated earlier, there are many scenarios in time-series analysis 

where R is a better choice than Python. So, here is an example of time-

series forecasting using R. The beauty of the auto.arima model is that it 

automatically finds the order, trends, and seasonality of the data and fits 

the model. In the forecast, we are printing only the mean value, but the 
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model provides the upper limit and the lower limit of the prediction in 

forecasting.

asm_weekwise<-read.csv("F:/souravda/New ASM Weekwise.

csv",header=TRUE)

asm_weekwise$Week <- NULL

library(MASS, lib.loc="F:/souravda/lib/")

library(tseries, lib.loc="F:/souravda/lib/")

library(forecast, lib.loc="F:/souravda/lib/")

asm_weekwise[is.na(asm_weekwise)] <- 0

asm_weekwise[asm_weekwise <= 0] <- mean(as.matrix(asm_weekwise))

weekjoyforecastvalues <- data.frame( "asm" = integer(), "value" 

= integer(), stringsAsFactors=FALSE)

for(i in 2:ncol(asm_weekwise))

{

  asmname<-names(asm_weekwise)[i]

  temparimadata<-asm_weekwise[,i]

  m <- mean(as.matrix(temparimadata))

  #print(m)

  s <- sd(temparimadata)

  #print(s)

  temparimadata <- (temparimadata - m)

  temparimadata <- (temparimadata / s)

  temparima<-auto.arima(temparimadata, stationary = FALSE, 

seasonal = TRUE, allowdrift = TRUE, allowmean = FALSE, biasadj 

= FALSE)

  tempforecast<-forecast(temparima,h=12)

  #tempforecast <- (tempforecast * s)

  #print(tempforecast)
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  temp_forecasted_data<-sum(data.frame(tempforecast$mean)*s + m)

  weekjoyforecastvalues[nrow(weekjoyforecastvalues) + 1, ] <- 

c( asmname, temp_forecasted_data)

}

weekjoyforecastvalues$value<-as.integer(weekjoyforecastvalues$value)

#weekjoyforecastvalues

(sum(weekjoyforecastvalues$value)- 53782605)/53782605

#103000000)/103000000

�Missing Data
One important aspect of time series and many other data analysis work is 

figuring out how to deal with missing data. In the previous code, you fill in 

the missing record with the average value. This is fine when the number of 

missing data instances is not very high. But if it is high, then the average of 

the highest and lowest values is a better alternative.
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CHAPTER 7

Analytics at Scale
In recent decades, a revolutionary change has taken place in the field of 

analytics technology because of big data. Data is being collected from a 

variety of sources, so technology has been developed to analyze this data 

in a distributed environment, even in real time.

�Hadoop
The revolution started with the development of the Hadoop framework, 

which has two major components, namely, MapReduce programming and 

the HDFS file system.

�MapReduce Programming
MapReduce is a programming style inspired by functional programming 

to deal with large amounts of data. The programmer can process big data 

using MapReduce code without knowing the internals of the distributed 

environment. Before MapReduce, frameworks like Condor did parallel 

computing on distributed data. But the main advantage of MapReduce 

is that it is RPC based. The data does not move; on the contrary, the code 

jumps to different machines to process the data. In the case of big data, it is 

a huge savings of network bandwidth as well as computational time.
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A MapReduce program has two major components: the mapper and 

the reducer. In the mapper, the input is split into small units. Generally, 

each line of input file becomes an input for each map job. The mapper 

processes the input and emits a key-value pair to the reducer. The reducer 

receives all the values for a particular key as input and processes the data 

for final output.

The following pseudocode is an example of counting the frequency of 

words in a document:

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

�Partitioning Function
Sometimes it is required to send a particular data set to a particular reduce 

job. The partitioning function solves this purpose. For example, in the 

previous MapReduce example, say the user wants the output to be stored 

in sorted order. Then he mentions the number of the reduce job 32 for 32 
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alphabets, and in the practitioner he returns 1 for the key starting with a, 2 

for b, and so on. Then all the words that start with the same letters and go 

to the same reduce job. The output will be stored in the same output file, 

and because MapReduce assures that the intermediate key-value pairs are 

processed in increasing key order, within a given partition, the output will 

be stored in sorted order.

�Combiner Function
The combiner is a facility in MapReduce where partial aggregation is 

done in the map phase. Not only does it increase the performance, but 

sometimes it is essential to use if the data set so huge that the reducer is 

throwing a stack overflow exception. Usually the reducer and combiner 

logic are the same, but this might be necessary depending on how 

MapReduce deals with the output.

To implement this word count example, we will follow a particular 

design pattern. There will be a root RootBDAS (BDAS stands for Big Data 

Analytic System) class that has two abstract methods: a mapper task and a 

reducer task. All child classes implement these mapper and reducer tasks. 

The main class will create an instance of the child class using reflection, 

and in MapReduce map functions call the mapper task of the instance 

and the reducer function of the reducer task. The major advantages of this 

pattern are that you can do unit testing of the MapReduce functionality 

and that it is adaptive. Any new child class addition does not require any 

changes in the main class or unit testing. You just have to change the 

configuration. Some code may need to implement combiner or partitioner 

logics. They have to inherit the ICombiner or IPartitioner interface.
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Figure 7-1 shows a class diagram of the system.

Here is the RootBDAS class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

Figure 7-1.  The class diagram

Chapter 7  Analytics at Scale



149

public abstract class RootBDAS {

       �abstract  HashMap<String, ArrayList<String>>   

mapper_task(String line);

       �abstract  HashMap<String, ArrayList<String>>   

reducer_task(String key, ArrayList<String> values);

}

Here is the child class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public final class WordCounterBDAS extends RootBDAS{

       @Override

       �HashMap<String, ArrayList<String>> mapper_task 

(String line) {

              // TODO Auto-generated method stub

              String[] words = line.split(" ");

              �HashMap<String, ArrayList<String>> result = new 

HashMap<String, ArrayList<String>>();

              for(String w : words)

              {

                    if(result.containsKey(w))
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                    {

                           �ArrayList<String> vals = result.

get(w);

                           vals.add("1");

                           result.put(w, vals);

                    }

                    else

                    {

                           �ArrayList<String> vals = new 

ArrayList<String>();

                           vals.add("1");

                           result.put(w, vals);

                    }

              }

              return result;

       }

       @Override

       �HashMap<String, ArrayList<String>> reducer_task 

(String key, ArrayList<String> values) {

              // TODO Auto-generated method stub

              �HashMap<String, ArrayList<String>> result = new 

HashMap<String, ArrayList<String>>();

              �ArrayList<String> tempres = new ArrayList 

<String>();

              tempres.add(values.size()+ "");

              result.put(key, tempres);

              return result;

       }

}
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Here is the WordCounterBDAS utility class:

import java.util.ArrayList;

import java.util.HashMap;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public final class WordCounterBDAS extends RootBDAS{

       @Override

       �HashMap<String, ArrayList<String>> mapper_task 

(String line) {

              // TODO Auto-generated method stub

              String[] words = line.split(" ");

              �HashMap<String, ArrayList<String>> result = new 

HashMap<String, ArrayList<String>>();

              for(String w : words)

              {

                    if(result.containsKey(w))

                    {

                           �ArrayList<String> vals = result.

get(w);

                           vals.add("1");

                           result.put(w, vals);

                    }

                    else
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                    {

                           �ArrayList<String> vals = new 

ArrayList<String>();

                           vals.add("1");

                           result.put(w, vals);

                     }

              }

              return result;

       }

       @Override

       �HashMap<String, ArrayList<String>> reducer_task 

(String key, ArrayList<String> values) {

              // TODO Auto-generated method stub

       �HashMap<String, ArrayList<String>> result = new 

HashMap<String, ArrayList<String>>();

              �ArrayList<String> tempres = new 

ArrayList<String>();

              tempres.add(values.size()+ "");

              result.put(key, tempres);

              return result;

       }

}

Here is the MainBDAS class:

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;
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import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.Mapper;

import org.apache.hadoop.mapreduce.Reducer;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

/**

 *

 */

/**

 * @author SayanM

 *

 */

public class MainBDAS {

       �public static class MapperBDAS extends 

Mapper<LongWritable, Text, Text, Text> {

              �protected void map(LongWritable key, Text value, 

Context context)

                           �throws IOException, Interrupted 

Exception {

                     �String classname = context.

getConfiguration().get("classname");

                     try {

                           �RootBDAS instance = (RootBDAS) 

Class.forName(classname).

getConstructor().newInstance();
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                           String line = value.toString();

                           �HashMap<String, ArrayList<String>> 

result = instance.mapper_task(line);

                           for(String k : result.keySet())

                           {

                                  for(String v : result.get(k))

                                  {

                                        �context.write(new 

Text(k), new Text(v));

                                  }

                           }

                     } catch (Exception e) {

                           // TODO Auto-generated catch block

                           e.printStackTrace();

                    }

                    }

       }

       �public static class ReducerBDAS extendsReducer<Text, 

Text, Text, Text> {

              �protected void reduce(Text key, Iterable<Text> 

values,

                           �Context context) throws IOException, 

InterruptedException {

                    �String classname = context.

getConfiguration().get("classname");

                    try {
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                           �RootBDAS instance = (RootBDAS) 

Class.forName(classname).

getConstructor().newInstance();

                           �ArrayList<String> vals = new 

ArrayList<String>();

                           for(Text v : values)

                           {

                                  vals.add(v.toString());

                           }

                           �HashMap<String, ArrayList<String>> 

result = instance.reducer_task(key.

toString(), vals);

                           for(String k : result.keySet())

                           {

                                  for(String v : result.get(k))

                                  {

                                         �context.write(new 

Text(k), new Text(v));

                                  }

                           }

                     } catch (Exception e) {

                           // TODO Auto-generated catch block

                           e.printStackTrace();

                     }

              }

       }
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       public static void main(String[] args) throws Exception 

{

              // TODO Auto-generated method stub

           �String classname = Utility.getClassName(Utility.

configpath);

              Configuration con = new Configuration();

              con.set("classname", classname);

              Job job = new Job(con);

              job.setJarByClass(MainBDAS.class);

              job.setJobName("MapReduceBDAS");

              job.setOutputKeyClass(Text.class);

              job.setOutputValueClass(Text.class);

              job.setInputFormatClass(TextInputFormat.class);

              job.setOutputFormatClass(TextOutputFormat.class);

              �FileInputFormat.setInputPaths(job, new 

Path(args[0]));

              �FileOutputFormat.setOutputPath(job, new 

Path(args[1]));

              job.setMapperClass(MapperBDAS.class);

              job.setReducerClass(ReducerBDAS.class);

              System.out.println(job.waitForCompletion(true));

        }

}
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To test the example, you can use this unit testing class:

import static org.junit.Assert.*;

import java.util.ArrayList;

import java.util.HashMap;

import org.junit.Test;

public class testBDAS {

       @Test

       public void testMapper() throws Exception{

              �String classname = Utility.getClassName(Utility.

testconfigpath);

              �RootBDAS instance = (RootBDAS) Class.

forName(classname).getConstructor().

newInstance();

              �String line = Utility.getMapperInput(Utility.

testconfigpath);

              �HashMap<String, ArrayList<String>> actualresult = 

instance.mapper_task(line);

              �HashMap<String, ArrayList<String>> expectedresult 

= Utility.getMapOutput(Utility.testconfigpath);

              for(String key : actualresult.keySet())

              {

                    �boolean haskey = expectedresult.

containsKey(key);

                    assertEquals(true, haskey);

                    �ArrayList<String> actvals = actualresult.

get(key);

                    for(String v : actvals)

                    {
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                           �boolean hasval = expectedresult.

get(key).contains(v);

                           assertEquals(true, hasval);

                    }

              }

       }

       @Test

       public void testReducer(){

              fail();

       }

}

Finally, here are the interfaces:

import java.util.ArrayList;

import java.util.HashMap;

public interface ICombiner {

       HashMap<String, ArrayList<String>>  combiner_task(String 

key, ArrayList<String> values);

}

public interface IPartitioner {

       public int  partitioner_task(String line);

}
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�HDFS File System
Other than MapReduce, HDFS is the second component in the 

Hadoop framework. It is designed to deal with big data in a distributed 

environment for general-purpose low-cost hardware. HDFS is built on top 

of the Unix POSSIX file system with some modifications, with the goal of 

dealing with streaming data.

The Hadoop cluster consists of two types of host: the name node and 

the data node. The name node stores the metadata, controls execution, 

and acts like the master of the cluster. The data node does the actual 

execution; it acts like a slave and performs instructions sent by the name 

node.

�MapReduce Design Pattern
MapReduce is an archetype for processing the data that resides in 

hundreds of computers. There are some design patterns that are common 

in MapReduce programming.

�Summarization Pattern

In summary, the reducer creates the summary for each key (see Figure 7-2). 

The practitioner can be used if you want to sort the data or for any other 

purpose. The word count is an example of the summarizer pattern. This 

pattern can be used to find the minimum, maximum, and count of data or 

to find the average, median, and standard deviation.
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�Filtering Pattern

In MapReduce filtering is done in a divide-and-conquer way (Figure 7-3). 

Each mapper job filters a subset of data, and the reducer aggregates the 

filtered subset and produces the final output. Generating the top N records, 

searching data, and sampling data are the common use cases of the 

filtering pattern.

Figure 7-2.  Details of the summarization pattern

Figure 7-3.  Details of the filtering pattern
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�Join Patterns

In MapReduce, joining (Figure 7-4) can be done on the map side or the 

reduce side. For the map side, the join data sets that will be joined should 

exist in the same cluster; otherwise, the reduce-side join is required. The 

join can be an outer join, inner join, or anti-join.

The following code is an example of the reducer-side join:

package MapreduceJoin;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Iterator;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapred.JobConf;

import org.apache.hadoop.mapred.MapReduceBase;

import org.apache.hadoop.mapred.OutputCollector;

import org.apache.hadoop.mapred.Reporter;

import org.apache.hadoop.mapred.lib.MultipleInputs;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapred.Mapper;

import org.apache.hadoop.mapred.Reducer;

Figure 7-4.  Details of the join pattern
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import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapred.TextInputFormat;

@SuppressWarnings("deprecation")

public class MapreduceJoin {

////////////////////////////////////////////////////////

       @SuppressWarnings("deprecation")

       �public static class JoinReducer extends MapReduceBase 

implements Reducer<Text, Text, Text, Text>

       {

              �public void reduce(Text key, Iterator<Text> 

values, OutputCollector<Text, Text> output, 

Reporter reporter) throws IOException

              {

                     �ArrayList<String> translist = new 

ArrayList<String>();

                     String secondvalue = "";

                     while (values.hasNext())

                     {

                           �String currValue = values.next().

toString().trim();

                           if(currValue.contains("trans:")){

                                   �String[] temp = currValue.

split("trans:");

                                   if(temp.length > 1)

                                         �translist.

add(temp[1]);

                            }

                            if(currValue.contains("sec:"))
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                            {

                                   �String[] temp = currValue.

split("sec:");

                                   if(temp.length > 1)

                                          secondvalue = temp[1];

                             }

                      }

                      for(String trans : translist)

                      {

                            �output.collect(key, new Text(trans 

+'\t' + secondvalue));

                     }

               }

       }

       ////////////////////////////////////////////////////////

       @SuppressWarnings("deprecation")

       �public static class TransactionMapper extends 

MapReduceBase implements Mapper<LongWritable, Text, 

Text, Text>

       {

             int index1 = 0;

             public void configure(JobConf job) {

                    �index1 = Integer.parseInt(job.

get("index1"));

             }

             �public void map(LongWritable key, Text value, 

OutputCollector<Text, Text> output, Reporter 

reporter) throws IOException
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              {

                    String line = value.toString().trim();

                    if(line=="") return;

               String splitarray[] = line.split("\t");

               String id = splitarray[index1].trim();

               String ids = "trans:" + line;

               output.collect(new Text(id), new Text(ids));

             }

       }

       ////////////////////////////////////////////////////////

       @SuppressWarnings("deprecation")

       �public static class SecondaryMapper extends 

MapReduceBase implements Mapper<LongWritable, Text, 

Text, Text>

       {

             int index2 = 0;

             public void configure(JobConf job) {

                    �index2 = Integer.parseInt(job.

get("index2"));

             }

             �public void map(LongWritable key, Text value, 

OutputCollector<Text, Text> output, Reporter 

reporter) throws IOException

             {

                    String line = value.toString().trim();

                    if(line=="") return;

               String splitarray[] = line.split("\t");
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               String id = splitarray[index2].trim();

               String ids = "sec:" + line;

               output.collect(new Text(id), new Text(ids));

             }

       }

   ////////////////////////////////////////////////////////////

       �@SuppressWarnings({ "deprecation", "rawtypes", 

"unchecked" })

       �public static void main(String[] args) 

throws IOException, ClassNotFoundException, 

InterruptedException {

              // TODO Auto-generated method stub

              JobConf conf = new JobConf();

              conf.set("index1", args[3]);

              conf.set("index2", args[4]);

              conf.setReducerClass(JoinReducer.class);

              �MultipleInputs.addInputPath(conf, new 

Path(args[0]), TextInputFormat.class, (Class<? 

extends org.apache.hadoop.mapred.Mapper>) 

TransactionMapper.class);

              �MultipleInputs.addInputPath(conf, new 

Path(args[1]), TextInputFormat.class, (Class<? 

extends org.apache.hadoop.mapred.Mapper>) 

SecondaryMapper.class);

              Job job = new Job(conf);

              job.setJarByClass(MapreduceJoin.class);

              job.setJobName("MapReduceJoin");

              job.setOutputKeyClass(Text.class);

Chapter 7  Analytics at Scale



166

              job.setOutputValueClass(Text.class);

              �FileOutputFormat.setOutputPath(job, new 

Path(args[2]));

              System.out.println(job.waitForCompletion(true));

       }

}

�Spark
After Hadoop, Spark is the next and latest revolution in big data technology. 

The major advantage of Spark is that it gives a unified interface to the entire 

big data stack. Previously, if you needed a SQL-like interface for big data, 

you would use Hive. If you needed real-time data processing, you would 

use Storm. If you wanted to build a machine learning model, you would use 

Mahout. Spark brings all these facilities under one umbrella. In addition, it 

enables in-memory computation of big data, which makes the processing 

very fast. Figure 7-5 describes all the components of Spark.

Figure 7-5.  The components of Spark
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Spark Core is the fundamental component of Spark. It can run on 

top of Hadoop or stand-alone. It abstracts the data set as a resilient 

distributed data set (RDD). RDD is a collection of read-only objects. 

Because it is read only, there will not be any synchronization problems 

when it is shared with multiple parallel operations. Operations on 

RDD are lazy. There are two types of operations happening on RDD: 

transformation and action. In transformation, there is no execution 

happening on a data set. Spark only stores the sequence of operations as 

a directed acyclic graph called a lineage. When an action is called, then 

the actual execution takes place. After the first execution, the result is 

cached in memory. So, when a new execution is called, Spark makes a 

traversal of the lineage graph and makes maximum reuse of the previous 

computation, and the computation for the new operation becomes the 

minimum. This makes data processing very fast and also makes the data 

fault tolerant. If any node fails, Spark looks at the lineage graph for the 

data in that node and easily reproduces it.

One limitation of the Hadoop framework is that it does not have any 

message-passing interface in parallel computation. But there are several 

use cases where parallel jobs need to talk with each other. Spark achieves 

this using two kinds of shared variable. They are the broadcast variable 

and the accumulator. When one job needs to send a message to all other 

jobs, the job uses the broadcast variable, and when multiple jobs want to 

aggregate their results to one place, they use an accumulator. RDD splits its 

data set into a unit called a partition. Spark provides an interface to specify 

the partition of the data, which is very effective for future operations 

like join or find. The user can specify the storage type of partition in 

Spark. Spark has a programming interface in Python, Java, and Scala. The 

following code is an example of a word count program in Spark:
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val conf = new SparkConf().setAppName("wiki_test") // create a 

spark config object

val sc = new SparkContext(conf) // Create a spark context

val data = sc.textFile("/path/to/somedir") // Read files from 

"somedir" into an RDD of (filename, content) pairs.

val tokens = data.flatMap(_.split(" ")) // Split each file into 

a list of tokens (words).

val wordFreq = tokens.map((_, 1)).reduceByKey(_ + _) // Add a 

count of one to each token, then sum the counts per word type.

wordFreq.sortBy(s => -s._2).map(x => (x._2, x._1)).top(10)  

// Get the top 10 words. Swap word and count to sort by count.

On top of Spark Core, Spark provides the following:

•	 Spark SQL, which is a SQL interface through the 

command line or a database connector interface. It 

also provides a SQL interface for the Spark data frame 

object.

•	 Spark Streaming, which enables you to process 

streaming data in real time.

•	 MLib, a machine learning library to build analytical 

models on Spark data.

•	 GraphX, a distributed graph processing framework.

�Analytics in the Cloud
Like many other fields, analytics is being impacted by the cloud. It is 

affected in two ways. Big cloud providers are continuously releasing 

machine learning APIs. So, a developer can easily write a machine 

learning application without worrying about the underlining algorithm. 

For example, Google provides APIs for computer vision, natural language, 
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speech processing, and many more. A user can easily write code that can 

give the sentiment of an image of a face or voice in two or three lines of 

code.

The second aspect of the cloud is in the data engineering part. 

In Chapter 1 I gave an example of how to expose a model as a high-

performance REST API using Falcon. Now if a million users are going to 

use it and if the load varies by much, then autoscale is a required feature 

of this application. If you deploy the application in Google App Engine 

or AWS Lambda, you can achieve the autoscale feature in 15 minutes. 

Once the application is autoscaled, you need to think about the database. 

DynamoDB from Amazon and Cloud Datastore by Google are autoscaled 

databases in the cloud. If you use one of them, your application is now 

high performance and autoscaled, but people around globe will access it, 

so the geographical distance will create extra latency or a negative impact 

on performance. You also have to make sure that your application is always 

available. Further, you need to deploy your application in three regions: 

Europe, Asia, and the United States (you can choose more regions if your 

budget permits). If you use an elastic load balancer with a geobalancing 

routing rule, which routes the traffic from a region to the app engine of 

that region, then it will be available across the globe. In geobalancing, 

you can mention a secondary app engine for each rule, which makes 

your application highly available. If a primary app engine is down, the 

secondary app engine will take care of the things.

Figure 7-6 describes this system.
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In Chapter 1 I showed some example code of publishing a deep 

learning model as a REST API. The following code is the implementation of 

the same logic in a cloud environment where the other storage is replaced 

by a Google data store:

import falcon

from falcon_cors import CORS

import json

import pygeoip

import json

import datetime as dt

import ipaddress

import math

from concurrent.futures import *

import numpy as np

from google.cloud import datastore

def logit(x):

       return (np.exp(x) / (1 + np.exp(x)))

def is_visible(client_size, ad_position):

Elastic load balancer

System instance 1

Primary: Asia

Secondary: US

System instance 2

Primary: US

Secondary: Europe

System instance 3

Primary: Europe

Secondary: Asia

Figure 7-6.  The system
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        y=height=0

        try:

                height  = int(client_size.split(',')[1])

                y = int(ad_position.split(',')[1])

        except:

                pass

        if y < height:

                return "1"

        else:

                return "0"

class Predictor(object):

       def __init__(self,domain,is_big):

              self.client = datastore.Client('sulvo-east')

              self.ctr = 'ctr_' + domain

              self.ip = "ip_" + domain

              self.scores = "score_num_" + domain

              self.probabilities = "probability_num_" + domain

              if is_big:

                    self.is_big = "is_big_num_" + domain

                    self.scores_big = "score_big_num_" + domain

                    �self.probabilities_big = "probability_big_

num_" + domain

              self.gi = pygeoip.GeoIP('GeoIP.dat')

              self.big = is_big

              self.domain = domain

       def get_hour(self,timestamp):

              �return dt.datetime.utcfromtimestamp(timestamp / 

1e3).hour
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       def fetch_score(self, featurename, featurevalue, kind):

              pred = 0

              try:

                     �key = self.client.key(kind,featurename + 

"_" + featurevalue)

                     res= self.client.get(key)

                     if res is not None:

                           pred = res['score']

              except:

                     pass

              return pred

       def get_score(self, featurename, featurevalue):

              with ThreadPoolExecutor(max_workers=5) as pool:

                        �future_score = pool.submit(self.fetch_

score,featurename, featurevalue,self.

scores)

                    �future_prob = pool.submit(self.fetch_

score,featurename, featurevalue,self.

probabilities)

                    if self.big:

                           �future_howbig = pool.submit(self.

fetch_score,featurename, 

featurevalue,self.is_big)

                           �future_predbig = pool.submit(self.

fetch_score,featurename, 

featurevalue,self.scores_big)

                           �future_probbig = pool.submit(self.

fetch_score,featurename, 

featurevalue,self.probabilities_big)

                    pred = future_score.result()

                    prob = future_prob.result()
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                    if not self.big:

                           return pred, prob

                    howbig = future_howbig.result()

                    pred_big = future_predbig.result()

                    prob_big = future_probbig.result()

                    return howbig, pred, prob, pred_big, prob_big

       def get_value(self, f, value):

             if f == 'visible':

                    fields = value.split("_")

                    value = is_visible(fields[0], fields[1])

                    if f == 'ip':

                    �ip = str(ipaddress.IPv4Address(ipaddress.

ip_address(value)))

                        geo = self.gi.country_name_by_addr(ip)

                    if self.big:

                           �howbig1,pred1, prob1, pred_big1, 

prob_big1 = self.get_score('geo', 

geo)

                    else:

                           �pred1, prob1 = self.get_score('geo', 

geo)

                    freq = '1'

                    key = self.client.key(self.ip,ip)

                    res = self.client.get(key)

                    if res is not None:

                            freq = res['ip']

                    if self.big:

                           �howbig2, pred2, prob2, pred_

big2, prob_big2 = self.get_

score('frequency', freq)
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                    else:

                           �pred2, prob2 =  self.get_

score('frequency', freq)

                    if self.big:

                           �return (howbig1 + howbig2), (pred1 + 

pred2), (prob1 + prob2), (pred_big1 

+ pred_big2), (prob_big1 + prob_

big2)

                    else:

                           return (pred1 + pred2), (prob1 + prob2)

              if f == 'root':

                    try:

                           res = client.get('root', value)

                           if res is not None:

                                  ctr = res['ctr']

                                  avt = res['avt']

                                  avv = res['avv']

                                  if self.big:

                                     �(howbig1,pred1,prob1,pred_

big1,prob_big1) = self.

get_score('ctr', str(ctr))

                                     �(howbig2,pred2,prob2,pred_

big2,prob_big2) = self.

get_score('avt', str(avt))

                                     �(howbig3,pred3,prob3,pred_

big3,prob_big3) = self.

get_score('avv', str(avv))

                                     �(howbig4,pred4,prob4,pred_

big4,prob_big4) = self.

get_score(f, value)
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                                  else:

                                    �(pred1,prob1) = self.get_

score('ctr', str(ctr))

                                    �(pred2,prob2) = self.get_

score('avt', str(avt))

                                    �(pred3,prob3) = self.get_

score('avv', str(avv))

                                    �(pred4,prob4) = self.get_

score(f, value)

                           if self.big:

                                  �return (howbig1 + howbig2 + 

howbig3 + howbig4), (pred1 

+ pred2 + pred3 + pred4), 

(prob1 + prob2 + prob3 + 

prob4),(pred_big1 + pred_

big2 + pred_big3 + pred_

big4),(prob_big1 + prob_big2 

+ prob_big3 + prob_big4)

                           else:

                                  �return (pred1 + pred2 + pred3 

+ pred4), (prob1 + prob2 + 

prob3 + prob4)

                     except:

                           return 0,0

                if f == 'client_time':

                   value = str(self.get_hour(int(value)))

              return self.get_score(f, value)

       def get_multiplier(self):

              �key = self.client.key('multiplier_all_num',  

self.domain)

                res = self.client.get(key)
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                high = res['high']

                low = res['low']

             if self.big:

                            �key = self.client.key('multiplier_

all_num', self.domain + "_big")

                    res = self.client.get(key)

                    high_big = res['high']

                    low_big = res['low']

                    return high, low, high_big, low_big

             return high, low

       def on_post(self, req, resp):

             if True:

                    �input_json = json.loads(req.stream.

read(),encoding='utf-8')

                    �input_json['visible'] = input_json['client_

size'] + "_" + input_json['ad_position']

                    del input_json['client_size']

                    del input_json['ad_position']

                    howbig = 0

                    pred = 0

                    prob = 0

                    pred_big = 0

                    prob_big = 0

                    worker = ThreadPoolExecutor(max_workers=1)

                    thread = worker.submit(self.get_multiplier)

                    �with ThreadPoolExecutor(max_workers=8) as 

pool:

                           �future_array = { pool.submit(self.

get_value,f,input_json[f]) : f for f 

in input_json}
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                           �for future in as_completed(future_

array):

                                  if self.big:

                                         �howbig1, pred1, 

prob1,pred_big1,prob_

big1 = future.result()

                                         pred = pred + pred1

                                         �pred_big = pred_big + 

pred_big1

                                         prob = prob + prob1

                                         �prob_big = prob_big + 

prob_big1

                                         �howbig = howbig + 

howbig

                                  else:

                                         �pred1, prob1 = future.

result()

                                         pred = pred + pred1

                                         prob = prob + prob1

                    if self.big:

                           if howbig > .65:

                                  �pred, prob = pred_big, prob_

big

                    resp.status = falcon.HTTP_200

                      res = math.exp(pred)-1

                    if res < 0.1:

                           res = 0.1

                    if prob < 0.1 :

                           prob = 0.1
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                    if prob > 0.9:

                           prob = 0.9

                    if self.big:

                           �high, low, high_big, low_big = 

thread.result()

                           if howbig > 0.6:

                                  high = high_big

                                  low = low_big

                    else:

                           high, low = thread.result()

                    multiplier = low + (high -low)*prob

                    res = multiplier*res

                    resp.body = str(res)

              #except Exception,e:

              #     print(str(e))

              #     resp.status = falcon.HTTP_200

              #     resp.body = str("0.1")

cors = CORS(allow_all_origins=True,allow_all_

methods=True,allow_all_headers=True)  

wsgi_app = api = falcon.API(middleware=[cors.middleware])

f = open('publishers2.list_test')

for line in f:

       if "#" not in line:

             fields = line.strip().split('\t')

             domain = fields[0].strip()

             big = (fields[1].strip() == '1')

             p = Predictor(domain, big)

             url = '/predict/' + domain

             api.add_route(url, p)

f.close()
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You can deploy this application in the Google App Engine with the 

following:

gcloud app deploy --prject <prject id>  --version <version no>

�Internet of Things
The IoT is simply the network of interconnected things/devices embedded 

with sensors, software, network connectivity, and necessary electronics 

that enable them to collect and exchange data, making them responsive. 

The field is emerging with the rise of technology just like big data, real-

time analytics frameworks, mobile communication, and intelligent 

programmable devices. In the IoT, you can do the analysis of data on the 

server side using the techniques shown throughout the book; you can also 

put logic on the device side using the Raspberry Pi, which is an embedded 

system version of Python.
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Ordinary least squares (OLS), 

68–69

P, Q
Pearson correlation, 50–52
Permanent component, 125
Principal component analysis, 

53–55
Python

API, 17–22
high-performance  

applications, 2
IoT, 1
microservice, 14–17
NLP, 13–14

OOP, 3–9, 11–12
R, 13

R
Random forest classifier, 60–61
Recurrent neural network (RNN), 

113, 115–116, 118–119
Regression, 68

and classification, 70
least square estimation, 68–69
logistic, 69–70

Resilient distributed data set 
(RDD), 167

RNN, see Recurrent neural network 
(RNN)

S
Sample autocorrelation 

coefficients, 129
Sample autocorrelation function, 

129
Seasonality, time series

airline passenger loads, 124
exponential smoothing, 124
Holt-Winters model, 124–125
permanent component, 125
removing

differencing, 126
filtering, 125–126

Semisupervised learning, 58
Sentiment analysis, 65–66
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Single linkage method, 90
Spark

advantage, 166
broadcast variable, 167
components, 166
lineage, 167
message-passing  

interface, 167
partition, 167
RDD, 167
shared variable, 167
Spark Core, 168
word count program, 167

Squared Euclidean distance, 84
Stationary time series

autocorrelation and 
correlogram, 129, 130

autocovariance, 129
description, 128
joint distribution, 128

Supervised learning
classifications, 57
dealing, categorical  

data, 73–76
decision tree, 59–61
dimensionality reduction

investment banking, 50
mutual information (MI), 56
Pearson correlation, 50–52
principal component 

analysis, 53–55
survey/factor analysis, 49
weighted average of 

instruments, 50

image recognition, 67
Naive Bayes classifier, 61–62
nearest neighbor  

classifier, 64
over-or under-predict 

intentionally, 71–72
regression (see Regression)
semi, 58
sentiment analysis, 65–66
support vector  

machine, 62–63
Support vector machine, 62–63

T
Topical crawling, 40
TensorFlow

logistic regresson, 111–112
multilayer linear regression, 

108–109, 111
simple linear regression,  

106, 108
Time series

ARMA models, 137–139
AR model, 133
definition, 121
exceptional scenario, 141, 143
Fourier Transform, 140
MA model, 131–133
missing data, 143
SciPy, 130
seasonality, 124–126
stationary (see Stationary time 

series)
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transformation
cyclic variation, 127
data distribution  

normal, 127
irregular fluctuations, 128
seasonal effect additive, 127
variance stabilization, 126

trends, 121–122

curve fitting, 122
removing, 123–124

variation, 121
Topical crawling, 42–48

U, V, W, X, Y, Z
Unsupervised learning, see 

Clustering

Time series (cont.)
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