
code

March 6, 2025

1 Extensive Analysis + Visualization with Python
Heart disease or Cardiovascular disease (CVD) is a class of diseases that involve the heart
or blood vessels. Cardiovascular diseases are the leading cause of death globally. This is true in all
areas of the world except Africa. Together CVD resulted in 17.9 million deaths (32.1%) in 2015.
Deaths, at a given age, from CVD are more common and have been increasing in much of the
developing world, while rates have declined in most of the developed world since the 1970s.

So, in this kernel, I have conducted Exploratory Data Analysis or EDA of the heart disease
dataset. Exploratory Data Analysis or EDA is a critical first step in analyzing a new dataset.
The primary objective of EDA is to analyze the data for distribution, outliers and anomalies in
the dataset. It enable us to direct specific testing of the hypothesis. It includes analysing the data
to find the distribution of data, its main characteristics, identifying patterns and visualizations. It
also provides tools for hypothesis generation by visualizing and understanding the data through
graphical representation.

1.1 Table of Contents
The table of contents for this project are as follows: -

1. Introduction to EDA
2. Objectives of EDA
3. Types of EDA
4. Import libraries
5. Import dataset
6. Exploratory data analysis

• Check shape of the dataset
• Preview the dataset
• Summary of dataset
• Dataset description
• Check data types of columns
• Important points about dataset
• Statistical properties of dataset
• View column names

7. Univariate analysis
• Analysis of target feature variable
• Findings of univariate analysis

8. Bivariate analysis
• Estimate correlation coefficients

1

• Analysis of target and cp variable
• Analysis of target and thalach variable
• Findings of bivariate analysis

9. Multivariate analysis
• Heat Map
• Pair Plot

10. Dealing with missing values
• Pandas isnull() and notnull() functions
• Useful commands to detect missing values

11. Check with ASSERT statement
12. Outlier detection
13. Conclusion

1.2 1. Introduction to EDA
Back to Table of Contents

Several questions come to mind when we come across a new dataset. The below list shed light on
some of these questions:-

• What is the distribution of the dataset?

• Are there any missing numerical values, outliers or anomalies in the dataset?

• What are the underlying assumptions in the dataset?

• Whether there exists relationships between variables in the dataset?

• How to be sure that our dataset is ready for input in a machine learning algorithm?

• How to select the most suitable algorithm for a given dataset?

So, how do we get answer to the above questions?

The answer is Exploratory Data Analysis. It enable us to answer all of the above questions.

1.3 2. Objectives of EDA
Back to Table of Contents

The objectives of the EDA are as follows:-

i. To get an overview of the distribution of the dataset.

ii. Check for missing numerical values, outliers or other anomalies in the dataset.

iii.Discover patterns and relationships between variables in the dataset.

iv. Check the underlying assumptions in the dataset.

1.4 3. Types of EDA
Back to Table of Contents

EDA is generally cross-classified in two ways. First, each method is either non-graphical or graphi-
cal. Second, each method is either univariate or multivariate (usually bivariate). The non-graphical

2

methods provide insight into the characteristics and the distribution of the variable(s) of interest.
So, non-graphical methods involve calculation of summary statistics while graphical methods in-
clude summarizing the data diagrammatically.

There are four types of exploratory data analysis (EDA) based on the above cross-classification
methods. Each of these types of EDA are described below:-

i. Univariate non-graphical EDA The objective of the univariate non-graphical EDA is to
understand the sample distribution and also to make some initial conclusions about population
distributions. Outlier detection is also a part of this analysis.

ii. Multivariate non-graphical EDA Multivariate non-graphical EDA techniques show the
relationship between two or more variables in the form of either cross-tabulation or statistics.

iii. Univariate graphical EDA In addition to finding the various sample statistics of univariate
distribution (discussed above), we also look graphically at the distribution of the sample. The non-
graphical methods are quantitative and objective. They do not give full picture of the data. Hence,
we need graphical methods, which are more qualitative in nature and presents an overview of the
data.

iv. Multivariate graphical EDA There are several useful multivariate graphical EDA tech-
niques, which are used to look at the distribution of multivariate data. These are as follows:-

• Side-by-Side Boxplots

• Scatterplots

• Heat Maps and 3-D Surface Plots

2 import Libraies

[1]: import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import scipy.stats as st
%matplotlib inline

sns.set(style="whitegrid")

3 ignore warnings

[2]: import warnings
warnings.filterwarnings('ignore')

3

4 import dataset or load dataset

[3]: df = pd.read_csv(r"C:\Users\ky321\OneDrive\Desktop\Data science and Ai\resume␣
↪project\Extensive_Analysis&Visualization_Heart_disease\heart.csv")

[4]: df

[4]: age sex cp trestbps chol fbs restecg thalach exang oldpeak \
0 63 1 3 145 233 1 0 150 0 2.3
1 37 1 2 130 250 0 1 187 0 3.5
2 41 0 1 130 204 0 0 172 0 1.4
3 56 1 1 120 236 0 1 178 0 0.8
4 57 0 0 120 354 0 1 163 1 0.6
.. … … .. … … … … … … …
298 57 0 0 140 241 0 1 123 1 0.2
299 45 1 3 110 264 0 1 132 0 1.2
300 68 1 0 144 193 1 1 141 0 3.4
301 57 1 0 130 131 0 1 115 1 1.2
302 57 0 1 130 236 0 0 174 0 0.0

slope ca thal target
0 0 0 1 1
1 0 0 2 1
2 2 0 2 1
3 2 0 2 1
4 2 0 2 1
.. … .. … …
298 1 0 3 0
299 1 0 3 0
300 1 2 3 0
301 1 1 3 0
302 1 1 2 0

[303 rows x 14 columns]

5 EDA / Exploratory data analysis
Check shape of the dataset

[5]: print("the shape of the dataset :",df.shape)

the shape of the dataset : (303, 14)

5.0.1 preview the data

[6]: df.head()

4

[6]: age sex cp trestbps chol fbs restecg thalach exang oldpeak slope \
0 63 1 3 145 233 1 0 150 0 2.3 0
1 37 1 2 130 250 0 1 187 0 3.5 0
2 41 0 1 130 204 0 0 172 0 1.4 2
3 56 1 1 120 236 0 1 178 0 0.8 2
4 57 0 0 120 354 0 1 163 1 0.6 2

ca thal target
0 0 1 1
1 0 2 1
2 0 2 1
3 0 2 1
4 0 2 1

5.0.2 summary of the dataset

[7]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 age 303 non-null int64
1 sex 303 non-null int64
2 cp 303 non-null int64
3 trestbps 303 non-null int64
4 chol 303 non-null int64
5 fbs 303 non-null int64
6 restecg 303 non-null int64
7 thalach 303 non-null int64
8 exang 303 non-null int64
9 oldpeak 303 non-null float64
10 slope 303 non-null int64
11 ca 303 non-null int64
12 thal 303 non-null int64
13 target 303 non-null int64

dtypes: float64(1), int64(13)
memory usage: 33.3 KB

Dataset description

• The dataset contains several columns which are as follows -

– age : age in years
– sex : (1 = male; 0 = female)
– cp : chest pain type
– trestbps : resting blood pressure (in mm Hg on admission to the hospital)

5

– chol : serum cholestoral in mg/dl
– fbs : (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)
– restecg : resting electrocardiographic results
– thalach : maximum heart rate achieved
– exang : exercise induced angina (1 = yes; 0 = no)
– oldpeak : ST depression induced by exercise relative to rest
– slope : the slope of the peak exercise ST segment
– ca : number of major vessels (0-3) colored by flourosopy
– thal : 3 = normal; 6 = fixed defect; 7 = reversable defect
– target : 1 or 0

Check the data types of columns

• The above df.info() command gives us the number of filled values along with the data types
of columns.

• If we simply want to check the data type of a particular column, we can use the following
command.

[8]: df.dtypes

[8]: age int64
sex int64
cp int64
trestbps int64
chol int64
fbs int64
restecg int64
thalach int64
exang int64
oldpeak float64
slope int64
ca int64
thal int64
target int64
dtype: object

Important points about dataset

• sex is a character variable. Its data type should be object. But it is encoded as (1 = male;
0 = female). So, its data type is given as int64.

• Same is the case with several other variables - fbs, exang and target.

• fbs (fasting blood sugar) should be a character variable as it contains only 0 and 1 as
values (1 = true; 0 = false). As it contains only 0 and 1 as values, so its data type is given
as int64.

• exang (exercise induced angina) should also be a character variable as it contains only
0 and 1 as values (1 = yes; 0 = no). It also contains only 0 and 1 as values, so its data type

6

is given as int64.

• target should also be a character variable. But, it also contains 0 and 1 as values. So, its
data type is given as int64.

6 statsicial properties of the dataset

[9]: df.describe()

[9]: age sex cp trestbps chol fbs \
count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000
mean 54.366337 0.683168 0.966997 131.623762 246.264026 0.148515
std 9.082101 0.466011 1.032052 17.538143 51.830751 0.356198
min 29.000000 0.000000 0.000000 94.000000 126.000000 0.000000
25% 47.500000 0.000000 0.000000 120.000000 211.000000 0.000000
50% 55.000000 1.000000 1.000000 130.000000 240.000000 0.000000
75% 61.000000 1.000000 2.000000 140.000000 274.500000 0.000000
max 77.000000 1.000000 3.000000 200.000000 564.000000 1.000000

restecg thalach exang oldpeak slope ca \
count 303.000000 303.000000 303.000000 303.000000 303.000000 303.000000
mean 0.528053 149.646865 0.326733 1.039604 1.399340 0.729373
std 0.525860 22.905161 0.469794 1.161075 0.616226 1.022606
min 0.000000 71.000000 0.000000 0.000000 0.000000 0.000000
25% 0.000000 133.500000 0.000000 0.000000 1.000000 0.000000
50% 1.000000 153.000000 0.000000 0.800000 1.000000 0.000000
75% 1.000000 166.000000 1.000000 1.600000 2.000000 1.000000
max 2.000000 202.000000 1.000000 6.200000 2.000000 4.000000

thal target
count 303.000000 303.000000
mean 2.313531 0.544554
std 0.612277 0.498835
min 0.000000 0.000000
25% 2.000000 0.000000
50% 2.000000 1.000000
75% 3.000000 1.000000
max 3.000000 1.000000

Important points to note

• The above command df.describe() helps us to view the statistical properties of numerical
variables. It excludes character variables.

• If we want to view the statistical properties of character variables, we should run the following
command -

df.describe(include=['object'])

7

• If we want to view the statistical properties of all the variables, we should run the following
command -

df.describe(include='all')

6.0.1 view columns names

[10]: df.columns

[10]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],

dtype='object')

7 univarient analysis
7.0.1 Analysis of target feature variable

• Our feature variable of interest is target.

• It refers to the presence of heart disease in the patient.

• It is integer valued as it contains two integers 0 and 1 - (0 stands for absence of heart disease
and 1 for presence of heart disease).

• So, in this section, I will analyze the target variable.

7.1 check the number of unque values in target variable

[11]: df['target'].nunique()

[11]: 2

We can see that there are 2 unique values in the target variable.

View the unique values in target variable
[12]: df['target'].unique()

[12]: array([1, 0], dtype=int64)

Comment

• So, the unique values are 1 and 0. (1 stands for presence of heart disease and 0 for absence
of hear disease).

7.2 frequency distribution of target varible

[13]: df['target'].value_counts()

8

[13]: target
1 165
0 138
Name: count, dtype: int64

Comment

• 1 stands for presence of heart disease. So, there are 165 patients suffering from heart disease.

• Similarly, 0 stands for absence of heart disease. So, there are 138 patients who do not have
any heart disease.

• We can visualize this information below.

Visualize frequency distribution of target variable
[14]: f ,ax =plt.subplots(figsize=(8,6))

ax =sns.countplot(x='target',data=df,hue="target")
plt.show()

Interpretation

9

• The above plot confirms the findings that -

– There are 165 patients suffering from heart disease, and

– There are 138 patients who do not have any heart disease.

Frequency distribution of target variable wrt sex
[15]: df.groupby('sex')['target'].value_counts()

[15]: sex target
0 1 72

0 24
1 0 114

1 93
Name: count, dtype: int64

Comment

• sex variable contains two integer values 1 and 0 : (1 = male; 0 = female).

• target variable also contains two integer values 1 and 0 : (1 = Presence of heart disease; 0
= Absence of heart disease)

• So, out of 96 females - 72 have heart disease and 24 do not have heart disease.

• Similarly, out of 207 males - 93 have heart disease and 114 do not have heart disease.

• We can visualize this information below.

We can visualize the value counts of the sex variable wrt target as follows -

[16]: f , ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x='sex',hue='target',data=df)
plt.show()

10

Interpretation

• We can see that the values of target variable are plotted wrt sex : (1 = male; 0 = female).

• target variable also contains two integer values 1 and 0 : (1 = Presence of heart disease; 0
= Absence of heart disease)

• The above plot confirms our findings that -

– Out of 96 females - 72 have heart disease and 24 do not have heart disease.

– Similarly, out of 207 males - 93 have heart disease and 114 do not have heart disease.

Alternatively, we can visualize the same information as follows :

[17]: ax = sns.catplot(x='target',col ='sex',data=df,kind␣
↪='count',height=5,aspect=1,hue="target")

11

Comment

• The above plot segregate the values of target variable and plot on two different columns
labelled as (sex = 0, sex = 1).

• I think it is more convinient way of interpret the plots.

We can plot the bars horizontally as follows :

[18]: f, ax =plt.subplots(figsize=(8,6))
ax = sns.countplot(y="target",hue='sex',data=df)
plt.show()

12

We can use a different color palette as follows :

[19]: f, ax = plt.subplots(figsize=(8, 6))
ax = sns.countplot(x="target", data=df, palette="Set3")
plt.show()

13

We can use plt.bar keyword arguments for a different look :

[20]: f ,ax = plt.subplots(figsize=(8,6))
ax = sns.

↪countplot(x='target',data=df,facecolor=(0,0,0,0),linewidth=5,edgecolor=sns.
↪color_palette("dark",3))

plt.show()

14

Comment

• I have visualize the target values distribution wrt sex.

• We can follow the same principles and visualize the target values distribution wrt fbs
(fasting blood sugar) and exang (exercise induced angina).

[21]: f, ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x='target',hue='fbs',data=df)
plt.show()

15

[22]: f,ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x='target',hue='exang',data=df)
plt.show()

16

7.2.1 Findings of Univariate Analysis

Findings of univariate analysis are as follows:-

• Our feature variable of interest is target.

• It refers to the presence of heart disease in the patient.

• It is integer valued as it contains two integers 0 and 1 - (0 stands for absence of heart disease
and 1 for presence of heart disease).

• 1 stands for presence of heart disease. So, there are 165 patients suffering from heart disease.

• Similarly, 0 stands for absence of heart disease. So, there are 138 patients who do not have
any heart disease.

• There are 165 patients suffering from heart disease, and

• There are 138 patients who do not have any heart disease.

• Out of 96 females - 72 have heart disease and 24 do not have heart disease.

• Similarly, out of 207 males - 93 have heart disease and 114 do not have heart disease.

17

8 bivariat analysis
8.0.1 Estimate correlation coefficients

Our dataset is very small. So, I will compute the standard correlation coefficient (also called
Pearson’s r) between every pair of attributes. I will compute it using the df.corr() method as
follows:-

[23]: correlation = df.corr()

The target variable is target. So, we should check how each attribute correlates with the target
variable. We can do it as follows:-

[24]: correlation['target'].sort_values(ascending=False)

[24]: target 1.000000
cp 0.433798
thalach 0.421741
slope 0.345877
restecg 0.137230
fbs -0.028046
chol -0.085239
trestbps -0.144931
age -0.225439
sex -0.280937
thal -0.344029
ca -0.391724
oldpeak -0.430696
exang -0.436757
Name: target, dtype: float64

Interpretation of correlation coefficient

• The correlation coefficient ranges from -1 to +1.

• When it is close to +1, this signifies that there is a strong positive correlation. So, we can
see that there is no variable which has strong positive correlation with target variable.

• When it is clsoe to -1, it means that there is a strong negative correlation. So, we can see
that there is no variable which has strong negative correlation with target variable.

• When it is close to 0, it means that there is no correlation. So, there is no correlation between
target and fbs.

• We can see that the cp and thalach variables are mildly positively correlated with target
variable. So, I will analyze the interaction between these features and target variable.

8.0.2 Analysis of target and cp variable

Explore cp variable

• cp stands for chest pain type.

18

• First, I will check number of unique values in cp variable.

[25]: df['cp'].nunique()

[25]: 4

So, there are 4 unique values in cp variable. Hence, it is a categorical variable.

Now, I will view its frequency distribution as follows :

[26]: df['cp'].value_counts()

[26]: cp
0 143
2 87
1 50
3 23
Name: count, dtype: int64

Comment

• It can be seen that cp is a categorical variable and it contains 4 types of values - 0, 1, 2 and
3.

Visualize the frequency distribution of cp variable
[27]: f,ax =plt.subplots(figsize=(8,6))

ax = sns.countplot(x='cp',data=df,hue='cp')
plt.show()

19

Frequency distribution of target variable wrt cp
[28]: df.groupby('cp')['target'].value_counts()

[28]: cp target
0 0 104

1 39
1 1 41

0 9
2 1 69

0 18
3 1 16

0 7
Name: count, dtype: int64

Comment

• cp variable contains four integer values 0, 1, 2 and 3.

• target variable contains two integer values 1 and 0 : (1 = Presence of heart disease; 0 =
Absence of heart disease)

20

• So, the above analysis gives target variable values categorized into presence and absence of
heart disease and groupby cp variable values.

• We can visualize this information below.

We can visualize the value counts of the cp variable wrt target as follows -

[29]: f,ax = plt.subplots(figsize=(8,6))
ax = sns.countplot(x='cp',hue='target',data=df)
plt.show()

Interpretation

• We can see that the values of target variable are plotted wrt cp.

• target variable contains two integer values 1 and 0 : (1 = Presence of heart disease; 0 =
Absence of heart disease)

• The above plot confirms our above findings,

Alternatively, we can visualize the same information as follows :

[30]: ax = sns.
↪catplot(x='target',col='cp',data=df,kind='count',height=8,aspect=1,hue='target')

21

8.0.3 Analysis of target and thalach variable

Explore thalach variable

• thalach stands for maximum heart rate achieved.

• I will check number of unique values in thalach variable as follows :

[31]: df['thalach'].nunique()

[31]: 91

• So, number of unique values in thalach variable is 91. Hence, it is numerical variable.

• I will visualize its frequency distribution of values as follows :

Visualize the frequency distribution of thalach variable
[32]: f, ax = plt.subplots(figsize=(10,6))

x = df['thalach']
ax = sns.distplot(x, bins=10)
plt.show()

22

Comment

• We can see that the thalach variable is slightly negatively skewed.

We can use Pandas series object to get an informative axis label as follows :

[33]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x = pd.Series(x, name="thalach variable")
ax = sns.distplot(x, bins=10)
plt.show()

23

We can plot the distribution on the vertical axis as follows:-

[34]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
ax = sns.distplot(x, bins=10, vertical=True)
plt.show()

24

Seaborn Kernel Density Estimation (KDE) Plot

• The kernel density estimate (KDE) plot is a useful tool for plotting the shape of a distribution.

• The KDE plot plots the density of observations on one axis with height along the other axis.

• We can plot a KDE plot as follows :

[35]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x = pd.Series(x, name="thalach variable")
ax = sns.kdeplot(x)
plt.show()

We can shade under the density curve and use a different color as follows:

[36]: f, ax = plt.subplots(figsize=(10,6))
x = df['thalach']
x = pd.Series(x,name="thalach variable")
ax = sns.kdeplot(x,shade=True,color="r")
plt .show()

25

Histogram

• A histogram represents the distribution of data by forming bins along the range of the data
and then drawing bars to show the number of observations that fall in each bin.

• We can plot a histogram as follows :

[37]: f, ax =plt.subplots(figsize=(10,6))
x = df['thalach']
ax = sns.distplot(x,kde=False,rug=True,bins=10)
plt.show()

26

Visualize frequency distribution of thalach variable wrt target
[39]: f, ax = plt.subplots(figsize=(8,6))

sns.stripplot(x='target',y= 'thalach',data=df,hue='target')
plt.show()

27

Interpretation

• We can see that those people suffering from heart disease (target = 1) have relatively higher
heart rate (thalach) as compared to people who are not suffering from heart disease (target
= 0).

We can add jitter to bring out the distribution of values as follows :

[41]: f,ax=plt.subplots(figsize=(8,6))
sns.stripplot(x='target',y= 'thalach',data=df,jitter=0.01,hue='target')
plt.show()

28

Visualize distribution of thalach variable wrt target with boxplot
[42]: f,ax =plt.subplots(figsize=(8,6))

sns.boxplot(x='target',y='thalach',data=df,hue='target')
plt.show()

29

Interpretation The above boxplot confirms our finding that people suffering from heart disease
(target = 1) have relatively higher heart rate (thalach) as compared to people who are not suffering
from heart disease (target = 0).

8.0.4 Findings of Bivariate Analysis

Findings of Bivariate Analysis are as follows –

• There is no variable which has strong positive correlation with target variable.

• There is no variable which has strong negative correlation with target variable.

• There is no correlation between target and fbs.

• The cp and thalach variables are mildly positively correlated with target variable.

• We can see that the thalach variable is slightly negatively skewed.

• The people suffering from heart disease (target = 1) have relatively higher heart rate (thalach)
as compared to people who are not suffering from heart disease (target = 0).

• The people suffering from heart disease (target = 1) have relatively higher heart rate (thalach)
as compared to people who are not suffering from heart disease (target = 0).

30

8.1 9. Multivariate analysis
Back to Table of Contents

• The objective of the multivariate analysis is to discover patterns and relationships in the
dataset.

8.1.1 Discover patterns and relationships

• An important step in EDA is to discover patterns and relationships between variables in the
dataset.

• I will use heat map and pair plot to discover the patterns and relationships in the dataset.

• First of all, I will draw a heat map.

8.1.2 Heat Map

[43]: plt.figure(figsize=(16,12))
plt.title("correlation heat map of heart disease dataset")
a = sns.heatmap(correlation,square =True,annot=True,fmt='.2f',linecolor="white")
a.set_xticklabels(a.get_xticklabels(),rotation=90)
a.set_yticklabels(a.get_yticklabels(),rotation=30)
plt.show()

31

Interpretation From the above correlation heat map, we can conclude that :-

• target and cp variable are mildly positively correlated (correlation coefficient = 0.43).

• target and thalach variable are also mildly positively correlated (correlation coefficient =
0.42).

• target and slope variable are weakly positively correlated (correlation coefficient = 0.35).

• target and exang variable are mildly negatively correlated (correlation coefficient = -0.44).

• target and oldpeak variable are also mildly negatively correlated (correlation coefficient =
-0.43).

• target and ca variable are weakly negatively correlated (correlation coefficient = -0.39).

• target and thal variable are also waekly negatively correlated (correlation coefficient =
-0.34).

32

8.1.3 Pair Plot

[44]: num_var =['age','trestbps','chol','thalach','oldpeak','target']
sns.pairplot(df[num_var],kind='scatter',diag_kind='hist')
plt.show()

Comment

• I have defined a variable num_var. Here age, trestbps, chol`, `thalach` and `oldpeak
are numerical variables and target is the categorical variable.

• So, I wll check relationships between these variables.

8.1.4 Analysis of age and other variables

33

Check the number of unique values in age variable
[45]: df['age'].nunique()

[45]: 41

View statistical summary of age variable
[46]: df['age'].describe()

[46]: count 303.000000
mean 54.366337
std 9.082101
min 29.000000
25% 47.500000
50% 55.000000
75% 61.000000
max 77.000000
Name: age, dtype: float64

Interpretation

• The mean value of the age variable is 54.37 years.

• The minimum and maximum values of age are 29 and 77 years.

Plot the distribution of age variable Now, I will plot the distribution of age variable to view
the statistical properties.

[48]: f,ax= plt.subplots(figsize=(10,6))
x = df['age']
ax = sns.distplot(x,bins=10)
plt.show()

34

Interpretation

• The age variable distribution is approximately normal.

8.1.5 Analyze age and target variable

Visualize frequency distribution of age variable wrt target
[50]: f ,ax = plt.subplots(figsize=(8,6))

sns.stripplot(x='target',y='age',data=df,hue='target')
plt.show()

35

Interpretation

• We can see that the people suffering from heart disease (target = 1) and people who are not
suffering from heart disease (target = 0) have comparable ages.

Visualize distribution of age variable wrt target with boxplot
[53]: f,ax = plt.subplots(figsize=(8,6))

sns.boxplot(x='target',y='age',data=df,hue='target')
plt.show()

36

Interpretation

• The above boxplot tells two different things :

– The mean age of the people who have heart disease is less than the mean age of the
people who do not have heart disease.

– The dispersion or spread of age of the people who have heart disease is greater than the
dispersion or spread of age of the people who do not have heart disease.

8.1.6 Analyze age and trestbps variable

I will plot a scatterplot to visualize the relationship between age and trestbps variable.

[59]: f, ax =plt.subplots(figsize=(8,6))
ax =sns.scatterplot(x='age',y='trestbps',data=df,hue='age')
plt.show()

37

Interpretation

• The above scatter plot shows that there is no correlation between age and trestbps variable.

[61]: f, ax =plt.subplots(figsize=(8,6))
ax = sns.regplot(x='age',y='trestbps',data=df)
plt.show()

38

Interpretation

• The above line shows that linear regression model is not good fit to the data.

8.1.7 Analyze age and chol variable

[64]: f,ax = plt.subplots(figsize=(8,6))
ax = sns.scatterplot(x='age',y='chol',data=df)
plt.show()

39

[65]: f, ax = plt.subplots(figsize=(8,6))
ax = sns.regplot(x='age',y='chol',data=df)
plt.show()

40

Interpretation

• The above plot confirms that there is a slighly positive correlation between age and chol
variables.

8.1.8 Analyze chol and thalach variable

[66]: f,ax = plt.subplots(figsize=(8,6))
ax= sns.scatterplot(x='chol',y='thalach',data=df)
plt.show()

41

[68]: f , ax = plt.subplots(figsize=(8,6))
ax = sns.regplot(x='chol',y='thalach',data=df)
plt.show()

42

Interpretation

• The above plot shows that there is no correlation between chol and thalach variable.

8.2 10. Dealing with missing values
Back to Table of Contents

• In Pandas missing data is represented by two values:

• None: None is a Python singleton object that is often used for missing data in Python code.

• NaN : NaN (an acronym for Not a Number), is a special floating-point value recognized by
all systems that use the standard IEEE floating-point representation.

• There are different methods in place on how to detect missing values.

8.2.1 Pandas isnull() and notnull() functions

• Pandas offers two functions to test for missing data - isnull() and notnull(). These are
simple functions that return a boolean value indicating whether the passed in argument value
is in fact missing data.

• Below, I will list some useful commands to deal with missing values.

43

8.2.2 Useful commands to detect missing values

• df.isnull()

The above command checks whether each cell in a dataframe contains missing values or not. If the
cell contains missing value, it returns True otherwise it returns False.

• df.isnull().sum()

The above command returns total number of missing values in each column in the dataframe.

• df.isnull().sum().sum()

It returns total number of missing values in the dataframe.

• df.isnull().mean()

It returns percentage of missing values in each column in the dataframe.

• df.isnull().any()

It checks which column has null values and which has not. The columns which has null values
returns TRUE and FALSE otherwise.

• df.isnull().any().any()

It returns a boolean value indicating whether the dataframe has missing values or not. If dataframe
contains missing values it returns TRUE and FALSE otherwise.

• df.isnull().values.any()

It checks whether a particular column has missing values or not. If the column contains missing
values, then it returns TRUE otherwise FALSE.

• df.isnull().values.sum()

It returns the total number of missing values in the dataframe.

[69]: df.isnull().sum()

[69]: age 0
sex 0
cp 0
trestbps 0
chol 0
fbs 0
restecg 0
thalach 0
exang 0
oldpeak 0
slope 0
ca 0
thal 0
target 0
dtype: int64

44

Interpretation We can see that there are no missing values in the dataset.

8.3 11. Check with ASSERT statement
Back to Table of Contents

• We must confirm that our dataset has no missing values.

• We can write an assert statement to verify this.

• We can use an assert statement to programmatically check that no missing, unexpected 0 or
negative values are present.

• This gives us confidence that our code is running properly.

• Assert statement will return nothing if the value being tested is true and will throw an
AssertionError if the value is false.

• Asserts

– assert 1 == 1 (return Nothing if the value is True)

– assert 1 == 2 (return AssertionError if the value is False)

9 assert that there are no missing values in the dataframe

[70]: assert pd.notnull(df).all().all()

10 assert all values are greater than or equal to 0

[71]: assert (df >= 0).all().all()

Interpretation

• The above two commands do not throw any error. Hence, it is confirmed that there are no
missing or negative values in the dataset.

• All the values are greater than or equal to zero.

10.1 12. Outlier detection
Back to Table of Contents

I will make boxplots to visualise outliers in the continuous numerical variables : -

age, trestbps, chol, thalach and oldpeak variables.

10.1.1 age variable

[72]: df['age'].describe()

45

[72]: count 303.000000
mean 54.366337
std 9.082101
min 29.000000
25% 47.500000
50% 55.000000
75% 61.000000
max 77.000000
Name: age, dtype: float64

Box-plot of age variable
[73]: f, ax = plt.subplots(figsize=(8, 6))

sns.boxplot(x=df["age"])
plt.show()

46

10.1.2 trestbps variable

[74]: df['trestbps'].describe()

[74]: count 303.000000
mean 131.623762
std 17.538143
min 94.000000
25% 120.000000
50% 130.000000
75% 140.000000
max 200.000000
Name: trestbps, dtype: float64

Box-plot of trestbps variable
[75]: f, ax = plt.subplots(figsize=(8, 6))

sns.boxplot(x=df["trestbps"])
plt.show()

47

10.1.3 chol variable

[76]: df['chol'].describe()

[76]: count 303.000000
mean 246.264026
std 51.830751
min 126.000000
25% 211.000000
50% 240.000000
75% 274.500000
max 564.000000
Name: chol, dtype: float64

Box-plot of chol variable
[77]: f, ax = plt.subplots(figsize=(8, 6))

sns.boxplot(x=df["chol"])
plt.show()

48

10.1.4 thalach variable

[78]: df['thalach'].describe()

[78]: count 303.000000
mean 149.646865
std 22.905161
min 71.000000
25% 133.500000
50% 153.000000
75% 166.000000
max 202.000000
Name: thalach, dtype: float64

Box-plot of thalach variable
[79]: f, ax = plt.subplots(figsize=(8, 6))

sns.boxplot(x=df["thalach"])
plt.show()

49

10.1.5 oldpeak variable

[81]: df['oldpeak'].describe()

[81]: count 303.000000
mean 1.039604
std 1.161075
min 0.000000
25% 0.000000
50% 0.800000
75% 1.600000
max 6.200000
Name: oldpeak, dtype: float64

Box-plot of oldpeak variable
[82]: f, ax = plt.subplots(figsize=(8, 6))

sns.boxplot(x=df["oldpeak"])
plt.show()

50

Findings

• The age variable does not contain any outlier.

• trestbps variable contains outliers to the right side.

• chol variable also contains outliers to the right side.

• thalach variable contains a single outlier to the left side.

• oldpeak variable contains outliers to the right side.

• Those variables containing outliers needs further investigation.

10.2 13. Conclusion
Back to Table of Contents

In this kernel, we have explored the heart disease dataset. In this kernel, we have implemented
many of the strategies presented in the book Think Stats - Exploratory Data Analysis in
Python by Allen B Downey . The feature variable of interest is target variable. We have
analyzed it alone and check its interaction with other variables. We have also discussed how to
detect missing data and outliers.

51

	Extensive Analysis + Visualization with Python
	Table of Contents
	1. Introduction to EDA
	2. Objectives of EDA
	3. Types of EDA

	import Libraies
	ignore warnings
	import dataset or load dataset
	EDA / Exploratory data analysis
	preview the data
	summary of the dataset

	statsicial properties of the dataset
	view columns names

	univarient analysis
	Analysis of target feature variable
	check the number of unque values in target variable
	frequency distribution of target varible
	Findings of Univariate Analysis

	bivariat analysis
	Estimate correlation coefficients
	Analysis of target and cp variable
	Analysis of target and thalach variable
	Findings of Bivariate Analysis

	9. Multivariate analysis
	Discover patterns and relationships
	Heat Map
	Pair Plot
	Analysis of age and other variables
	Analyze age and target variable
	Analyze age and trestbps variable
	Analyze age and chol variable
	Analyze chol and thalach variable

	10. Dealing with missing values
	Pandas isnull() and notnull() functions
	Useful commands to detect missing values

	11. Check with ASSERT statement

	assert that there are no missing values in the dataframe
	assert all values are greater than or equal to 0
	12. Outlier detection
	age variable
	trestbps variable
	chol variable
	thalach variable
	oldpeak variable

	13. Conclusion

