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Patients with occlusion myocardial infarction (OMI) and no ST-elevation

on presenting electrocardiogram (ECG) are increasing in numbers.

These patients have a poor prognosis and would benefit from immediate
reperfusion therapy, but, currently, there are no accurate tools to identify
them duringinitial triage. Here we report, to our knowledge, the first
observational cohort study to develop machine learning models for the

ECG diagnosis of OMI. Using 7,313 consecutive patients from multiple
clinical sites, we derived and externally validated an intelligent model that
outperformed practicing clinicians and other widely used commercial
interpretation systems, substantially boosting both precision and sensitivity.
Our derived OMlIrisk score provided enhanced rule-in and rule-out accuracy
relevant to routine care, and, when combined with the clinical judgment

of trained emergency personnel, it helped correctly reclassify onein three
patients with chest pain. ECG features driving our models were validated by
clinical experts, providing plausible mechanistic links to myocardial injury.

The electrocardiogram (ECG) diagnosis of acute coronary syndrome  (STEMI) versus other forms of ACS*®. A biomarker-driven approach s
(ACS) in patients with acute chest pain is a longstanding challengein  recommendedinthe absence of STE onthe presenting ECG. This diag-
clinical practice'™. Guidelines primarily focus on ST-segment elevation  nostic paradigm has two important limitations. First, around 24-35%
(STE) for discerning patients with ST-elevation myocardial infarction  of patients with non-STEMI have total coronary occlusion, referred
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Fig.1| Cohort and sample selection. This flow diagram shows patient inclusion and exclusion criteria in each cohort as well as the dataset partition for training,
internal testing and external validation cohorts. Exclusions are not mutually exclusive. EMS, Emergency Medical Services; PH, pre-hospital.

to as occlusion myocardial infarction (OMI), and require emergent
catheterization® ™, This vulnerable group, in contrast to ACS with an
openartery (Extended DataFig.1), suffers from unnecessary diagnostic
and treatment delays that are associated with higher mortality™*™".
This excess risk can be mitigated with enhanced diagnostic criteria.
Althoughimportant ECG signatures of OMI are frequently describedin
theliterature’®?, they are subtle, involve the entire QRST complex and
arespatial in nature (that s, changes diluted across multiple leads)* .
Visualinspection of ECGimages by clinical experts s, thus, suboptimal
and leads to a high degree of variability in ECG interpretation® .
The second limitation is that cardiac biomarkers, including con-
ventional or high-sensitivity troponin (hs-cTn), cannot differentiate
OMI until peak level is reached, which is too late to salvage myocar-
dium. Positive troponin results (>99th percentile limit) come with
a high false-positive rate, and approximately one-third of patients
remain in a biomarker-indeterminate ‘observation zone’ after serial
sampling®®*, More importantly, ~25% of acute myocardial infarction
cases have anegativeinitial hs-cTn, whichis observedin both the STEMI
and OMIsubgroups®’. Consequently, 25-30% of patients with OMIl are
not treated in a timely fashion, and around 63% (interquartile range,
38-81%) of patients evaluated for chest pain at the emergency depart-
ment are admitted to the hospital because of an inconclusive initial
assessment®. These diagnostic limitations have created a costly, inef-
ficient clinical practice paradigm where most patients with chest pain
are over-monitored, whereas some patients with OMI have delayed
diagnosis and treatment, potentially contributing to the 14-22% excess
risk of mortality seenin the non-STE ACS (NSTE-ACS) group'*>®,
Inour previous work, we designed prototype algorithms for artifi-
cialintelligence (Al)-enabled ECG analysis and demonstrated the clini-
calfeasibility of screening for ACS in the pre-hospital setting®***. Here
we describe, to our knowledge, the first multi-site, prospective, obser-
vational cohort study to evaluate the diagnostic accuracy of machine
learning for the ECG diagnosis and risk stratification of OMI at first
medical contactand inthe absence of a STEMI pattern (Extended Data
Fig.2).Ourintelligent models were derived and externally validated on
7,313 patients with chest pain from multiple clinical sitesin the United
States. Theresults demonstrate the superiority of machine learningin
detecting subtleischemic ECG changesindicative of OMIlin the absence
of a STEMI pattern, outperforming practicing clinicians and other
widely used commercial ECG interpretation software. Weidentified the

most important ECG features driving our model’s classifications and
identified plausible mechanistic links to myocardial injury. Our derived
OMlIrisk score provides enhanced rule-inand rule-out accuracy when
compared tothe HEART score, helping correctly reclassify onein three
patients with chest pain. The benefits of this new clinical pathway in
terms of clinical outcomes should be evaluated in prospective trials.

Results

Sample characteristics

After excluding patients with cardiac arrest, ventricular tachyar-
rhythmias, confirmed pre-hospital STEMI and duplicate ECGs, our
derivation cohortincluded 4,026 consecutive patients with chest pain
(age 59 + 16 years, 47% females, 5.2% OMI). The two external valida-
tion cohorts together included 3,287 patients (age 60 + 15 years, 45%
females, 6.4% OMI) (Fig.1and Table 1). Most patientsin the derivation
and validation cohorts were innormal sinus rhythm (>80%), and around
10% were in atrial fibrillation. Around 3% of patients had left bundle
branch block (BBB), and ~10% had ECG evidence of left ventricular
hypertrophy (LVH). The derivation and validation cohorts were similar
in terms of age, sex, baseline clinical characteristics and 30-d cardio-
vascular mortality. The validation cohort, however, had more Black
and Hispanic minorities and a slightly higher rate of ACS and OMI.

Algorithm derivation and testing
The positive class for model training was the presence of OMI, defined
asaculprit coronary artery with athrombolysisin myocardialinfarction
(TIMI) flow grade of 0-1, as adjudicated from charts by independent
reviewersblinded to all ECG analyses. A TIMI flow grade of 2 with severe
coronary narrowing (>70%) and peak fourth-generation (not high sensi-
tivity) troponin of 5-10 ng ml™ was also indicative of OMI. The negative
classfor model training was the absence of OMI, whichincluded all other
non-ACS etiologies or those with non-coronary occlusive ACS subtypes.
Input data for model training was based on pre-hospital 12-lead
ECGs. We selected 73 morphological ECG features out of 554 tempo-
ral-spatial metrics using a hybrid data-driven and domain expertise
approach’®. Using these features, 10 classifiers were trained to learn
ischemic patterns between ACS and non-ACS groups and to estimate
the probability of OMI. We chose these classifiers to maximize the
chance of finding the best-fitting approach for learning the mathemati-
calrepresentationrelating complex ECG data to underlying physiology.
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Table 1| Baseline demographic and clinical characteristics

Derivation and testing External validation

cohort (n=4,026)

cohort (n=3,287)

The random forest (RF) model achieved the best bias-variance
tradeoff for training and internal testing. We compared the RF against
the ECGinterpretation of practicing clinicians and against the perfor-
mance of acommercial ECGinterpretation system thatis cleared by the

Age (years) 59116 (18-102) 6015 (21-100) US Food and Drug Administration (FDA) for ‘Acute MI’ diagnosis. On
S the hold-out test set, the RF model (areaunder the receiver operating
. N characteristic (AUROC) 0.91(95% confidence interval (CI) 0.87-0.96))
Male 2122 (53%) 1814 (55%) outperformed both practicing clinicians (AUROC 0.79 (95% C1 0.73—
Female 1,904 (47%) 1,473 (45%) 0.76), P< 0.001) and the commercial ECG system (AUROC 0.78 (95% CI
Race 0.70-0.85), P< 0.001) (Fig. 2a).
White 1,698 (42%) 1,326 (40%) Next, we used probability density plots for OMI(+) and OMI(-)
classes to denote the optimal separation margins for risk prediction.
Black 1328 (35%) 1,544 (47%) As recommended by guidelines®, we defined a risk score to identify
Others 52 (1.3%) 40 (1%) patients at low risk (OMI score <5), intermediate risk (OMI score 5-20)
Unknown 948 (24%) 377 (12%) and high risk (OMI score >20), with these cutoffs yielding excellent
Ethnicity separation between classes (log-rank chi-square, 133.04; degrees of
freedom =2; P<0.001) (Fig. 2b, left). Our OMI score classified 74.4% of
Not Hispanic 3,043 (76%) 2,850 (87%) patients as low risk and 4.6% as high risk. Using the low-risk group in a
Hispanic / Latino 19 (1%) 116 (3.5%) rule-outstrategy yielded asensitivity of 0.91and a negative predictive
Unknown 964 (23%) 321(9.5%) value (NPV) of 0.993, with an overall missed event rate of 0.5%. Using
Past medical history high-risk class for arule-in strategy yielded a specificity of 0.976 and a
positive predictive value (PPV) of 0.514, with an overall false discovery
Hypertension 2,767 (69%) 2,090 (64%) rate of 2%. Finally, we compared this OMI score to the HEART score,
Diabetes 1,146 (29%) 1,067 (33%) which uses patient history, ECG data, age, risk factors and troponin
High cholesterol 1520 (38%) 1,376 (42%) values (Fig.2b, right). Our OMlIscore, whichisbased on ECG dataalone,
classified 66% more patients as low risk than the HEART score, with a
Gl el e 28 S 250 similar false-negative rate <1%, and classified fewer patients as high
Known CAD 1,388 (35%) 964 (30%) risk and with much higher precision (51% versus 33%). The OMI score
Prior myocardial 930 (23%) 929 (29%) alsotriaged 50% fewer patients as intermediate risk and still got better
infarction discrimination for OMI detection (11.2% versus 5.6%).
Prior PCI 963 (24%) 134 (4%) L
Prior CABG 357 (10%) 470 (14%) Model explainability
We used Tree SHAP algorithms to generate animportance ranking that
ECG and laboratory findings explains the output of the RF model based on SHAP values estimated
Sinus rhythm 3,496 (87%) 2,614 (80%) for the top 25 features (Fig. 3a). The features with the greatest impact
Atrial fibrillation 354 (9%) 352 (11%) on classification outputincluded slight ST-depressioninleads V1, V2,
Iand aVL; slight ST-elevation in leads Ill and V4-V6; loss of concave
Ll 220 SR &g patternin anterior leads; T wave enlargement in Il and aVF and T flat-
Right BBB 237 (5.9%) 215 (6.6%) tening or inversion in land aVL; prolonged T, Tenq interval; T axis
ECG-LVH 383 (9.5%) 467 (14.2%) deviation;increased repolarizationdispersion; and distorted directions
cTnl positive (initial) 330 (8.2%) 736 (22.4%) of actlvaqun and r.ecovery pattgrns'. Most c?f these ECQ patter.ns C.a'? be
mechanistically linked to cardiac ischemia, suggesting their clinical
fg;'iso)sm"e (serial 729 (181%) 1177 (35.8%) value as plausible features for OMI detection.
g Tobetter visualize these global ECG patterns detected by our model,
Medical therapy we created pooled population median beats for the OMI(+) class (n =414
PCI (any stent) 300 (7.5%) 245 (7.5%) ECGs) and superimposed these median beats on the pooled population
Emergent PCI (<90min) 144 (3.6%) 157 (4.8%) median beats of pz.atients \A./ith-normal Sinl:lS rhythm and OMI(-) status
: (n=9,072ECGs) (Fig.3b). Findings from this figure support the patterns
G D SEESien (e Sz described by SHAP values above. Specifically, OMI is associated with
Total LCX occlusion 63 (1.6%) 88 (2.7%) ST-depressionand T flattening in V1-V2,1and aVL; slight ST-elevationin
Total RCA occlusion 101 (2.5%) 102 (31%) the anterior leads with lossin concave pattern; peaked T wave in inferior
CABG 34.(0.8%) 30(0.9%) lf:alds;.Tpez,k—-Tend prolongation (s.een in manyleads);glob?l r.epolarlza-
tiondispersion (seenas peaked T in some leads and flattening in others);
Study outcomes T axis deviation (away from the left ventricle); and distorted activation
Confirmed ACS 550 (13.7%) 537 (16.3%) and recovery patterns (seen in the horizontal plane as loss of R wave
oM 210 (5.2%) 209 (6.4%) progression in pre-cordial leads with increased T wave discordance).
- Dueto prevalent multi-vessel disease inthis cohort, these OMI patterns
Other acute myocardial 240 (6.0%) 220 (6.7%) . . . . .
infarction (NOMI) remained relatively consistent regardless of culprit location.
Nevertheless, to examine local explainability of feature impor-
LISl i e 160 2 L BT tance, we used force plots on individual cases to identify the features
30-d cardiovascular 137 (3.4%) M (3.4%) that met the contribution threshold of the RF model on a given ECG.

death

These force plots were also examined by study investigators to further

Values are meanzs.d. (minimum-maximum) or n (%). CABG, coronary artery bypass
graft; NOMI: non-occlusion myocardial infarction; PCI: percutaneous coronary
intervention.

corroborate onthe clinical validity of model predictions. Extended Data
Fig.3showsaselected example of a12-lead ECG withits corresponding
force plot for the local features contribution.
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External validation
Wetested the final lock-out model on 3,287 patients fromtwo independ-
ent external clinical sites. Machine learning engineers were blinded to
outcome data from other sites, and the pre-populated model predic-
tions were independently evaluated by the clinical investigators. Our
model generalized well and maintained high classification performance
(AUROC 0.87(95% C10.85-0.90)), outperforming the commercial ECG
system (AUROC 0.75 (95% C10.71-0.79), P< 0.001) and practicing clini-
cians (AUROC 0.80 (95% C10.77-0.83), P< 0.001) (Fig.4a). Our OMIrisk
score was a strong predictor of OMI, independent from age, sex and
other coronaryrisk factors (oddsratio (OR) 10.60 (95% C16.78-16.64) for
high-risk classand OR 2.85 (95% C11.91-4.28) for intermediate-risk class)
(Fig.4b). Thisrisk score triaged 69% of patients in the low-risk group at
afalse-negative rate of1.3% and identified 5.1% of patients as high risk at
acceptable true-positive rate >50%. The overall sensitivity, specificity,
PPV and NPV for the OMI rule-in and rule-out strategy were 0.86 (95%
C10.81-0.91),0.98 (95% C10.97-0.99), 0.54 (95% C10.46-0.62) and 0.99
(95% C10.98-0.99), respectively. This diagnostic accuracy remained
relatively similar across subgroups based on age, sex, race, comorbidi-
ties and baseline ECG findings, indicating the lack of aggregation bias
(Fig.4c).Incomparison, the sensitivity, specificity, PPV and NPV for ECG
overread by practicing clinicians were 0.58,0.93,0.36 and 0.97 and, for
the commercial ECG system, 0.79, 0.80, 0.22 and 0.98, respectively.
Next, we evaluated the incremental gain of our derived risk score
inreclassifying patients at first medical contact (Fig. 5). Initial assess-
ment by emergency personnel was based on the modified HEAR

(history, ECG, age and risk factors) score to triage patients into low-risk,
intermediate-risk and high-risk groups*®. At baseline, emergency per-
sonnel triaged 48% of patients as low risk with an NPV of 99.0% and
triaged 3% of patients as high risk with a PPV of 54.1%. Nearly 50% of
patientsremained inanindeterminate observation zone. Applying our
OMI risk score would help triage 45% more patients as low risk while
keeping the NPV at 98.8% and would help detect 85% more patients
with OMI while keeping PPV at 50.0%. The OMI score would also help
reduce the number of patientsin theindeterminate observationzone
by more than half. These numbers translate into a net reclassification
improvement (NRI) index of 41% (95% CI1 33-50%). To validate this incre-
mental clinical utility, we manually reviewed ECGs reclassified correctly
as OMI(+) (Extended Data Fig. 4). Many of these ECGs showed subtle
or non-specific changes that were non-diagnostic as per guidelines®,
suggesting potential value in boosting providers’ confidence when
interpreting ‘fuzzy’ ECGs.

Finally, we investigated the potential sources of false negativesin
the validation data. Among patients with missed OMI events (n =28,
0.9%), many had high-frequency noise and baseline wander on their
initial ECG (n =13/28, 46%) or had low-voltage ECG (n =14/28, 50%),
and most patients (n = 24/28, 86%) had benign ECGs without any diag-
nostic ST-T changes (Extended Data Fig. 5). Moreover, we found no
significant differences between false negatives and true positives in
terms of demographics or clinical characteristics, with the exception
that most false negatives had a history of a prior myocardial infarc-
tion (93% versus 27%). The latter finding was intriguing given that our
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OMI model was slightly less specific in patients with known coronary
artery disease (CAD) (Fig. 4c). This finding aligns with recent evidence
showing diminished NPV in patients with chest pain and known CAD?".

Screening for any ACS event

We further built a model to screen for any potential ACS event at first
medical contact. Using the same set of ECG features, we trained and
optimized an RF classifier that denoted the likelihood of any ACS
event. The model performed well during training (AUROC 0.88 (95% Cl
0.87-0.90)) and generalized well during internal testing (AUROC 0.80
(95% C10.76-0.84)) (Extended Data Fig. 6). On external validation, the
model continued to generalize well (AUROC 0.79 (95% C10.76-0.8)),
outperforming the commercial system (AUROC 0.68 (95% C10.65-0.71),
P <0.001) and practicing clinicians (AUROC 0.72 (95% C1 0.69-0.74),
P<0.001). Our derived risk score provided a suboptimal rule-out
classification for any ACS event (sensitivity 68.2% and NPV 92.5%) but
provided superior rule-in accuracy (specificity 98.9% and PPV 82.5%).

Discussion

Inthisstudy, we developed and validated amachine learning algorithm
for the ECG diagnosis of OMI in consecutive patients with chest pain
recruited from multiple clinical sites in the United States. This model
outperformed practicing clinicians and other commercial interpre-
tation systems. The derived risk score provided superior rule-in and
rule-outaccuracy for OMI, boosting the sensitivity by ~28 percentage
points and the precision by -32 percentage points compared to refer-
ence standards. When combined with the judgment of experienced
emergency personnel, our derived OMI risk score helped correctly
reclassify one in three patients with chest pain. To our knowledge,
thisis the first study using machine learning methods and novel ECG
features to optimize OMI detection in patients with acute chest pain
and negative STEMI pattern on their presenting ECG.

Mapping myocardial ischemia, a problem of regional metabolic
derangement, to coronary occlusion, a problem of diminished blood
flow due to an atherosclerotic plaque rupture, is a complex process'.
Essentially, ischemia disproportionately distorts action potentials
in different myocardial segments, resulting in tissue-scale currents,
often called ‘injury’ currents. Previous studies mapped pronounced
ST-elevation to transmural injury currents associated with total cor-
onary occlusion. This has historically driven the current paradigm
dichotomy of STEMI versus ‘others’ (any ACS other than STEMI) in
determining who might benefit from emergent reperfusion therapy.
However, nearly 65% of patients with ACS present with no ST-elevation
on their baseline ECG*?%, and, among the latter group, 24-35% have
total coronary occlusion requiring emergent catheterization’ . Thus,
determining who would benefit from reperfusion therapy remains an
adjudicated diagnosis.

Conceptually, injury currents produced by ischemic cardiac cells
aresummative in nature, explaining how ST amplitude changes can get
attenuated onthe surface ECG (Extended DataFig.7). Theseinjury cur-
rents, however, distort the propagation of both excitation and recovery
pathways, altering the configuration of the QRS complex and the ST-T
waveform altogether®. Thus, amore comprehensive approach for the
ECG detection of ischemia should focus on (1) evaluating temporal
characteristics over entire waveform segments rather than the voltage
at a given timepoint (for example, J point + 80 ms) and (2) evaluating
lead-to-lead spatial characteristics in waveform morphology rather
than absolute changes inisolated ECG leads'.

This study identified several ECG patterns indicative of acute
coronary occlusionbeyond the criteriarecommended by clinical guide-
lines’. Intriguingly, these ECG patterns overlap with those describedin
theliterature. A consensus reportin 2012 identified few ECG patterns
that should be treated as STEMI equivalent during acute pain epi-
sodes: ST-depression in V1-V3; smallinverted T waves in V1-V3; deep
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(n=3,287) (a), adjusted OR (center) with 95% ClI (error bars) for theindependent
clinical predictors of OMI on the external validation set (n = 3,287) (b) and
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the overall sensitivity and specificity (center) with 95% Cl (error bars) of the
derived OMl score, along with breakdown across subgroups based on age, sex,
comorbidities and baseline ECG findings (c). The size of the center marker is
proportionate to the sample size of the respective subgroup.

negative T waves in pre-cordial leads; widespread ST-depression; and
prominent positive T waves?. Similar ECG patterns were also described
more recently: ST-depression in V1-V4 (versus V5-V6); reciprocal
ST-depression with maximal ST-depression vector toward the apex
(leadslland V5, withreciprocal STEinaVR); subtle ST-elevation; acute
pathologic Qwaves; hyperacute T waves; and loss of terminal Swave?.
Many ofthese expert-driven patterns rely on assessing the proportion
of repolarization amplitudes or area under the QRS amplitude. They
also rely heavily on the visual assessment of waveform morphology
and canintroduce ahigh degree of subjectivity and variability among
ECGinterpreters. We demonstrated that machine learning models not
only outperformed practicing clinicians in identifying OMI but also
provided an objective, observer-independent approach to quantifying
subtle ECG patterns associated with OMI.

Many of the data-driven features identified by our machine
learning model are subtle and cannot be easily appreciated by clinical
experts. T feature indices were among these most important features,

including T~ Tenq interval prolongation, Twave flattening and T wave
characteristics at the inflection point preceding T, (Fig. 3a). Mecha-
nistically, ischemic injury currents interfere with signal propagation,
leading tolonger activation time*’. These late activation potentials lead
toaloss of terminal Swave and longer recovery time, both manifesting
as T wave flattening, shifted T peak and loss of concavity at the initial
T wave (Fig. 3b). These STEMI-equivalent patterns were previously
described in the literature as small or negative T waves with wide-
spread ST-depression or subtle ST-elevation®**. Another important
subtle featureidentified by our model was increased ventricular repo-
larization dispersion, measured using the ratio between the principal
components of the ST-T waveforms (that s, principal component analy-
sis (PCA) metrics), the direction of the T axis and the angle between
activation and recovery pathways (for example, total cosine R-to-T).
Injury currents disproportionately affect the duration and velocity
of repolarization across different myocardial segments*, resulting in
lead-to-lead variability in the morphology of the ST-T waveform?* 2342,
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Fig. 5| NRI of OMIrisk score when integrated in the clinical workflow and
concept of potential impact on subsequent clinical decisions. This figure
describes the incremental gain of the derived risk score in reclassifying the initial
triage decisions by emergency personnel at first medical contact and depicts

the concept of potential impact on subsequent clinical decisions. This figure
was created with BioRender (credit to S.S.A.-Z.). CATH, catheterization; ED,
emergency department; FMC, first medical contact.

These high-risk ECG patterns were previously described as amixture of
deepnegative T waves and prominent/hyperacute T waves or reciprocal
Twave changes®*. Our machine learning model provided amore com-
prehensive, quantitative approach to evaluating this subtle inter-lead
variability in repolarization morphology.

Machine learning is well suited to address many challenges in
12-lead ECGinterpretation. Myocardial ischemia distorts the duration
and amplitude of the Qwave, R peak, R’, QRS complex, ST segment and
T wave as well as the morphology and configuration of these wave-
forms (for example, upsloping, downsloping, concavity, symmetry and
notching). These distortions are lead specific yet come with dynamic
inter-lead correlations. Thus, ECG interpretation involves many com-
plex aspects and parameters, making it a highly dimensional, deci-
sionspace problem'. Few experienced clinicians excel in such pattern
recognition,” which explains why so many patients with OMI are not
reperfusedinatimely way; thisis also why simple, rule-based commer-
cial systems that use simple regression models are suboptimal for OMI
detection. Machine learning algorithms can provide powerful tools to
solve such highly dimensional, nonlinear mathematical representa-
tions found in 12-lead ECG data.

Although the literature on machine learning for the ECG diag-
nosis of coronary disease is ubiquitous, it comes with many serious
limitations. First, many studies focused on detecting the known STEMI
group®**>*#* rather than the critical OMI group without ST-elevation.
Second, most previous work used open-source ECG datasets, such as
PTB and PTB-XL*, which are highly selected datasets that focus on
ECG-adjudicated diagnoses. Our unique cohorts included unselected,
consecutive patients with clinical profiles and disease prevalence like
that seen in real-world settings. Third, many studies used a full range

of input features based on both ECG data and clinical data elements
(for example, patient history, physical examination abnormalities,
laboratory values and diagnostic tests)**™*, which limits the applica-
bility to real-world settings. Fourth, to our knowledge, most studies
used asingle derivation cohort for training and testing*’, without the
use of anindependent validation cohort. Finally, previous studies paid
little attention to model explainability®, sheddinglittle light on novel
markers and pathways of ischemia than what is already known. Without
explanation aids of clinical meaningfulness, machine learning models
for ECG interpretation would have limited clinical utility*.

This study hasimportant clinical implications. Our model can be
integrated into systems of care for real-time deployment where risk
score assignments can be made readily available to clinicians at the
time of ECG acquisition. Enhanced decision support can help emer-
gency personnel identify 85% more patients with critical coronary
occlusiondespite the absence of a STEMI pattern and without any loss
in precision. Our models can also help inform care in more than 50%
of patients in whom the initial assessment is indeterminate, placing
45% more patients in the low-risk group for OMI without any loss in
NPV. This incremental gain in rule-in and rule-out accuracy can help
re-allocate critical emergency resources to those in utmost need while
optimizing the clinical workflow. This canimpact numerous decisions
atfirst medical contact, including targeted pre-hospital interventions,
catheterization laboratory activation, administration of anti-ischemic
therapies, hospital destination decisions, the need for medical con-
sults, referrals for expedited diagnostic testing (for example, ECG and
imaging scans) and early discharge decisions. Furthermore, until now,
clinicians never had sensitive or highly specific tools that would allow
theultra-early identification of OMIinthe absence of a STEMI pattern.
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Such enhanced diagnostics canallow the design and implementation of
prospective interventional trials to assess the therapeutic effectiveness
oftargeted interventionsin this vulnerable group (for example, early
upstream P2Y, inhibitor administration®’, emergent versus delayed
reperfusion therapy® and glucose-insulin-potassium infusion®).

Several limitations merit consideration. First, the features that
we used for model building were based on manufacturer-specific soft-
ware. There are known discrepancies between manufacturers in ECG
pre-processing, which means that our models would need retraining
when using different software for signal processing. Alternatively,
deep neural networks can be used to analyze raw ECG signal without
explicit feature engineering. However, these techniques require much
training samples (for example, >10,000) and might not yield a mean-
ingfulimprovement over feature engineering-based machine learning
for traditional 12-lead ECG-based diagnosis*. Second, we found slight
differences between the derivation and validation cohorts in terms of
disease prevalence and practicing clinicians’accuracy in ECGinterpreta-
tion. These cohorts came from two different regions in the United States,
and emergency medical systems (EMSs) follow state-specific protocols.
Itis possible that discrepancies in EMS protocols and in-hospital prac-
ticesresulted inslight differencesin types and proportions of patients
whoreceive pre-hospital 12-lead ECGs and the corresponding outcome
adjudications. However, it is reassuring that our models continued to
generalize wellamong the study sites. Third, itis worth noting that our
model for ‘any ACS event’ boosted the performance of only the rule-in
arm. This means that a low-risk determination suggests that a given
patient would unlikely have OMI, but they might have a less subtle
phenotype of NSTE-ACS that does not require reperfusion therapy. It
is likely that serial ECG testing might improve the detection of missed
events where patients might switch to a higher-risk category in the fol-
lowing hours®*, but this remains to be confirmed. Coronary occlusion
is a dynamic process that evolves over time, so an initial low-risk class
by our models should not lead to a lower level of active monitoring.
Finally, although this study used prospective patients, all analyses were
completed offline. Prospective validation where OMI probabilities and
decision supportis provided in real time is warranted.

In conclusion, we developed and externally validated models for
the ECG diagnosis of OMIin 7,313 patients with chest pain from multiple
sitesin the United States. The results demonstrated the superiority of
machinelearningin detecting subtle ischemic ECG changesindicative
of OMIin an observer-independent approach. These models outper-
formed practicing clinicians and commercial ECG interpretation soft-
ware, significantly boosting precision and recall. ECG features driving
our models were evaluated, providing plausible mechanistic links to
myocardial injury. Our derived OMI risk score provided enhanced
rule-inand rule-out accuracy when compared to HEAR score, and, when
combined with the clinical judgment of trained emergency personnel,
this score helped correctly reclassify one in three patients with chest
pain. The benefits of this new clinical pathway in terms of clinical out-
comes should be evaluated in prospective trials. Future work should
alsofocusonthe prospective deployment where OMI probabilities and
decisionsupportis provided inreal time.
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Methods

Ethics statement

The derivation cohort included pre-hospital data from the City of
Pittsburgh Bureau of Emergency Medical Services and in-hospital data
from three tertiary care hospitals from the University of Pittsburgh
Medical Center (UPMC) healthcare system: UPMC Presbyterian Hospi-
tal, UPMC Shadyside Hospital and UPMC Mercy Hospital (Pittsburgh,
Pennsylvania). All consecutive eligible patients were recruited undera
waiver of informed consent. This observational trial was approved by
theinstitutional review board of the University of Pittsburgh and was
registered at https://www.clinicaltrials.gov/ (identifier NCT04237688).
The analyses described in this paper were pre-specified by the trial
protocol that was funded by the National Institutes of Health. The
first external validation cohort included data from Orange County
Emergency Medical Services (Chapel Hill, North Carolina). This study
actively consented eligible patients and was approved by the institu-
tional review board of the University of North Carolina at Chapel Hill.
Thesecond external validation cohortincluded datafrom Mecklenburg
County Emergency Medical Services and Atrium Health (Charlotte,
North Carolina). Data were collected through a healthcare registry,
and all consecutive eligible patients were enrolled under a waiver of
informed consent. This study was also approved by the institutional
review board of the University of North Carolina at Chapel Hill. These
two external datasets were collected by the same local investigative
team and were similar in terms of age, sex and disease prevalence.
Thus, we combined these two datasets into one cohort for external
validation purposes.

Study design and data collection

This was a prospective, observational cohort study. The methods for
each study cohort were described in detail elsewhere®”®. All study
cohortsenrolled adult patients withanemergency call for non-traumatic
chest pain or anginal equivalent symptoms (arm, shoulder or jaw pain,
shortness of breath, diaphoresis or syncope). Eligible patients were
transported by anambulance and had at least one recorded pre-hospital
12-lead ECG. There were no selective exclusion criteria based on sex,
race, comorbidities or acuity of illness. For this pre-specified analysis,
weincluded only non-duplicate ECGs from unique patient encounters,
and we removed patients with pre-hospital ECGs showing ventricular
tachycardia or ventricular fibrillation (that is, these patients are man-
aged by ACLS algorithms). We also removed patients with confirmed
pre-hospital STEMI, whichincluded machine-generated **ACUTE MI***
warning, EMS documentation of STEMIand medical consult for poten-
tial catheterization laboratory activation.

Independent reviewers extracted data elements from hospital
systems onall patients meeting eligibility criteria. Ifa pre-hospital ECG
had no patientidentifiers, we used a probabilistic matching approach
tolink eachencounter with the correct hospital record. This previously
validated data linkage protocol was based on the ECG-stamped birth
date, sex and date/time logs as well as based on EMS dispatch logs and
receiving hospital records. All probabilistic matches were manually
reviewed by research specialists for accuracy. The match success rate
ranged from 98.6% t0 99.8%.

Clinical outcomes

Adjudications were made by independent reviewers at each local site
afterreviewingall available medical records within 30 d of theindexed
encounter.Reviewers wereblinded from all ECG analyses and models’
predictions. OMI was defined as coronary angiographic evidence
of an acute culprit lesion in at least one of the three main coronary
arteries (left anterior descending (LAD), left circumflex (LCX) and
right coronary artery (RCA)) or their primary branches with TIMI flow
grade of 0-1. TIMIflow grade of 2 with severe coronary narrowing >70%
and peak troponin of 5-10.0 ng ml™ was also considered indicative of
OMI7?, These adjudications were made by two independent reviewers.

The kappa coefficient statistic between the two reviewers was 0.771
(that is, substantial agreement). All disagreements were resolved by
athird reviewer.

ACSwas defined per the Fourth Universal Definition of Myocardial
Infarction as the presence of symptoms of ischemia (that is, diffuse
discomfort in the chest, upper extremity, jaw or epigastric area for
more than 20 min) and at least one of the following criteria: (1) subse-
quent development of labile, ischemic ECG changes (for example, ST
changes and T inversion) during hospitalization; (2) elevation of cardiac
troponin (that is, >99th percentile) during the hospital stay with rise
and/or drop on serial testing; (3) coronary angiography demonstrat-
ing greater than 70% stenosis, with or without treatment; and/or (4)
functional cardiac evaluation (stress testing) that demonstrates ECG,
echocardiographicor radionuclide evidence of focal cardiacischemia’.
Patients with type 2 myocardial infarction and pre-existing subacute
coronary occlusion were labeled as negative for ACS and OMI. This
included around 10% of patients with positive troponinbut with norise
and/or dropinconcentration onserial testing (that s, chronicleak) or
with troponin leak attributed to non-coronary occlusive conditions,
such as pericarditis. On a randomly selected small subset of patients
(n=1,209), the kappa coefficient statistic for ACS adjudication ranged
from 0.846 t0 0.916 (that is, substantial to perfect agreement).

ECG methods

Pre-hospital ECGs were obtained in the field by paramedics as part of
routine care. ECGs were acquired using either Heart Start MRX (Philips
Healthcare) or LIFEPAK-15 (Physio-Control) monitor-defibrillator
devices. All digital 12-lead ECGs were acquired at asampling rate of 500
samples per second (0.05-150 Hz) and transmitted to the respective
EMS agency and receiving hospital. Digital ECG files were exported in
.xml format and stored in a secondary server at each local site. ECG
images were de-identified and manually annotated by independent
reviewers or research specialists; ECGs with poor quality or missing
leads were removed from the study. Next, digital .xml files were trans-
mitted to the Philips Advanced Algorithm Research Center (Cambridge,
Massachusetts) for offline analysis.

ECG featurization was described in detail elsewhere®. In brief, ECG
signal pre-processing and feature extraction were performed using
manufacturer-specific software (Philips DXL diagnostic 12/16 lead
ECG analysis program). ECG signals were first pre-processed to remove
noise, artifacts and baseline wander. Ectopic beats were removed, and
representative median beats were calculated for each lead. Median
beatsrefer to the representative average (or median) of the sequential
beatsinagiven ECGlead after temporal alignment of R peaks. Next, we
used the root mean square (RMS) signal to identify global waveform
fiducials, including the onset, offset and peak of the Pwave, QRS com-
plexand T wave. Lead-specific fiducials were thenidentified to further
segmentindividual waveformsintoQ,R,R’,S,S’ and ] point.

We then computed a total of 554 ECG features based on (1) the
amplitude, duration, area, slope and/or concavity of global and
lead-specific waveforms; (2) the QRS and T axes and angles in the
frontal, horizontal, spatial, x-y, x-zand y-zplanes, including directions
at peak, inflection point and initial/terminal loops; (3) eigenvalues of
the principal components of orthogonal ECG leads (I, Il and V1-Vé),
including PCA ratios for individual ECG waveform segments; and (4)
Tloop morphology descriptors. Features with zero distribution were
removed to prevent representation bias.

Next, we previously identified an optimal parsimonious list of the
mostimportant ECG features that are mechanistically linked to cardiac
ischemiaas described in detail elsewhere'®. In brief, to prevent omitted
featurebias, we used a hybrid approach that combines domain knowl-
edge witha data-driven strategy. First, clinical scientists identified 24
classical features that are known to correlate with cardiac ischemia
(that is, lead-specific ST and T wave amplitudes). Next, starting with
a comprehensive list of 554 candidate features, we used data-driven
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algorithms (for example, recursive feature elimination and LASSO)
toidentify 198 supplemental features potentially related to ischemia.
LASSO selects features with non-zero coefficients after L1 norm regu-
larization, and recursive feature elimination uses repeated regression
iterations toidentify the features that have significantimpact on model
predictions. We then examined the feature pairs in this expanded
list of 222 features and removed features with very high collinearity
scores that contains redundant information (for example, we kept
QTcif both QT and QTc were selected by the model). Finally, we used
featureimportance ranking to identify the most parsimonious subset
of features that are complementary and can boost the classification
performance. This hybrid approach eventually yielded a subset of 73
features that can serve as plausible markers of ischemia'®.

Machine learning methods

We followed best practices recommended by ‘ROBUST-ML’ and ‘ECG-Al
stress test’ checklists to design and benchmark our machine learning
algorithms®*°, To prevent measurement bias, ECG features were manu-
ally reviewed toidentify erroneous calculations. Physiologically plau-
sible outliers were replaced with +3 s.d. On average, each feature had
a0.34% missingness rate (range, 0.1-1.6%). Thus, we imputed missing
values with the mean, median or mode of that feature after consulta-
tion with clinical experts. ECG metrics were then z-score normalized
and used asinputfeaturesin machine learning models. The derivation
and validation datasets were cleaned independently to prevent data
leakage. Both cohorts were recruited over the same time window, sug-
gesting the lack of temporal bias. To prevent potential mismatch with
intended use, input features for model development included only
ECG data plus the machine-stamped age. No other clinical data were
used for model building.

We randomly split the derivation cohort into an 80% training set
and a 20% internal testing set. On the training set, we fit 10 machine
learning classifiers: regularized logistic regression, linear discriminant
analysis, support vector machine (SVM), Gaussian naive Bayes, RF,
gradient boosting machine, extreme gradient boosting, stochastic
gradient descent logistic regression, k-nearest neighbors and artificial
neural networks. Each classifier was optimized over 10-fold cross vali-
dationtofine-tune hyperparameters. After selecting optimal hyperpa-
rameters, models were retrained on the entire training subset to derive
final weights and create a lockout model to evaluate on the hold-out
test set. We calibrated our classifiers to produce a probabilistic output
that can be interpreted as a confidence level (probability risk score).
Trained models were compared using the AUROC curve with Wilcoxon
signed-rank test for pairwise comparisons. ROC-optimized cutoffs
were chosen using the Youden index, and classifications on confusion
matrix were compared using McNemar’s test.

The RF classifier achieved high accuracy on the training set (low
bias) with a relatively small drop in performance on the test set (low
variance), indicating an acceptable bias—variance tradeoff and low
risk of overfitting (Extended Data Fig. 8). Although the SVM model
had lower variance on the test set, when compared to the RF model
there were no significant differencesin AUROC (Delong’s test) or their
binary classifications (McNemar’s test). Moreover, there were no dif-
ferences between the RF and SVM models in terms of Kolmogorov-
Smirnov goodness of fit (0.716 versus 0.715) or the Gini purity index
(0.82 versus 0.85). Due to its scalability and intuitive architecture,
we chose the probability output of the RF model to build our derived
OMlscore. We generated density plots of these probability scores for
positive and negative classes and selected classification thresholds for
low-risk, intermediate-risk and high-risk groups based on pre-specified
NPV >0.99 and true-positive rate > 0.50. Finally, we used the lock-out
RF classifier to generate probability scores and risk classes on the
completely unseen external validation cohort. The code to generate
probability scores is included with the supplementary materials of
this manuscript.

Reference standard
Toreducetherisk of evaluation bias, we benchmarked our machinelearn-
ing models against multiple reference standards used during routine
careinclinical practice. First, we used acommercial, FDA-approved ECG
interpretation software (Philips DXL diagnostic algorithm) to denote the
likelihood of ischemic myocardial injury. This likelihood (yes/no) was
based onacomposite of the following: (1) diagnostic codes for ‘»>Acute
MI«<’, including descriptive statements that denote ‘acute’, ‘recent’,
‘age indeterminate’, ‘possible’ or ‘probable’; and (2) diagnostic codes
for‘»>Acute Ischemia«<’,including descriptive statements that denote
‘possible’, ‘probable’ or ‘consider’. Diagnostic statements that denoted
‘old’ [infarct], ‘nonspecific’ [ST depression] or ‘secondary to’ [LVH or
highheartrate] were excluded from this composite reference standard.
We also used practicing clinicians’ overread of ECGs to denote the
likelihood of ischemic myocardial injury on agiven ECG (yes/no) whena
STEMI pattern does not exist, which is congruent with how emergency
department physicians evaluate these patientsin clinical practice. Inde-
pendent physician reviewers annotated each 12-lead ECG image as per
the Fourth Universal Definition of Myocardial Infarction criteria’, includ-
ing two contiguous leads with ST-elevation (=0.2 mV for V2-V3in men
>40 yearsof ageand >2.5 mminmen <40 years of age; >0.15mV for V2-V3
inwomen; or>0.1 mVinotherleads) or ST-depression (new horizontal or
downsloping depression > 0.05 mV), with or without T wave inversion
(>0.1 mVinleadswith prominent Rwave or R/Sratio >1). Reviewers were
also prompted to use their clinical judgment toidentify highly suspicious
ischemic changes (for example, reciprocal changes and hyperacute
T waves) as well as to account for potential confounders (for exam-
ple, BBBs and early repolarization). On a randomly selected subset of
patientsin the derivation cohort (n =1,646), the kappa coefficient statistic
betweentwo emergency physicianswhointerpreted the ECGs was 0.568
(that is, moderate agreement). A third reviewer was used to adjudicate
discrepancies on thisrandomly selected subset. Similarly, onarandomly
selected subset of patientsin the external validation cohort (n =375), the
kappa coefficient statistic between the two board-certified cardiologists
whointerpreted the ECGs was 0.690 (that is, substantial agreement).
Finally, given that clinicians largely depend on risk scores to tri-
age patients in the absence of STEMI, which would greatly affect how
patients with OMI are diagnosed and treated in clinical practice, we
compared our derived OMI risk score against the HEART score. This
scoreiscommonly used in US hospitals, and it has been well validated
for triaging patients in the emergency department®®. The HEART score
is based on the patient’s history at presentation, ECG interpretation,
age, risk factors and initial troponin values (range, 0-10). This score
places patientsin low-risk (0-3), intermediate-risk (4-6) and high-risk
(7-10) groups. Given that troponin results are not usually available at
first medical contact, we used a modified HEAR score after dropping
the troponin values, which has also been previously validated for use
by paramedics before hospital arrival®*. The comparison against the
HEART score herein focused on establishing the incremental gain of
using the derived OMI score over routine care atinitial triage. We com-
pared how the newrisk classes assigned by our derived OMIscore agree
with or differ from the risk classes assigned by the HEART score, which
could inform potential incremental gain over routine care.

Statistical analysis

Descriptive statistics were reported as mean * s.d. or n (%). Missing
data were assessed for randomness and handled during ECG feature
selection (see ‘Machine learning methods’ subsection above). Nor-
mality of distribution was assessed before hypothesis testing where
deemed necessary. ECG features were z-score normalized as part of
standard input architectures for machine learning models. Compari-
sons between cohorts were performed using the chi-square test (for
discrete variables) and independent samples ¢-test or the Mann-Whit-
ney U-test (for continuous variables). The level of significance was set
atanalphaof 0.05for two-tailed hypothesis testing where applicable.
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All diagnosticaccuracy values were reported as per Standards for
Reporting Diagnostic Accuracy Studies (STARD) recommendations. We
reported classification performance using AUROC curve, sensitivity
(recall), specificity, PPV (precision) and NPV, along with 95% Cl where
applicable. For 10-fold cross validation, we compared the multiple
classifiers using the Wilcoxon signed-rank test (for AUROC curves)
and McNemar’s test (for confusion matrices). We derived low-risk,
intermediate-risk and high-risk categories for the final classifier using
kernel density plot estimates between classes. The adequacy of these
risk classes was evaluated using log-rank chi-square of accumulative
risk for clinically important outcomes over the length of stay during
the indexed admission.

For assessing theincremental gainin classification performance,
we compared the AUROC of the final model against reference standards
using DeLong’s test. For ease of comparison, the confidence bounds for
AUROC of the reference standards (commercial system and practicing
clinicians) were generated using 1,000 bootstrap samples. To place the
incremental gain value in a broader context of the clinical workflow,
we also computed the NRIindex of our model against the HEAR score
during theinitial assessment at first medical contact. Risk scores arean
integral part of clinical workflow in patients with suspected ACS who
do not meet STEMI criteria. As per STARD recommendations, the NRI
index evaluates the net gain between up-triage and down-triage when
correctly reclassifying risk class assignments of an ‘old’ test (HEART
score) using a ‘new’ test (the derived OMl score).

We used logistic regression toidentify the independent predictive
value of OMI risk classes. We used variables significant in univariate
analysis and then built multivariate models with the stepwise backward
selection method using Wald chi-square criteria. We reported ORs with
95% Cl for all significant predictors. Allanalyses were completed using
Python version 3.8.5 and SPSS version 24.

Reporting Summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The ECG-SMART trial makes use of extracted ECG features to trainand
evaluate an RF classifier to denote the probability of OMI. The ECG
features used in the derivation and external validation datasets, along
with linked clinical outcomes, are publicly available through GitHub
(https://github.com/zeineb-bouzid/sharing-github-nature-medicine.
git). Researchers wanting the source binary files to compute their
own features should contact the corresponding author to arrange for
proper approvals and institutional data use agreements. Interested
researchers from non-commercial entities can submit a request by
emailing the corresponding author at ssa33@pitt.edu. Requests will
be processed within a2-week timeframe.

Code availability

The Python codesto evaluate these models, along with the derivation
and external validation datasets, are available through GitHub (https://
github.com/zeineb-bouzid/sharing-github-nature-medicine.git).
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Extended Data Fig.1| The relationship between the magnitude of vessel infarction (STEMI) or without ST-elevation (NSTEMI). The STEMI and NSTEMI
occlusion and the classification of acute coronary events. This figure shows patients overlap in terms of the presence or absence of total occlusion (depicted
the spectrum of coronary artery disease (CAD) as a function of severity and astriangles across the continuumin the figure). Alternatively, the same group
extent of atherosclerosis plaque progression, ranging from patent coronary with acute Ml can be subclassified, based on angiographic TIMI flow criteria,
artery (far left) to total coronary occlusion (far right). Among patients who as either occlusion (OMI) or non-occlusion (non-OMI) myocardial infarction.
develop symptomatic CAD, including those evaluated for chest pain or Unlike STEMI, OMI classification better aligns with focal angiographic findings
angina-like symptoms, a subset is diagnosed with acute coronary syndrome since this group exclusively contains patients with total coronary occlusion.
(ACS). This groupis subclassified as either acute myocardial infarction (MI) or The color gradient indicates the severity of disease. This Figure was created with
unstable angina (UA). Those with acute Ml can be further subclassified, based BioRender.com. Reproduced with permission from Al-Zaiti et. al.1 (permission
on the presence of ST-elevation on the ECG, as either ST-elevation myocardial number 5471421247333, Licensed content publisher: Elsevier).
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findings. This Figure was created with BioRender.com (Credit to Salah Al-Zaiti).

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-023-02396-3

T ! | T T ! Liaid ! o

=
W
“
N
)

II:I e ot Lo ! a:“._,v'::.

OMI Score = 62 (High Risk) higher 2  lower
055 0.60 0.65 0.70
st80_aVF = 82.0 st80 V2 = -82.0 st80_IIl = 144.0 st80_aVL = -132.0 tamp_aVL = -193.0
Extended Data Fig. 3 | Local explainability of featureimportanceona occlusion of the right coronary artery. The OMI score on this baseline ECG
selected example. This figure shows the baseline ECG of a 50-year-old female was 62 indicating high risk designation. The force plot identified the five most
with a past medical history of hypertension, high cholesterol, prior myocardial important ECG features that met the contribution threshold of the random forest
infarction, and current smoking. The ECG was documented as benign with model: negative TwaveinaVL, slight ST depressionin aVLand V2, and slight ST

isolated non-specific T wave changes, and the patient was triaged asintermediate ~ elevationinaVF and Il
risk. The patient was later sent to the catheterization lab where she had complete
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Extended DataFig. 4 | Selected example of a patient correctly reclassified
as OMI. This figure shows an ECG that was correctly reclassified as occlusion
myocardial infarction by the machine learning model. This baseline ECG was
for a 67-year-old male with a past medical history of high cholesterol and a prior

myocardial infarction. The ST-depression in anterior-lateral leads were noted,
and the patient was triaged as intermediate risk. The OMI score was 49 indicating
the need to up-triage. The patient was later sent to the catheterization lab where
he had complete occlusion of the right coronary artery.
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Extended DataFig. 5| Selected example of amissed OMI by our model.

The OMI risk score was 2 indicating a low risk. The patient was later sent to the

This figure provides a selected example of a patient with occlusion myocardial catheterization lab, which showed severe left main occlusion and had many
infarction that was missed by the machine learning model and other reference stents placed. The patient developed new-onset HF during hospitalization.
standards. This ECG was obtained on a 70-year-old female with a past medical A closer look at this ECG by experienced ECG readers suggests that this ECG could
history of hypertension, high cholesterol, prior myocardial infarction, and resemble the ‘precordial swirl pattern’, a rightward ST-elevation vector, with STE
current smoking. The baseline clinical interpretation suggests normal sinus inVland aVRand reciprocal ST-depression in V5and V6. This pattern was found
rhythm with benign findings. There are isolated Q waves in inferior leads, low to correlate with LAD occlusion.

ECG voltage, and some baseline wander and high frequency noise in few leads.
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patients in low-risk, intermediate risk, and high-risk groups as per our derived
risk score. There is a notable gainin precision (rule-in) but a significant loss in

recall (rule-out).

Extended DataFig. 6 | Development and validation of an algorithm to screen
for any ACS event. This figure shows the classification performance of the
machine learning model against other reference standards for detecting any
acute coronary syndrome event (ACS). The figure also shows the distribution of
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This figure was generated using ECGSIM (www.ecgsim.org). Reproduced with
permission from Al-Zaiti et. al.1 (permission number 5471421247333, Licensed

content publisher: Elsevier).
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Extended Data Fig. 8 | Comparison between 10 algorithms trained on
the derivation cohort to classify OMI. This figure compares the area under
thereceiver operator characteristics curves (95% confidence interval) of 10
classifiers during training (left) and testing (right) on the derivation cohort.
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regression; G_NB: Gaussian Naive Bayes.
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Data collection  Prehospital 12-lead ECGs were obtained in the field by paramedics as part of routine care. These ECGs were acquired using either Heart Start
MRX (Philips Healthcare) or LIFEPAK-15 (Physio-Control Inc.) monitor-defibrillator devices. Demographic and clinical data elements were
abstracted from hospital systems on all patients meeting eligibility criteria. Adjudications of outcomes were made by independent reviewers
at each local site after reviewing all available medical records within 30 days of the indexed encounter.

Data analysis Each ECG was stored as a digital XML file, and all files were transmitted to the Philips Advanced Algorithm Research Center (Cambridge,
Massachusetts, USA). These source binary files were preprocessed using the commercially available Philips DXL diagnostic 12/16 lead ECG
analysis program. The extracted ECG features were then used for model derivation and testing. These ECG features are made available in CSV
format along with the code used to derive the machine learning classifier. All diagnostic accuracy values were reported as per STARD
recommendations (Reporting Guidelines for Diagnostic Accuracy Studies). We reported classification performance using AUROC curve,
sensitivity (recall), specificity, PPV (precision), and NPV, along with 95% confidence interval (Cl) where applicable. For 10-fold cross validation,
we compared the multiple classifiers using the Wilcoxon signed-rank test (for AUROC curves) and McNemar’s test (for confusion matrices).
We derived low-, intermediate-, and high-risk categories for the final classifier using Kernel density plot estimates between classes. The
adequacy of these risk classes was evaluated using Log-rank chi-square of accumulative risk for clinically important outcomes over the length
of stay during the indexed admission. All analyses were completed using Python v3.8.5 and SPSS v24.
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The ECG SMART trial makes use of extracted ECG features to train and evaluate a random forest classifier to denote the probability of OMI. The ECG features used
in the derivation and external validation datasets along with linked clinical outcomes are publicly available through GitHub (https://github.com/zeineb-bouzid/
sharing-github-nature-medicine.git). Researchers wishing the source binary files to compute their own features should contact the corresponding author to arrange
for proper approvals and institutional data use agreements. Interested researchers from non-commercial entities can submit a requested by emailing the
corresponding author at ssa33@pitt.edu. Requests will be processed within 2-week time frame.
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Reporting on sex and gender Our manuscript is compliant with the Journal's policy on sex and gender reporting. As per the National Institute of Health, sex
was treated as a biological variable in this study. We collected biological sex on all participants as documented in the
electronic health records. We enrolled all consecutive patients with suspected acute coronary syndrome, so all eligible
patients from both sexes were recruited. Given that the rate of outcomes is typically higher in males than females and to
avoid algorithmic bias, we decided a priori not to include sex as an input feature to estimate probability of OMI in our
models. Instead, we show post-hoc evaluation of the diagnostic accuracy of the OMI score in each sex separately (Fig. 4C).
There were no significant differences in sensitivity and specificity of the OMI score between males and females.

Population characteristics All study cohorts enrolled consecutive adult patients > 18 years of age with an emergency call for non-traumatic chest pain or
anginal equivalent symptoms (arm, shoulder, jaw pain, shortness of breath, diaphoresis, syncope). Eligible patients were
transported by an ambulance and had at least one recorded prehospital 12-lead ECG. There were no selective exclusion
criteria based on sex, race, comorbidities, or acuity of illness. After excluding patients with cardiac arrest, ventricular
tachyarrhythmias, confirmed prehospital STEMI, and duplicate ECGs, our derivation cohort included 4,026 consecutive
patients with chest pain (age 59+16 years, 47% females, 5.2% OMI). The two external validation cohorts together included
3,287 patients (age 60+15 years, 45% females, 6.4% OMI). The derivation and validation cohorts were comparable in terms
of age, sex, baseline clinical characteristics, and 30-day cardiovascular mortality.

Recruitment This was an observational cohort study that enrolled all consecutive eligible patients. There were no selective exclusion
criteria based on sex, race, comorbidities, or acuity of illness. All eligible, consecutive patients were recruited under a waiver
of informed consent to minimize any potential sources of selection bias. We collected prehopsital ECGs obtained during
routine care. Independent reviewers extracted data elements from hospital systems on all patients meeting eligibility criteria.
Study cohorts altogether enrolled patients that were transported by a participating EMS agency between May 1, 2013, and
June 29, 2022.

Ethics oversight The derivation cohort included prehospital data from the City of Pittsburgh Bureau of Emergency Medical Services (EMS) and
in-hospital data from the University of Pittsburgh Medical Center (UPMC). This cohort study was approved by the institutional
review board of the University of Pittsburgh. The external validation cohorts included data from Orange County EMS and
Mecklenburg County EMS and Atrium Health. These two cohort studies were approved by the institutional review board of
the University of North Carolina at Chapel Hill.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Data exclusions  We removed patients with confirmed prehospital ST-elevation myocardial infarction (STEMI) because these patients undergo emergent
catheterization as per clinical guidelines without the need for additional diagnostic testing.

Replication We used rigorous 10-fold cross-validation to estimate models' hyper-parameters on the derivation dataset and assessed bias-variance trade-
off between training and internal testing splits. We also used an external validation cohort from two independent sites and demonstrated
model generalizability on unseen patients. The results were reproducible across folds and datasets. We have made our Python code and the
derivation and external validation datasets available to ensure reproducibility.

Randomization  Randomization was not relevant to this analysis. This was an observational cohort study and there was no active assighment of participants to
groups.

Blinding Blinding was not relevant to this analysis. This was an observational cohort study and there was no active assignment of participants to groups
that required blinding..
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Clinical trial registration  This study was registered in www.ClinicalTrials.gov (identifier # NCT04237688).
Study protocol The analyses described in this paper were pre-specified by the trial protocol that was funded by the National Institute of Health.

Data collection This was an observational cohort study that enrolled all consecutive eligible patients. We collected prehopsital ECGs obtained during
routine care. Independent reviewers extracted data elements from hospital systems on all patients meeting eligibility criteria. The
derivation cohort included prehospital data from the City of Pittsburgh Bureau of Emergency Medical Services (EMS) and in-hospital
data from the University of Pittsburgh Medical Center (UPMC). The external validation cohorts included data from Orange County
EMS and Mecklenburg County EMS and Atrium Health. Study cohorts altogether enrolled patients that were transported by a
participating EMS agency between May 1, 2013, and June 29, 2022. A brief synopsis of the study protocol can be found on the public
domain of the National Institute of Health through www.NIHreporter.gov

Outcomes The primary study outcomes were ACS and OMI, which were predefined on study protocol and ClinicalTrials.gov prior to start of the
study. ACS was defined per the fourth universal definition of myocardial infarction as the presence of symptoms of ischemia (i.e.
diffuse discomfort in the chest, upper extremity, jaw, or epigastric area for more than 20 minutes) and at least one of the following
criteria: (1) subsequent development of labile, ischemic ECG changes (e.g., ST changes, T inversion) during hospitalization; (2)
elevation of cardiac troponin (i.e., > 99th percentile) during the hospital stay with rise and/or drop on serial testing; (3) coronary
angiography demonstrating greater than 70% stenosis, with or without treatment; and/or (4) functional cardiac evaluation (stress
testing) that demonstrates ECG, echocardiographic, or radionuclide evidence of focal cardiac ischemia.

OMI was defined as coronary angiographic evidence of an acute culprit lesion in at least one of the three main coronary arteries
(LAD, LCX, RCA) or their primary branches with TIMI flow grade of 0-1. TIMI flow grade of 2 with significant coronary narrowing > 70%
and peak troponin of 5-10.0 ng/mL was also considered indicative of OMI.

Adjudications were made by independent reviewers at each local site after reviewing all available medical records within 30 days of
the indexed encounter. Reviewers were blinded from all ECG analyses and models’ predictions. Each outcome was adjudicated by
two independent reviewers. The Kappa coefficient statistic between the two reviewers for OMI was 0.771 (i.e., substantial
agreement) and for ACS was 0.846 to 0.916 (i.e., substantial to perfect agreement). All disagreements were resolved by a third
reviewer.
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