
This is the accepted (long) version of the paper published in IEEE CLOUD 2021.
The published (short) version is available at https://doi.org/10.1109/CLOUD53861.2021.00063.

Exploiting Sub-page Write Protection
for VM Live Migration

Yosuke Ozawa
The University of Tokyo

Tokyo, Japan
ozawa@os.ecc.u-tokyo.ac.jp

Takahiro Shinagawa
The University of Tokyo

Tokyo, Japan
shina@ecc.u-tokyo.ac.jp

Abstract—Virtual machine (VM) live migration is an essential
feature for cloud vendors to manage their cloud infrastructures.
Since VM live migration transfers a large amount of written
memory to synchronize the memory between VMs, reducing
the amount of memory transfer has a significant impact on the
efficiency and success of the migration. Various software-based
approaches have been proposed to reduce memory transfer, but
they consume significant CPU and memory resources, degrad-
ing performance under heavy load. We propose to exploit a
hardware-based sub-page write protection to reduce unnecessary
memory transfers by performing fine-grained write detection in
live VM migration. However, since write protection is different
from write detection, applying it naively may incur a large
overhead that outweighs its benefits. In this study, we identified
the root cause of the large overhead in a naive implementation
and introduced an optimization to avoid it. Performance experi-
ments with our emulator-based pseudo-migration demonstrated
that for many workloads, the sub-page write protection could
reduce migration time as much as differential compression built
in QEMU with less CPU and memory consumption, and for some
workloads, only the sub-page write protection could complete the
migration. We also show that the maximum CPU overhead can
be reduced by 25.5 percentage points by our optimization.

Index Terms—Virtualization; VM live migration; Sub-page
write protection; Intel SPP

I. INTRODUCTION

Virtual machine (VM) live migration is a technique for
migrating a VM running on one host to another without
stopping the VM. VM live migration is useful for load
balancing, hardware maintenance, power management, and
fault tolerance [1], and therefore widely used in cloud data
centers. In VM live migration, the pre-copy method [2] is
commonly used to synchronize the memory between the

source and destination VMs. In this method, memory contents
of the source VM are transferred to the destination VM while
the source VM is running, and then newly written memory
contents during the transfer are transferred again. This process
is iterated until the amount of memory transfer in one iteration
becomes sufficiently small. Therefore, reducing the amount of
memory transfer is crucial for reducing downtime, migration
time, network load, and energy consumption [3]. Moreover, the
reduction rate in the amount of memory transfer per iteration
determines the success or failure of the migration.

In order to detect the newly written memory area during
the memory transfer in each iteration, nested paging is usually
used. In nested paging, when the geust OS in the VM writes
to a guest physical page, the CPU sets the dirty bit of
the corresponding entry in the nested page table. Therefore,
the virtual machine monitor (VMM) can detect the newly
written guest physical pages by scanning the dirty bits in
the nested page table. The write detection in nested paging
is performed in hardware, and thus has very little software
runtime overhead. However, since write detection is performed
on a page-by-page basis, memory areas that have not actually
been written may be transferred.

Many software-based approaches to write detection with
finer granularity than a page have been proposed [4]–[9]. One
approach is to calculate the difference from the pages that are
already transferred in the previous iterations [4], [5]. Another
approach is to compute the hash value of the memory in a unit
smaller than the page [6], [7]. Page compression [8], [9] also
has an effect similar to fine-grained write detection. However,
these approaches require a certain amount of computation
based on the page contents, which can have a significant
impact on the VM performance due to the CPU and memory
overhead, especially when the host is heavily loaded. Several
methods to reduce the number of pages to be transferred have
also been proposed [10]–[18], but they do not consider the
effect of write detection at finer granularity than the page.

In this paper, we propose to exploit a hardware-based sub-
page write protection feature for fine-grained write detection
in VM live migration. A sub page is one of the multiple

© 2021 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Yosuke Ozawa and Takahiro Shinagawa. Exploiting Sub-page Write Protection
for VM Live Migration. In Proceedings of the 2021 IEEE 14th International
Conference on Cloud Computing (IEEE CLOUD 2021), Sep 2021.
https://doi.org/10.1109/CLOUD53861.2021.00063

https://conferences.computer.org/cloud/2021/
https://doi.org/10.1109/CLOUD53861.2021.00063
https://doi.org/10.1109/CLOUD53861.2021.00063

fixed-length partitions of a single page; for example, a 4-KiB
page could be divided into 32 pieces of 128-byte sub pages.
The sub-page write protection is a feature added to nested
paging that allows write protection to be set for each sub
page. The advantages of the sub-page write detection based
on the sub-page write protection are less CPU overhead due
to no computation on memory contents, and less memory
overhead since only a bit indicating that write protection
is enabled needs to be held in memory for each specified
sub page. However, the sub-page write protection is not a
dirty bit function that records writes in the page table in
the background, but a function that generates a page fault
event whenever a write is made to a write-protected sub page.
Therefore, it could incur a large page fault overhead when the
frequency of sub-page write is very high.

In order to clarify these gains and losses, we observed
the behavior of sub-page writes during VM live migration
for various workloads, and analyzed the reduction in memory
transfers and the overhead of increased page faults. The target
CPU architecture for the measurement was Intel 64 with
the sub-page write permissions feature (SPP) [19], which is
included in the latest products that Intel has started shipping.
At the time of writing, we were unable to obtain an actual
CPU equipped with SPP. So, we used Bochs [20], an IA-
32 emulator that can emulate SPP, with some bug fixes by
us, as our experimental environment. We also implemented
write detection using SPP in QEMU/KVM. Unfortunately,
the emulator is significantly slower than the actual CPU, and
therefore using the emulator alone will result in workloads
during migration that are far from reality. Therefore, we
devised a pseudo-migration that combines the emulator with
an actual physical machine to reproduce the workload in an
execution environment close to reality.

From our observational experiments, we confirmed that only
a portion of a 4-KiB page is written on average for many
workloads, and therefore, sub-page write protection is likely
to significantly reduce the amount of memory transfer. We
also identified that most of the additional page faults caused
by using the sub-page write protection were due to a single
repetitive instruction in the guest kernel. Therefore, in order to
reduce such repetitive page faults, we designed an optimization
that predicts the sub pages that will be accessed in the near
future and removes write protection in advance when such an
instruction is detected.

In order to quantify the effectiveness of our approach, we
conducted performance experiments and demonstrated that the
sub-page write protection was able to reduce the amount of
memory transfer and achieve the same level of migration
time as the differential compression method implemented
in QEMU, called Xor Binary Zero Run Length Encoding
(XBZRLE) [5], with lower CPU overhead and less memory
consumption. Moreover, in the SPEC CPU 2017 benchmark
experiments, we found that only the sub-page write protection
could complete the VM live migration in a workload. In
this workload, we also found that the CPU overhead during
migration can be reduced by 25.5 percentage points (from

80.0% to 54.5%) with our optimization to reduce page faults.
The contributions of this paper are as follows.
• We have proposed a novel method to reduce the amount

of memory transfer in VM live migration by applying
a CPU’s new feature, the sub-page write protection, to
fine-grained write detection.

• We have devised a pseudo-migration that combines an
emulator with a real machine to reproduce a realistic
workload during migration without an actual CPU.

• We have identified that most of the additional page faults
of using the sub-page write protection are caused by
repetitive instructions, and have shown an optimization
technique to avoid them.

• We have quantified the effectiveness of exploiting the
sub-page write protection and shown that it could achieve
the same reduction as the standard software-based method
with less resource consumption.

The remainder of this paper is organized as follows. Sec-
tion II explains the background of VM live migration and fine-
grained write detection. Section III presents the results of our
observation experiments. Section IV describes our design of
sub-page write detection using sub-page write protection. Sec-
tion V shows the implementation of sub-page write detection
using Intel SPP. Section VI demonstrates the effectiveness of
sub-page write protection in VM live migration with emulator-
based experiments. Section VII introduces some related works
and Section VIII summarizes this paper.

II. BACKGROUND

In this section, we provide background knowledge on VM
live migration. We will first explain how VM live migration
works in Section II-A and then discuss the granularity of write
detection and memory transfer in Section II-B.

A. VM live migration

There are three major methods for VM live migration:
the pre-copy method [2], the post-copy method [21], and
the hybrid method that combines both of them [22]. In this
paper, we focus on the pre-copy method, which is the most
commonly used one.

The pre-copy method is divided into two phases. First, in
the warm-up phase, the memory copy from the source VM to
the destination VM is performed iteratively so that the memory
contents are almost synchronized. Then, in the stop-and-copy
phase, the source VM is stopped, the last synchronization
is performed, and finally the execution is resumed on the
destination VM. By reducing the time taken for the stop-and-
copy phase to a few hundred milliseconds, users can feel as if
the VM is running continuously. Since memory transfer is the
dominant cost in both phases, reducing the amount of memory
transfer has a significant impact on the performance of VM
live migration. Note that in cloud data centers, where live VM
migration is performed, storage is shared between VMs and
there is no need to transfer data.

The specific operations in each iteration in the warm-up
phase are as follows. In the first iteration, the entire memory

of the source VM is transferred to the destination VM. In
the second and subsequent iterations, the memory area that
has been written during the previous iteration is detected by
the VMM, and only the contents of that memory area are
transferred. By repeating this process, the amount of memory
transfer gradually decreases, and when the amount of memory
to be transferred falls below a pre-specified threshold, the
phase shifts to the stop-and-copy.

We refer to the time from the start of the first iteration until
the VM resumes at the destination as the total migration time.
We also refer to the total amount of memory transfer during
the warm-up and stop-and-copy phases as the total transferred
memory.

B. The granularity of write detection

As mentioned above, the pre-copy method needs to detect
the newly written memory area during memory transfer in
each iteration and re-transfer the memory in that area in the
next iteration. Since the location and frequency of writes
vary depending on the application and workload, the VMM
needs to properly and efficiently capture the newly written
area to minimize the amount of memory transfer. Reducing
the amount of memory transfer in each iteration leads to
a reduction in the total transferred memory, which directly
leads to the reduction in migration time and network load.
In addition, if the amount of transferred memory does not
decrease with each iteration, the amount of memory to be
transferred in a iteration cannot fall below the threshold and
the migration cannot be completed.

In the VM live migration mechanism currently in practical
use, the granularity of the write detection is basically per page.
This is because the write detection is usually implemented
using dirty bits, which are an ancillary feature of the CPU’s
nested paging. However, the application does not necessarily
write to the entire page. For example, even if only a few
hundreds bytes of a 4-KiB page is written, the entire 4-KiB
page must be transferred because the dirty bits alone cannot
detect that actual written bytes. If there are many partial writes
to a page, the amount of memory transfer in each iteration may
be several hundred to several thousand times larger than the
amount of memory actually written.

III. OBSERVATION

In order to confirm the effectiveness of sub-page write
detection on memory transfer reduction in VM live migration,
we measured the average number of sub pages that were
written within a 4-KiB page. In this experiment, we calculated
the number of instructions executed during the second iteration
of VM live migration on a physical machine and measured the
number of written sub pages by reproducing the execution on
Bochs. The workloads we used is shown in Table I.

Figure 1 shows the result of observation. The error bars
show the standard deviations. We found that only one sub
page was written in approximately 1,300 4-KiB pages, and
only two sub pages were written in approximately 700 4-
KiB pages on average. Although the standard deviation is a

TABLE I
EXPERIMENTAL WORKLOAD

Name Workload

idle no specific task

kernel compile Linux 5.5.7 compilation

redis+YCSB Redis 5.0.3 [23] with six workloads

selected from YCSB 0.17.0 [24], [25]

(workloada to workloadf)

[parameters]

field size: 100 bytes

number of fields: 10

record size: 1 KiB

number of records: 256 K

used memory: approximately 500 MiB

SPECCPU 13 workloads of SPEC CPU 2017 v1.0.1

(500.perlbench_r, 502.gcc_r,

505.mcf_r, 520.omnetpp_r,

523.xalancbmk_r, 531.deepsjeng_r,

541.leela_r, 557.xz_r, 508.namd_r,

511.povray_r, 519.lbm_r,

538.imagick_r, 544.nab_r)

16500

0 5 10 15 20 25 30
Number of dirty sub-pages in a 4KiB page

0

500

1000

1500

2000

2500

Nu
m

be
r o

f 4
Ki

B
pa

ge
s

Fig. 1. Average number of sub-pages written in a 4-KiB page

bit rather large because the number varies relatively widely
among workloads, the overall trend was that only a part of
sub pages of the 4-KiB pages were written. Therefore, by
detecting and transferring only such sub pages using sub-page
write detection, the amount of memory to be transferred is
expected to be significantly reduced.

On the other hand, there were approximately 16,000 cases

Listing 1. The Linux kernel code that writes to a whole page

1 SYM_FUNC_START(clear_page_rep)

2 movl $4096/8,%ecx

3 xorl %eax,%eax

4 rep stosq

5 ret

6 SYM_FUNC_END(clear_page_rep)

where all sub pages in a 4-KiB page were written. We
identified the locations where such writes were occurring
and investigated what instructions were being executed. As
a result, we found that a single location accounted for the
highest percentage of instructions in all workloads except
idle, which accounted for more than 90% in many cases.
Listing 1 shows the disassembled version of the code for
that location. This is a function in the Linux kernel called
clear_page_rep, which clears an entire page by filling it
with zeros. Specifically, this function assigns 4096/8 = 512,
the number of iterations, to the %rcx register with ”movl
$4096/8,%ecx”, assigns zero to the 64-bit %rax register
with ”xorl %eax, %eax”, and writes the value of %rax
(zero) 512 times to the contiguous memory area with ”rep
stosq”. The page address is implicitly specified in %rdi.
Therefore, by detecting such codes and avoiding page faults
caused by them, it is expected that the number of page faults
can be reduced.

IV. SUB-PAGE WRITE DETECTION

In this section, we describe our method of sub-page write
detection for VM live migration base on the sub-page write
protection. We first explain the hardware-based sub-page write
detection mechanism in Section IV-A, and then describe the
sub-page write detection system for VM live migration in
Section IV-B.

A. The sub-page write protection

As described above, the sub-page write protection allows
write protection to be set for each sub page. The write
protection is usually represented by bits held in a data structure
associated with the page table in nested paging. When the
guest OS writes to a sub page with the write protection
enabled, the CPU generates a page fault. We call this page
fault a sub-page fault.

In normal paging, the page table has a dirty bit for each
page in addition to write protection. However, since the sub-
page write protection was introduced mainly for the purpose
of write protection for hardware devices in virtualization, it
does not have the function of dirty bits. Therefore, in order
to perform write detection, we need to emulate dirty bits with
write protection in cooperation with the VMM.

A sub-page fault requires a certain amount of CPU cycles
for context switching between the VM and VMM. In addi-
tion, a sub-page fault handler needs to perform a number
of operations, such as identifying the type of the sub-page
fault, obtaining the address where the sub-page fault occurred,

VM

VMM

Migrator

Guest OS

Physical Machine

update
sub-page fault

handler

1 1 0 1
1 0 1 1
1 1 0 0
0 0 0 0

Reflect

sub-page
transferrer

ioctl

vCPU

Virtual Memory

Write protection

Additional
component

ｗrite

Nested page table

page fault

fetch
instruction

Fig. 2. The overview of our sub-page write detection system

and updating the write protection settings. Therefore, a large
number of sub-page faults incur a large amount of overhead.

B. The sub-page write detection system

Figure 2 shows the overview of our sub-page write detection
system using the sub-page write protection mechanism. The
VMM manages the nested page table with the write protection
settings for sub pages. At the beginning of each iteration of the
VM live migration, the VMM enables write protection for all
sub pages in the memory-allocated area of the guest physical
address space of the source VM. When the guest OS in the
source VM writes to a sub page in the guest physical address
space for which write protection is enabled, the CPU generates
a sub-page fault and passes the control to the VMM. In the
sub-page fault handler, the VMM records the address of the
sub page that is being written, then disables write protection
for that sub page, and finally resumes the VM execution. By
repeating this operation, the VMM can record the sub pages
written in the VM in each iteration.

In parallel with recording the written sub pages in the sub-
page fault handler, the VMM enumerates all the sub pages
written in the previous iteration, except in the first iteration
where it assumes that all sub pages have been written. Then,
the sub-page transferrer in the migrator, which is our additional
component of the VMM, acquires the contents of written sub
pages via ioctl and transfers them to the destination. When the
amount of transferring memory falls below a certain threshold,
the system enters the stop-and-copy phase, where the final
memory transfer takes place.

In order to reduce the runtime overhead caused by sub-
page faults, we adopted two optimizations. First, in VM live
migration, even if a sub page is written multiple times in each
iteration, only the last written contents will be transferred.
Therefore, instead of enabling write protection immediately
after recording the address of the written sub page in the sub-
page fault handler, we keep write protection disabled during
that iteration and delayed enabling write protection until the
start of the next iteration. In this way, we can reduce the
overhead of multiple sub-page faults occurring on the same
sub page in each iteration.

The second optimization is to predict the memory area
where the next sub-page fault will occur by examining the

instruction that caused the sub-page fault. For example, as
shown in Section III, if an instruction repeatedly writes to
consecutive memory areas, it is expected that the memory
areas following the sub page that caused the sub-page fault will
also be written. Therefore, instead of disabling write protection
each time an individual sub-page fault occurs, we can disable
write protection for consecutive sub pages at once in advance
when the first sub-page fault occurs, thereby reducing the
number of sub-page faults.

Currently, we only assume the optimization for memory
clearing instructions, since the performance is satisfactory
as we will show later, but we will be able to improve the
performance by introducing more advanced predictions. Note
that even if the prediction is wrong and write protection
is disabled more than necessary, its only effect is that sub
pages that have not been written will be considered written.
Therefore, it will not affect the correctness of the migration,
although it may slightly increase the amount of memory
transfer.

V. IMPLEMENTATION

In this study, we used Intel 64 with SPP as the CPU
architecture that provides sub-page write protection. For the
CPU emulator, we used Bochs. For the VMM, we used a KVM
based on a patch that adds SPP support [26] and implemented
the sub-page write detection described in Section IV-B. We
have also implemented some of the functionality required for
sub-page migration in QEMU.

In this section, we first give a brief introduction to Intel
SPP (Section V-A), and then explain the modifications we
have made to Bochs (Section V-B), KVM (Section V-C), and
QEMU (Section V-D), respectively.

A. Intel SPP

Intel SPP is an extension of the extended page table (EPT),
which is the nested paging mechanism of Intel CPUs. It divides
a regular 4-KiB page into thirty-two 128-byte sub pages, and
write permission can be set for each sub page. To use SPP,
we first need to enable the SPP function in the VM-execution
control of the virtual machine control structure (VMCS), and
then set the SPP bit to 1 in the leaf page table entry of the
EPT. SPP consists of a structure similar to a page table; we
need to set a pointer to the top page table, called the root SPP
table (SSPL4), in VMCS.

If the SPP bit of the EPT entry is set to 1, the CPU performs
a page walk of the SPP page table, starting from SSPL4, to
identify the leaf table called the SPP vector table (SSPL1).
SSPL1 consists of sixty-four 64-bit entries (SPP vectors), each
of which corresponds to one 4-KiB guest physical page. Each
64-bit SPP vector consists of thirty-two pairs of 2 bits, and
each 2 bits corresponds to one sub page. The upper bit of the
two bits are the write permission bit. If the write permission
bit is set to 0, when the corresponding sub page is written, an
EPT violation (corresponding to a page fault) will occur. At
this time, the software can determine whether the EPT fault

occurred in the EPT or in the SPP by examining the SPP bit
of the corresponding EPT entry.

B. Modifications to Bochs

Intel SPP is supposed to be implemented in Ice Lake,
the 10th generation Intel Core processor. However, the Ice
Lake generation CPUs currently available are only for mobile
PC platforms, and we were unable to obtain a CPU with
SPP implemented. Therefore, we used the Bochs emulator
that implements SPP emulation. We used the Bochs version
r13850. Unfortunately, the SPP emulation of this version of
Bochs had the following bugs.

Bochs internally implements TLBs; it caches the entries
in the EPT page table. According to the Intel Software
Developers Manual [19], SPP vectors are also cached in the
TLB (see Section 28.3.1 “Information That May Be Cached”).
Despite this, Bochs did not cache SPP vectors. As a result,
if one of the thirty-two sub pages of a guest physical page
is given write permission, the entry of that guest physical
page is cached in the TLB with write permission. Therefore,
the entire page is considered to be allowed to be written,
and the SPP write protection does not work. To fix this, we
modified the TLB implementation of Bochs to also cache the
SPP information correctly so that the write protection works
correctly.

C. Modifications to KVM

We used KVM on Linux 5.5.7 with the SPP support patch
applied as the base of our VMM that implements sub-page
write detection. This patch allows the KVM to enable SPP,
build SPP page tables, and handle EPT violation caused by
SPP-related events when they occur. Based on this KVM, we
implemented a function to fetch the instruction that caused
the EPT violation in order to realize the optimization based
on instructions, as described in Section IV-B.

D. Modifications to QEMU

We have implemented the sub-page write detection based on
QEMU 4.2.50. In order to retrieve the contents of sub pages
written by VMs from QEMU, we implemented a mechanism
to retrieve and set the value of the write permission bit of a
specified sub page and the contents of the sub page via ioctl
in cooperation with KVM. In addition, since QEMU sends the
physical addresses of the pages to be transferred together with
the metadata when transferring memory, we added a new 1-
byte value to the metadata to specify the physical addresses
in sub-page units.

VI. EVALUATION

In order to quantify the effectiveness of the sub-page write
detection based on the sub-page write protection in VM live
migration, we compared the performance of the following
three methods: (1) the conventional 4-KiB page-unit write
detection method (“4-KiB page write detection”), (2) the
method combining 4-KiB page write detection and XBZRLE

(“4-KiB page write detection + XBZRLE”), and (3) the sub-
page write detection method using Intel SPP (“128-byte sub-
page write detection”), which is our proposal.

The experimental environment is as follows. We used a
machine with an Intel Core i7-4790K CPU and 16-GiB
memory. We ran a guest OS on QEMU/KVM on Bochs, that
is, two VMs are nested. The VM that ran on Bochs (L1 VM)
had one vCPU and 2 GiB of memory, and QEMU/KVM ran on
the VM with Debian 10 (buster) and Linux 5.5.7 kernel with
the SPP patch. The VM that ran on QEMU/KVM (L2 VM)
consists of one vCPU and 1 GiB of memory, running Debian
10 (buster) and Linux 5.5.7. The network bandwidth for VM
live migration was assumed to be 1 Gbps. The memory size
used by XBZRLE for temporary storage of transferred pages
was set to 512 MiB. In the following, the VM refers to the
L2 VM unless otherwise specified.

In the remainder of this section, we first explain the pseudo
migration method to mitigate the slow CPU emulation of
Bochs in Section VI-A. We then show the results of three
categories of experiments; First, Section VI-B shows the
results of measuring the effect of memory transfer reduction on
total migration time. Second, Section VI-C shows the results
of comparing the CPU and memory overheads during memory
transfers. Last, Section VI-D shows the results of measuring
the runtime overhead in the sub-page write detection. The
workloads used are those shown in Table I.

A. Pseudo Migration

We used Bochs for emulation. However, since Bochs is
a full software-based CPU emulator, its performance is very
slow compared to a real physical machine. Therefore, in order
to estimate the performance on a real machine as accurately
as possible while using the emulator, we devised a pseudo
migration as shown in the following procedure.

1) Measure the performance of the physical machine: First
of all, to estimate the number of instructions that can be
executed per unit time on the physical machine, we measured
instructions per second (IPS) on the physical machine using
the perf command beforehand. Since IPS depends on the
workload, we measured the IPS for each workload.

2) Measure the amount of memory transfer on the VM:
Next, to estimate the time taken for each iteration, we mea-
sured the amount of memory transfers in each iteration on
the VM. For the first iteration, we took the amount of all
guest physical memory as the amount of memory transfer. In
subsequent iterations, we calculated the number of bytes of
pages (sub pages) written on the VM in the previous iteration.
When XBZRLE was used, we took the size of the data after
differential compression as the amount of memory transfer.

3) Execute instrucions on the VM: Then, we calculated the
number of instructions that can be executed in each iteration
on the VM as follows. First, to find the time required for
memory transfer, we divided the amount of memory transfer
obtained above by the network bandwidth. Second, to find the
number of instructions per workload that can be executed on
the VM, we multiplied the pre-measured IPS by the memory

transfer time obtained above. Finally, we execute the number
of instructions calculated above on the VM of Bochs.

4) Iterate the above steps: We iterated the above steps until
the amount of memory transfer reached the size that could be
transferred within 300 milliseconds. However, if the number
of iterations exceeded 20, we determined that the migration
could not be completed.

B. Total Migration Time

Since the effect of memory transfer reduction by using sub
pages on VM live migration is closely related to the workload
and the behavior of the application in each iteration, we
measured its effect in terms of total migration time. Figure 3
shows the total migration time of the pseudo migration for
each workload. The error bars indicate the standard errors.
A bar higher than the wavy line indicates that the VM live
migration did not complete. Since the total migration time was
almost proportional to the total amount of memory transfer, the
results show the effectiveness of memory transfer reduction in
actual VM live migration.

The experimental results show that for most workloads, the
“128-byte sub-page write detection” achieved almost the same
reduction in migration time as the “4-KiB page write detection
+ XBZRLE”. In addition, for the four SPECCPU workloads
(520.omnetdp_r, 531.deepsjeng_r, 557.xz_r, and
519.lbm_r), the “4-KiB page write detection” could not
complete the migration, while the “4-KiB page write detection
+ XBZRLE” could complete two of them (520.omnetdp_r,
577.xz_r), and the “128-byte sub-page write detection”
could complete one more migration (531.deepsjeng_r).

As a typical example, we show in Figure 4 the transition
in the amount of untransferred memory in each iteration of
the workload 502.gcc_r. In 502.gcc_r, the first iteration
took about 4.5 seconds and the next iteration took about 4.4
seconds. However, in the subsequent iterations, the “4-KiB
page write detection” could not sufficiently reduce the amount
of memory transfer, whereas “4-KiB page write detection +
XBZRLE” and “128-byte sub-page write detection” were able
to reduce the differences sufficiently to complete the migration
in about 5 iterations.

We also found that “128-byte sub-page write detection”
was able to reduce the migration time more than “4-KiB
page write detection + XBZRLE” for some workloads. For
example, for the workload 557.xz_r, as shown in Figure 5,
the difference in “128-byte sub-page write detection” was
initially larger than “4-KiB page write detection + XBZRLE”,
but later reversed, resulting in a shorter migration time. This
was probably because the contents written to memory were
not easily compressed by XBZRLE.

Figure 6 shows the result in 531.deepsjeng_r. In this
workload, only “128-byte sub-page write detection” was able
to complete the migration. As can be seen from the graph,
the “4-KiB page write detection” was not able to reduce the
amount of memory transfer even as the iterations progressed.
Even with “4-KiB page write detection + XBZRLE”, the
amount of memory transfer did not decrease below around 192

id
le

ke
rn

el
co

m
pi

le

wo
rk

lo
ad

a

wo
rk

lo
ad

b

wo
rk

lo
ad

c

wo
rk

lo
ad

d

wo
rk

lo
ad

e

wo
rk

lo
ad

f

50
0.

pe
rlb

en
ch

_r

50
2.

gc
c_

r

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r

55
7.

xz
_r

50
8.

na
m

d_
r

51
1.

po
vr

ay
_r

51
9.

lb
m

_r

53
8.

im
ag

ick
_r

54
4.

na
b_

r

Workload

0
2
4
6
8

10
12
14
16
18
20

To
ta

l m
ig

ra
tio

n
tim

e
[s

] 4KiB page write detection
4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 3. Total migration time

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [s]

0

128

256

384

512

640

768

896

1024

Am
ou

nt
 o

f u
nt

ra
ns

fe
rre

d
m

em
or

y
[M

iB
] 4KiB page write detection

4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 4. Transition of the untransferred memory in 502.gcc_r

0 2 4 6 8 10 12 14
Time [s]

0

128

256

384

512

640

768

896

1024

Am
ou

nt
 o

f u
nt

ra
ns

fe
rre

d
m

em
or

y
[M

iB
] 4KiB page write detection

4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 5. Transition of the untransferred memory in 557.xz_r

0 20 40 60 80 100
Time [s]

0

128

256

384

512

640

768

896

1024

Am
ou

nt
 o

f u
nt

ra
ns

fe
rre

d
m

em
or

y
[M

iB
] 4KiB page write detection

4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 6. Transition of the untransferred memory in 531.deepsjeng_r

0 10 20 30 40 50 60 70
Time [s]

0

128

256

384

512

640

768

896

1024

Am
ou

nt
 o

f u
nt

ra
ns

fe
rre

d
m

em
or

y
[M

iB
] 4KiB page write detection

4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 7. Transition of the untransferred memory in 519.lbm_r

MiB, indicating that the migration could not be completed in
20 iterations. On the other hand, the “128-byte sub-page write
detection” was able to complete the migration in about 17
iterations. This was because 531.deepsjeng_r wrote to
memory very frequently, and the written values were difficult
to compress differentially. In contrast, “128-byte sub-page
write detection” steadily reduced the amount of memory
transfer with each iteration, regardless of the value being
written, and eventually completed the migration.

Unfortunately, there was a workload where the amount
of transferred memory increased when using the “128-byte
sub-page write detection”. Figure 7 shows the result in
519.lbm_r. From the graph, we can see that “128-byte sub-
page write detection” slightly increased the amount of memory
transfer, while “4-KiB page write detection + XBZRLE”
slightly decreased the amount of memory transfer compared to
“4-KiB page write detection”. This was because this workload
wrote to the entire 4 KiB page evenly, so there was no
reduction in the amount of memory transfer by using sub
pages, while metadata was added to each sub page during the
transfer, increasing the amount of transferred memory. Having
said that, none of the write detection methods were able to
complete the migration of this workload.

In total, the “128-byte sub-page write detection” achieved
the same or better migration time reduction than the “4-KiB
page write detection + XBZRLE”, although its effect varies
depending on the workload.

C. Overhead in memory transfer

To estimate the overhead in memory transfer at each iter-
ation, we measured the time to format the data to transfer
memory, and the amount of memory consumed in the VMM.

1) CPU overhead: To estimate the CPU overhead in mem-
ory transfer, we measured the number of instructions required
to format a single 4-KiB page in QEMU. In the “4-KiB page
write detection”, the number of instructions was measured
by executing ioctl to get the information of written pages,
determining whether the page is all zero, and formatting the
entire page to the specified format. In the “4-KiB page write
detection + XBZRLE”, the number of instructions to store
pages in temporary storage and to compress pages were also
included. In the “128-byte sub-page write detection”, it was
similar to that of the “4-KiB page write detection”, except that
the VMM obtained sub pages instead of pages.

Figure 8 shows the results. The error bars indicate the
standard errors. Compared to the “4-KiB page write detec-
tion”, the number of instructions required for “4-KiB page
write detection + XBZRLE” increased by a factor of 1.33 to
175.38. This was because XBZRLE requires a large number of
instructions for compression including the byte-by-byte value
comparison. The number of instructions for the “128-byte sub-
page write detection” also increased by a factor of 1.22 to
15.84 due to the increase in per-page processing for handling
sub pages, but the number of instructions is kept lower than
in the “4-KiB page write detection + XBZRLE”.

2) Memory overhead: To estimate the memory overhead in
memory transfer, we measured the memory usage of the entire
host machine (Bochs) at the start of the second iteration of the
VM live migration using the free command. Figure 9 shows
the results. The error bars indicate the standard errors.

The results show that the “4-KiB page write detection +
XBZRLE” increased the memory usage of the host machine
by 1.21 to 1.85 times compared to the “4-KiB page write
detection”. This is because we set the maximum amount
of memory for temporary page storage used in XBZRLE’s
differential compression to 512 MiB, so the VMM consumed
memory to store as much transferred memory as possible. On
the other hand, the “128-byte sub-page write detection” hardly
increased the memory usage.

D. Runtime overhead

To estimate the runtime overhead of the “128-byte sub-
page write detection” due to sub-page faults and the effect of
zero-clear instruction detection optimization, we calculated the
number of instructions executed in the VMM by multiplying
the number of SPP-related events during the pseudo migration
by the number of instructions required for one event handling.

Figure 10 shows the relative overhead compared to the case
without SPP. The error bars indicate the standard error. In
the idle workload, the overhead was as large as 200.74%, but
this overhead was not a problem because the VM was doing
nothing. For the other workloads, we found that the overhead
of the workloads for which “4-KiB page write detection” was
unable to complete the migration was relatively large. This
means that these workloads have a very high write frequency.
Interestingly, the sub-page write protection has the effect of
slowing down only the write instructions, thereby reducing
the write pace in this type of workload. As a result, the sub-
page write protection improves the migration success rate not
only through fine-grained write detection, but also through the
ability to adjust the write speed.

As for the zero-clear instruction detection optimization, we
found that the maximum overhead of simply detecting writes
in units of 128-byte sub pages was 80.0%, while it could be
reduced to 54.5% by the optimization. From this result, we can
say that the zero-clear instruction detection optimization was
effective. This overhead can be further reduced by improving
the prediction capability, but it needs to be balanced with the
effect of suppressing the write speed, which is our future work.

VII. RELATED WORK

One approach for detecting writes at a finer granularity than
the page is to calculate the difference from the pages that
have already been transferred. Svärd et al. [4] proposed a
method to temporarily store a part of the transferred pages
as caches and reduce the amount of memory transfer with
differential compression. In this method, XOR Binary RLE
(XBRLE) is used as the differential compression algorithm,
where run-length compression is performed after XORing
between pages. Shribman et al. [5] proposed an improved
version of XBRLE, Xor Binary Zero Run Length Encoding

id
le

ke
rn

el
co

m
pi

le

wo
rk

lo
ad

a

wo
rk

lo
ad

b

wo
rk

lo
ad

c

wo
rk

lo
ad

d

wo
rk

lo
ad

e

wo
rk

lo
ad

f

50
0.

pe
rlb

en
ch

_r

50
2.

gc
c_

r

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r

55
7.

xz
_r

50
8.

na
m

d_
r

51
1.

po
vr

ay
_r

51
9.

lb
m

_r

53
8.

im
ag

ick
_r

54
4.

na
b_

r

Workload

0

20000

40000

60000

80000

100000
In

st
ru

ct
io

ns
 p

er
 4

Ki
B

4KiB page write detection
4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 8. The number of instructions to prepare a 4-KiB page in memory transfer

id
le

ke
rn

el
co

m
pi

le

wo
rk

lo
ad

a

wo
rk

lo
ad

b

wo
rk

lo
ad

c

wo
rk

lo
ad

d

wo
rk

lo
ad

e

wo
rk

lo
ad

f

50
0.

pe
rlb

en
ch

_r

50
2.

gc
c_

r

50
5.

m
cf

_r

52
0.

om
ne

tp
p_

r

52
3.

xa
la

nc
bm

k_
r

53
1.

de
ep

sje
ng

_r

54
1.

le
el

a_
r

55
7.

xz
_r

50
8.

na
m

d_
r

51
1.

po
vr

ay
_r

51
9.

lb
m

_r

53
8.

im
ag

ick
_r

54
4.

na
b_

r

Workload

0
128
256
384
512
640
768
896

1024
1152
1280
1408
1536
1664
1792

Us
ed

 m
em

or
y

[M
iB

]

4KiB page write detection
4KiB page write detection + XBZRLE
128B sub-page write detection

Fig. 9. The amount of memory consumed in the VMM in memory transfer

.

Without zero-clear instruction optimization

With zero-clear instruction optimization

Fig. 10. The runtime overhead due to the SPP handling

(XBZRLE), which is used in QEMU. This algorithm improves
compression efficiency by performing run-length compression
only on the area that becomes zero after XORing between
pages. However, since these differential compression methods
need to save a part of the original pages, memory consumption
increases as the number of written pages increases. In addition,
since the compression ratio depends on the values in memory,
there are cases where compression is not very effective even
if the difference is small.

Another approach is to compute the hash value of the
memory contents to detect the written area at a fine granularity.
Wood et al. [6] used a method of dividing a page into four sub
pages and calculating their hash values to reduce the amount of
memory transfer for VM live migration in WANs. Deshpande
et al. [7] proposed a method to compute the hash values of
sub pages for deduplication among VMs when live-migrating
multiple VMs simultaneously in a cluster environment. Li
et al. [10] focus on write-not-dirty (write-not-modify), and
propose a method to avoid the transfer of such fake-dirty
pages that are dirty but whose values are not modified by
hashing. Zhang et al. [27] introduced hash based fingerprints
technology to identify identical and similar memory pages and
utilizes RLE encoding algorithm to perform deduplication. The
hash-based methods are expected to reduce memory transfer,
but they consume more memory when the sub page size is
reduced, and require byte-by-byte comparison to deal with
hash collisions.

These software-based methods may be able to hide compu-
tation and memory overhead through parallel processing if the
host machine has sufficient resources. However, in real-world
use cases, the host machine does not always have sufficient
resources. For example, Birke et al. [28] performed an analysis
on a private cloud and found that more than 50% of the
physical machines allocated almost all of their real memory to
VMs. Therefore, if the host machine consumes more memory
for VM live migration when the VMs are almost occupying
the memory, it may lead to VM performance degradation.

Memory compression is an effective approach to reducing
the amount of memory transfer memory in VM live migration.
Jin et al. [8] proposed a method that selects an effective
compression algorithm based on the content of the page to
be transferred. Li et al. [9] proposed a method to dynami-
cally change the compression ratio according to the network
bandwidth. Memory compression using Zlib has also been
implemented in QEMU/KVM. However, memory compression
generally consumes more CPU time as the compression ratio is
increased, and the compression ratio varies greatly depending
on the contents and the compression algorithm. Memory
compression can be used in conjunction with sub-page write
detection. However, the compression ratio will decrease if the
data size is too small. Therefore, it is necessary to devise a
method such as compressing multiple sub pages at once.

Predicting memory write access patterns and skipping trans-
fers of frequently written pages is another approach. Clark
et al. [2] and Lin et al. [11] proposed an algorithm that
excludes pages that are dirtied in both of two consecutive

iterations from being transferred in subsequent iterations. Hu
et al. [12] and Shi et al. [13] proposed a method to predict
memory accesses in multiple iterations using a more complex
algorithm. Alamdari [29] adopted the concept of reuse distance
to reduce the transferring number of dirtied pages. These
methods may also be applied to sub-page write detection.

Eliminating unnecessary regions of VM memory in advance
is also effective in reducing the total amount of transferred
memory. Hines et al. [14] proposed a method to eliminate
unused memory dynamically by using memory ballooning. Ma
et al. [15] proposed a method to obtain the actual allocated
VM pages based on the guest OS information and transfer only
those pages. Koto et al. [30] avoids transferring soft pages,
such as free pages or file cache pages. These methods may be
used in conjunction with sub-page write detection.

Google Compute Engine (GCE) live migration [31] com-
bines the pre-copy and post-copy methods. It uses the pre-copy
method for most cases, but switches to the post-copy when the
VMs has a large dirty set and high write rate. This approach
is also orthogonal to ours.

Another interesting approach is to indirectly reduce the
amount of memory transfer by limiting the VM workload.
Clark et al. [2] proposed a method to reduce the number of
dirty pages by stopping the process that generates the most
page faults on the guest OS. Jin et al. [16] proposed a method
to reduce the execution time of vCPU, and Yiqiu et al. [17]
proposed a method to add sleep tasks to the task queue of the
guest OS. QEMU/KVM also implements a method to limit
vCPU activity [18]. The sub-page write protection has the
property that the number of sub-page faults increases as the
frequency of memory writes increases. Therefore, it can be
applied to automatic adjustment of memory write frequency.

Checkpoint and replay [32], [33] greatly reduces the amount
of memory transfer with an approach that does not fully restore
the VM state. In this approach, the VM state is transferred
by checkpointing in advance, and then only the minimum
amount of logs are sent to replay the VM behavior at the
destination. However, the memory contents of the VM may
not be completely reproduced, which may cause compatibility
issues.

Distributed Shared Memory (DSM) [34] is a classical
method to synchronize memory across multiple machines.
Zhang et al. [35] proposed a DSM using write detection with
EPT write permissions to realize VMs running distributed
across multiple physical machines. Zekauskas et al. [36]
proposed a fine-grained write detection by modifying the
compiler and achieved up to 44% reduction in data transfer.
Schoina et al. [37] implemented fine-grained write permission
by modifying the memory interface and inserting code before
memory write instructions. Some of these DSM techniques
might be applied to VM live migration.

VIII. SUMMARY

In this study, we estimated the effectiveness of sub-page
write detection using the sub-page write protection mechanism
in VM live migration. The sub-page write protection is a

function that can set write protection for each sub page, and
it can realize write detection in units of sub pages with less
memory consumption, while it incurs a page fault cost for
each write access to the sub page with write protection.

We targeted the CPU architecture with Intel SPP that is
the first one to support sub-page write protection, imple-
mented sub-page write detection and pseudo-migration on
QEMU/KVM, ran various workloads on Bochs that can em-
ulate Intel SPP, and estimated the effect of reducing the total
migration time and the overhead on CPU and memory.

The experimental results show that sub-page write detec-
tion with sub-page write protection achieves the same level
of memory transfer reduction and total migration time re-
duction as the method combining 4-KiB page write detec-
tion and XBZRLE in QEMU, while only slightly increas-
ing memory consumption. In addition, for the SPECCPU
531.deepsjeng_r, only sub-page write protection was
able to complete the migration. On the other hand, we found
that there were some workloads for which even sub-page write
detection could not complete the migration.

For future work, we need to evaluate the performance on
a real machine equipped with a CPU that supports sub-page
write protection. In order to reduce the overhead of page faults
caused by SPP, we need to consider further optimizations such
as avoiding page faults by predicting writes per sub page.
Additionally, we need to consider evaluating and reducing
the cost of maintaining data consistency for sub-page write
protection across multiple CPU cores, which is also a problem
for regular pages, but is expected to increase even more for
sub pages. Finally, sub-page write protection may be used to
adjust the write speed to handle workloads that could not be
completed by conventional methods.

REFERENCES

[1] T. Le, “A survey of live Virtual Machine migration techniques,” Com-
puter Science Review, vol. 38, pp. 1–17, Nov. 2020.

[2] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2nd Symposium on Networked Systems Design & Implementation,
ser. NSDI ’05, 2005, pp. 273–286.

[3] S. Akiyama, T. Hirofuchi, and S. Honiden, “Evaluating impact of live
migration on data center energy saving,” in Proceedings of the 6th IEEE
International Conference on Cloud Computing Technology and Science,
ser. CloudCom 2014, Dec. 2014, pp. 759–762.

[4] P. Svärd, B. Hudzia, J. Tordsson, and E. Elmroth, “Evaluation of delta
compression techniques for efficient live migration of large virtual ma-
chines,” in Proceedings of the 7th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’11, Mar. 2011,
pp. 111–120.

[5] A. Shribman and B. Hudzia, “Pre-copy and post-copy vm live migration
for memory intensive applications,” in Proceedings of the 18th Interna-
tional Conference on Parallel Processing Workshops, ser. Euro-Par 2012,
Aug. 2012, pp. 539–547.

[6] U. Deshpande, X. Wang, and K. Gopalan, “Live gang migration of
virtual machines,” in Proceedings of the 20th International Symposium
on High Performance Distributed Computing, ser. HPDC ’11, Jun. 2011,
pp. 135–146.

[7] T. Wood, K. K. Ramakrishnan, P. Shenoy, J. Van Der Merwe, J. Hwang,
G. Liu, and L. Chaufournier, “Cloudnet: Dynamic pooling of cloud
resources by live wan migration of virtual machines,” IEEE/ACM
Transactions on Networking, vol. 23, no. 5, p. 1568–1583, Oct. 2015.

[8] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan, “Live virtual machine
migration with adaptive memory compression,” in Proceedings of 2009
IEEE International Conference on Cluster Computing and Workshops,
ser. CLUSTER 2009, 31 Aug.–4 Sep. 2009, pp. 1–10.

[9] C. Li, D. Feng, Y. Hua, W. Xia, L. Qin, Y. Huang, and Y. Zhou, “Bac:
Bandwidth-aware compression for efficient live migration of virtual
machines,” in Proceedings of the 36th IEEE International Conference
on Computer Communications, ser. INFOCOM 2017, May 2017, pp.
1–9.

[10] C. Li, D. Feng, Y. Hua, and L. Qin, “Efficient live virtual machine
migration for memory write-intensive workloads,” Future Generation
Computer Systems, vol. 95, pp. 126–139, Jun. 2019.

[11] C. Lin, Y. Huang, and Z. Jian, “A two-phase iterative pre-copy strategy
for live migration of virtual machines,” in Proceedings of the 8th
International Conference on Computing Technology and Information
Management, ser. ICCM 2012, Apr. 2012, pp. 29–34.

[12] B. Hu, Z. Lei, Y. Lei, D. Xu, and J. Li, “A time-series based precopy
approach for live migration of virtual machines,” in Proceedings of the
2011 IEEE 17th International Conference on Parallel and Distributed
Systems, ser. ICPADS 2011, Dec. 2011, pp. 947–952.

[13] B. Shi and H. Shen, “Memory/disk operation aware lightweight vm live
migration across data-centers with low performance impact,” in In Pro-
ceedings of the 38th IEEE Conference on Computer Communications,
ser. INFOCOM 2019, 29 Apr.–2 May 2019, pp. 334–342.

[14] M. R. Hines and K. Gopalan, “Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning,” in
Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, ser. VEE ’09, Mar. 2009, p.
51–60.

[15] Y. Ma, H. Wang, J. Dong, Y. Li, and S. Cheng, “Me2: Efficient live
migration of virtual machine with memory exploration and encoding,”
in Proceedings of the 2012 IEEE International Conference on Cluster
Computing, ser. CLUSTER 2012, Sep. 2012, pp. 610–613.

[16] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu, and F. Zhou, “Optimizing the live
migration of virtual machine by CPU scheduling,” Journal of Network
and Computer Applications, vol. 34, no. 4, pp. 1088–1096, Jul. 2011.

[17] F. Yiqiu, Z. Chen, and G. Junwei, “Improvement on live migration of
virtual machine by limiting the activity of CPU,” in Proceedings of the
2017 International Conference on Computer Systems, Electronics and
Control, ser. ICCSEC 2017, Dec. 2017, pp. 1420–1424.

[18] QEMU/KVM. Autoconverge Live Migration. [Online]. Available:
https://wiki.qemu.org/Features/AutoconvergeLiveMigration

[19] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manual.
Intel, Nov. 2020. [Online]. Available: https://software.intel.com/en-us/
articles/intel-sdm

[20] Bochs. [Online]. Available: http://bochs.sourceforge.net/
[21] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live migration

of virtual machines,” ACM SIGOPS Operating Systems Review, vol. 43,
no. 3, p. 14–26, Jul. 2009.

[22] S. Sahni and V. Varma, “A hybrid approach to live migration of virtual
machines,” in Proceedings of the 2012 IEEE International Conference
on Cloud Computing in Emerging Markets (CCEM), Oct. 2012, pp. 1–5.

[23] Redis. [Online]. Available: https://redis.io/
[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM Symposium on Cloud Computing, ser. SoCC ’10, Jun. 2010,
pp. 143–154.

[25] YCSB. [Online]. Available: https://github.com/brianfrankcooper/YCSB
[26] QEMU/KVM. SPP-Patch. [Online]. Available: https://lore.kernel.org/

kvm/20200516125507.5277-1-weijiang.yang@intel.com/
[27] X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data deduplication

to accelerate live virtual machine migration,” in 2010 IEEE International
Conference on Cluster Computing, 2010, pp. 88–96.

[28] R. Birke, A. Podzimek, L. Y. Chen, and E. Smirni, “Virtualization in
the private cloud: State of the practice,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 608–621, Sep. 2016.

[29] J. F. Alamdari and K. Zamanifar, “A reuse distance based precopy
approach to improve live migration of virtual machines,” in 2012
2nd IEEE International Conference on Parallel, Distributed and Grid
Computing, 2012, pp. 551–556.

[30] A. Koto, H. Yamada, K. Ohmura, and K. Kono, “Towards unobtrusive
vm live migration for cloud computing platforms,” in Proceedings of
the Asia-Pacific Workshop on Systems, ser. APSYS ’12. New York,

https://wiki.qemu.org/Features/AutoconvergeLiveMigration
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm
http://bochs.sourceforge.net/
https://redis.io/
https://github.com/brianfrankcooper/YCSB
https://lore.kernel.org/kvm/20200516125507.5277-1-weijiang.yang@intel.com/
https://lore.kernel.org/kvm/20200516125507.5277-1-weijiang.yang@intel.com/

NY, USA: Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2349896.2349903

[31] A. Ruprecht, D. Jones, D. Shiraev, G. Harmon, M. Spivak, M. Krebs,
M. Baker-Harvey, and T. Sanderson, “Vm live migration at scale,”
SIGPLAN Not., vol. 53, no. 3, p. 45–56, Mar. 2018. [Online]. Available:
https://doi.org/10.1145/3296975.3186415

[32] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, “Live migration of virtual
machine based on full system trace and replay,” in Proceedings of the
18th ACM International Symposium on High Performance Distributed
Computing, ser. HPDC ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 101–110. [Online]. Available:
https://doi.org/10.1145/1551609.1551630

[33] T. Knauth and C. Fetzer, “Vecycle: Recycling vm checkpoints for
faster migrations,” in Proceedings of the 16th Annual Middleware
Conference, ser. Middleware ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 210–221. [Online]. Available:
https://doi.org/10.1145/2814576.2814731

[34] K. Li, “Ivy: A shared virtual memory system for parallel computing,”
in Proceedings of the 1988 International Conference on Parallel Pro-
cessing, ser. ICPP 1988, 1988, pp. 94–101.

[35] J. Zhang, Z. Ding, Y. Chen, X. Jia, B. Yu, Z. Qi, and H. Guan, “Gi-
antVM: A type-ii hypervisor implementing many-to-one virtualization,”
in In Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’20, Mar. 2020,
pp. 30–44.

[36] M. J. Zekauskas, W. A. Sawdon, and B. N. Bershad, “Software write
detection for a distributed shared memory,” in Proceedings of the 1st
USENIX Symposium on Operating Systems Design and Implementation,
ser. OSDI ’94, Nov. 1994.

[37] I. Schoinas, B. Falsafi, A. R. Lebeck, S. K. Reinhardt, J. R. Larus, and
D. A. Wood, “Fine-grain access control for distributed shared memory,”
in Proceedings of the 6th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ser. ASPLOS
VI, Nov. 1994, pp. 297–306.

https://doi.org/10.1145/2349896.2349903
https://doi.org/10.1145/3296975.3186415
https://doi.org/10.1145/1551609.1551630
https://doi.org/10.1145/2814576.2814731

	I Introduction
	II Background
	II-A VM live migration
	II-B The granularity of write detection

	III Observation
	IV Sub-page Write Detection
	IV-A The sub-page write protection
	IV-B The sub-page write detection system

	V implementation
	V-A Intel SPP
	V-B Modifications to Bochs
	V-C Modifications to KVM
	V-D Modifications to QEMU

	VI evaluation
	VI-A Pseudo Migration
	VI-A1 Measure the performance of the physical machine
	VI-A2 Measure the amount of memory transfer on the VM
	VI-A3 Execute instrucions on the VM
	VI-A4 Iterate the above steps

	VI-B Total Migration Time
	VI-C Overhead in memory transfer
	VI-C1 CPU overhead
	VI-C2 Memory overhead

	VI-D Runtime overhead

	VII Related Work
	VIII summary
	References

